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Abstract: Edge detectors are widely used in computer vision applications to locate sharp intensity
changes and find object boundaries in an image. The Canny edge detector is the most popular
edge detector, and it uses a multi-step process, including the first step of noise reduction using a
Gaussian kernel and a final step to remove the weak edges by the hysteresis threshold. In this work,
a spike-based computing algorithm is presented as a neuromorphic analogue of the Canny edge
detector, where the five steps of the conventional algorithm are processed using spikes. A spiking
neural network layer consisting of a simplified version of a conductance-based Hodgkin–Huxley
neuron as a building block is used to calculate the gradients. The effectiveness of the spiking neural-
network-based algorithm is demonstrated on a variety of images, showing its successful adaptation
of the principle of the Canny edge detector. These results demonstrate that the proposed algorithm
performs as a complete spike domain implementation of the Canny edge detector.

Keywords: edge detection; segmentation; spiking neural networks; bio-inspired neurons

1. Introduction

Artificial neural networks (ANNs) have become an indispensable tool for implement-
ing machine learning and computer vision algorithms in a variety of pattern recognition
and knowledge discovery tasks for both commercial and defense interests. Recent progress
in neural networks is driven by the increase in computing power in data centers, cloud
computing platforms, and edge computing boards. In size, weight, and power (SWaP)–
constrained applications, such as unmanned aerial vehicles (UAVs), augmented reality
headsets, and smart phones, more novel computing architectures are desirable. The state-
of-the-art deep learning hardware platforms are often based on graphics processing units
(GPUs), tensor processing units (TPUs) and field programmable gate arrays (FPGAs). The
human brain is capable of performing more general and complex tasks at a minute frac-
tion of the power required by deep learning hardware platforms. Spiking neurons are
regarded as the building blocks of the neural networks in the brain. Moreover, research
in neuroscience indicates the spatiotemporal computing capabilities of spiking neurons
play a role in the energy efficiency of the brain. In addition, spiking neurons leverage
sparse time-based information encoding, event-triggered plasticity, and low-power inter-
neuron signaling. In this context, neuromorphic computing hardware architecture and
spike domain machine learning algorithms offer a low-power alternative to ANNs on von
Neumann computing architectures. The availability of neuromorphic processors, such as
IBM’s TrueNorth [1], Intel’s Loihi [2], and event-domain neural processors, for example,
BrainChip’s Akida [3,4], which offers the flexibility to define both artificial neural network
layers and spiking neuron layers, are motivating the research and development of new
algorithms for edge computing. In the present work, we have investigated how one can
program an algorithm for Canny type edge detection using a spiking neural network and
spike-based computing.
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2. Background

An edge detection algorithm is widely used in computer vision to locate object bound-
aries in images. An edge in an image shows a sharp change in image brightness, which is a
result of a sharp change in pixel intensity data. An edge detector computes and identifies
the pixels with sharp changes in intensity with respect to the intensity of neighboring pixels.
There are several edge detection image processing algorithms.

The three stages in edge detection are image smoothing, detection, edge localization.
There are mainly three types of operators in edge detection. These are (i) gradient-based,
(ii) Laplacian-based and (iii) Gaussian-based. The gradient-based edge detection method
detects the edges by finding the maximum and the minimum in the first derivative of
the image using a threshold. The Roberts edge detector [5], Sobel edge detector [6], and
Prewitt edge detector [7] are some of the examples of gradient-based edge detectors. These
detectors use a 3 × 3 pattern grid. A detailed discussion on these edge detectors and a
comparison of their advantages and disadvantages can be found in [8]. The Roberts edge
detection method is built on the idea that a difference on any pair of mutually perpendicular
directions can be used to calculate the gradient. The Sobel operator uses the convolution
of the images with a small, separable, and integer-valued filter in horizontal and vertical
directions for edge detection. The Prewitt edge detector uses two masks, each computing
the derivate of the image in the x-direction and the y-direction. This detector is suitable
to estimate the magnitude and orientation of the edge. Laplacian-based edge detectors
find the edges by searching for zero crossings in the second derivative of the image. The
Laplacian of the Gaussian algorithm uses a pre-smoothing step with a Gaussian low-pass
filter on an image followed by a second-order differential, i.e., Laplacian, which finds
the image edge. This method needs a discrete convolutional kernel that can approximate
the second derivative for the image which consists of discrete pixels. The Marr–Hildreth
edge detector is also based on the Laplacian of the Gaussian operator [9]. The Gabor filter
edge detector [10] and Canny edge detector [11] are Gaussian-based edge detectors. The
Gabor filter is a linear filter with its impulse response function defined by the product of a
harmonic function with a Gaussian function and is similar to the human perception system.

The Canny edge detector provides excellent edge detection, as it meets the three
criteria for edge detection [12]: (i) detection with low error rate, (ii) the edge point should
localize in the center of the edge, and (iii) an edge should only be marked once and image
noise should not create edges. Canny edge detection uses the calculus of variations to
optimize a functional which is a sum of four exponential terms, which approximates the
first derivative of a Gaussian. A Canny edge detector is a multi-step algorithm designed to
detect the edges of any analyzed image. The steps of this process are: (1) removal of noise
in the image using a Gaussian filter, (2) calculation of the gradient of the image pixels along
x- and y-directions, (3) non-maximum suppression to thin out edges, (4) double-threshold
filtering to detect strong, weak and non-relevant pixels, and (5) edge tracking by hysteresis
to transform weaker pixels into stronger pixels if at least one of their neighbors is a stronger
pixel. The Canny edge detection algorithm is highly cited (∼36,000 citations) and the most
commonly used edge detection algorithm [11].

Edge detection is a primary step in identifying an object and further research is strongly
desirable to expand these methods to event-domain applications. The Canny edge detector
has a better performance as an edge detector compared to Roberts, Sobel and Prewitt
edge detectors, but at a higher computational cost [8]. An alternate implementation of the
Canny edge detection algorithm is for edge computing event-domain applications, where
low-power and real-time solutions can be attractive to target applications, in view of its
tunable performance using the standard deviation of the Gaussian filter.

3. Related Work

In the human vision system, the photoreceptors in the retina convert the light intensity
into nerve signals. These signals are further processed and converted into spike trains by
the ganglion cells in the retina. The spike trains travel along the optic nerve for further pro-
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cessing in the visual cortex. Neural networks that are inspired by the human vision system
have been introduced to improve image processing techniques, such as edge detection [13].
Spiking neural networks, which are built on the concepts of spike encoding techniques [14],
spiking neuron models [15] and spike-based learning rules [16], are biologically inspired
in their mechanism of image processing. SNNs are gaining attraction for biologically
inspired computing and learning applications [17,18]. Wu et al. simulated a three-layer
spiking neural network (SNN), consisting of a receptor layer, an intermediate layer with
four filters, respectively, for up, down, left, and right directions, and an oputput layer with
Hogkin–Huxley-type neurons as the building blocks for edge detection [19].

Clogenson et al. demonstrated how a SNN with scalable, hexagonally shaped receptive
fields performs edge detection with computational improvements over rectangular shaped
pixel-based SNN approaches [20]. The digital images are converted into a hexagonal pixel
representation before being processed by the SNN. A spiking neuron integrates the spikes
from a group of afferent neurons in a receptive field. The network model used by the
authors consists of an intermediate layer with four types of neurons corresponding to four
different receptive fields, corresponding to up, down, right and left orientations. Yedjour
et al. [21] demonstrated the basic task of contour detection using a spiking neural network
based on the Hodgkin–Huxley neuron model. In this approach, the synaptic weights are
determined by the Gabor function to describe the receptive field’s behaviors of simple
cells in the visual cortex. Vemuru [22] reported the design of a SNN edge detector with
biologically inspired neurons and demonstrated that the edge detector detects edges in
simulated low-contrast images. These studies focused on defining SNNs using an array of
Gabor filter receptive fields in the edge detector. In view of the success of SNNs in edge
detection, it is desirable to develop a spike domain implementation of an edge detector with
the Canny edge detector algorithm because it has the potential to offer a high performance
alternative for edge detection.

4. Methods

Network models of the visual cortex are simulated with spiking neurons using
Hodgkin and Huxley equations [23]. Retinal ganglion cells convey the visual image
from the eye to the brain [24,25]. Receptive fields exist in the visual cortex; however, an
accurate representation of the neuron circuits for the visual cortex is still unclear. Neural
network models have been proposed explaining how the visual system is able to process
an image efficiently, and more research is desired to further our understanding of the
visual cortex [26]. As ANNs grow in complexity, their associated energy consumption
becomes a challenging problem. Such challenges also exist for computing edges in images,
where the computing devices are resource-constrained while operating on a limited energy
budget. Therefore, specialized optimizations for deep learning have to be performed at
both software and hardware levels. Edge detection can be achieved using a spiking neuron
model [19]. Spiking neural networks offer a low-energy computational alternative with
only a few layers, while maintaining edge features. Our solution for spike-based edge
detection uses only one layer of Hodgkin–Huxley-type neurons (1 neuron/pixel) with
five spike processing layers, one conductance calculation layer and a synaptic current
update layer. The simple form of Hodgkin–Huxley neurons used in the network are similar
to the conductance-based leaky integrate-and-fire neurons, which are frequently used in
neuromorphic hardware implementation [1,2].

To implement a neuromorphic analogue of the Canny detector, we invented spike-
based computation using the five key steps introduced earlier and implemented in MAT-
LAB. Figure 1 illustrates the flowchart of the algorithmic steps in the spike domain compu-
tation of Canny edge detection. The image I(x, y), where (x, y) are the coordinates of the pix-
els, is first converted into grayscale I(grayscale)(x, y) and scaled such that I(grayscale)max
= 0.01 to match the units of the model parameters of the Hodgkin–Huxley neuron model.
Then, it is assigned as peak conductance for excitatory synapse qex and peak conductance
for inhibitory synapse qin. The peak synapses are then converted into time-dependence
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conductances, gex and gin, for excitatory and inhibitory synapses, respectively, using
the equations

gex = qex(τex × dt)/(τex + dt) (1)

gin = qin(τin × dt)/(τin + dt), (2)

where τex = 4 ms and τin = 7 ms are the time constants for excitatory, inhibitory synapses,
respectively [27]. Then, the conductances are processed using a Gaussian kernel of 5 × 5,
to calculate the synaptic current at each time step t [28]:

Iz(t) = gex(V −Vex) + gin(V −Vin), (3)

where Vex and Vin are the reverse potentials for excitatory and inhibitory synapses, respec-
tively. Note that the kernel size was smaller than 5 × 5 for edge pixels.

Figure 1. Processing steps in the algorithm for neuromorphic computation of Canny edge detector
using conductance-based Hodgkin–Huxley neurons in a neural network.

The synaptic current is then used as the input to the Hodgkin–Huxley neurons where
the membrane potential in the Hodgkin–Huxley (HH) neuron model [23] is governed by
the differential equation:

C
dV
dt

= Iz(t)− GKn4(V(t)−VK)− GNam3h(V(t)−VNa)

−GL(V(t)−VL), (4)

where C is the capacitance per unit area of the lipid bi-layer membrane, Iz(t) represents the
total membrane current per unit area, GK is the potassium conductance per unit area, GNa
is the sodium conductance per unit area, V is the membrane potential, VK is the potassium
reverse potential, VNa is the sodium reverse potential, GL is the leak conductance per unit
area, VL is leak reverse voltage, m is the activation variable for Na+ channels, h is the
inactivation variables for the Na+ channels, and n is the K+ inactivation variable. The
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dynamics of m, h and n are independently governed by additional differential equation for
each of these variables [23] .

The exact solution to the HH model, given by the equation for the membrane potential,

v(t) = (1/GL){(−exp(GLt/C))(Iz(t) + 70GL + GLVL)

+Iz + GLVL} (5)

is reported by Aaby [29] and compared with numerical solutions by Siciliano [30] for the
case of GK = 0 and GNa = 0, i.e., somewhat similar to the case of the leaky integrate-and-fire
neuron model. The use of conductance terminology from the HH model is intended to
maintain generality. Recently, Vemuru [22] used this solution to calculate the membrane
potential in a SNN of HH neurons and showed that it is effective in evaluating neuron
dynamics for edge detection applications.

We set the parameters of the neuron model as follows: GL = 0.003 mS/cm2, VL = −44.4 mV,
C = 0.01 µF/cm2, Vin = −72.1 mV and Vex = 55.2 mV. We followed the approach reported
in references [22,30] for using HH neurons in a spiking neural network for edge detection.
The reset membrane potential, Vreset is set to −70 mV and threshold voltage, Vth as −55 mV.
The time constant τreset is set to 3 ms.

The membrane potential v is evaluated using Equation (5) and is compared with the
threshold voltage VTh to determine the spiking activity of the network at each time step
t. When v > VTh, the neuron emits a spike, i.e., S = 1 and v is reset to vreset. When this
condition is not met, the neuron will not spike, i.e., S = 0.

The output spikes of the HH model are then processed to calculate normalized spiking
rates Sn(t) which are used to calculate the gradient spikes in two to four directions, de-
pending on the location of the corresponding pixel as illustrated in the flow-chart shown in
Figure 1. The rates are offset by adding a constant of 0.25, which is introduced to maintain
non-zero spike rates in most of the pixels. This constant plays the role of one of the hyper-
parameters. Then, the non-maximum spike rates are suppressed by comparing with the
spike rates of nearest neighbors in eight or fewer directions, depending on the coordinates
of the central pixel. The next step of the Canny algorithm, i.e., the double threshold, is
calculated with two parameters, a lower threshold = 0.20 and an upper threshold = 0.23.
The values for the lower threshold and the upper threshold are chosen so as to maximize
the edge features. The edge features are quantified by the number of edge pixels in the
image. As such, there is no metric that requires the difference between the lower-threshold
and the upper-threshold to be in a specific range. They are considered two parameters in
the edge detection model that optimize the edge features in the images. In many image
processing algorithms, including the Canny edge detection algorithm, which is the goal of
the present work, the model parameters are chosen heuristically. This is not a disadvantage
when one is not learning the edge detection by training the model.

The final step, which is hysteresis tracking, is also computed using the spike rates. The
final output of the spikes and spike-rates-based computation results in an edge map. The
limitation of the current approach is that the hyperparameters are heuristically determined,
as the main goal is to demonstrate the principle of Canny edge detection using spike-
based computing. Hyperparameter optimization without significantly increasing the
computational burden will be desirable in a future extension of the algorithm. Because of the
close similarity in algorithmic steps between conventional computation and spike domain
computation, we refer to the new detector as a neuromorphic Canny edge detector. The
neuromorphic Canny edge detection algorithm can be attractive for implementation with
potential gains in speed or a decrease in power requirements with a suitable neuromorphic
hardware that can enable the definition of the conductance-based neuron model used in
our algorithm. Intel’s Loihi 2 processor [31], which comes with the option to program the
neuron models, is one of the suitable processors to explore the algorithm reported in the
present work. Machine learning style hyperparameter tuning is not feasible because the
network is not designed as a learning system in the present form. In image processing,
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it is considered reasonable to use model parameters that are tuned via an experiment to
test with randomly selected images from benchmark datasets. In addition, a comparison
with the reference methods or state-of-the-art methods gives as idea of the validity from a
general context.

5. Results and Discussion

Figure 2 displays the original image (No. 61060) from BSD500 dataset [32,33] (license:
Not found) and the intermediate output images of the spiking detector network after
the Gaussian kernel, gradient calculation, non-maximum suppression, double-threshold
filtering, and edge-tracking by hysteresis. The intermediate features show the spike domain
implementation is effective in performing all five steps involved in the conventional Canny
edge detection algorithm. The edge map resulting from the spike-based computation, i.e.,
the output of the network after the edge-tracking hysteresis step, can be referred to as the
neuromorphic Canny edge detector or SNN-based Canny edge detector. We find that the
resolution of the images from BSD500 dataset is sufficient to evaluate the qualitative and
quantitative performance of edge detection. In Figure 3, we compare the neuromorphic
Canny detector with the Sobel detector and the conventional Canny detector for a set
of four images and their ground truth edges from the BSD500 dataset [32,33]. We find
the neuromorphic Canny detector detects edges similarly to the edges generated by both
the conventional detectors. The spike-based detection reported here results in relatively
more highlighted edges in the objects while retaining some of the structural features that
seem to have been lost in the conventional edge detectors. This can be attributed to the
difference in the range of thresholds used in the spike domain implementation compared to
the conventional Canny edge detector. With an implementation on a low size, weight and
power (SWaP) hardware, for example, by emulating spikes on a field programmable gate
array (FPGA) [34] or edge computing devices, such as NVIDIA Jetson TX2, together with a
neuromorphic camera, the spike domain image processing algorithm will be attractive for
new applications, for example, in handheld computer vision systems and for low-Earth
satellite-based object detection.

Figure 2. The original and the output images from all 5 stages of neuromorphic Canny edge detection.
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Figure 3. A comparison of the ground truth with the results from Canny edge detector and the SNN
analogue of Canny edge detector for selected images from BSD500 dataset.

In image processing, it is common to select a few images and demonstrate how
the method works. Statistics on training sets and test sets usually applies to machine
learning experiments, which is the not the case in the present study. All the images that
are pictures of natural scenes with edges and none of the examples are synthesized. From
visual inspection, the SNN edge detector appears to render wider edges and detect more
background information. It is possible that the difference in the SNN Canny edge map
compared to the conventional Canny edge map is also related to the choice of the threshold
used or the smoothing parameters. The SNN edge maps are realized in a narrower threshold
range, and this makes it difficult to perform an ablation study, which is typically done in
machine learning experiments. We would like to note that the primary goal of the present
work is to demonstrate a spike-based implementation of Canny edge detection, not the
superior computational efficiency. Currently, there is no hardware that can implement the
exact version of the neuron model used in the present work to evaluate the computational
time for the targeted neuromorphic domain. The context of this work is that it addresses
the question of whether it is possible to compute the steps of the Canny edge algorithm by
exclusively using spikes. The first step of smoothing with the Gaussian kernel is performed
by using the HH neurons. The rest of the steps involve the algebraic computations in
the spike domain without introducing the neurons to match the method used for the
conventional Canny edge detection algorithm. We do not claim that the spike-based
algorithm can be faster. The research is conducted to test if Canny-type edge maps can be
generated if the data are collected with an event camera rather than using an image taken
by a conventional camera.

The neuromorphic Canny edge detection network implemented in the present work
uses 1 neuron/pixel with the layers arranged in a sequential fashion and introduces a
Gaussian kernel in the first layer. This indicates a significant improvement compared to
the state-of-the art implementation of the spiking edge detector based on an architecture
with a parallel arrangement of Gabor filters, which require six neurons/pixel with the
filtering layer [22]. Both works use Hodgkin–Huxley neurons for bio-inspired simulation
as a common feature.
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To compare the edge detectors with the ground truth, we define the performance ratio
(PR) as our first metric [35]:

PR =
True Edges

False Edges + False Non− Edges
(6)

where True Edges are edge pixels identified as edges, False Edges are non-edge pixels
identified as edges, and False Non-Edges are edge pixels identified as non-edges. For PR,
0 is the worst score, and ∞ is the best score. Our second metric is F1 score or F-measure,
defined as

F1 =
2TP

(2TP + FP + FN)

where TP is true positives, FP is false positives and FN is false negatives. For F1, 0 is the
worst score and 1 is the best score. Note that F1 is the same as the Dice similarity coefficient
and it can be expressed as F1 = 2J/(1 + J), where J is the Jaccard similarity index.

Table 1 compares the metrics PR and F1-score of the Canny detector and the neuromor-
phic Canny detector for the set of images displayed in Figure 3. This table also compares
the two metrics for three additional images. The ground truth, Canny edge and SNN Canny
edge features of these later three images are displayed for a comparison in Figure 4. We find
that the F1-score for the neuromorphic Canny detector is higher than the Canny detector for
all seven images. The SNN-based Canny detector has a relatively higher PR metric than the
Canny detector for the images from Figure 3 which corresponds to the top four entrees in
Table 1 and a relatively lower PR metric for the images in Figure 4. A detailed observation
of the edge maps of the SNN based Canny detector in Figure 4 shows several edge features
that appear in the background portion of the image, mostly associated with the variation in
the intensity due to texture. These additional features can be helpful to characterize the
type of background in the images, and may have an advantage over conventional edge
detectors for object detection in edge maps using deep learning.

Figure 4. A comparison of the ground truth with the results from Canny edge detector and the SNN
analogue of Canny edge detector for selected images from BSD500 dataset. For these images, the
metrics for SNN Canny edge detector come out lower compared to the Canny edge detector.

Object detection in infrared images is another key application for edge detectors,
for example in night vision gadgets or for autonomous driving. Novel edge detectors,
especially those that can extract edges in low-resolution infrared images with low-SWaP
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requirements for hardware implementation, are sought across commercial and defense
applications. In this context, we evaluated our SNN edge detector with a few infrared
images from the Thermal Road Dataset [36] (license: Not found). Figure 5 shows a com-
parison of edge detection with SNN-based Canny detector, conventional Canny detector
and Sobel detector. Ground truth edge maps are not available for this dataset to perform
a quantitative comparison similar to the one presented for the RGB images in Table 1. A
visual comparison of the results from the three edge detectors in Figure 5 indicates that
the SNN-based Canny edge detector is able to generate edge maps very similar to the ones
generated by the conventional Canny edge detector.

Biomedical image processing is a field with an increasing demand for advanced
algorithms that automate and accelerate the process of segmentation. In a recent review,
Wallner et al. reported multi-platofrm performance evaluation of open-source segmentation
algorithms, including the Canny-edge-based segmentation method, for cranio-maxillofacial
surgery [37]. In this context, it is desirable to test newer algorithms such as the one
developed here using spiking neurons on medical images. To this end, we performed an
edge detection experiment with a few representative medical images from the computed
tomography (CT) emphysema dataset [38] (this database can be used free of charge for
research and educational purposes). This dataset consists of 115 high-resolution CT slices
as well as 168 square patches that are manually annotated in a subset of the slices. Figure 6
illustrates a comparison of the three edge detectors, Sobel, Canny and SNN-based Canny
detectors, for a few example images from the CT emphysema dataset. Ground truth for
edge maps is not available for this dataset to perform a quantitative comparison. A visual
comparison of the edges generated from the three edge detectors, presented in Figure 6,
shows that the SNN-based Canny edge detector is competitive with the other two edge
detectors and offer an algorithmically neuromorphic alternative to the conventional Canny
edge detector.

Figure 5. A comparison of edge detection by Sobel, Canny, and SNN Canny edge detectors for images
from thermal road dataset.



Future Internet 2022, 14, 371 10 of 12

Figure 6. A comparison of edge detection by Sobel, Canny, and SNN Canny edge detectors for
medical images from CT emphysema dataset.

Table 1. Comparison of performance ratio, PR, and F1-score for selected images.

Image Canny SNN Canny Canny SNN Canny

PR PR F1-Score F1-Score

35,010 15.7 17.5 0.009 0.018
3096 7.3 11.6 0.002 0.013

67,079 12.7 17.4 0.014 0.034
23,080 12.6 13.8 0.014 0.023
68,077 11.1 10.7 0.015 0.016

231,015 15.5 14.2 0.015 0.022
216,041 13.4 9.9 0.088 0.102

6. Conclusions

In conclusion, we present a spiking neural network (SNN) implementation of the
Canny edge detector as its neuromorphic analogue by introducing algorithms for spike
based computation in the five steps of the conventional algorithm with the conductance-
based Hodgkin–Huxley neuron as the building block. Edge detection examples are pre-
sented for RGB and infrared images with a variety of objects. A quantitative comparison of
the edge maps from the SNN-based Canny detector, conventional Canny detector and a
Sobel detector using the F1-score as a metric, shows that the neuromorphic implementation
of the Canny edge detector achieves better performance. The SNN architecture of the Canny
edge detector also offers promise for image processing and object recognition applications
in the infrared domain. The SNN Canny edge detector is also evaluated with medical
images, and the edge maps compare well with the edges generated with the conventional
Canny detector. Future work will focus on the implementation of the algorithm on an
FPGA or on a neuromorphic chip for hardware acceleration and testing in an infrared object
detection task potentially with edge maps as features together with a pre-processing layer
to remove any distortions, enhance contrast, remove blur, etc., and a spiking neuron layer
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as a final layer to introduce a machine learning component. An extension of the SNN archi-
tecture of the Canny edge detector with additional processing layers for object detection in
LiDAR point clouds would be another interesting new direction of research [39].

Funding: This work was internally funded by Riverside Research’s Open Innovation Center.
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