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Abstract: The accurate and reliable predictive estimation of signal attenuation loss is of prime
importance in radio resource management. During wireless network design and planning, a reliable
path loss model is required for optimal predictive estimation of the received signal strength, coverage,
quality, and signal interference-to-noise ratio. A set of trees (100) on the target measured data was
employed to determine the most informative and important subset of features, which were in turn
employed as input data to the Particle Swarm (PS) model for predictive path loss analysis. The
proposed Random Forest (RF-PS) based model exhibited optimal precision performance in the real-
time prognostic analysis of measured path loss over operational 4G LTE networks in Nigeria. The
relative performance of the proposed RF-PS model was compared to the standard PS and hybrid
radial basis function-particle swarm optimization (RBF-PS) algorithm for benchmarking. Generally,
results indicate that the proposed RF-PS model gave better prediction accuracy than the standard PS
and RBF-PS models across the investigated environments. The projected hybrid model would find
useful applications in path loss modeling in related wireless propagation environments.

Keywords: path loss measurement; signal strength intensity; particle swarm optimization; random
forest; hybrid RF-PS model; wireless network modeling

1. Introduction

Information dissemination in cellular communication system channels is in form of
Electromagnetic waves (EM) [1–3]. The signal intensity of the EM reduces as the sepa-
ration distance between the receiving antenna and the backbone transmitting antenna
increases [4–6]. Signal strength reduction is largely caused by the different varying EM
propagation mechanisms, such as scattering, diffraction, absorption, etc., impacting the
signals during propagation [7–9]. The resultant effect of these complex environmental
phenomena is described as a signal path loss [2,10]. Path loss quantifies the degree of
signal attenuation between the mobile antenna and the transmitting antenna through
space [11]. During cellular network planning and deployment, accurate path loss assess-
ment and prediction help to effectively determine the field intensity of the propagated
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signal, coverage quality and the signal interference-to-noise ratio [12]. In the existing
literature, several generic path loss models for signal coverage and path loss prediction
have been proposed [7,8]. However, these generic models always have precision problems.
Thus, without calibrating these models, they can hardly be utilized effectively in practice to
produce reliable results, especially in other related environments [13,14].

The linear least square (LLS) regression [15] method has been engaged to calibrate
popular path loss models for enhanced prediction of measured path loss obtained in
Irbid, Malaysia, Oman, Nigeria, China, and Baghdad city, among others [13,14,16–22].
Particularly, a recursive algorithm, which is an improved version of the LLS approach
was employed to adjust the Okumura–Hata model over an operational CMDA system
network [14]. In [16], a statistical LLS-based method was explored to tune the Hata model
for path loss prediction in Baghdad City. In [17], a Minimax LLS algorithm was explored
for automatic calibration of the Ericsson path loss model. An adaptive LLS method which
uses a polynomial function for path loss model adjustment has been presented [18]. A
similar method for adjusting the Erceg path loss model was presented [19]. The absolute
least square regression procedure was explored to optimize the existing path loss model for
robust predictive analysis [23]. The major problem with the LLS path loss model calibration
and their extended/modified approaches is sensitivity to outliers on measured signal
strength, resulting in large signal prediction errors [24,25]. A few works have employed
a nonlinear least square approach based on different numerical integration schemes to
calibrate existing path loss models for optimal prediction [26,27].

Most recently, the adaptive application of machine learning models, such as neural
networks [28–30], support vector machines [31], genetic algorithms [32], and Gaussian
process [33] among others, have gained ground toward efficient path loss predictions.
While these machine learning models are good models for prediction analysis, they are,
however, computationally demanding and inefficient when engaged for stochastic datasets
with high dimensions [34]. In [35], a hybrid structure which combines a ray tracing
scheme with random forest (RF) was explored for signal attenuation prediction. The
proposed hybrid path loss model showed enhanced prediction compared to the preliminary
methods. It is interesting to note that similar hybrid schemes jointly combining RF with
Radial Basis Function (RBF) and Neural Network (NN) with RBF have been explored for
evapotranspiration and path loss prediction [36,37].

In the literature [38–40], population-based models, such as particle swarms and ge-
netic algorithms, have been proposed for path loss predictive modeling. Although the
population-based modeling approach showed enhanced predictions, their overall perfor-
mance could be limited when employed in high-dimensional input features, especially
when the predictor number is far larger than the observation number [41]. Though datasets
with high-dimensional input features provide more information, the redundant and ir-
relevant constituents of the data may lower the prediction accuracy of the model [42]. In
the current contribution, Random Forest-Particle Swarm (RF-PS) optimization is proposed
for adaptive modeling and predictive analysis of signal path loss with high-dimensional
input features obtained from 4G cellular networks in the mid-southern part of Nigeria.
The relative performance of the proposed RF-PS-based model has been compared to the
standard PS and hybrid RBF-PS approach for benchmarking purposes. To this end, the
vital contributions of this paper include:

• Measurement-based acquisition of detailed signal data and computation of attenuation
loss levels across selected urban LTE microcellular radio communication paths using
professional TEMS investigation tools.

• Effective application of the random forest technique for the most informative and
important subset of features selection from measured signal data sets toward robust
predictive analysis.

• Development and application of an improved signal path loss model using hybrid
random forest and particle swarm optimization for optimal cellular planning across
the investigated locations.
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• Validation of the developed signal path loss models in other eNodeB (base stations)
across the investigated locations to ascertain the level of their prediction accuracies.

The remaining parts of this paper are organized as follows. Section 2 describes the
methods and materials. Section 3 presents the results and useful discussions. Finally, the
conclusion to the paper is given in Section 4.

2. Methods and Materials

The materials and methods are briefed in this section. The data collection method is
described and the theory covering signal propagation through free space is presented. The
Random Forest (RF) [43–46] and Particle Swarm Optimization (PSO) [38,47,48] methods
are described as well. Additionally, the Hybrid RF-PS path loss modeling, Radial Basis
Function (RBF) networks [49], the proposed hybrid path loss prediction modeling approach
and performance indicators are described briefly.

2.1. Data Collection

The measurement campaign was carried out in four different cities in southern Nigeria.
The cities include Agbor and Asaba in Delta State and Onitsha and Awka in Anambra State.
A total of 16 eNodeB were monitored, four in each of the four cities categorized as locations
1, 2, 3, and 4. A TEMS software installed in a laptop with GPS and TEMS handset connected
to it was housed in a test vehicle. The TEMS software was launched on the laptop after
which the relevant Nigerian routes and cell reference details were uploaded. The TEMS
was locked on a 4G LTE network at the 2600 MHz frequency band. Following this, a drive
test was conducted on the specified routes in and around the coverage area of the base
stations and the reference signal received power was continuously recorded with the TEMS
tools. The GPS data were recorded simultaneously at all instants of the collected field data.
The Reference Signal Received Power (RSRP) of the serving base stations was recorded
on a log file by the TEMS software with detailed information, such as the coordinates of
the mobile station location, transmitting frequency, cell identity, distance covered, altitude,
and other system parameters. The log file containing the measured RSRP in all the studied
locations was saved for further processing and analysis.

2.2. Signal Propagation through Free Space

The free space path loss model [40] provides details or means of quantifying the loss
that can be attained when radio signals are propagated without considering the effects
of several other external impediments in the propagation paths. Thus, the power density
Sp [2,40,50], attained over a communication distance r in free space, is related to the received
power Pr, the transmit power Pt, and the antenna gain Gt, given by (1), and the received
power is given by (2)

Sp =
PtGt

4πr2 (1)

Pr = Sp Ae =
PtGt

4πr2 Ae (2)

where Ae is the antenna aperture area defined in (3)

Ae =
Grλ2

4π
(3)

Pr can be rewritten with respect to Ae as in (4):

Pr =
PtGt

4πr2 Ae =
λ2

(4πr)2 GtPtGr (4)

where λ = transmission wavelength in meters.
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Thus, the path loss, Pl(dB) over the free space channel can be computed as in (5) using
Equation (4):

Pl(dB) = 20 log
(

4πr
λ

)
= 20 log

(
4π fcar
Cspeed

)
(5)

where Cspeed and fca define the speed of light and transmission frequency, respectively.
Given that Cspeed = 3× 108 m/s, π = 3.142, then Equation (5) can be expressed as (6):

Pl(dB) = 130 + 20 log( f ) + 20 log(r) (6)

The expression in (6) reveals that signal loss in free space attenuates 20 dB in value.
However, this is certainly not true in other propagation environments, such as built-up
terrains, a suburban or an urban area.

In a more general form, Equation (6) can be rewritten as (7):

Pl(dB) = a1 + a2 log( f ) + a3 log(r) (7)

Thus, Equation (7) is referred to as the general log-distance path loss model. In
literature, several efforts have been explored to determine the loss coefficients: a1, a2, and
a3. In this paper, these loss coefficients represent the identified parameters to be tuned
(optimized) to reflect the true nature of the terrain where the signal is being propagated.
This quest has also led to the introduction of several empirical models, such as the Hata [51],
SUI [52,53], COST 231 Hata [54–56], and ITU-R M2412-0 [57] models. The application of
these models for path loss estimation in an environment different from environments where
the models were developed produces significant errors. The results of the optimized loss
coefficient (i.e., the identified parameters) of Equation (7) using the proposed RF-PS method
compared to other popular existing methods are reported in this paper.

2.3. Random Forest

Random Forest (RF), known as an ensemble of the decision tree, is a distinctive non-
parametric supervised machine learning method proposed by Breiman and Cutler [46].
RF employs several multiple decision trees to handle regression, feature selection and
classification problems. The RF remain an efficient tool for preprocessing datasets via di-
mensionality reduction or redundancy reduction. Though datasets with high-dimensional
input features provide more information, the redundant and irrelevant constituents may
lower the prediction accuracy. In this paper, the RF method was employed to extract more
relevant features from the measured signal dataset, while eliminating the redundant and
less important ones. The RF algorithms have two or more main hyperparameters, which
must be provided before engaging them for data training or regression analysis [42]. One
such hyperparameter is the number of trees. Mathematically, the RF input-output function
model is defined in (8).

RF(xn, yn) = { f (xn, θm, yn)} (8)

where θm indicates the tree number. The xn, yn indicate the input and target output data.
Here, to accomplish the task, a set of trees (100) were engaged on the target measured
signal data sets to determine the most informative and important subset of features.

2.4. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population of particle search optimization
algorithms introduced by Kennedy and Eberhart in 1995 [47]. In the PSO, populations
of particles move in a particular search space at different velocities and randomly choose
the candidate solutions. Accordingly, the position of a particle set defines the solution
to the optimization problem. The particles search for the best positions in the search
space iteratively (step-wise repeated manner) by changing the velocities per the guiding
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rules inspired by the flocking bird behavioral model. In each iteration, the velocities and
positions can be expressed (9) and (10):

Vq+1
i = ωVq

i + g1r1(Pbest − Xq
i ) + g2r2(Gbest − Xq

i ) (9)

Xq+1
i = Xq

i + Vq+1
i (10)

where q = iteration number, ω = weight parameter, r2 = coefficient social parameter,
r1 = cognition parameter, Xq

i = individual position at iteration q, Vq
i = individual velocity

at iteration q, and Pbest = best value of each particle.

2.5. Hybrid RF-PS Path Loss Modelling

This section reveals how the proposed hybrid path loss model development technique
is accomplished. The proposed hybrid path loss model termed RF-PS combines random
forest and particle swarm optimization methods. The output of the RF signal is fed into the
particle swarm component for further prognostic modeling.

In line with the principle of mean square minimization (MSE), the objective function
of the proposed hybrid path loss model can be articulated as (11) and (12):

J(a) =
1
N ∑N

i=1[y(k)− y(k)]2 (11)

J(a) =
1
N ∑N

i=1[y(k)− y(a, x)]2 (12)

where: N = number of path loss data sample, while y(k) = measured path loss data sample
y(k) = f (a, x) = target prediction response. The problem of accurately determining the
modelling parameters, a = [a1, a2, a3], entails minimizing the objective function, J(a) ex-
pressed in equation (12). The above problem can be tagged as a minimization optimization
problem with constraints: min J(a) simplified in (13)

J(a) =

〈 a1,min≤ a1 ≤ a1,max
a2,min≤ a2 ≤ a2,max
a3,min≤ a3 ≤ a3,max

〉
(13)

To implement the PSO technique to solve the minimization optimization problem,
let aq,p

1 , aq,p
2 , aq,p

3 designate the solution generated by PSO for q iteration and p population.
Thus, the target prediction response can be expressed as (14). The predicted solution can be
achieved utilizing Algorithm 1.

y = aq,p
1 + aq,p

2 ∗ log10x + aq,p
3 log10 f (14)
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Algorithm 1: PSO implementation Pseudocode

1: initialization
2: Input:

Set variables number, n and swarm size
Set of initial parameters

Objective function J(a), a = (a1, a2, a3)
3: Output:

Set of best initial parameters
Prediction model, ypred

4: Start PSO
5: for i = 1:s do
6: Evaluate J(a);
7: Pbest := ai;
8: end for
9: while (Halt condition) do
10: Compute the inertia weight wi
11: for i = 1:s do
12: if Xi. Xmax then
13: Xi = Xmax;
14: end if
15: if Xi\Xmin then
16: Xi = Xmin;
17: end if
18: Appraise J(a)
19: if J(a)\J(Pbest) then
20: pBesti : = Xi;
21: end if
22: if J(pBesti)\J(Gbest) then
23: GBest: =PBest;
24: end if

2.6. Radial Basis Function (RBF) Networks

In computational neural network modeling, Radial Basis Function (RBF) networks,
introduced by Broomhead and Lowe in 1988 [58], represent a distinctive type of feed-
forward network with robust universal curve fitting approximation capabilities in a high
dimensional space. Accordingly, the RBF networks are generally trained to map input
vectors, xi ∈ Ri, into output vectors, yi ∈ R0, where the sets (xi, yi), 1 ≤ i ≤ n, form the
training pairs. Thus, learning is the same as determining a surface in the high dimensional
space that delivers the best line of fit to the training dataset.

In terms of the radial basis architecture shown in Figure 1, the RBF networks are
characteristically made of three layers: one linear output layer, one hidden layer which
utilizes a specific non-linear RBF transfer function, and an input layer. The neurons in the
input layer have a linear function which primarily feeds and links the input signal vector to
the hidden layer. The input layer outputs are obtained by computing the distance between
hidden layer centers and the network inputs. Generally, the RBF networks can be expressed
mathematically as [59]:

yj(x) = wjo +
(
∑n

i=1 wji ϕj(x)
)

(15)

i∈{1,2,. . . , n}, j∈{1,2,. . . , J}
The expression in Equation (15) can be simplified further by introducing an additional

basis function, φ0 = 1, and this yields (16):

yj(x) =
n

∑
i=0

wjiφj(x) (16)
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In terms of Gaussian basis functions, φj(x) is defined by (17):

φj(x) = exp

(
−
‖x− µj‖

2

2σ2
j

)
(17)

where yj = network output of the jth neuron, n = no. of hidden layer neurons, J = dimension
of the output, φ = radial basis function, Wji = weight of the jth output and ith neuron,
σ = spread parameter for the ith neuron, x = input data vector, and µj = center vector of
the ith neuron.

In the literature [36,37], the RBF network has been combined with particle swam (PS)
optimization as a hybrid approach for optimal predictive analysis. Thus, in this paper, the
RBF is introduced in combination with PS to enable us to benchmark the proposed hybrid
RF-PS method.

2.7. The Proposed Hybrid Path Loss Prediction Modeling Approach

The proposed hybrid path loss prediction model which combines the Random Forest
(RF) and Particle Swarm Optimization (PSO) algorithm is briefly summarized. The hybrid
approach is tagged as the RF-PS method. To develop, implement, and test the RF-PS model
performance, three-phase steps are exploited, as illustrated in Figure 2.

i. Study Locations Field Survey and Signal Strength Measurement: This phase consists
of the study locations, field survey, detailed signal strength measurements, signal extraction,
and preliminary preprocessing.

ii. Path Loss Calculation and Analysis based on Measured Signal Strength: This
consists of path loss analysis in comparison with some key existing path loss models.

iii. Hybrid Path Loss Prediction Modeling and Application: To achieve this crucial task,
the spatial signal data is first passed through RF for dimensionality and feature selection
process. A set of trees (100) on the target measured signal data sets were considered to
determine the most informative and important subset of features, which were in turn
employed as input data to the particle swarm optimization model for predictive path
loss analysis.

The proposed hybrid path loss model combines the random forest and particle swarm
optimization methods, termed RF-PS. Thirdly, detailed validation, application of the RF-PS
model, and comparison with other existing techniques are presented.
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2.8. Performance Index

Three key performance indexes were employed to statistically quantify and examine
the prediction accuracy of the proposed RF-PS model. These include Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (R) [60–62]. The
mathematical definitions of these performance indexes are given in Equations (17)–(19).
Specifically, the Mean Absolute Error (MAE) is given in (18), the (RMSE) is shown in (19),
and the (R) is given in (20)

MAE =
1
N

N

∑
q=1

∣∣yq − dq
∣∣ (18)

RMSE =
√

MSE =
1
N

√√√√ N

∑
q=1

[
yq − dq

]2 (19)

R =

N
∑

q=1

(
yq − yk

)(
yq − dk

)
√√√√[ N

∑
q=1

[
(yk − yk)

2
]][ N

∑
q=1

[(
yk − dk

)2
]] (20)
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where yq denotes the desired target output, dq indicates the actual network output, yq is
the mean of the actual network output, q = 1, 2, . . . , N, and N is the actual network
output number.

3. Results and Discussions

The results of this study and valuable discussions are presented. The results are
divided into four parts in line with the objectives of the study. The first part concentrates
on the quantification and analysis of the measured path loss in comparison with the
standard path loss models. The second part presents the enhanced prediction using the
developed hybrid Random Forest and Particle Swarm (RF-PS) optimization method over
the standard path loss optimization methods. The third part provides detailed results
using the developed (RF-PS) optimization method for path loss prediction in other study
locations used for model validation.

3.1. Quantification and Analysis of the Measured Path Loss in Comparison with the Standard Path
Loss Models

There is a need to quantify and compare measured path loss in comparison with the
standard path loss models before employing the proposed RF-PS method for path loss
model optimization. Thus, this first part concentrates on the quantification and analysis
of the measured path loss in comparison with the standard path loss models such as the
COST 231 Hata and ITU-R M.2412-0 models. As shown in Figures 3–6, the graphs reveal
the level of practical measured signal path loss as a function of measurement distances
across the four study locations. The locations include: Asaba, Onitsha, Awka, and Agbor.
In each of the aforementioned study locations, one eNodeB site each was engaged to obtain
the path loss data. From the graphs, the levels of the measured path loss in Asaba, Onitsha,
Awka, and Agbor vary between: 90–144 dB, 100–150 dB, 110–140 dB and 106–120 dB,
respectively. For the standard path loss models, the COST 231 Hata and ITU-R M.2412-0
models vary between 200 and 240 dB and between 171 and 175 dB, respectively. From
the results, it is noticeably clear that loss values attained by the standard models are quite
higher than the ones obtained through field measurements. In terms of accuracy, the results
also imply that the standard COST 231 Hata and ITU-R M.2412-0 models over predicted
the measured path loss values across the four study locations. As a case in point, the COST
231 model achieved 78.27, 83.75, 78.27 and 82.77 dB RMSE values, and the ITU-R M.2412-0
model gives 27.29, 34.39, 64, 28, 32.76 dB values, respectively. The higher path loss values
produced by the standard models may be ascribed to the physical terrain and topographical
differences between the actual locations where the measurement was conducted and the
terrain characterization where the models were initially developed. Thus, the need to fine-
tune the existing standard models for reliable and improved prediction of the measured
path loss data is self-evident and worthy of investigation.
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Figure 3. Measured Path loss values versus distance and Prediction comparison with standard COST
231 and ITU-R M.2412-0 model in site 1 Location 1.
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Figure 4. Measured Path loss values versus distance and Prediction comparison with standard COST
231 and ITU-R M.2412-0 model in site 1 Location 2.
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3.2. Dimensionality Reduction through Important Data Feature Selection Using RF

A set of trees (100) on the target measured signal data sets was employed to determine
the most informative and important subset of features, which were in turn employed as
input data to the particle swarm optimization model for predictive path loss analysis.
Table 1 and Figure 7 show the acquired signal dataset with constituent features in one of
the studied locations and the number of features selected via the methods are displayed.
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Table 1. The acquired signal dataset and the consistent features in one of the studied locations.

BTS LAT. BTS
LONG. CELL ID DIST.

(m) RSRP RSRP
LAT.

RSRP
LONG.

FREQ.
(MHz)

ALT
(m)

Path Loss
(dB)

6.2497 6.2022 297 100 −82.5 6.2504 6.2028 2600 170 81.3000

6.2497 6.2022 297 120 −68.81 6.2506 6.2028 2600 169 82.3300

6.2497 6.2022 297 140 −70.19 6.2508 6.2028 2600 169 97.5000

6.2497 6.2022 297 160 −89.25 6.2509 6.2028 2600 169 83.8100

6.2497 6.2022 297 180 −75.75 6.2512 6.2028 2600 169 85.1900

6.2497 6.2022 297 200 −70.44 6.2515 6.2029 2600 169 104.2500

x1 = BTS Latitude, x2 = BTS Longitude, x3 = Cell ID, x4 = Distance (m), x5 = RSRP, x6 = RSRP Latitude, x7 = RSRP
Longitude, x8 = Frequency, x9 = Altitude.
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Figure 7a reveals the level of importance each measured signal dataset feature attained,
and Figure 7b displays each constituent feature (predictor) association estimate. A bigger
estimated value indicates a more important constituent feature. As shown in Figure 7a,
the RSRP predictor has the highest level of importance with a score of 1. This score is
followed by distance with a 0.7 score. Moreover, RSRP, Latitude, and Altitude (m) scored
0.28, 0.3, and 0.4, respectively. On the other hand, BTS Latitude, BTS Longitude, Cell ID,
and frequency scored zero each, meaning they have no impact on predictions.

3.3. Enhanced Prediction Obtained with the Developed Hybrid RF-PS Optimization Method over
the Standard Path Loss Optimization Methods

The results obtained by applying the proposed hybrid RF-PS optimization method
over the standard path loss optimization methods are presented in Figures 8–19. In order
to benchmark, the ordinary PS and RBF-PS methods used for path loss model optimization
are used for performance analysis across the studied locations. Three key performance indi-
cators: RMSE, MAE, and R, are used in this contribution. The proposed RF-PS optimization
method showed better prediction performance with lower RMSE values; 3.51–4.33 dB,
2.55–2.98 dB, 3.23–3.54 dB, and 3.11–5.22 dB for locations 1–4, respectively. For standard PS
and RBF-PS optimization methods, the RMSEs are quite higher; 3.96–6.08 dB, 2.69–4.33 dB,
4.60–6.38 dB, and 4.160–6.16 dB for locations 1–4, respectively. Overall, the robustness
and superiority of the proposed RF-PS method for path loss prediction over the existing
techniques are demonstrated.
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The difference between the proposed hybrid RF-PS model and the standard hybrid
RBF-PS model is that, while the RBF-PS is merely a combination of two predictive regression
approaches, but the proposed hybrid RF-PS model is also a combination of two predictive
regression approaches, but with additional feature selection techniques. This enables the
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proposed hybrid approach to cater for highly dimensional measured signal path loss data;
hence its superior prediction performances over the standard method.

The performance of the enhanced path loss prediction obtained using the proposed
method compared with the standard methods is presented, using standard metrics, such as
the MAE and R. Lower MAE values obtained using the proposed hybrid RF-PS prediction
across all locations are a clear indication of its optimal performance.

Besides the MAE, another very relevant indicator to assess the precision accuracy
of the proposed RF-PS method in comparison with measured path loss is the R. Here, R
measures the close connection between the predicted and measured path losses. The closer
the R-value is to 1, the stronger, healthier, and better the linear connection between the
predicted and measured path losses. The linear connection is indicated using a red line in
Figures 20–31. The MAE results presented in Table 2 characterize the magnitude differences
between the predicted and the measured path loss using the proposed hybrid RF-PS prediction
and two other existing methods; ordinary PS and combined RBF-PS for sites in Locations
1–4. Table 3 shows the coefficients of the developed path loss model using the proposed
hybrid RF-PS approach and other key existing standard approaches.
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Table 2. Computed MAE values attained with developed path loss model and other key existing
standard prediction approaches.

Location Site RF-PS PS RBF-PS

Asaba 1 2.62 3.71 3.35

2 3.39 4.47 4.45

3 3.62 4.79 4.80

Onitsha 1 1.83 2.13 2.13

2 2.25 3.63 3.61

3 2.82 3.00 3.03

Awka 1 1.71 2.82 2.82
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2 2.83 4.97 4.97

3 3.64 4.24 4.24

Table 3. The Coefficients of the developed path loss model using the proposed hybrid RF-PS and
other existing standard approaches.

Locations Proposed Hybrid RF-PS Model
Coefficients Standard PS Model Coefficients Standard Hybrid RBF-PS Model

Coefficients

Parameters a1 a2 a3 a1 a2 a3 a1 a2 a3

Asaba 1 831.05 21.53 −217.29 −102.01 45.19 305.01 −339.69 6.63 136.94

Asaba 2 502.79 22.54 −123.06 −1484.23 19.07 462.73 −351.37 22.01 128.70

Asaba 3 78.16 22.94 1.09 1288.98 25.43 −355.39 2201.98 23.23 621.04

Average 470.66 22.37 −113.08 −406.09 29.90 137.45 503.64 17.29 18.47

Onitsha 1 −235.18 39.37 87.14 −497.57 39.70 157.86 1612.03 40.01 460.11

Onitsha 2 13.22 27.66 −19.47 1341.66 24.50 369.47 1341.66 24.50 −369.47

Onitsha 3 838.77 27.66 218.94 396.71 20.78 91.01 −184.69 20.99 79.10

Average 198.77 27.66 −47.44 413.60 28.33 −100.95 923.00 28.25 56.58

Awka 1 −2631 27.62 790.42 −175.93 27.40 71.52 1763.98 27.40 496.53
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Table 3. Cont.

Locations Proposed Hybrid RF-PS Model
Coefficients Standard PS Model Coefficients Standard Hybrid RBF-PS Model

Coefficients

Parameters a1 a2 a3 a1 a2 a3 a1 a2 a3

Awka 2 −3083.70 37.91 914.77 1525.23 22.74 −422.83 796.39 26.60 −212.45

Awka 3 −330.19 30.95 113.61 −676.16 32.12 214.00 −6062.90 31.80 1791.65

Average −2015.31 31.98 606.27 224.38 27.42 −45.77 −1177.51 28.60 −360.88

Agbor 1 720.85 25.11 −188.97 −234.84 28.26 88.47 380.36 28.19 −91.62

Agbor 2 1048.86 21.39 −281.93 −690.41 28.13 222.19 −780.89 28.13 248.69

Agbor 3 −286.99 19.80 111.53 −842.39 21.53 272.82 −1196.57 21.49 376.57

Average 494.24 22.10 −119.61 −604.47 25.97 195.83 −532.37 25.94 177.88

3.4. Validation Using the Developed (RF-PS) Optimization Method for Path Loss Prediction in
Other Study Locations

Figures 32–35 exhibit the detailed validation results attained with the proposed hybrid
RF-PS approach for path loss prediction in four study locations, using four new sites. The
results demonstrate that the developed model fitted the measured loss values obtained
from the four new locations with high correlation efficiency.
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4. Conclusions

The rapid growth of cellular-based communication systems has been undergoing
viable advancement in terms of multimedia service deployment and mobile subscriptions.
The advancements are also being accompanied by the global evolution of other higher
broadband cellular communication technologies and deployment infrastructures. In this
contribution, a hybrid Random Forest and Particle Swarm Optimization (RF-PS) method
was proposed for efficient path loss modeling, leveraging measured path loss data. The
proposed RF-PS model exhibits optimal performance in the real-time prognostic analy-
sis of measured path loss data acquired over operational 4G long term evolution (LTE)
networks in Nigeria. The proposed RF-PS optimization method showed better predic-
tion performance with lower RMSE values; 3.51–4.33 dB, 2.55–2.98 dB, 3.23–3.54 dB, and
3.11–5.22 dB for locations 1, 2, 3, and 4, respectively. For standard PS and RBF-PS optimiza-
tion methods, the RMSEs are quite higher; 3.51–4.33 dB, 2.55–2.98 dB, 3.23–3.54 dB, and
3.11–5.22 dB for locations 1, 2, 3, and 4, respectively. These results clearly demonstrate the
robustness and superiority of the proposed RF-PS method for path loss prediction over the
existing techniques. Future work would focus on the optimization of the projected RF-PS
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model to improve its path loss prediction accuracy for application in emerging wireless
communication systems.
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