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Abstract: The rapid emergence of low-power embedded devices and modern machine learning
(ML) algorithms has created a new Internet of Things (IoT) era where lightweight ML frameworks
such as TinyML have created new opportunities for ML algorithms running within edge devices.
In particular, the TinyML framework in such devices aims to deliver reduced latency, efficient
bandwidth consumption, improved data security, increased privacy, lower costs and overall network
cost reduction in cloud environments. Its ability to enable IoT devices to work effectively without
constant connectivity to cloud services, while nevertheless providing accurate ML services, offers
a viable alternative for IoT applications seeking cost-effective solutions. TinyML intends to deliver
on-premises analytics that bring significant value to IoT services, particularly in environments with
limited connection. This review article defines TinyML, presents an overview of its benefits and uses
and provides background information based on up-to-date literature. Then, we demonstrate the
TensorFlow Lite framework which supports TinyML along with analytical steps for an ML model
creation. In addition, we explore the integration of TinyML with network technologies such as 5G
and LPWAN. Ultimately, we anticipate that this analysis will serve as an informational pillar for the
IoT/Cloud research community and pave the way for future studies.

Keywords: Internet of Things; large scale IoT deployments; TinyML; edge computing; edge AI; edge
ML; machine learning; deep learning; Tensorflow Lite; TFLM; LPWAN; 5G

1. Introduction

Data production has expanded at an extraordinary rate during the past decades [1],
owing to the widespread deployment of sensor technology and the increasing digitization
of the world. This tendency has been assisted by the increased processing and data storage
capabilities offered by cloud technology. The growth in computational capabilities has
expedited the study and development of deep neural networks (CNNs) [2,3], which have
grown in complexity and resource demands through time. Cloud computing currently
handles the most complex AI models with millions of attributes that require terabytes of
memory and lightning-fast computation. Because they have infinite computing resources
and memory, these massive neural network models are primarily concerned with accuracy
and speed.

Mobile computing arose with the arrival of mobile devices such as tablets, smartphones
and laptops. Mobile computing [4] is mostly concerned with wireless communications for
mobile devices, which have profited from technological advancements such as low-power
CPUs, tiny memory, and low-power display technologies. Shortly afterwards, mobile
computing systems began to be applied in a variety of fields such as robots, autonomous
vehicles, and augmented reality, which demand the performance of real-time tasks in a
very short period without relying on cloud-based computing. This transition to mobile
platforms has sparked the creation of a new type of neural networks [5,6] that are smaller
in size and prioritize model efficiency above accuracy. Figure 1 depicts the advancement of
such technologies (Cloud ML, Mobile ML and TinyML) over time from 2006 to 2019.
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Figure 1. The advancement of computing technology over time.

Along with the advent of the artificial intelligence and machine learning sectors,
advancements in connectivity and the proliferation of system-on-chip solutions have fueled
the expansion of the Internet of Things (IoT) industry. Nowadays, the number of products
incorporating microcontrollers (MCUs) is expanding at an exponential rate. Over 250 billion
microcontrollers are in use, with 40 billion microcontrollers scheduled to be deployed by
the end of 2022 [7]. This trend is further shown in Figure 2.

Figure 2. The history of the MCU market [7].

In several circumstances, however, embedded systems do not handle the data they
gather; rather, the data are transported to a distant site for storage and subsequent process-
ing. In some applications, this might result in undesirable delay, data leaks, and privacy
concerns. This has sparked research into the fundamental difficulties associated with
developing machine learning algorithms on embedded devices with restricted resources
(in terms of memory, processor speed and power) [8].

Information is frequently gathered by embedded devices from a number of sensors
(audio, IR cameras, IMU, accelerometers, temperature sensors, CMOS cameras, chemical
sensors, etc.). These embedded systems often are powered by batteries and consume
little energy (1 mW or less). Because that primarily performs simple processing tasks, the
CPU of the device is often left idle over time. They are ideal for developing lightweight
inference algorithms due to the ubiquitous usage of MCU-powered embedded devices,
their latent processing capabilities, and their closeness to physical data sources via sensors.
Tiny machine learning (TinyML), a new embedded technology industry aiming at building
machine learning algorithms on resource-constrained devices based on MCUs, arose from
this technique [9].

TinyML will allow advancements in a variety of fields, including consumer electronics,
autonomous systems, healthcare, distributed cyber-physical systems, smart agriculture,
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and the larger subject of artificial intelligence. Furthermore, accomplishing these objec-
tives necessitates collaborative solutions from a variety of disciplines, including machine
learning, optimization, hardware design, computer architecture and signal processing,
among several others. In order to establish goals and address the difficulties of this novel
and experimental, interdisciplinary topic, TinyML development requires a collaborative
effort between embedded systems and the machine learning communities. We evaluate
the present state of TinyML in this survey, which aims to provide artificial intelligence to
smaller, less powerful edge devices, examine the TensorFlow Lite framework, which is
among the most important frameworks for the growth of TinyML systems, and discuss a
few enabling factors for future expansion of TinyML.

The absence of a suitable framework has delayed the acceptance and deployment
of TinyML in applications. In addition to building a model on an embedded target, the
framework should enable model training on a high computing platform. Model orchestra-
tion and testing, which are helpful for manufacturing devices, should be used by TinyML
together with a broad ecosystem of machine learning technologies. In this paper, TFLM
will be examined at in order to introduce deep learning to embedded devices and so signifi-
cantly widen the applicability of ML. The TFLM is a framework designed particularly for
deep learning on microcontrollers with extremely little storage (a few kilobytes). The key
contributions of TFLM are its design decisions to solve the particular issues of embedded
systems: Hardware diversity in a dispersed environment, missing software functionalities,
and extreme resource restrictions.

In conclusion, this study presents the historical evolution of TinyML, a thorough
description of this technology, and a methodical assessment of prior research efforts to offer
specific recommendations for future research. In order to fill this gap, we highlight benefits
of TinyML, applications, and use cases as well as the substantial contributions made by
industry and academics. These contributions help scholars gain a deeper comprehension
of the fundamental ideas of TinyML. The key contributions of this survey are as follows:

■ Presentation of major performance measures for the TinyML framework, as well as its
definition and overview; examination of important technologies.

■ Review of research on TinyML conducted by various research groups and creation of
an academic map.

■ Identify important obstacles and give a future direction for TinyML research in which
we cover numerous concerns.

■ To assemble a list of existing TinyML-based toolkits for training and model construc-
tion at the edge, where hardware platforms, software programs, and libraries are
available.

■ Present and analyze TinyML application areas, as well as illustrate various TinyML
use cases.

The remainder of the article is arranged as follows. A comprehensive overview of
TinyML, with all of its features, is provided in Section 2. In Section 3, a detailed analysis of
the TensorFlow Lite-TFLM framework for use in TinyML applications is provided. Section 4
illustrates the integration of TinyML with network technologies. Section 5 discusses the
technology of TinyML and conclusions about it. Finally, Section 6 presents the future
directions for TinyML that will have an important role in its development.

In continuation of the above, the goal of this journal is to provide a thorough overview
of this ground-breaking technology to everyone with an interest in the topic, in addition
to the in-depth research section. In conclusion, this systematic review will serve as an
informative cornerstone for the research community, pave the way for further research in
this direction, and serve as a roadmap for understanding the new, emerging field of TinyML.

2. TinyML
2.1. Overview

Because it has the potential to improve privacy, autonomy, responsiveness, and energy
efficiency of edge devices, machine learning (ML)-based inference is becoming more and
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more alluring [10–12]. Up until now, machine learning models like quantum, using pruning,
and sparsity have significantly improved as a result of the majority of edge ML research
focusing on inference on mobile devices. Meanwhile, substantial strides have been made in
recent years to broaden the reach of edge systems. Expanding the use of edge ML to devices
in the microcontroller category is of interest to both academia [10,11] and businesses [13,14].

The field of machine learning known as tiny machine learning (TinyML) is expanding
quickly. It consists of hardware, software, and algorithms that can analyze sensor data
using ultra-low power devices, opening up a wide range of continuously available use
cases for battery-powered devices. TinyML systems are gradually being utilized for a
variety of commercial applications, with additional systems on the horizon, as substantial
breakthroughs in algorithms, networks, and models are produced. In addition, what
were originally considered low-power applications are currently commonplace and widely
available. As a result, there is increasing impetus, as shown by technological advancements,
ecosystem expansion, and the requirement for benchmarking and assessment approaches.
We emphasize both challenges and opportunities and we provide an overview of the
current state of the art in this field.

By providing ML inference to extremely low power, often a milliwatt or less, to devices
with constrained storage, TinyML [15] aims to break the conventional power barrier that
restricts globally distributed machine intelligence. TinyML increases privacy protection and
responsiveness while lowering energy costs associated with wireless transmission, which
at this scale are substantially more than those of computation, by doing inference near to
the sensor and on the device [16]. A new class of intelligent, always-on, battery-powered
apps that have the potential to revolutionize real-time data collection and processing is
also made possible by efficiency of the TinyML. This rapidly expanding sector, which is the
result of various innovations, is only expected to develop more quickly in the upcoming
years [17].

IoT solutions that can lessen the burden of frequent data access and transfer to the
cloud are necessary as the volume of data produced by IoT devices increases. Integration
of TinyML into IoT devices is one way to address these drawbacks, according to source [18]
TinyML is a framework that does not require constant connection to overloaded cloud
services and runs on MCUs inside IoT devices. IoT ML services can therefore be provided to
IoT devices or processed inside the IoT device in the current context [19]. The first approach
is conventional, relying on the edge and cloud for the IoT-based system to provide ML
services [19]. The second approach, in contrast, integrates TinyML into a contemporary
framework to give IoT devices intelligence, which suggests that the MCU that interacts
with the sensors may run the ML algorithm locally to forecast sensor data. Although the
integration of ML into MCUs is mostly unexplored, first findings from the incorporation of
the TinyML framework into IoT devices suggest that the area offers significant promise for
ML execution at the very edge of the IoT. The next phase of hyper-digitization is thought to
be TinyML.

To fit into the constraining limitations of MCU-class devices, TinyML models in partic-
ular must be compact enough (for example, constrained embedded computing capability
of the order of MHz of processor clock frequency and a few hundred kB of memory),
which restricts the input size and number of layers [11] or calls for the use of lightweight
methods that do not rely on neural networks [20]. A few examples of TinyML tools are
effective inference tools [21,22], frameworks (TensorFlow), memory-conscious neural ar-
chitecture searches [10], and aggressive quantum methods [23]. The next generation of
general-purpose MCUs will have more documentation, hardware intended specifically for
low-power inference will be built, and new architectures will be created just for task-specific
inference engines, according to research on TinyML hardware [13,24].

The intricacy and dynamics of the field conceal progress measurement and make dy-
namism planning decisions harder. To enable continuous innovation, a fair and trustworthy
comparison method is essential. Increased hardware capabilities are typically the result of
innovation, hence a reliable TinyML hardware evaluation is necessary. For many common
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ML use cases, TinyML may seem futuristic. As ultra-low-powered inference hardware ad-
vances, the feasibility barrier rises [25]. Although object counting and image classification
in a large label space are suitable for low-power continuous-operation applications, TinyML
technology is still too computationally and memory intensive to handle these tasks.

The global market for edge computing is estimated to reach $1.12 trillion by 2023,
according to [26]. IoT layer improvements must be aggressively pushed in order to lessen
this burden, with a focus on ML in IoT devices. With companies like Ericsson already
offering TinyML-as-a-Service solutions, the expanding need for smart devices has also been
magnificently matched by the global research community [19]. With less reliance on cloud
services, TinyML is anticipated to play a significant role in the provision of intelligent IoT
solutions in the near future. It will additionally change the way IoT services are used in
places with limited internet connection.

Additionally, TinyML will be crucial to next technologies. For instance, many of
the crucial parts of augmented reality (AR) glasses are constantly active and powered by
batteries. Such devices are unable to wait for calculations to upload to a cloud, edge server,
or even another mobile device because of real-time constraints. As a result of frequent
restrictions, developments in TinyML [27] potentially assist AR applications tremendously.

As businesses look for AI solutions in areas like environmental monitoring, people
tracking, image or video control and voice activation, consumers have encountered difficul-
ties due to the drawbacks of embedded modules and battery-powered sensors that perform
with modest computing resources provided by general-purpose microcontrollers. Huge
amounts of data usually need the use of sensors and edge devices. Additionally, due to
their low power consumption, these devices struggle to maintain high data throughput and
computational performance which causes latency problems. “Given that AI is being used
to make quick choices in areas like quality control, alarm management and surveillance,
any lag in the system might result in machine downtime or slowness, which would cause
significant damage or loss of production. By moving AI to the edge, possible risks and
vulnerabilities including erratic connectivity and sluggish answers are reduced”, a principal
analyst at ABI Research, Lian Jye Su, stated as an example [28].

The most essential, of however, is not just hardware development, which speeds up
TinyML democratization [29]. TensorFlow Lite, the development of open source micro-
controller software by Google, and for-profit solutions from companies such as SensiML
provide libraries and developer-friendly software tools, enabling more engineers to build
AI models that can manage really edge applications. It is no longer sufficient to create
capable and distinctive hardware. TinyML hardware producers must focus on establishing
new AI development environments or joining those that already exist, embracing open
source, and highlighting to customers their distinct selling points and niche markets. In the
absence of such conditions, chip suppliers may struggle to expand their goods in what is
expected to be a highly competitive business [28].

2.2. Challenges

When it comes to constructing a performance benchmark that can be used to properly
quantify and analyze performance differences between various systems, TinyML systems
provide a special set of challenges. The several critical issues pertaining to the TinyML
ecosystem are covered in this section [30,31]:

2.2.1. Low Power

TinyML systems are identified by their low energy usage. As a result, an effective
benchmarking should theoretically define the energy efficiency of each device. However,
accurately quantifying energy use presents several obstacles. For starters, TinyML devices
can consume vastly varying amounts of energy, making it difficult to maintain accuracy
over a wide range of devices.

When data pathways and preprocessing processes differ significantly between devices,
it may also be challenging to define what is covered by power measurement. The measure-
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ments may be impacted by additional elements, such as chip peripherals and underlying
firmware. TinyML systems do not have redundant cores as standard high-power ML
systems do, making it easier to load the System-Under-Test (SUT).

2.2.2. Limited Memory

As a result of their modest size, TinyML systems frequently encounter memory issues.
TinyML systems usually have resource limitations two orders of magnitude less than
normal ML systems, which frequently have restrictions of a few GB, such as smartphones.
One of the crucial factors that influences how a certain TinyML test is created is memory.
Inference models for traditional ML benchmarks require significantly more memory (in
gigabyte range) than TinyML devices can provide. This makes designing a benchmark
suite more challenging since any extra might significantly increase power usage or make
the benchmark too large to run. Each benchmark has to test a variety of hardware, hence
the benchmark suite should contain different quantization and accuracy levels. To that
purpose, a variety of standards should be used to guarantee that the diversity of the sector
is effectively supported. As a result, a variety of standards should be used to guarantee
that the diversity of the sector is effectively supported. Finally, generating the need for
creativity in the optimization strategies applicable to each algorithm is a difficulty. Due to
the nature of DL compression models, it is crucial that the performance parameters match
the initial model [32].

2.2.3. Processor Power

When compared to cloud-based systems, MCUs like the ARM Cortex M series still
perform relatively poorly, even when coupled with powerful CPUs. As a result, while
transmitting data analytics from the cloud to the device, the quality of service can degrade.
Parallel to this, a rising variety of software frameworks are trying to solve the issue of ML
algorithm compression, leading to frameworks that are richer and more varied. A formal
structure is not yet accessible, though.

2.2.4. The Machine Learning Is Extensive and Requires Resources

The uniform and seamless deployment of the ML cloud in the embedded system
is compromised by the absence of specialized ML hardware. Additionally, it is highly
challenging to make the program portable or compressible since an ML algorithm and a
software runtime are created using a complex high-level language. The fact that the time-
consuming ML activities are still carried out on the cloud is therefore evident. Therefore, it
is not feasible to totally replace web services with integrated ML.

2.2.5. Heterogeneous Hardware

Despite being in their early stages, TinyML systems are already diverse in terms of
their abilities, power, and performance. Devices span from general-purpose microcon-
trollers (MCUs) to unique designs, such as event-based brain processors (brain chips) or
memory computing [33]. Because the system under test (SUT) may not have generally con-
ventional characteristics such as a system clock or debugging interface, this heterogeneity
causes a number of issues. Furthermore, standardizing performance findings across varied
implementations is a significant difficulty. Modern benchmarks are not built to solve these
issues simply. They require careful redesign in order to be flexible enough to accommodate
the kind of hardware heterogeneity seen in the TinyML ecosystem [34].

2.2.6. An Absence of Suitable Datasets

Due to a lack of low-power adaption, current datasets might not be appropriate for
the TinyML paradigm. Such datasets ought to be precise enough in time and space to
correspond to the properties of data generated by various sensors. Furthermore, this
low-power edge device facility should be connected to the variety and noise level of such a
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dataset. As a result, we emphasize the significance of a consistent dataset that can be used
to train the TinyML system.

2.2.7. Network and Data Administration

TinyML development is insufficient if the data and network are not effectively con-
trolled. It has been discovered that the existing edge network does not recognize diverse
data types, resulting in less intelligent performance. Linked to a misunderstanding of
the data lifecycle for sensor-equipped devices. The inconsistency of sensor data struc-
ture alleviates the challenge of edge data management. To overcome this issue, several
options are possible. For example, data and sensor fusion methods can be extended to
control the network at the edge. In this perspective, one can examine at the relevance of
network issue detection and diagnosis. Augmentative learning algorithms must be com-
bined with knowledge extraction approaches to improve knowledge sharing capabilities.
Lightweight machine learning technologies might be investigated to promote autonomy
and self-adaptivity in edge network management.

2.2.8. New Machine Learning Models Are Required

For the TinyML market, new machine learning models are now necessary. These
models should be able to react extremely quickly. We may use reinforcement learning,
federated learning, online learning, and transfer learning while learning utilizing the
knowledge distillation dimension. For real-time solutions, machine learning models must
include components for communication and control. Quantization and model trimming
should be required steps in the model development process. Additionally, it should be
proven that using edge devices results in total cost savings.

2.2.9. Benchmarking

TinyML has shown to be an important tool in the creation of next generation sys-
tems and is utilized in a wide range of applications over many industry sectors. This has
enhanced the needs for TinyML system functional design and testing as well as led to
its widespread adoption in a number of applications. System efficiency, real-time perfor-
mance and power efficiency are crucial for getting the greatest performance out of TinyML
applications and systems. Considering the significant breakthroughs being made in this
sector by business and research, benchmarking of these ML applications and systems is
crucial. These standards enable the community to appropriately evaluate and contrast
solutions [35,36].

Our major focus on metrics and methodologies for assessing TinyML, rather than test
chips and systems, is a significant problem we highlight. This issue involves multiple-level
TinyML deployment capabilities in systems, engineering problems, and deployment design
strategies. Research on robust TinyML architectures for various sizes, challenges associated
with the cohabitation of non-ML and ML hardware, and TinyML-specific research for
accelerator design are all of interest (embedded and microcontroller systems and systems,
IoT and bare-metal sensors).

In conclusion, benchmarking TinyML systems exposes a number of issues and po-
tential. We are interested in metrics and methodologies for assessing TinyML systems,
for instance. We are also interested in metrics and assessing the efficacy of constructing
such systems at various scales. We should be capable of comparing and evaluate new
design approaches, methods, and methodologies like accelerators with reconfigurable
and neuromorphic accelerators, approximate computational units, hardware and software
co-configuration, model compression, in systems with both inference and non-ML hard-
ware, and others. Furthermore, we must be able to transparently include these evaluation
approaches and metrics into our design frameworks, allowing the designer to analyze a
TinyML system holistically [37].
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2.3. Academic Map

We locate our information using Google Scholar (https://scholar.google.com/). In
addition, we carefully search for papers written by prominent TinyML experts. Below is a
description of the search strategy (each term for each instance independently):

1. For the first search cycle, the term “TinyML” is utilized.
2. The term “Tiny ML” is applied to the second search cycle.
3. The term “Tiny-ML” is utilized for the third search cycle.
4. The term “Tiny Machine Learning” is used in the fourth cycle of searches.
5. The fifth search cycle use the term “Tiny Deep Learning”.
6. For the sixth search cycle, the term “Tiny-DL” is utilized.
7. The seventh search cycle used the term “TinyDL”.
8. For the eighth search cycle, the term “Tiny DL” is utilized.

For a comprehensive search, the 6 main databases are also used as supplementary
sources in the research:

1. SAGE (https://us.sagepub.com/en-us/nam/home)
2. MDPI (https://www.mdpi.com/)
3. Wiley-Blackwell (https://onlinelibrary.wiley.com/)
4. Emerald (https://www.emeraldinsight.com/)
5. Elsevier (https://www.sciencedirect.com/)
6. Taylor and Francis (https://www.tandfonline.com/)
7. Springer (https://www.springer.com/)

But in order to give more comprehensive information, the chosen studies also contain
different types of publications, such as reports, online journals and working papers, in
addition to academic literature. Following that, the publication is chosen in two stages:
First, by reviewing the title, abstract, and key words; and second, by reading the entire
content. The year of publication is not a factor in selection, despite the fact that articles
must be written in English due to a restriction on translation. Every source is available in
paper copy or in downloaded form. The preliminary literature search produced 135 results
(obviously the total number is different, it is derived based on the strategy followed as
well as the time conducted). We arrive at 81 unique items for further study after analyzing
the titles, abstracts, and keywords and deleting duplicates. 34 papers are discarded after
comprehensive re-evaluation while reading the complete text, for a total of 47 articles
(11 reviews/evaluations and 36 core research) utilized to collect the data. 26 conference
proceedings, 15 journal publications (2 review articles and 13 research articles), 2 book
chapters, 1 book, 1 newspaper article, 1 report and 1 working paper compose the review.
The references are provided in detail in Table 1.

Table 1. Publications and references of various types.

Types of Publication References

Conference Proceedings [38–63]

Research Articles [18,63–74]

Review Articles [35,75]

Book Chapter [76]

Books [77,78]

Report [79]

Working Papers [80]

Newspaper Article [19]

The model of the above process and some of its reports and results are based on the
paper by Hui Han and Julien Siebert [81], where they provide a thorough survey of TinyML

https://scholar.google.com/
https://us.sagepub.com/en-us/nam/home
https://www.mdpi.com/
https://onlinelibrary.wiley.com/
https://www.emeraldinsight.com/
https://www.sciencedirect.com/
https://www.tandfonline.com/
https://www.springer.com/
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and is a valuable source for scientific research on the subject. Future intention is to enrich it
with several more papers as the scientific community will be more involved and TinyML
will have even more growth in the upcoming years. Figure 3 showing schematically the
percentages of the different types of references mentioned above.

Conf erence	
Proceedings:	55.5%Research	Art icles:	27.7%

Review	Art icles:	4.2%

Books:	4.2%

Book	Chapter:	2.1%

Report :	2.1%

Working	Papers:	2.1%

Newspaper	Art icle:	2.1%

Conference Proceedings Research Articles Review Articles Books
Book Chapter Report Working Papers Newspaper Article

meta-chart.com

Figure 3. The different types of references.

2.4. Tools of TinyML

TinyML relies on a variety of software platforms, hardware requirements and libraries
to make predictions. A summary of existing software and hardware toolkits being examined
for prospective TinyML development is provided [30].

2.4.1. Hardware

Various platforms were selected which are aware of TinyML, such as: Nicla Sense ME:
https://docs.arduino.cc/hardware/nicla-sense-me/, STM32F Discovery, ST IoT Discovery,
Agora Product Development Kit, GAP9, Sony’s Spresense TinyML Board, MKR Video 4000,
FRDM-K64F, Pico4ML BLE, Nordic Semi nRF52840 DK, Himax EW-I Plus, OpenMV Cam
H7 Plus, Nordic Semi Thingy:91, Thunderboard Sense 2, GAP8, Arduinoa Portenta H7,
Raspberry Pi 4B, Apollo3, CC1352P Launchpad, ESP-EYE, XCore.ai, Seeed Wio Terminal,
Arduino Nano 33 BLE Sense, Nvidia Jetson Nano, ECM3532 AI Sensor Neuro sensor
processor (NSP) and AI-deck 1.1.

The Tables 2 and 3 are provided to compare the aforementioned hardware platforms
in terms of SRAM capacity, CPU clock frequency, flash storage, processor, product pro-
grammer, connection, sensors or connectors, and power or voltage consumption. The
majority of hardware boards operate at CPU frequencies under 100 MHz and typically
include less than 1 MB of SRAM and 1 MB of flash. The most widely utilized connection
technologies are Wi-Fi and Bluetooth (BLE). The majority of the boards include sensors
including a light sensor, air pressure sensor, microphone, temperature sensor, humidity
sensor, gyroscope, gesture sensor, accelerometer, air quality sensor, camera and hall-effect
sensor. These boards require mW-level amounts of power. The majority of the gadgets
can be powered by coin batteries and Li-Po in addition to a standard DC power source.
Among all options, the most popular CPU is ARM Cortex-M4. A hardware coalescing
engine (HCE) is incorporated into just few devices (for example, GAP8, GAP9).

https://docs.arduino.cc/hardware/nicla-sense-me/
https://www.st.com/en/evaluation-tools/stm32f4discovery
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://os.mbed.com/platforms/AGORA-DEV/
https://greenwaves-technologies.com/gap9_iot_application_processor/
https://developer.sony.com/develop/spresense/
https://store.arduino.cc/products/arduino-mkr-vidor-4000
https://www.nxp.com/design/development-boards/freedom-developmentboards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-andk24-mcus:FRDM-K64F
https://www.arducam.com/docs/pico/arducam-pico4mltinymldevkit/
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.sparkfun.com/products/17256
https://openmv.io/products/openmv-cam-h7-plus
https://openmv.io/products/openmv-cam-h7-plus
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-91
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://greenwaves-technologies.com/wp-content/uploads/2021/04/Product-Brief-GAP8-V1_9.pdf
https://store.arduino.cc/products/portenta-h7
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.sparkfun.com/products/15170
https://www.ti.com/tool/LAUNCHXL-CC1352P
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://www.xmos.ai/xcore-ai/
https://www.seeedstudio.com/Wio-Terminal-p-4509.html
https://store.arduino.cc/products/arduino-nano-33-ble-sense?selectedStore=eu
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.hackster.io/news/eta-compute-s-ecm3532-ai-vision-board-promises-even-tinier-ml-ac1e59836839
https://www.hackster.io/news/eta-compute-s-ecm3532-ai-vision-board-promises-even-tinier-ml-ac1e59836839
https://store.bitcraze.io/products/ai-deck-1-1
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Table 2. Comparison of TinyML Supporting Hardware Platforms (CPU Clock < 100 Mhz).

Board/Platform Micro-Processor CPU Clock Speed Flash Memory SRAM Size Voltage and Power Connectivity
Availability

Connectors and
Sensors Company

Thunderboard Sense
2 Sensor-to-Cloud
Advanced IoT Kit

EFR32™ Mighty
Gecko Wireless SoC 38.4 MHz 1 KB 256 KB 3.3–5 V, Coin cell,

ULP SPI, 2.4 GHz, USB

Pressure, air quality,
microphone,
temperature,

humidity, ambient
light, hall-effect, UV

Silicon Labs

Syntiant Tiny ML
Board

Syntiant® NDP101
NDP, 32-bit ARM

Cortex-M0
48 MHz 256 KB 32 KB 3.7–5 V, LiPo battery I2C, UART Microphone, motion Sytiant

TI CC1352P
LaunchPad

CC1352R Wireless
MCU LaunchPad™ 48 MHz 352 KB 8 KB 60 µA/MHz,

1.8–3.8 V

868/915/433 MHz,
UART, ZigBee, SSI,

I2C, Thread, I2S,
BLE, 802.15.4,

Sub-1 Ghz

Temperature TI

MKR Video 4000

Intel® Cyclone®

10CL016 FPGA,
32-bit ARM
Cortex M0

48–200 MHz 2 MB, 256 KB 32 KB, 8 MB SDRAM 3.7 V Li-Po,
1024 mAh

USB, MIPI, u-blox
NINA-W102, SPI,

UART, I2C
– Arduino

Apollo3 32-bit Arm®

Cortex®-M4F
48 MHz, 96 MHz

with TurboSPOTTM 1 MB 384 KB 6 µA/MHz Battery
option, FTDI SPI, USB, BLE5

MEMS microphone,
accelerometer,

HM01B0 camera
SparkFun

STM32F Discovery
32-bit Arm®

Cortex®-M4
FPU Core

48 MHz 1 MB 192 KB 3–5 V USB, LQFP100 I/O Microphone,
accelerometer STMicroelectronics

ST IoTDiscovery Arm® Cortex®-M4 48 MHz 1 MB,64 Mbit
Quad-SPI 128 KB Battery option

868/915 MHz, BLE
4.1, NFC, USB,

8.211b/g/n

Accelerometer,
microphone, gesture
detection, gyroscope,

temperature,
barometer, humidity

STMicroelectronics

Nordic Semi
nRF52840 DK Arm® Cortex®-M4 64 MHz 192 KB 24 KB 1.7–5 V Li-Po

Zigbee, BLE5, NFC,
Thread, UART,
802.15.4, ANT,

2.4 GHz,
Bluetooth mesh

– Nordic

Arduino Nicla
Sense ME Arm® Cortex®-M4 64 MHz 512 KB 64 KB 3.7 V Li-Po USB, BLE4.2,

I2C, SPI

Geomagnetic,
accelerometer,

gyroscope, humidity,
pressure,

geomagnetic, gas,
temperature

Arduino

Nordic
Semiconductor

Thingy:91™
Multisensor

Prototyping Kit

Arm® Cortex®-M33,
nRF9160 SiP

64 MHz 1 MB 256 KB 1440 mAh Li-Po I2S, SPI, LTE-M,
NB-IoT, UART,

Humidity, pressure,
color, air quality,

temperature, light
Nordic

Arduino Nano 33
BLE Sense nRF52840 64 MHz 1 MB 256 KB 3.3 V, 15 mA/pin USB, UART, SPI, I2C,

BLE, SPI

Barometer, IMU,
gesture, temperature,

light, proximity,
humidity,

microphone

Arduino

Table 3. Comparison of TinyML Supporting Hardware Platforms (CPU Clock ≥ 100 MHz).

Board/Platform Micro-Processor CPU Clock Speed Flash Memory SRAM Size Voltage and Power Connectivity
Availability

Connectors and
Sensors Company

ECM3532 AI Vision
Board

Arm® Cortex®-M3,
NXP CoolFlux 16-bit

DSP
100 MHz 512 KB 256 KB 5 µA/MHz, Battery

option USB, RF, BLE 4.2

Temperature,
pressure,

microphone,
gyroscope,

accelerometer

Eta Compute

Freedom-K64F Arm® Cortex®-M4 120 Mhz 1 MB 256 KB 1.7–3.6 V, Coin cell CAN, I2S, SPI, I2C,
UART, Ethernet

Magnetometer,
accelerometer Mbed

Arducam
Pico4ML-BLE

Raspberry Pi RP2040
DSP dual core 133 MHz 4 MB 264 KB 1.7–3.6 V, battery I2C, USB, BLE IMU, camera QVGA

60 FPS, microphone ArduoCam

Sony’s Spresense Arm® Cortex®-M4F
6 Core

156 MHz 8 MB 1.5 MB 3.3–5 V GNSS antenna,
UART, I2C, SPI, I2S Camera, microphone Sony

AI-deck 1.1 GAP8, ESP32 168 MHz 1 MB 192 KB 3–5 V URT, SPI, WiFi Monochrome camera Bitcraze

ESP-EYE 32-bit ESP32 240 MHz 4 MB 8 MB PSRAM 3.3 V UART, USB, BLE,
SPI, I2C, WiFi 2MP camera Espressif

GAP8 RISC-V, hardware
convolution engine

250 MHz (FC),
175 MHz (C),

22.65GOPs
512 KB 80 KB, 8 MB SDRAM 1.8–3.3 V,

4.24 mW/GOP

I2S, SPI, UART, I2C,
CPI, Hyperbus,

Serial
Extension camera Green Wave

Technologies

Himax EW-I Plus 32-bit ARC EM9D
DSP with FPU Core 400 MHz 2 MB 2 MB 1.2–3.3 V, Battery USB, SPI2, UART,

I2C

Accelerometer, VGA
Camera 60 FPS,

microphone
SparkFun

GAP9 RISC-V, hardware
convolution engine 400 MHz, 150.8GOPs 1.5 MB 128 KB, 2 MB

External
1.8–3.3 V,

0.33 mW/GOP
CPI, SPI, I2C, UART,
I2S, Hyperbus, Serial Extension camera Green Wave

Technologies

Arduino Portenta H7
Arm® Cortex®-M7,

Arm®

Cortex®-M4 GPU
480 MHz, 240 MHz 16 MB 8 MB SDRAM 3.7–5 V, Li-Po cell,

700 mAh

MIPI DSI, BLE,
10/100 Ethernet Phy,

USB, MPI
D-PHY, WiFi

Camera extension,
temperature Arduino
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Table 3. Cont.

Board/Platform Micro-Processor CPU Clock Speed Flash Memory SRAM Size Voltage and Power Connectivity
Availability

Connectors and
Sensors Company

OpenMV Cam
H7 Plus Arm® Cortex®-M7 480 MHz 2 MB (Internal) 1 MB, 32 MB

SDRAM 3.7 V Li-Ion UART, USB, I2C,
CAN

5MP Camera at
50 FPS OpenMV

XCore.ai
Convolution and

dense neural
network FPU 16 core

3200MIPS, 1 M
512 FFTs/s – 1 MB 1.8–3.3 V, 500 mW USB, MIPI, I2C,

UART, SPI, I2S – XMOS

Raspberry Pi 4
Model B

64-bit Arm®

Cortex®-A72 quad
core,

Broadcom BCM2711

1.5 GHz – 256 KB 3.8–4 W, 3.3–5 V
Ethernet, USB,

HDMI, WiFo, BLE,
DSI, CSI

Temperature Raspberry Pi

2.4.2. Software and Libraries

A number of platforms, frameworks and libraries were selected that are up-to-date
with TinyML technology, such as:

• TensorFlow Lite (TFL): It is a deep learning framework that is open source and supports
edge-aware learning inference. This framework may approach edge-aware machine
learning at the device by using five important restrictions (e.g., size, latency, connec-
tivity, power consumption and privacy). It is compatible with iOS, embedded Linux,
Android, and a range of microcontrollers [82]. Swift, Java, C++, Objective-C, and
Python are just a few of the programming languages that are supported for machine
learning on edge devices. TFL enables hardware-accelerated model optimization.
A wide range of AI applications, including photo and text categorization, question
response, object identification, and pose estimation, may be easily handled. Because all
operators are coupled to 32-bit ARM builds, the binary size is 1 MB. When particular
image classification techniques are used, it can generate a binary file as little as 300 KB.
The TFL working process is completed by quantizing the 32-bit floating point values
to 8-bit integers, which completes the TF model transformation into a compressed
flat buffer (.tflite) and loading into an embedded edge device. A TFL plugin called
TensorFlow Lite Micro (TSFM) was created to enable machine learning on ARM Cortex
processors with KB memory. TFLM runs on a 32-bit platform and was created in C++
11. However, it does not offer on-device training.

• NanoEdge AI Studio: Previously known as cartesiam.ai, the software today tests library
performance using an emulator before final deployment to the edge and allows for
the selection of the best library [83]. It contains various useful features, such as
(i) frequency filtering, (ii) restricting the maximum necessary flash memory when
creating a project, (iii) flash memory optimization, (iv) real-time search, (v) graphical
representation of serial data, and (vi) library selection after comparison. It may be
used to discover and classify abnormalities in data sets. It is compatible with the
Arduino Nano 33 IoT board as well as the STM32 Nucleo-32 board.

• PyTorch Mobile: Belongs to the PyTorch ecosystem, which aims to make it possible for
all stages of machine learning model generation, starting with training (for example,
Android, iOS), can be done on smartphones and tablets [84]. Machine learning may
be pre-processed in mobile apps using a variety of APIs. Both TorchScript IR detection
and scripting are supported. Additionally, the 8-bit quantized XNNPACK kernel is
supported for ARM CPUs. Additionally supported are neural processing units, digital
signal processors and GPUs. The mobile interpreter enables mobile development
optimization. Now supported are question answering, speech recognition, object
identification, video processing, and image segmentation.

• uTensor: It is an open-source embedded learning environment that facilitates rapid
development and prototyping on IoT edge devices [85]. It includes a future data
collection architecture, a graph processing tool and an inference engine. For training,
a Keras-made neural network model is required. After that, the learnt model is
translated into C++. The model is modified for usage on ST, K64, and Mbed boards
with the aid of uTensor. With just 2 KB of storage needed, the uTensor is a tiny device.
The use of a Python SDK is required for full configuration of uTensor; it depends on
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the Jupyter, Python, ST-link toolkits (for ST boards)—uTensor-CLI and Mbed-CLI. A
model is built initially, and then the quantization outcome is produced. Writing code
for the proper edge devices is the next stage.

• STM32Cube.AI: This is optimization software and code creation for STM32 ARM Cortex
Mb-based boards [86], trying to make machine learning and AI-related jobs simpler.
The STM32Cube may be used directly to implement neural networks on the STM32
board. AI will be used to turn neural networks into efficient code for better-suited
MCUs. It is capable of employing any trained model produced using conventional
tools like MATLAB, ONNX, TFL, and PyTorch. The STM32CubeMX framework that
supports STM32Cube originally gave birth to this utility. AI in parameter estimation
middleware and code development for the STM32 edge device.

• Edge Impulse: For edge computing systems, it is a cloud service that develops TinyML
machine learning models. For edge platforms, it can support AutoML [87]. The
building of learning models is also supported across a number of platforms, including
smartphones. The learning is done in the cloud, and using a data-forwarding-capable
connection, the learned model may be exported to an edge device. Using the integrated
Python, Node.js, C++, and Go SDKs, it may be executed locally on a workstation. A
WebAssembly library for Impulses is also available.

• Embedded Learning Library (ELL): Microsoft released ELL to enable the TinyML ecosystem
for embedded learning [88]. It works with the micro:bit platforms, Raspberry Pi and Ar-
duino. Models built on such devices are internet-independent, therefore no connectivity
to the cloud is necessary. Image and audio categorization are presently supported.

• µTVM: Tensor programming can be conducted on microcontroller devices thanks
to the microTVM extension of virtual tensor machines (TVM) as it is currently. The
AutoTVM platform, which supports the optimization of tensor programs, makes
it possible to optimize these programs [89]. In fact, a USB-JTAG interface links a
microcontroller to a computer or high-end device that is simultaneously running the
TVM. The PC runs OpenOCD, which connects the microcontroller to the computer. By
applying device identification to the TCP port, OpenOCD allows mTVM to operate
the microcontroller. The user must submit specifics (such as a method for reading,
writing, and executing to the memory of the device, a C cross-compiler toolchain for a
microcontroller, a description of the architectural layout of the device, and a section
of code to set the device up for operation) in order to receive support from µTVM.
The MicroSession must connect to the device using the provided way in order for the
µTVM to function (e.g., OpenOCD). The previously mentioned cross-compiler is then
used to cross-compile the µTVM runtime. The binary of the produced code is then
transferred to the device. The relationship between the µTVM and TinyML may be
discussed from several angles, including tensor loading, unit loading function calling,
and slow execution. In Figure 4, the system model based on TinyML [90] is shown for
building the best models on microcontrollers, sometimes referred to as edge devices.

Model

Host

High-Level
Optimizer

Conv2D

MaxPool

MatMul

AutoTVM

Device

 Optimized 
Model

Optimized 
Operators

Standalone 
Run-Time

 

 

 

Figure 4. µTVM optimization and application on a microcontroller system model.
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The subsequent paragraphs of this section will provide a quick overview of a number
of TinyML frameworks and libraries. Relevance Vector Machine (RVM) and Support Vector
Machine (SVM) algorithms may be translated to C code and operate on a number of MCUs,
including the ESP8266, ESP32, Arduino, and others that support C. The effort known as
MicroML makes this transition possible. By working with the well-known Scikit-learn
toolbox, the models developed by this library are changed so they may be run on 8-bit
microcontrollers with 2 kb of RAM. Additionally, trained estimators may be exported
to JavaScript, Java, C, PHP, Ruby, and GO using the Scikit-learn compatible program
sklearn-porter. This is a relatively inclusive framework that is also compatible with a broad
variety of machine learning approaches, given the variety of supported languages. The
sklearnporter can translate Scikit-learn models for the C programming language, such
as Random Forest (RF), SVM, the AdaBoost classifier, and decision trees. However, due
to the flexibility of the library, it cannot generate code for microcontrollers with the least
amount of RAM requirements. Similar software, m2cgen, may transform taught Scikit-learn
models into native code, including Visual Basic, JavaScript, Python, C, Go, Java, and other
languages. The sklearn porter is unable to handle the vast majority of compatible algorithms
and target programming languages in that situation. The Weka-porter application, which
has less capabilities, utilizes WEKA decision tree classifiers made with Java, JavaScript and
C code. Scikit-Learn or WEKA models may be converted into C++ source code files that can
be produced and executed on a constrained number of systems using the EmbML package.
This library has been tried and tested on Teensy and Arduino boards and supports several
machine learning (ML) methods, including decision trees, SVMs, and RNNs [18].

Python libraries like Keras and Scikit-learn are converted into portable C99 code via
the emlearn framework. This library has been tested on a number of platforms, including
the Linux, AVR Atmega and ESP8266, and is compatible with models created using several
techniques, including as Naive Bayes, decision trees, RF, and linear models. TinyMLgen is a
library that generates ready-to-run C code that can be included into various MCU families,
with the goal of enhancing TensorFlow model interoperability. The first is centered on
Mbed boards, but the later outputs the trained model in a simple C table, allowing it to be
used on a larger range of microcontrollers.

Last but not least, two research ideas focus on enhancing how different NN types are
executed on ARM Cortex-M processors. Quantized NN is implemented on MCUs using an
open-source mixed-precision library called CMix-NN. This utility provides convolution
kernels with 2, 4, or 8 bit precision for any of the operators. In their recent investigation, the
scientists utilized the convolutional NN models created by MobileNets. Additionally, the
open-source framework FANN-on-MCU, which aims to run lightweight neural networks
on microcontrollers, is based on the Fast Artificial Neural Network (FANN) library [91].
That toolkit in particular can work with Multi Layer Perceptrons (MLPs) trained using
FANN and generate code that can operate on parallel ultra-low power (PULP) devices in
addition to the ARM Cortex-M CPU discussed above.

Tables 4 and 5 summarizes the key characteristics of the frameworks and libraries
covered in this section while also giving a market perspective.
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Table 4. TinyML Frameworks & Libraries.

Framework Algorithms Compatible Platforms Publicly Available Main Developer

emlearn

Random forest
Decision tree

Naive Gaussian
Bayes

Neural
networks

AVR Atmega
ESP8266

Linux
Yes Specific

developer

EmbML

SVM
Decision tree

Neural
networks

Arduino
Teensy No Research group

weka-porter Decision tree
Nonconstrained

platforms & multiple
constrained

Yes Specific
developer

TinyMLgen Neural
networks

ARM Cortex-M
ESP32 Yes Specific

developer

uTensor Neural
networks mBed boards Yes Specific

developer

FANN-on-
MCU

Neural
networks

ARM Cortex-M
PULP Yes Research group

CMix-NN Neural
networks ARM Cortex-M Yes Research group

Table 5. TinyML Frameworks & Libraries (Continued).

Framework Algorithms Compatible Platforms Publicly Available Main Developer

MicroMLGen SVM
RVM

Arduino
ESP32

ESP8266
Yes Particular

developer

MicroMLGen SVM
RVM

Arduino
ESP32

ESP8266
Yes Particular

developer

m2cgen

LGBM
Classifier
Logistic

regression
Linear

regression
SVM

Neural
networks

Decision tree
Random Forest

Multiple
constrained &

nonconstrained
platforms

Yes Particular
developer

AIfES Neural
networks

ARM Cortex-M4
Windows (DLL)

STM32 F4
Series

Arduino
ATMega32U4
Raspberry Pi

No Fraunhofer IMS

CMSIS-NN Neural
networks ARM Cortex-M Yes ARM

ELL Neural
networks

ARM Cortex-M
ARM Cortex-A

Arduino
micro:bit

Yes Microsoft

TensorFlow
Lite

Neural
networks ARM Cortex-M Yes Google

ARM-NN Neural
networks

ARM Ethos
Processor
ARM Mali
Graphics

Processors
ARM Cortex-A

Yes ARM

STM 32Cube.
AI

Neural
networks STM32 Yes STMicroelectronics
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Table 5. Cont.

Framework Algorithms Compatible Platforms Publicly Available Main Developer

sklearnporter

Neural
networks

SVM
Random Forest

Ada Boost
Classifier

k-NN
Decision tree
Naive Bayes

Multiple
constrained &

nonconstrained
platforms

Yes Particular
developer

NanoEdge
AI Studio

Unsupervised
learning ARM Cortex-M No Cartesian

The Figure 5 shows the percentage used by each algorithm of the total number of
frameworks analyzed previously.
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Figure 5. Percentage of use of different algorithms from the total of the frameworks previously analyzed.

2.5. TinyML Benefits

TinyML performs calculations near to the sensors, which could also improve or
even introduce new data processing approaches that were previously inaccessible in low-
resource settings. Intrinsic qualities of the TinyML, such as flexibility, efficiency, and
simplicity, demand consideration due to their potential to change the entire IoT ecosystem.
The following are the main performance metrics that demonstrate effectiveness of the
TinyML as a key tool [31]:

i. Transition from basic to smart IoT devices
The capacity of the sensor system to generate massive volumes of raw data has
also hindered the ability of cloud computing to process these data. Due to the
lack of transmission to the cloud, the abundance of data is wasted at the edge.
TinyML enables data analysis in a resource-constrained setting, where every IoT
device becomes smart by embedding ML algorithms. A smart car, for instance,
creates 1 GB of data per second [92], whereas the Boeing 787 generates 5 GB per
second [93]. Therefore, it would be better to do a preliminary analysis of raw data
using ML algorithms on each IoT device in order to gather necessary information
and eliminate useless data rather than uploading all raw data to the cloud.

ii. Network Bandwidth
In order to input data, evaluate information, and execute ML algorithms, the
“traditional” IoT uses gateways, a network of sensors to gateway networks, cloud
services and gateways to the internet network [94]. In contrast, novel techniques
of the TinyML have the ability to redefine these criteria in resource-constrained
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settings by lessening the pervasiveness of cloud services and making other IoT layer
services optional.
TinyML offers greater independence than standard IoT services thanks to its low
transmission and maybe constrained bandwidth capabilities. Furthermore, in a
setting with a high density of IoT devices, the bandwidth needed for providing
raw data is rather significant. Therefore, analyzing raw data at the edge and only
transmitting the information that is essential would significantly minimize the
needed bandwidth.

iii. Security and privacy
As enormous amounts of private data are transferred to the cloud, data security
is one of the variables impacting IoT adoption [95]. When third-party suppliers
are employed for IoT services, the end user has no idea who owns the data or
where their personal information is maintained. Additionally, data transfer makes
it simpler for shady individuals to eavesdrop. Therefore, by avoiding data leakage
and keeping data confined within the device, privacy and security are strengthened.
Since TinyML data is rarely (or never) delivered, it is less vulnerable to attacks.
Because of this, TinyML by default has built-in data security and privacy protections.

iv. Latency
Once the sensor data is sent from IoT devices to cloud servers, the decision (predic-
tion) generated in the cloud by the IoT devices comes to an end in an IoT ecosystem.
This series of events clearly shows that detailed observation of the device is re-
quired because to the high latency of the strategy. TinyML is a good way to deal
with this issue. Additionally, on safety-critical systems like healthcare (such as
microsurgery) and driverless cars, waiting for the cloud to decide might have disas-
trous consequences. As there is less reliance on external connectivity in such cases,
TinyML will act as an infrastructure to enable decreased (near-zero) latency for ML
service delivery. Local real-time data processing on the devices enables quicker
reaction and analysis in emergency situations. Furthermore, the strain on the cloud
is minimized [96–98].

v. Energy efficiency
Another major and popular TinyML indicator in MCUs is this one. The majority of
IoT devices operate on batteries and are constantly on in an IoT ecosystem. Coin
batteries, like the CR2032, are frequently used to power IoT devices, and they should
allow them to operate for several months or perhaps several years. To enable the
MCU to review the data and power on when necessary, it is usually crucial that the
device remain predominantly in a suspended state. Data transport may occasionally
use more energy than local ML service provision, too. TinyML would be a very
useful tool for resolving these problems [99].

vi. Reliability
The capacity to do data-driven calculations within the sensor network is the main
feature that is much wanted for IoT. TinyML has been recognized as a resolution
for executing work in situations where mobile connectivity/internet is extremely
restricted, such as offshore and rural areas. IoT services become more dependable
as a result.

vii. Low cost
First off, by limiting data flow, bandwidth requirements are lowered, which results
in cost savings. To achieve this, we believe that TinyML solutions paired with cloud
technology can enhance the aforementioned performance metrics by adding new
data management channels, expanding the capability of current cloud services, or
delegating tasks to MCUs. TinyML is therefore the upcoming big thing, and many
are touting it as the technology that will fuel the digitization of industries or the
Industry 4.0 revolution [100].
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viii. Data Filtration
The intelligence of the IoT device enables the designer to examine the data and
remove residuals. When deployed in use cases with high traffic volumes, the intelli-
gent support system at the edge can significantly outperform traditional systems.
A surveillance system that focuses on anomaly detection, for instance, consists of
a number of cameras, and the vast majority of the data that the cameras collect
is redundant. In these cases, it makes more sense to filter the extra photographs
locally rather than uploading them all to the cloud.

2.6. Applications Areas of TinyML

In fact, the vast array of applications that the development of TinyML has made
possible is one of the driving reasons behind the extraordinary growth of this movement.
The applications generate the essential data sets and corresponding economic growth that
feed the advancement of research, driving the demand for more effective TinyML systems
and additional improvements in the overall design process. The previous two years have
seen TinyML applications steadily grow from their initial focus on vision to encompass
natural language processing, predictive modeling, pattern recognition/classification, and
data analysis. An overview of the application areas is given together with a high-level
analysis of the challenges and opportunities.

TinyML is presently being used efficiently in a variety of applications, including smart
objects (from sensors to cities), industrial control and monitoring, healthcare, surveillance
and security, administration and finance and several others covering our daily lives and
communities [18,32,101–104]. Below is a small sample:

1. Intelligent Objects (IoT):
Always-on wake-up units (voice, activity and motion [105]) such as translation and
communication applications, smart assistive devices, natural language processing,
intelligent communication systems [106], virtual and augmented reality, personalized
and user-adapted services, etc.

2. Monitoring and Control of the Industry:
TinyML has considerable potential influence on the industrial and manufacturing
sectors, which are undergoing digitization as part of the Industry 4.0 revolution [100].
MCUs are unable to consistently carry out some operations because of the highly
changing compute and memory requirements of the processing activities in these
sectors. The incorporation of ML-based decision support systems (DSS) into MCUs,
on the other hand, enables them to choose whether to take on a given computational
task or offload it to higher processing layers, such the edge or cloud. Furthermore,
intelligence along the production chain may be used to improve production processes,
decision making, asset monitoring, production and assembly line quality assurance,
real-time diagnostics of assembly machines, and so on [107].

3. TinyML in Healthcare:
Wearable devices, such as smartwatch, are loaded with a variety of biological sensors
that monitor vital functions like as heart rate, blood oxygen concentration, exercise,
and even obesity [108,109], and deliver accurate real-time visualization of the current
health status of the user in a confidential, safe, and dependable manner. Smart camera
sensors capable of monitoring patients in their own environments and swiftly assisting
with nurse notification, real-time diagnosis and aid, personalized and translational
medicine, and so on [110,110,111]. Additionally, smart microprocessors that utilize
TinyML, can effectively predict the likelihood of an accident [112].

4. TinyML in Security and Surveillance:
Camera sensors with hardware capable of conducting relatively rapid and accurate
visual processing are used in a variety of industries, including tele-health [113],
security and surveillance, services, surveillance, navigation devices, and so on.

5. TinyML in Smart Agriculture [114]:
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TinyML offers a lot of potential in Africa, where embedded systems and artificial intel-
ligence are still underutilized [115,116]. Cassava farming is one of these chances, as it
provides a key source of food for hundreds of millions of people each year. However,
it is always under threat from many illnesses. To combat it, PlantVillage [117], an
open-source project managed by Penn State University, has created Nuru, an artifi-
cial intelligence-based program that can function on mobile phones without internet
connectivity—a valuable asset for distant African farmers. By evaluating sensory
data in the field, the Nuru app has been successful in minimizing hazards to cassava
farming. PlantVillage intends to employ TinyML more widely in the development
of Nuru, sending microcontroller sensors to remote farms to offer better monitoring
information for analysis. TinyML is also discovering new applications in the agricul-
tural commodities chain, such as coffee beans [118]. For example, two Norwegian
businesses, Roest and Soundsensing, have devised a method to automatically recog-
nize the “first crack” of coffee beans during the roasting process. It is critical to identify
the first crack since the time spent roasting after the first crack has a major impact
on the quality and flavor of the processed beans. To accomplish this task, companies
have added a microcontroller with TinyML in their bean roasting equipment, which
has increased the efficiency, precision, and scalability of the coffee roasting process.
Also, a farmer could with the right equipment as well as with appropriate forecasting
models running for weather forecasting, know locally for that particular field its daily
weather and its characteristics.

6. TinyML in Vehicular Services and Autonomous Vehicles:
As more environmentally friendly and healthful vehicles, such as shared bicycles,
electric mopeds, scooters, and so on, come into existence, current patterns in urban
transportation are changing. However, due to the high energy requirements of their
linked on-board units (OBUs), modern vehicle networks largely take into account
conventional forms of road transportation including cars, buses, and trucks. Although
various attempts to connect bicycles to C-ITS systems have been made [119], personal
autos have not been taken into consideration due to their novelty and inherent limita-
tions. The ability to integrate these devices into C-ITS and smart city ecosystems, on
the other hand, is made possible by connecting them with MCU-based OBUs [120].
Thus, basic vehicle services like route planning, device status monitoring, and driving
safety and so on [120] will be accessible to light cars.
Autonomous driving has made giant strides since the advent of deep learning (DL).
Small vehicles driving choices have historically been off-loaded to remote computers,
requiring energy-intensive, time-consuming, and unreliable transfers of raw data.
By processing data on-board and immediately controlling the motor controllers, off-
system transfers may be avoided. However, because the system is battery-powered,
only a tiny portion of the electricity can be sent toward the processing unit, which
is the autonomous vehicle’s “brain”. TinyML approaches are therefore required to
solve these issues and deal with on-device sensor data processing at the hardware,
algorithmic, and software levels.

7. TinyML in Smart and Secure Societies:
Water systems, a safe food supply chain [121], intelligent transportation systems, dis-
aster relief [122], smart energy grids [123], and emergency response technologies [124],
and so on [125]. Also, efficient defect detection in modern production lines, such as
logistics, in numerous stages of the manufacturing process [126].

8. TinyML in Intelligent New Spaces:
The collaborative intelligence that now exists in scenarios like smart cities and cog-
nitive buildings, to name a few, will be strengthened by simple objects with ML
capabilities. Current IoT-based surveillance and monitoring systems, such as those
used for traffic, pollution [96], and crowd identification, will grow into autonomous
and intelligent entities [127] capable of making quick and decentralized choices. Be-
cause of independence from the power grid and the simplicity of installation, items
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may be installed in isolated and rural locations, creating smart spaces [128] with
smooth mobility between them. Furthermore, lower end-device costs will stimulate
their adoption in underserved areas, which may assist revitalize local economies and
commercial activity.

The aforementioned areas of application are obviously just a small portion of the
potential of the TinyML, but they have served as the cornerstone for the technology’s
development by creating an ecosystem that (a) produces the datasets required to inspire
the TinyML market to improve and create more useful products, (b) offers the services
required by society to enable public acceptance without the associated mistrust that typi-
cally surrounds artificial intelligence, and (c) inspires through emerging technology [18].
Figure 6 depicts the major sectors that comprise the TinyML ecosystem.

Figure 6. TinyML Ecosystem.

2.7. Use Cases of the TinyML

TinyML may be used to showcase a variety of use cases. Phenomenology, face detec-
tion, gesture recognition, keyword detection, sign language processing, precision agricul-
ture, sea turtle protection, cough detection, posture estimate, posture evaluation, ecological
monitoring, image recognition, traffic control, environmental forecast, autonomous vehicle
monitoring, speech recognition, respiratory symptoms, and always-on voice wake-up are
examples of use cases.

2.7.1. Image Recognition

In [91] involves visual awareness condensers to achieve deep image recognition. As a
device-based framework for low-precision image identification, AttendNets is provided. It
uses developed micro-macro-architectures that are supported by a design process that is
driven by machines. ImagNet50 is used as a benchmark to compare AttendNets against
in order to demonstrate its relevance. According to the results, it decreases multiply-
add processes by three times and increases accuracy by 7.2%. Additionally, it utilizes
16.7 times less weight memory than MobileNet-V1 and 4.17 times less parameters. The
architecture provides the best possible balance between network efficiency and accuracy
gap. By using automated micro-macro structures, it enhances selective spatial channel
attention. On-device image recognition may become a critical facilitator of TinyML imple-
mentation for low cost and low energy sensitive IoT devices as a result of the usefulness of
such integration.
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2.7.2. Hand Gesture Recognition

In the TinyML realm, gesture recognition is a particularly promising subject. Various
approaches for applying gesture prediction to resource-constrained devices are being inves-
tigated. For example, hyper-dimensional computing is being examined for the application
of electromyogram pattern recognition [129]. The prospect of gesture prediction with limb
position awareness utilizing sensor fusion technology is studied in this work. To replicate
dual-stage categorization, the accelerometer and EMG data are combined. Multiple models
keep position-specific properties in superposition. When evaluated on a dataset comprising
8 limbs and 12 motions, it achieved 93.34% accuracy during model validation. The findings
suggest that this activity uses 8 times less RAM. The combination of EMG sensors and
accelerometer sensors for hand signal collection is shown in Figure 7. In [108], an ANN
model was used to detect and categorize a time series of a sensor readings for a collection
of motions (Forward, Backward, Select and Stop). To conduct the experiment, they used an
ATMega4809 CPU, a composite eye camera, and a hand gesture sensor. The microcontroller
featured clock processing speed of up to 20 M, a 48 KB of flash memory, and 6 KB of RAM.
They produced synthetic data after recording different actions made by a complete hand,
arm, or fingers at different distances. Models included Feed Forward Neural Networks
(FFNN) and RNN. FFNN outperformed RNN, according to the results of the model. With
the ReLu activation function, FFNN had an accuracy of 84% whereas RNN had an accuracy
of 83%. The 32 KB flash memory and 2 KB RAM of the ATMega328P microcontroller were
verified to be adequate for achieving a frame rate of 40 Hz using both methods.

Figure 7. Wireless EMG + accelerometer acquisition device [30].

Capacitive sensing has been addressed for gesture prediction for TinyML configura-
tions [105]. The embedded prototype created for this study contains four capacitive sensing
electrodes and may be worn on the wrist. It has a classifier accuracy of 96.4% and uses just
one hidden layer. An ARM Cortex-M4 MCU with 256 KB of RAM and 1 MB of flash is used
in the design. Without quantization, the released embedded prototype in float32 mode is
just 29.6 KB in size. The inference process requires 26.4 mW of electricity and takes only
12 ms. In a different study, it was discovered that the first finger was equipped with an
NRF52 CPU and a 32 Hz accelerometer. From the TensorFlow Lite Micro library, it selects a
multilevel long short-term memory (LSTM) model with 2.8 MB of on-disk capacity. With a
measurement accuracy of 95.5% over 10 distinct movements, it is trustworthy.

2.7.3. Face Detection

A crucial application case for the smart IoT environment is face recognition. Long-
range face detection without batteries, which is readily accessible, may surely enhance
human face tracking in a number of applications. In [48], a time-of-flight sensor and a
low-power camera module (such as the HM01B0) are paired with an ARM Cortex-M4F
MCU (e.g., VL53L1X). The LoRa transceiver module is used to interact with a distant
system (e.g., SX1262). The BQ25504 chip controls the system power. Initially, the flight time
unit is engaged automatically (e.g., 1 Hz).The MCU is programmed to wake up if it notices
any motion. Images captured by the camera are 320 × 320 pixels. There are VGA and
QVGA options available with this configuration. At 30 frames per second, this uses just
1.1 mW of power. Two layers of convolution are utilized in this mode, along with two levels
of convolution-MaxPool. Three dense layers help in facial detection in the end. The CelebA
dataset is used in the article to train a face classifier on the MCU using the TensorFlow
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framework. In the wireless camera detection planning mode, it achieves 97% accuracy. The
practical IoT-based face detection system is depicted in Figure 8. For the COVID-19 to be
introduced, face mask identification has been crucial. The creation of face mask recognition
systems that are TinyML aware has been tried by a number of research teams. In [130], for
example, a convolution neural network that performs facial recognition utilizing 496 KB of
buffer memory is built using an ARM Cortex-M7 MCU running at 480 MHz. The model,
which was trained using TensorFlow, requires 138 KB of RAM at 30 frames per second
during post-quantization. In [131], a visual face device that detects coughs is displayed.
When a cough is detected, the face visor may be switched on and off.

Figure 8. Face detection sensor system based on IoT [30].

2.7.4. Anomaly Detection

The difference between the mass of the majority of points and the point value is the
anomaly. In [132], a study is given to see if TinyML is appropriate for tasks connected to
anomaly detection. The Arduino Nano 33 BLE sense unit makes use of a general artificial
neural network, an automatic encoder, and a variable automatic encoder. To check for
irregularities in the uneven spin drying cycle, the study makes use of a Kenmore top-load
washing machine type. The findings reveal that the precision is 90% and the accuracy
is 92%.

2.7.5. Phenomenal and Ecological Maintenance

The study of phenotypic change at the gene level during the lifetime of an organism is
known as phenomics. Particularly in plant phenomics, suitable shoots are chosen from a
set of shoots via genetic changes. In [133] illustrates a phenomics image analysis based on
the categorization of tomato leaf disease and spider mites. The YOLO3 method (based on
the DarkNet-53 architecture) and the tomato PlantVillage dataset are used to automatically
identify tomato leaves. The study also segments images into pixels using the SegNet
method. In order to facilitate the application of phenomics under the banner of the TinyML
paradigm, it also explores further into a number of other frequently employed methods of
data analysis.

Recently, there has been an increase in the use of AI-aware tools for ecological main-
tenance analyses. In [134] develops an ecological conservation project in the SmallSats
scenario using TinyML (e.g., small payload satellites). Unplanned fishing and marine pollu-
tion are causing the extinction of sea turtles. Using computer vision, sea turtle conservation
has recently been integrated to the TinyML framework. The study focuses on increasing
sea turtle conservation through the use of contemporary TinyML systems that are based on
real-time vision.

Another important application that may be incorporated with TinyML systems is
environmental monitoring. An approach to numerical weather prediction (NWP) using a
deep tiny neural network (DTNN) is presented in [38]. The X-CUBE-AI tool chain, STM32
MCU, and the framework are all running the Miosix operating system. The sole hardware
requirements for the DTNN architecture are 480 Bytes of on-board RAM and 45.5 KB of
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flash memory. The weather forecasting system powered by a Raspberry Pi is seen in action
in Figure 9.

Figure 9. Weather forecast with STM32 microcontroller and Raspberry Pi [30].

2.7.6. Autonomous Vehicle and Traffic Management

However, it is presently a challenging task to drive a little automobile autonomously
on such a small scale. The TinyML method is being researched to improve the autonomy
of such tiny cars, according to [135]. Convolution neural network architecture is used in
its construction in MCI GAP8. Additionally, the STM32L4 and NXP k64f platforms have
been used for testing. The integration increases power consumption by 92% and reduces
processing delay by 13x, according to the results.

Recently, automated traffic programming has been investigated for prospective inte-
gration with the TinyML framework in order to improve the real-time traffic management
system [52]. Piezoelectric sensors are used in the system indicated, and they are placed in
various traffic lanes. To identify a vehicle using piezo sensor data, a two-point time ratio
approach is needed. In order to forecast when the green light will emerge, the categoriza-
tion of cars is then employed. The random forest regressor (RFR) of the study considers
the number of cars entering each lane when predicting signal duration. It is built on an
Arduino Uno and uses scikit-learn’s help along with the m2gen library. Only 1754 KB are
needed for the created algorithm.

2.7.7. Body Pose Evaluation

Estimating body posture can be quite useful for keeping track of older patients health
care. A platform-independent framework is added in [136], enabling quick model-platform
modifications and validation. It creates the application on the Nvidia Jetson NX platform
utilizing the face-landmarking technique RetinaFace and the posture estimation algorithm
OpenPifPaf, which makes use of Composite Fields for real-time spatiotemporal posture
detection (consisting of GPUs, deep learning hardware accelerators). Scalable inference
for machine learning models is possible thanks to the assumed model-to-approve (MATE)
checking framework (see Figure 10). It also offers image transformation, allowing the same
model to be created on several platforms. Kestrel is a use case that tracks the body posture
of the user at home or in the hospital. An alert is triggered whenever the user moves out of
their safe place. MATE includes the TensorRT library to make it easier to incorporate the
inference engine at different access levels.
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Figure 10. The MATE framework.

2.7.8. Detection of Respiratory Symptoms Associated with Coughing

Tiny RespNet, a convolution model with neural network awareness, is described
in [62]. The approach is flexible and appropriate for multimodal settings. The system was
constructed using a parallel processing-capable Xilinx Artix-7 100 t FPGA. The energy
efficiency is 4.3 times greater than alternatives and the power consumption is 245 mW. The
NVIDIA Jetson TX2 SoC was used to build the model, which is also evaluated against the
processing power of the TX2 CPU. The input data may be categorized by the Tiny RespNet
system, including voice recordings, demographic information, and patient records. Three
datasets—ESC-50, FSDKaggle2018, and CoughVid—are used to categorize respiratory
symptoms associated with cough detection (see Figure 11). Dyspnea can be recognized by
the framework. Another project that uses the Arduino Nano BLE Sense platform with Edge
Impulse cloud integration and is accessible on ProjectHub on the Arduino website shows
off a cough detection application [137].

Figure 11. The Tiny RespNet.

2.7.9. Speech-Voice Recognition

Any machine learning model can employ speech recognition as a generic applica-
tion. One such framework is TinySpeech, which can carry out on-device low precision
speech recognition [74]. To benefit from small-footprint memory use and low CPU energy
consumption, TinySpeech uses attention condensers. For the purpose of evaluating this
efficacy of the framework, Google Speech Commands is used as a benchmark. In terms of
parameters, it is discovered to drastically reduce architectural complexity by 507x. It can
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do 48 times less multiplication and addition operations. Memory requirements are substan-
tially reduced, 2028x lower than in earlier reported work. With a restricted vocabulary, it
can identify voice recognition. The framework accepts the cephalic frequency coefficient
(MFCC) representation of an audio signal as input. A softmax layer, an averaging layer, a
fully linked layer and a convolution layer are all included. From an architectural stand-
point, it has a lot of variety. It employs awareness condensers and a sparse application of
generalized autonomous convolution. Furthermore, no batch normalization is applied. In
this paper [138], they demonstrated efficient operation using both hardware and software
to perform a TinyML audio classification on a resource-constrained embedded system.
The experimental results showed that the time and power consumption were reduced
when performing the operations on the embedded board. The proposed hardware-based
preprocessing technique is suitable and can be applied to TinyML applications that require
a large amount of raw information preprocessing in addition to the audio classification.
As a final point, among the whole TinyML framework flow, software and hardware are
separated based on the alignment function. The optimized partitioning between hardware
and software co-design may provide a new topic for future research.

2.7.10. Oral Tongue Lesions Pre-Screening

A great way to reduce patient mortality is by early identification of oral cavity cancer
(OCC). However, the pre-screening procedures now available are manual, and the thera-
peutic counseling that follows is not economically viable for the average person, especially
in developing nations. They provide an automated, low-cost pre-screening technique in
this work [139] that leverages Artificial Intelligence (AI) used in implanted acne equipment
to recognize benign and pre-malignant superficial lesions of the oral tongue. The proposed
machine learning technique retrains a MobileNetV2 neural network via transfer learning
utilizing clinically annotated image datasets of nine different kinds of oral tongue surface
lesions. For application on an embedded OpenMV Cam H7 Plus endpoint device with
limited power and resources, they quantized a 32-bit floating-point precision floating-point
model (float32) to an 8-bit integer model (int8) using TensorFlow Lite for microcontrollers.
The quantized int8 model has a 98.69% accuracy in detecting 9 linguistic mistakes in the
test set. Comparing the int8 model to the float32 model, which had the same performance
at the same relative inference speed (1.1 ms), the int8 model used around 60% less RAM
and flash memory.

3. TensorFlow Lite—TensorFlow Lite for Micro
3.1. Overview

The absence of appropriate frameworks has slowed the acceptance and deployment
of TinyML in a range of products. The framework must provide not only the installation of
a model on an embedded device but also the training of the model on a more advanced
computer platform. TinyML must make use of a wide range of machine learning (ML)
capabilities, as well as models organization and debugging tools that are helpful for
production devices.

This gap has previously been attempted to be filled. We can analyze the main chal-
lenges that the framework is facing in the following [66]:

• Inability to install models in many embedded architectures easily and portably;
• There is an absence of optimizations that make use of the hardware in question without

needing the construction of frameworks to execute platform-specific efforts;
• Lack of productivity tools that link training with platforms and development tools;
• Infrastructure for model calling, quantization, compression, and execution is insufficient;
• Minimum support features for debugging, organization, performance profiling, etc;
• No benchmarks exist that enable manufacturers to precisely and repeatedly measure

the performance of their semiconductor;
• There is a lack of testing in real-world applications.
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TensorFlow Lite Micro (TFLM) (URL: https://www.tensorflow.org/lite, tensorflow.
org/lite) is suggested, to overcome these concerns, which emphasizes portability and
flexibility while slowing down and increasing the cost of training and model deployment
on embedded hardware. TFLM provides TinyML application execution on many archi-
tectures and enables hardware suppliers to gradually tune cores for their devices. The
following advantages are provided to suppliers as well as a neutral platform to showcase
their performance:

• The compiler-based solution is versatile, portable, and simple to include new applica-
tions and features.

• To achieve hardware independence, decrease the use of library requests and external
dependencies.

• It allows hardware suppliers to provide kernel-specific optimization platforms without
the need to develop hardware-specific compilers.

• Benchmarks adopted by leading benchmarking organizations such as MLPerf are provided.
• The framework is compatible with popular, well-maintained Google apps under development.
• It allows hardware suppliers to easily incorporate optimizations into their kernel to

guarantee production performance and hardware benchmarking.
• The TensorFlow Lite model transformation and optimization infrastructure is one

of many machine learning ecosystems that the model architecture framework is
compatible with.

Proceeding with our overview of TensorFlow Lite, a brief reference to the work flow
of the framework is needed. As shown in Figure 12, the neural network training process
demands high computational hardware. So, it is trained on the generic TensorFlow model.
Furthermore, training is only necessary if a customized dataset is suitable for a deep
learning model, as applications can also utilize the pre-trained models of the framework.

Figure 12. Workflow of TensorFlow Lite [66].

Considering a bespoke use case with a custom dataset, the user trains the model using
the generic TensorFlow framework with high processing capacity and architecture. After
training is completed, the model is evaluated using test procedures to confirm its accuracy
and dependability. Furthermore, the TensorFlow model is converted into a hardware
compliant TensorFlow Lite model in .tflite format.

The .tflite format is a buffer layer file used by the TensorFlow Lite framework and
associated hardware. The model may then be used to train conclusions on real-time data
received by the model. Models are optimized for resilient use cases through inference
training. As a result, for edge AI applications, the choice of inference training is essential.

Most microcontroller firmwares do not support the native file system for the direct
integrated flat buffer format of the TensorFlow Lite model. As a result, it is critical to
convert the .tflite file to an array structure format suitable with microcontrollers. A simple
way for this conversion is to include the program in the C table, followed by regular

https://www.tensorflow.org/lite
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compilation. The output format serves as a source file and consists of a character array
suitable with microcontrollers.

TensorFlow Lite is appropriate for powerful devices, although it has a higher CPU
overhead. Although the tiny size files in TensorFlow Lite Micro are prone to partial adaptation,
optimizing the file size to fit in the memory can greatly increase performance for low power
and processing devices such as microcontrollers.

The official TensorFlow documentation lists the following development boards that
support the TensorFlow Lite Micro [140]:

• Adafruit Circuit Playground Bluefruit
• Kit Discovery STM32F746
• Adafruit EdgeBadge
• Espressif ESP32-DevKitC
• Himax WE-I Plus EVB Endpoint AI Development Board
• Wio Terminal: ATSAMD51
• Kit Adafruit TensorFlow Lite for microcontrollers
• Espressif ESP-EYE
• SparkFun Edge
• Arduino Nano 33 BLE Sense

TensorFlow Lite Micro is now available as an Arduino library for further microcon-
troller compatibility. For hardware development environments like Mbed, it could also
produce projects.

3.2. Technical Challenges

Several factors make establishing a robust ML framework for embedded microproces-
sors especially challenging; some technical challenges are discussed below:

• Missing features:

Embedded all-in-one systems are distinguished due to their severe constraints. As a
result, many of the current advancements that have sped up and simplified software devel-
opment are not available on these platforms due to resource trade-offs being too expensive.
Among the technologies [20] are an operating system, a standardized instruction language,
floating point hardware, efficient memory management for dynamic provision, virtual
memory, a file system, and other technologies that look simple to present programmers. A
framework aiming for wide market adoption should not rely on specific platforms, even
though they do offer some of these qualities.

• A decentralized market and environment:

Numerous applications for embedded systems demand solid software to be developed
concurrently with the hardware, often by a collaborative team. Because of this, the lack
of application compatibility of the platform is far less important than it is with ordinary-
purpose computers. Reverse compatibility with outdated software is even less important
on embedded systems than on main systems as nearly anything that runs on an embedded
system is constructed from some fundamental source code in any case. Hence, even the
most advanced x86 CPU system can still carry out almost thirty-year-old instructions, and
embedded technology may be substantially changed to satisfy power demands [141].

These challenges comprise it far less likely for the embedded market to converge across
one or two architecture platforms or ISAs, which will cause fragmentation. In many ISAs
with robust ecosystems, the advantages they offer for certain applications exceed the cost
of switching developers. Businesses still let developers create their own ISA extensions
nowadays [142].

The number of embedded architecture-supporting tool chains and integrated devel-
opment environments (IDEs) is proportionate to the number of embedded architectures.
Most of these systems can only be accessed with a business license from the hardware
vendor, and if a client requests certain pre-defined instructions, they might not be available
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to all customers. These setups lack an open source environment, which leads to device
fragmentation and makes it impossible for a single development team to provide software
that is effective across a range of embedded systems.

• Resources are limited:

Embedded hardware developers do this because the capabilities of a general purpose
computing platform are beyond them. The most important factors are power consumption
(in embedded devices, there is the requirement for a few milliwatts in terms of power,
while conversely mobile phone and desktop processors require watts [143]), cost (a mi-
crocontroller typically sells for less than a few dollars [144]), and form factor (efficient
microcontrollers can be as small as a grain of rice [143]). To meet the demands of con-
sumers, hardware developers exchange their skills so as to collaborate and communicate
ideas. In most cases, the embedded system built has a small amount of memory, however
this do not apply as a general rule. On the other hand, a big embedded system with little
over a megabyte of SRAM and several megabytes of flash memory is one extreme paradigm
within the spectrum of all-in-one devices. A tiny embedded system, however, contains pro-
cessing memory that is often shared between RAM and ROM and has a memory capacity
of a few hundred kilobytes or less [11].

Persistent storage and working memory are significantly less than typical software
created for general-purpose computers as a result of these limitations. The amount of the
compiled code in storage, in particular, must be decreased.

Code that is rarely utilized on a single device can be found in the majority of appli-
cations made for general-purpose platforms. Instead of choosing the route of the code at
runtime, it would be more efficient to send more executables that have been specifically
created. Since code size is a concern and there are few practical uses, it might be difficult to
defend such runtime flexibility. Developers must thus dissect a library abstraction in order
to make changes that are appropriate for their intended hardware.

3.3. Implementation of TensorFlow Lite—TensorFlow Lite Micro

In this section we will try to explain in detail the implementation of TensorFlow Lite
for Micro, as shown in Figure 13 below, in order to have a schematic view of the Google
framework based on [66].

Application

Client API

TF Micro Interpreter

Model
Loader

Memory
Planner

Operator
Resolver 

Operator API

Operator
Implementation

Operator
Implementation

Figure 13. Implementation overview TFLM.
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• System overview

The initial stage of a TFLM development process for application creation is to memorize
an active neural network model. Using the client API, the developer of the application
creates an “operator resolver” object. To reduce the file size, the “OpResolver” API regulates
which operators are associated with the final binary. The second stage is to supply the
interpreter with a continuous “region” of memory holding the intermediate results and
other variables. Because we presume that dynamic memory allocation is not accessible,
this is necessary action that has to be performed. The final step is to develop an interpreter
instance and deliver the model onto it along with a resolution operator, and a given region
as parameters. The interpreter allocates all necessary memory from the arena during the
initialization phase. Any further allocation can be forged to ensure heap fragmentation and
to avoid creating issues that frequently appear in long-running apps.

Operator programs can allocate memory for use during evaluation, allowing the inter-
preter to express memory demands. The operator types of the serialized model are mapped
to the implementation functions by the OpResolver provided by the implementation. To
guarantee that operator implementations are independent of interpreter details and modu-
lar, all communication between the interpreter and the operators is handled via a C API call.
This approach encourages the reuse of existing system implementations while enabling
the replacement of operator implementations with optimized alternatives (e.g., as part of
a code generation project). Implementing the plan is the fourth phase. The software gets
pointers to memory spaces that represent the model inputs and fills them (often derived
from sensors or other user-supplied data). Once the inputs are ready, the application calls
the interpreter to compute the model. In this process, topologically ordered operations are
iterated through, inputs and outputs are identified using offsets discovered during memory
scheduling, and the evaluation function is executed for each operation.

The translator reviews all actions before handing over command to the program. It
is just a simple blocking call. Because most MCUs are single-threaded and depend on
interrupts for important operations, this is acceptable. However, platform-specific operators
can continue to split their work amongst several processors, and a program can continue to
run on a single thread. After the call is complete, the application can instruct the interpreter
to find and use the tables containing the calculation outputs of the model. Since threading
and multitasking would require less operating system requirements and portable code, the
framework does not support them. It does, however, permit a range of uses. As long as
they do not required to run simultaneously, the framework may execute many models [66].

• TFLM Interpreter

TFLM is a machine learning framework for structural inference that is interpreter-
based. A data structure that directly expresses a machine learning model is loaded by
the interpreter. The interpreter manipulates the data of the model during runtime, which
defines the operators needed to be executed and where the arguments of the model are
drawn from, despite the fact that the execution code is static. We select an interpreter based
on our expertise designing production use models in embedded hardware. We recognize
the requirement for models to be easily updated in the field, which may be impossible
with production code. Nevertheless, utilizing an interpreter enables greater code sharing
between models and applications and speeds up code maintenance because it enables
changes without re-exporting the model. The long-term complexity of the kernel also
favors ML model interpretation, in contrast to conventional interpreters that have several
branches in connection to a function call. Because each kernel runtime is lengthy, interpreter
overhead is decreased.

By rendering operator function calls in fixed machine code at export, a model can
generate C or C++ source code as an alternative to an interpreter-based inference engine.
The code must be recompiled for each model, which might improve performance but
decrease portability. Code generation, which interpolates parameters like weights, model
architecture, and layer dimensions into the binary, is used to completely replace an exe-
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cutable while editing a model. Since an interpreter method maintains all of these data
in a distinct file or memory region, a model update can substitute it for a single file or
continuous area of memory.

• Loading of the model

As was already mentioned, the interpreter loads a data structure that specifically
represents a model. TensorFlow Lite portable data schema [145] is used for this study.
We may import a large range of models at minimum technical expense by reusing the
extraction methods from TensorFlow Lite.

– Model serialization

The FlatBuffer serialization standard is used by TensorFlow Lite for mobile devices to
retain models. Less than two kilobytes of binary space are generally used by the access code.
Additionally, a header-only library exists that reduces space and facilitates compilation by
eliminating the requirement to decompress the serialization protocol into another format.

The C++ header demands that the platform compiler implement the C++11 specifi-
cation, which is a downside of this format. The fact that most embedded devices lacked
file storage systems was another obstacle for this format; nevertheless, because it uses a
memory mapped representation, it is straightforward to transform the files into C source
code files that include data tables. All of these files have been combined into binary files
that the application can easily access.

– Model representation

The model is represented by the stored data, the value schema, and the TensorFlow
Lite representation. This schema offers a number of characteristics that make programming
for embedded devices simpler because it was created with storage effectiveness and quick
access for mobile systems in mind. In contrast to a directed acyclic graph, the functions are
retained in a topologically ordered list. A comprehensive representation of the graph would
need preprocessing to match the input dependencies of the operation, but computations are
as simple as iterating over the list of operations in order. The drawback in this representation
is that it is designed to be portable between systems, necessitating runtime processing to
provide the data needed for inference. As an illustration, it takes the operator parameters
out of the inputs before passing them to the functions that carry out those operations.
Because of this, each action requires a little piece of runtime code to convert from the
serial representation to the underlying structure of the implementation. The readability
and compactness of the operator implementations degrade even if there is no code cost.
Programming in memory is a comparable problem. Any reliant operations may see size
variations since TensorFlow Lite for mobile devices enables variable size inputs. After all
of the buffer dimensions are determined, the optimum arrangement of the intermediate
buffers for the computations must be decided at runtime.

• Memory management

It is not possible to assume that the operating system is capable of allocating memory in
a dynamic manner. As a result, the framework uses an accessible memory space for memory
allocation and maintenance. When the interpreter initializes the model, it calculates the total
size of all buffers and lifespan needed to execute the model. Runtime tensors, permanent
memory for data storage, and scratch memory for temporarily storing values during
model execution are all contained in these buffers (discussed below). The framework
creates a memory plan after determining all necessary buffers, using non-persistent buffers
whenever feasible and ensuring that the buffers are still valid at the conclusion of the
lifespan of the memory plan.
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– Persistent Memory and Scratchpads

Applications must supply a memory field with a specified size when the interpreter is
formed and must keep this memory field constant in the lifespan of the interpreter. This
region may be treated as a stack by assignments that have the same lifespan. We produce
an application-level error if an assignment uses up too much space.

We ensure that allocations only take place during the setup phase of the interpreter,
preventing memory faults from interfering with a long program. The model call has no
possibility of allocation (through mechanisms).

This simpler technique is useful for initial development, but it wastes memory because
several assignments may overlap in time with others. Data structures that are only required
during startup are an example. Their values are meaningless after initialization, but because
they have the same lifespan as the interpreter, they continue to occupy space in its region.
Variables that do not need to remain constant between calls are also necessary for the
assessment phase of the model.

In order to store the initialization and evaluation lifetime distributions independently
from the interpreter lifetime objects, we modify the distribution system. For the interpreter
lifetime assignments (“Tail” in Figure 14) and the function lifetime objects (“Head” in
Figure 14), this approach employs stacks that rise from the lowest direction and decrease
from the highest direction, respectively. A limitation of capacity is indicated when the two
stack indices cross [66].

Global Tensor Arena Buffer
Head

Allocations Alloc Alloc Temp Allocation Arena Tail 
Allocations

Lowest address of buffer Highest address of buffer 

Figure 14. Dual-stack allocation technique.

Both shared and permanent buffers benefit from the two-stack allocation technique.
However, model initialization retains allocation data that is no longer required for model
inference. As a result, while a model is memory planning, the space between the two stacks
might be used as a temporary allocation. The permanent assignment stack, a component of
the permanent stack, maintains any temporary data needed for model inference.

• Multi-tenancy

Due to embedded system limits, application model developers may be forced to
construct multiple specialized models rather of a huge single model. As a result, support
for many models may be required in the same embedded system. It is feasible to have
two different instances that operate independently of each other if an application contains
various models that do not need to execute concurrently. However, because the cache
cannot be reused, this is inefficient.

On the other hand, TFLM offers multi-tenancy along with certain transparent to the
programmer changes to memory scheduling. Memory region reuse is made possible by
TFLM, which enables several model interpreters to commit memory from a single area. It
permits reuse of the lifetime section of the functions for model assessment and stacking of
the lifetime regions of the interpreters in the region. Based on all of the models assigned
to the arena, the reusable (non-permanent) component is set to the strictest standard.
The non-reusable (permanent) allocations for each model are raised.; this is known as
model-adjusted allocations [66].

• Multithreading

As long as the memory allocation of the model is contained inside the area and no
model-related information is kept outside the interpreter, TFLM is thread-safe. In the
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region, just the interpreter variables are kept, and each interpreter instance is associated
with a particular model. Because each interpreter instance is handled by a different task
or thread, TFLM is capable of managing a large number of interpreter instances. Even on
several MCU cores, TFLM may operate safely. Since only the variables required by the
interpreter are kept in the domain, this really functions nicely. The regions make sure that
there are no threading problems even when the executable code is shared.

• Operator Support

They need a lot of computation, occasionally requiring hundreds or even billions
of sequential arithmetic computations (e.g., addition or smultiplications). They operate
smoothly, include inputs/outputs, and have state variables that are specified. Moreover,
they seem to have no additional side effects.

These processes are frequently customized for specific platforms in order to take use of
hardware characteristics since power consumption, code size, and model execution latency
dominate implementations of these techniques.

It is possible to create an API that connects inputs and outputs while hiding execution
specifics behind an abstraction since operator bounds are clearly specified. Some chip
manufacturers have made a library of neural network kernels accessible in order to enhance
the performance of neural networks when run on their CPUs. The fully connected layer,
softmax, convolution, aggregation, activation, and optimized fundamental math are just a
few examples of the optimized CMSIS-NN libraries that Arm provides. CMSIS-NN is used
by TFLM to get improved performance [66].

• Build all-in-one System

To address the fragmentation of the embedded systems market, we need our code to
be compilable across many different platforms. Therefore, we create the code to be mostly
portable, with fewer dependencies, but not enough to provide a decent experience on a
certain device. The majority of embedded system programmers work with a platform-
specific integrated development environment (IDE) or tool chain, which abstracts away
many of the intricacies of building individual components and offers libraries as interface
modules. Even if developers were just given a hierarchy of folders holding source code
files, before they could create and compile that code into a useful library, they would still
need to go through a number of processes.

3.4. Summary of TensorFlow Lite

First, special reference is made to TensorFlow Lite because this framework is widely
used, can solve many problems for TinyML technology and is supported by Google. In the
previous chapter, other frameworks and compilers for TinyML have been mentioned, such
as the ELL of the Microsoft, STM32Cube.AI etc. The purpose of this chapter is to give a
brief overview of the technology of TensorFlow Lite for Micro as well as to explain some
complex issues related to the implementation of this framework. Figure 15 below shows
the pipeline of this framework based on [146].

 Train a  
model

 Convert the
model

 Optimize  
the model

 Deploy the model  
at Edge

 Make inferences 
at Edge

TensorFlowLite

Android

iOS

Linux Embedded  
Devices - Raspberry Pi 

Microcontrollers

Figure 15. Standard pipeline for TensorFlow Lite.
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The capacity to transfer deep learning to embedded devices is made possible by TFLM,
greatly expanding the use of ML. The TFLM framework was developed particularly to do
machine learning on embedded systems with low memory—only just few kilobytes, in fact.

The TensorFlow Lite deep learning framework expands the opportunities in a number
of AI applications. Because the framework is open source for AI enthusiasts, it is becoming
increasingly popular for machine learning use cases. TensorFlow Lite as a whole improves
the environment for developing edge applications for embedded and IoT devices.

There are also various examples for newcomers [80] to assist them with real use
cases of the framework. Face identification based on data obtained from the development
board’s image sensor is one of these instances, as is the typical hello world application for
all development boards. Examples can include motion detection and speech recognition
apps for specialized development boards.

4. Integrating TinyML with Network Technologies
4.1. 5G and TinyML

At this point, we’d like to talk about another technical breakthrough that will transform
how devices communicate with one another: 5G. With minimal latency, 5G connectivity
can play a special role in managing huge amounts of data [147,148]. 5G will usher in a new
hyper-connected society in which everyone and everything will be linked. The relationship
between the ML, the 5G, and the TinyML is depicted in Figure 16.

ML Models

5G Connectivity

TinyML 
Solutions

Figure 16. Association of ML, 5G and TinyML.

As a result, the coming of 5G will usher in new paths and challenges for TinyML. We
would want to suggest that, while TinyML is meant to handle ML challenges at the edge,
predictions based on metadata or collective decisions made by thousands of devices will
continue to be made in the cloud. As a result, it would be advantageous to distinguish
between issues solved by devices and problems solved in the cloud. Furthermore, incor-
porating the benefits of both technologies while avoiding their drawbacks would result
in a more resilient design. Researchers think that 5G will play an important role in more
successfully linking these two frameworks because of the following vision [149].

• The real-time data rate is targeted at =1~10 Gbps [150], with a delay <10 ms [151].
• A significant number of devices are linked together [152].
• The goal is to minimize energy use by about 90% [147].
• It offers massive bandwidth, cheap cost, and extended battery life.

In light of the development of machine learning and its benefits in wireless commu-
nications, each scientific community has made an attempt to assess the influence of ML
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on 5G in their individual domains. As a result, multiple papers have been written about
various themes like the effect of machine learning on the physical layer, privacy concerns,
managing radio resource, and more. This makes it difficult to give a brief explanation of
the importance and use of ML/AI in 5G. Due to the high complexity of 5G, deep learning
has been identified by many leading papers as the most promising ML method. As a result,
works that apply ML to 5G can be divided into two categories: “deep learning-based classi-
fication”, in which we place a sole focus on deep learning and “general ML classification”,
where we take into account all feasible ML viewpoints from the literary works [153].

In the case of 5G, a broad ML classification follows the general ML structure shown
in the previous sections, which employs three ML categories: Unsupervised learning,
supervised learning and reinforcement learning (RL). An illustration of such categorization
is provided in Table 6, providing the learning methodologies utilized in each category as
well as a specific example of a 5G [154] application. Moreover, RL and 5G can exist in
unmanned aerial vehicles (UAVs) as indicated in [155]. The next part will outline several
5G use cases and provide a method for mobile network operators to integrate AI/ML.

Table 6. Some Learning Methods and their Applications in 5G for the Three Types of Machine Learning.

Learning Classes Learning Models 5G Application Illustration

Support Vector Machines (SVM) Model for predicting path loss in urban contexts

Approaches for machine learning and statistical
logistic regression

In deployments of self-organized LTE dense small cells, dynamic
frequency and bandwidth allocation is used.

Supervised learning

Neural-Network-based approximation Channel learning is used to infer unobservable channel state
information (CSI) from an observable channel.

Frameworks for Supervised Machine Learning
Adjustment of the TDD Uplink-Downlink configuration in

XG-PON-LTE Systems to enhance network performance in the hybrid
optical-wireless network based on current traffic circumstances

Multi-Layer Perceptrons (MLPs) and Artificial Neural
Networks (ANN)

In next-generation wireless networks, objective function modeling
and estimates for link budget and propagation loss are used

Reinforcement Learning algorithm based on long short-term
memory (RL-LSTM) cells.

Based on long-term WLAN activity in the channels and LTE-U traffic
loads, proactive resource allocation in LTE-U networks, implemented

as a non-cooperative game, enables SBSs to determine which
unlicensed channel to utilize.

Reinforcement Learning
the modified Roth-Erev (MRE), Gradient follower (GF), and

the modified Bush and Mosteller (MBM).

Allow Femto-Cells (FCs) to monitor the radio environment
autonomously and opportunistically and alter their settings in

HetNets to eliminate intra/inter-tier interference

Reinforcement Learning with Network assisted feedback. Selection of Heterogeneous Radio Access Technologies (RATs)

Clustering using Affinity Propagation. Data-Driven Resource Management for Ultra-Dense Small Cells

Hierarchical Clustering. Detection of anomalies, faults, and intrusions in mobile
wireless networks

Unsupervised Learning
ML Framework for Unsupervised Soft-Clustering.

In heterogeneous cellular networks, latency is reduced by grouping
fog nodes to automatically identify which low power node (LPN) gets

converted to a high power node (HPN)

Expectation Maximization (EM), K-means clustering and
Gaussian Mixture Model (GMM).

Relay node selection and cooperative spectrum sensing in
vehicle networks

Deep learning is the primary AI/ML learning technique that certain studies con-
centrate on since it is thought to be the most effective. As described in earlier case stud-
ies [156,157], this gives 5G and its numerous components a very wide variety of applications.
A number of studies have also concentrated on the use of several very promising deep learn-
ing subvariants, for instance traffic engineering/resource planning, network security and
connection preservation, deep Q-learning for caching/offloading [158]. The advantages of
using deep learning and TinyML to handle wireless communications issues, particularly in
the context of 5G, are outlined in [156] and may be summed up as follows:

• Unsupervised learning: Unsupervised learning is achievable due to the efficiency
of deep learning in processing semi-labeled or unlabeled input. This is essential for
dealing with the enormous amounts of unlabeled data that mobile systems frequently
deal with.
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• In contrast to conventional ML methods, deep learning performance usually increases
rapidly as the size of the training data increases. As a result, it can exploit the enormous
amounts of mobile data created at high rates of speed.

• Geometric mobile data learning: Geometric mobile data analysis has been transformed
by specific deep learning architectures for modeling geometric mobile data.

• Extraction of features: Through layers of varied depths, deep neural networks can
automatically retrieve high-level information. This makes it possible to analyze
heterogeneous and noisy mobile big data with lower cost human feature engineering.

• Multitask learning: Using transfer learning, features gained from neural networks
via hidden layers may be applied to other tasks. This minimizes the processing and
memory needs for doing multitask learning in mobile devices.

4.2. LPWAN and TinyML on Embedded Devices

Low power wide area networks (LPWANs) aim to reduce energy consumption but at
the same time to increase distance coverage. As indicated in Figure 17, LPWAN networks
tend to have low data rate ratio vs. power consumption but sufficiently high range while
in some cases the range exceeds more than 10 kms.

Figure 17. Comparison of network protocols.

TinyML is an emerging paradigm that efficient ML algorithms can be deployed on
wearable devices [159]. However, utilizing such networks in a federated learning (FL) sce-
nario can lead to the creation of an ML model from decentralized data and in a distributed
way. This is the fundamental concept of FL where a variety of edge devices collaborate
so as to build a global model using only local copies of the data and then each device
downloads a copy of the model and updates the local parameters [160]. Finally, the central
server aggregates all model updates and proceeds with the training and evaluation without
exchanging data to other parties. Table 7 depicts the comparison of LPWAN technologies
as per various parameters. Furthermore, based on the literature of modern network tech-
nologies and embedded systems we present the scalability, deployment, cost efficiency,
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battery life, security and quality of service based on the network technology that is being
utilized. In Table 8, these traits are further shown.

Table 7. Comparison of LPWAN technologies (Compiled from [161–167]).

Parameter LoRa SigFox NB-IoT LTE-M DASH7

Standard LoRa Alliance SigFox/ETSI LTN 3 GPP Release 13, 14 3 GPP Dash Alliance

Bandwidth 250 kHz 100 Hz 200 kHz 1.4–20 MHz 433/868/915 MHz

Modulation FSS/CSS D-BPSK QPSK DL: OFDMA, 16 QAM GFSK

Spectrum 1175 kHz 200 kHz 200 kHz Licensed LTE bands Licensed

Frequency band EU: 868 MHz EU: 868 MHz 7–900 MHz Cellular Band Cellular Band

Transmission FHSS (Aloha) UNB FDD FDD/TDD BLAST

Topology Star-of-stars Star Star Star Half

Security AES 128b Optional encryption NSA AES 256 AES 256 AES 128

Range (Urban) 2–5 km 3–10 km 1–5 km 1–5 km 1 km

Range (Rural) 20 km 50 km 10–15 km 10–15 km 2 km

Data Rate (Min) 250 bps 100 bps 100 kbps 1 Mbps 27.8 kbps

Data Rate (Max) 50 kbps 600 bps 200 kbps 4 Mbps 200 kbps

Throughput 50 kbps - 127 Kbit 1 Mbit 167 Kbit

Energy Consumption Very Low Low Medium Low Medium Low

Battery Life ∼10 years ∼12 years ∼10 years ∼2 years ∼10 years

Deployment Cost Moderate Moderate High High Moderate

TinyML Availability Yes Not applicable Not applicable Yes Yes

Table 8. TinyML applications vs. ordinary Machine Learning applications in network technologies.

Parameter TinyML Machine Learning

Battery Life ✓

Cost efficiency ✓

Scalability ✓

Robustness ✓

Deployment ✓

Performance ✓

Security ✓

As per the battery life, TinyML outperforms ordinary ML techniques as the models can
run on embedded devices. Cost efficiency is better in TinyML as only one microcontroller
is required compared to a PC. Scalability is higher in ordinary ML applications as more
computing power is available. Robustness is higher on TinyML deployments as in the case
when a node is removed, all information remains intact while on the ML case is server-side
based. The deployment is better on ML models as there are many paradigms available
online and more widely used. The performance metric is higher on ML cases as TinyML
technology has emerged and there are not much models. Lastly, security is higher on
TinyML deployments as the information remains within the embedded device and there
are no exchanges between third parties.

5. Discussion and Future Directions

IoT devices will have flexibility and processing power never previously possible
thanks to the incorporation of ML. TinyML is a resolution that performs best in low-
resource settings because it provides a simple protocol, portability and intelligence that
supports modern IoT devices. TinyML’s data processing solution at the sensor node is
essential for enhancing results despite the ongoing proliferation of IoT devices in cloud-
based frameworks. However, new methods for ML algorithm optimization as well as
hardware innovation for use in situations with limited resources have the potential to
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change IoT architecture. While improving the ML algorithm, caution should be used as
the performance of the categorizer may decrease. TinyML contributed to the creation of
a new type of machine learning frameworks for the edge devices of the IoT ecosystem
that are resource-constrained and battery-operated. The TinyML community continues to
struggle with ML model optimization even as academics are focusing more on creating
software frameworks for creating a scaled-down version of the ML model to embed in
MCUs. TinyML use is rising across a number of industries. To promote innovation and
ongoing investment in this industry, the effectiveness of the framework must be guaranteed.
Consequently, TinyML needs a reliable benchmarking mechanism. We predict that a
TinyML benchmarking solution that is precise, easy to use, rapid, and reliable enough to be
utilized in a variety of IoT situations will soon be available based on our research to far.

Furthermore, TFLM makes it possible for deep learning to be applied to embedded
devices, greatly expanding the use of ML. Designed for usage in embedded systems
with memory capacities as little as a few kilobytes, a machine learning framework called
TFLM was developed. The primary contributions of TFLM are the design choices that
must be taken to address the unique challenges of embedded systems, such as the lack
of software features, the severe resource limits, and the heterogeneity of hardware in a
fragmented environment.

TinyML, in particular, has created a new class of machine learning frameworks aimed
towards edge devices in the IoT ecosystem that run on batteries and have limited ca-
pabilities. Although academics have concentrated their efforts on developing software
frameworks that try to provide a shortened version of the ML model for inclusion into
MCUs, improving the model even so presents a demanding task in the TinyML society.
In a variety of applications, TinyML use cases are occurring more often. As a result, the
efficacy of the framework should be ensured in order to stimulate innovation and additional
investment in this sector. As a result, TinyML requires an effective benchmarking mecha-
nism. Based on our study thus far, we anticipate the creation of a TinyML benchmarking
solution that is exact, simple, quick, and reliable enough to be applicable to a variety of
IoT applications.

Finally, TinyML is encouraging the community to overcome issues that have never
been addressed at such a level previously. Developers of TinyML must understand how
data is used, how it is displayed, and what data is used. We could be asked to create
unconnected, pre-installed systems with out-of-date software. A TinyML device may never
have a network connection, which raises the bar even higher and means it cannot be the
subject of an attack from an adversary or breach the privacy of a user. However, newer,
more accurate alternatives can never take the place of such equipment. There are simply too
many potential uses for compact sensors with integrated machine learning. The majority
of these possibilities are in places without electricity, and even when power is available,
additional constraints typically dictate reduced processing capability, near-zero cooling,
limited communication capabilities and a tiny form factor. Last but not least, one of the
most underestimated issues with TinyML is the incorporation of so-called “ethical AI” [37].
We must make sure that these products always adhere to what we, as humans, find ethical.
As was previously said, rapid rise of TinyML has permitted products and systems that are
now firmly ingrained in our culture. While aiming to use less resources, we must make
sure that these systems were trained and designed without bias. Moreover, we analyze a
future roadmap related to TinyML and based on 5 key components [30]:

• New dimension: A variety of variables are claimed to influence the development
and acceptance of the TinyML standard in the future. An intelligent edge system,
for example, necessitates edge software that integrates sophistication, edge-device
intelligence consistency, real-time learning, distributed learning, online learning, and
data-network management. This partnership should be expanded to strengthen local
security and privacy by allowing end-user context to be stored on edge devices.
Additionally, it should give priority to improving edge device infrastructure, low-cost
knowledge sharing capabilities in edge device systems and edge device platform
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orchestration. Figure 18 emphasizes the contributions of these factors to the evolution
of the TinyML paradigm.

• Support for portability: Another issue that may be overcome by establishing improved
compute data delivery methods on Edge platforms is portability support. Location-
aware optimization can conserve network capacity and boost network spectrum
coverage for edge devices, allowing them to collaborate with neighboring devices.
It can therefore contribute to the progressive transfer of know-how and models for
others to utilize. Furthermore, the quality of service may be altered to forecast how
edge devices would behave when interacting with neighboring nodes. These data
may be exchanged across nodes or clouds in the immediate vicinity to forecast the
intelligent orientation of edge devices.

• Edge Intelligence Framework: The following should be the foundation of a standard
edge intelligence framework: (i) energy-efficient management, (ii) dynamic task distri-
bution, (iii) data intelligence, (iv) wireless networking, (v) collaborative intelligence,
(vi) predictive service quality, (vii) communication service implementation, (viii) real-
time inference, (ix) liquid software propagation between edge nodes, and (x) machine
learning as a service. From a future-proof learning perspective, take into account
implementing such TinyML arrangements to make them compatible with 5G and
6G technologies. Therefore, mmWave xhaul systems have to be included to TinyML
systems to enhance ML models optimization. Hypercooperation between the cloud
and the edge may thus be implemented in an effective manner [168–170].

• Offloading operations: The activation/deactivation of processing tasks can actually
be exploited during machine learning scenarios triggered by the edge. These loading
methods ought to be included to the dynamic configuration of edge-aware features
that is already accessible. Thus, TinyML will enhance the transmission of resource-
intensive processes from edge devices with low resources. Interoperability between
the edge and the cloud could become more focused as a result. It is necessary to
undertake investigations to determine the underlying processes that support these
resource allocations (e.g., machine learning, channel bandwidth, memory chunks,
data recruitment, sensing capabilities, CPU cycles).

• Future Perspective: TinyML is progressively becoming a must and a reality for making
educated decisions in everyday life. Especially for low-power embedded devices used
in a variety of applications. To provide consumers with an upgraded user experience,
mobile platforms must adjust their orientation to TinyML. TinyML-aware approaches
for next age intelligent and wearable devices are recommended for technical develop-
ers and enterprises. There is a great requirement to reduce CPU-GPU-TPU interaction,
which costs resources, in order to provide smart decision support. Microcontroller
makers should prioritize integrated TinyML design standards so that customers do
not have to deal with external alignments linked to artificial intelligence. TinyML
integration in the realm of IoT-edge analysis should be explored in order to make the
application more user-friendly and trustworthy. To assist developers in implement-
ing the market-ready development scenario, a uniform flow methodology should be
designed. It is necessary to provide appropriate dataset repositories and lightweight
benchmarking tools. TinyML adaptation should target X.0 industrial applications
in the future days. Furthermore, such low-memory libraries should be used with
8-bit microcontroller devices. TinyML should be used to resolve latency mitigation in
edge-level effects. TinyML is used in low-cost and portable digital devices to deliver
immediate input to consumers. TinyML frameworks may be used to reduce needless
utilization and reliance on GPUs, TPUs, and cloud platforms.
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Figure 18. Basics key enablers of TinyML.

6. Conclusions

The Edge-IoT ecosystem has enormous potential [171,172] to exploit the ability to
make smart decisions at the edge of the network. Machine learning engagement in small
embedded devices with low resources is growing as a critical necessity, pushed by potential
futuristic applications. To improve the present edge-driven machine learning framework,
the TinyML paradigm should be further investigated. In this paper, we give the data on
TinyML in depth, covering several aspects of the research. It is acknowledged that changing
the TinyML paradigm with sufficient depth in in-memory processing and neuromorphic
computing is likely possible. Before they may be applied to low power embedded devices,
current benchmarks must be updated with new datasets. We anticipate that the evolution
of the edge-IoT tool chain will require the use of a low-footprint machine learning output
translator. By creating new TinyML process flows, benchmarks, optimized datasets and
integrating TinyML into typical low-cost, low-power smart wearable devices like smart-
phones, microcontrollers, and IoT-Edge systems, we urge enterprises and stakeholders to
take this step. TinyML has the ability to drastically alter how decisions are made, allowing
for the efficient handling of complex problems even at the edge of the network.

To summarize, TinyML is a significant and quickly developing sector that requires
hardware innovation comparability to enable stability and continuous advancement. In this
journal, we examined the current situation of TinyML. In addition, we selected frameworks,
libraries, and hardware platforms relevant to the TinyML industry. We reviewed the draw-
backs of TinyML technology, its benefits, a number of use cases with specific examples, and
its application domains with analysis for each field. We also investigated the connection
of TinyML with 5G and LPWAN technology in embedded devices, with great potential
for the future of this technology. We believe that this journal is a comprehensive guide
that provides those interested in this field with a complete overview of this innovative
technology. Consequently, the conclusions of this comprehensive analysis will be used as a
guide for understanding the rapidly expanding field of TinyML, a foundation for future
research in this field, and a valuable source for the scientific community. Last but not least,
TinyML is a substantial and rapidly developing field that necessitates trade-offs between
several essential components (hardware, software, machine learning algorithms). Future
research might include other aspects, such as TinyML’s application domain (smart agri-
culture and livestock, smart spaces, vehicle services, industry 4.0, e-health, etc.). TinyML
has the prospect to unlock a plethora of new smart applications in industry, business, and
private life. TinyML provides innovative solutions in a wide range of disciplines as well as
new research pathways, making it an intriguing issue for scholars to examine. Aside from
the development of new deep learning neural networks [68].
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