
Citation: Florea, R.; Craus, M.

A Game-Theoretic Approach for

Network Security Using Honeypots.

Future Internet 2022, 14, 362. https://

doi.org/10.3390/fi14120362

Academic Editors: Cheng-Chi Lee

and Claude Chaudet

Received: 12 September 2022

Accepted: 29 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Game-Theoretic Approach for Network Security
Using Honeypots
Răzvan Florea 1,* and Mitică Craus 2

1 Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
700050 Iasi, Romania

2 Department of Computer Science and Engineering, Faculty of Automatic Control and Computer Engineering,
“Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania

* Correspondence: razvan.florea@student.tuiasi.ro

Abstract: Cybersecurity plays an increasing role in today’s digital space, and its methods must keep
pace with the changes. Both public and private sector researchers have put efforts into strengthening
the security of networks by proposing new approaches. This paper presents a method to solve a
game theory model by defining the contents of the game payoff matrix and incorporating honeypots
in the defense strategy. Using a probabilistic approach we propose the course-of-action Stackelberg
game (CoASG), where every path of the graph leads to an undesirable state based on security issues
found in every host. The reality of the system is represented by a cost function which helps us to
define a payoff matrix and find the best possible combination of the strategies once the game is
run. The results show the benefits of using this model in the early prevention stages for detecting
cyberattack patterns.

Keywords: cybersecurity; game theory; honeypot; cyberdeception; attack graph

1. Introduction

Cybersecurity issues are vastly discussed and analyzed by various specialists and
researchers from all over the world. Moreover, the pandemic situation decided a lot of
companies to use cloud infrastructures more often than before and accommodate their
employees to use the new facilities to work from home. In addition, governments and
public institutions were forced to implement efficient online solutions to provide services
for the population.

This study focuses on the defender who improves network security by introducing
honeypots. Even if the cost of honeypots depends on the performance and applicability,
their existence does not interfere with legitimate users but acts as a decoy and distracts
attackers from the real virtual machines and can send alarms to the administrator in case
of a breach. From the mindset of an attacker, we can also understand that an experienced
person should anticipate the existence of honeypots.

Cyberdeception is used nowadays by both parties, the defender and the attacker. On
their side, the defender can use some techniques to give false beliefs to the attacker by
using decoys, false information or trying to camouflage the network. These techniques are
very similar to those used in military conflicts and can be applied in the cyberworld. On
their side, the attacker is using deception and different strategies to protect their identity or
let the defender think they are a legitimate user or a service. Moreover, the attacker can
use deception techniques in order to gather information about potential victims. Decoys
and deceptive signals are mandatory for manipulating the opponent and creating a false
perception of reality so the attacker using reconnaissance tools gathers only misleading
information and wastes their time.

In his work [1], Almeshekah stated that human beings are not very keen on detecting
deception and the studies run on different classes of workers or students led to the fact that

Future Internet 2022, 14, 362. https://doi.org/10.3390/fi14120362 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14120362
https://doi.org/10.3390/fi14120362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-8817-910X
https://orcid.org/0000-0002-4136-9387
https://doi.org/10.3390/fi14120362
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14120362?type=check_update&version=2

Future Internet 2022, 14, 362 2 of 15

over 45 % of the subjects did not detect deception. Furthermore, Whaley, in his book [2],
stated that the deceiver was almost always successful, regardless of the sophistication of
their victim in the same art.

The best definition which is widely accepted by authors such as Almeshekah [1] is the
one proposed by Yuill [3] where cyberdeception refers to all planned actions taken to mislead
attackers and to cause them to take or not to take actions that help cybersecurity defense.

John Boyd presented in his work [4] the OODA loop, which means to observe, orient,
decide and act, as a cyclic process model in order for the defender to be able to assess an
event and add an input for the creation of a common operational picture. The cybersecurity
game between a defender and an attacker can be seen as an OODA loop race and the
winner is decided by who executes this loop faster. Using honeypots, a defender has an
advantage in front of the attacker because all the decoys are affecting the attacker’s loop.

2. Related Work

In [5], Yoon used moving-target defense in software defined networks in order to
tackle a potential attacker who is trying to gain access from an outside network. They
used a directed acyclic graph but introduced a shuffling technique by allowing the SDN to
change the IP of hosts, by network shuffling or by a packet header randomization. The aim
of this technique was to enhance the SDN by controlling the shuffling process and was not
using honeypots.

Unfortunately, there is no standard format for attack graphs and Lallie [6] conducted
a survey on over 180 attack graphs trying to identify the visual syntax of those graphs and
concluded that even if they were very popular used, there must be conducted more studies
to standardize cybergraphs. The same objective of providing a survey for standardization
was realized by Zeng [7], who concluded the same thing as Lallie [6]—the necessity
of standardization.

On the other side, the attacker can use some techniques to identify honeypots and
Huang [8] introduced an artificial intelligence method to identify honeypots; however, our
model is focused on the defender.

Khouzani [9] described a cybersecurity optimization problem where the model was
based on a minimax optimization problem and the same approach was considered by us,
where the defender problem is to keep in mind the reaction of the attacker, but the model
proposed is very close to the category known as “network interdiction problems”.

Lippmann [10] realized a survey on the generation and analysis techniques of attack
graphs and made a strong point of reviewing the attack graph technique. Some authors [11]
realized a survey on different attack graph techniques such as the state-enumeration-based
approach, TVA approach, logic-programming-based approach or the netSPA Approach and empha-
sized the still-unexplored area and the potential of using attack graph in network security.

3. Materials and Methods
3.1. Attack Graphs: A Model for Risk Analysis

In our model, we assume the defender uses several honeypots h and tries to deceive
the attacker by doubling the most important hosts such as SQL databases, web servers, etc.
More honeypots increase the chances that the attacker will access a honeypot and not a real
host and the cost they pay will be higher. Furthermore, the alerts transmitted during the
attack can provide time for the defender to take real actions to stop the attack and therefore
pay a lower cost.

The exploits are taken into consideration so that an attacker is searching the ones for
gaining privileged access to the target. We assume that rewards with low costs can be
obtained by an attacker if a target can be successfully exploited. Security vulnerabilities
are entrances for malicious exploiters in the operating system, application, hardware or
other software. The failure in implementing security policies or lacking security system
updates/patches can allow a malicious person to gain access to a system.

Future Internet 2022, 14, 362 3 of 15

The attack graph model with the strongest ability in the description of the network
attack process is the one proposed by Swiler et al. [12]. The nodes of the attack graph
represent stages of an attack, and the edges represent an attack that changes the state.
In general, the nodes of the attack graph look like nodes of the attack instantiated with
particular users and machines. The edges of the graph are labeled by a probability-of-
success (or cost) measure and a documentation string for the user interface.

3.2. Attack Graph Framework

The attack graph framework is simply designed to collect information about the
network such as topology, vulnerabilities, configuration and connectivity so that the infor-
mation collected is used to generate the attack graph.

To acquire network information, there is a need to have network access from a source to
a destination. In this way, a reachability matrix can be modeled which is a two-dimensional
matrix where the source IP is the first dimension, and the destination IP is the second dimension.

The reachability network’s matrix described in Table 1 defines the VM as a virtual
machine that is hosted on a server, the IP that is allocated to the VM, and the services that
are running on a VM which allow interaction with other services running on different VMs.

Table 1. Reachability matrix.

Destinations

VMx VMy VMz
IPx IPy IPz

Sources VMa IPa Servicem Serviceo
VMb IPb Servicen

Large networks which contain different platforms, operating systems, and several types
of connectivity have security issues that inevitably are not noticed by the security admins.

The model we propose is a Stackelberg game model where the defender takes the
first action and the attacker follows. Adding honeypots helps the defenders secure the
network and creates a complex environment for the attacker. Assuming the attacker is
using a scanning tool, the real host cannot be identified from the honeypots and has to
search for an optimal attack plan.

For simplicity, we must consider that two hosts are identical if they run the same
services and are equal in terms of connectivity.

Notations:

N—represents a network with services/hosts;
s—represents a service/host;
T—represents types of services/hosts;
T = [t1, t2, t3, . . ., tn], where t represents a type of service/host;
S = [s1, s2, s3, . . ., sn]—hosts/services of type t in network N;
H = [h1, h2, h3, . . ., hn]—honeypots of type t in network N, where H ⊂ N;
A = [a1, a2, a3, . . ., an] represents the attacker’s actions;
D = [d1, d2, d3, . . ., dn] represents the defender’s actions.

Placing several honeypots into our network can represent the defender’s actions and
the network is represented by:

d(t) = h(t) + s(t) (1)

The probability that an attacker chooses a honeypot increases with the number of
honeypots deployed in the network. If the attacker has access to a honeypot, the defender
can be alerted, and the attack should be blocked with 0 second of network downtime.

Everything resumes to costs and success probabilities so we must define the following:

Future Internet 2022, 14, 362 4 of 15

c(s)—the cost of the service/host which is duplicated with a honeypot;
l(s)—the loss of the service and data;
c(a)—the cost of the attacker;
c(d)—the cost of the defender.
p(a)—the attacker’s success probability;
resp(a)—the attacker’s response to the defender’s action;
resp(d)—the defender’s response to the attacker’s action;

The honeypots are defined in our work as fake host that resembles real hosts, running
services that resemble the real ones. The necessity of using honeypots is to create a more
complex environment where the defender has more time and can gather more information
about an attack. The work is focused on the defender as the first player in our game.

The cost of installing and maintaining a honeypot depends on the type of real host.
Shandilya et al. stated in their work [13] that the computational systems became more
complex, were neither fully controllable nor predictable and exposed the system behavior
into nondeterministic spaces.

To have a probabilistic approach, we propose a course-of-action (COA) graph in which
every path leads to an undesirable state based on security issues found in every host.

For the analysis, we use the dependency attack graph in Figure 1 in which the nodes
are separated into fact nodes F (OR) and action nodes A (AND), and the following relations
are established:

1. For every action, there is a precondition and the actions of an attacker must meet
vulnerabilities inside F nodes;

2. In order for the action to be performed the facts must be true so the attacker can
exploit the vulnerability and gain access to the following node.

The logical structure of our network is represented by facts nodes, and the attacker’s
behavior is represented by action nodes. The path with the highest reward would be chosen
by the attacker.

Figure 1. Attack graph.

The relationships between vulnerabilities that are exploitable on each node describe
an attack graph and as in [6], the nodes represent a state (e.g., host, privilege and vulnera-
bility). An attack graph (AG) illustrates the relationships among various vulnerabilities
exploitable by an attacker and the privileges obtainable by the attacker. Depending on the
representations of nodes and edges, different AGs can be generated.

Future Internet 2022, 14, 362 5 of 15

As stated previously, two hosts who run the same services are considered identical, so
the interaction with an identical host will take place because it increases the possibility to
find a honeypot and the game will end.

In Figure 1, for every fact that is true, there is an action that has a probability and cost
depending on the attack host’s type.

3.3. Problem Formulation

In order to reduce their costs for the network protection, the attacker’s actions a and
defender’s actions d have opposite performance goals because the performance cost must
increase for the attacker and decrease for the defender. The payoffs G for attacker and
defender are Ga(a, d) and Gd(a, d), resulting in a zero-sum game:

Ga(a, d) = −Gd(a, d) (2)

Being a leader in this game, the defender can be first in making decisions and setting
up the costs. The Stackelberg equilibrium (SE) is obtained when the defender’s action d is
taken into consideration by the attacker’s action a to give a response.

We propose course-of-action Stackelberg game (CoASG) using the cost of each side
and the game process.

In order to model the attacker’s decisions and actions, complementary to the gathered
network information, the following can be taken into consideration:

1. The attacker can terminate their attack at any moment by themselves;
2. When the attacker is interacting with a honeypot, the probability of success is

p1 = 1− ∑
t∈T

at − ht

at
(3)

3. When there is no interaction with a honeypot nor success, the probability is

p3 = 0 (4)

Using the backward induction algorithm, we can find a Stackelberg equilibrium.
There can be multiple SEs, but using the costs of each party, the SE with the lowest cost can
be chosen.

Phase 1. (a) The attacker takes into consideration the defender’s d action and re-
sponds accordingly:

resp(d) = argmaxaGa(a, d) (5)

(b) The best course of action that is chosen by the attacker if there are multiple SEs is
the one with the lowest cost:

resp0(d) = argminresp(d)

(
n

∑
i=1

c(a)iresp(d)i

)
(6)

Phase 2. (a) From the defender’s perspective, the course of action is chosen after the
attacker’s response by maximizing its payoff:

resp(a) = argmaxdGd(resp0(d), d) (7)

(b) Choosing the SE with the lowest cost gives the new course of action:

resp0(a) = argminresp(a)

(
n

∑
i=1

c(d)iresp(a)i

)
(8)

Future Internet 2022, 14, 362 6 of 15

The defender’s cost for adding honeypot h(t) inside the network is

cd(h) = γld(h) (9)

where γ ∈ R+ is a parameter that can be altered.
Some authors addressed the problem of honeypot allocation over attack graphs in

different ways. The term cyberdeception game is a growing topic as stated in [14], and the
art of camouflaging is applicable in network security as well.

In [15], the authors stated that securing a computing infrastructure was extremely
costly and there was a clear demand for developing an automated decision support system
that came to the help of a security administrator to configure the defense of the network
and detect eventual attacks. They used the same technique for strengthening the network
with honeypots and using them as decoys for intruders. In the paper [15], the authors
proposed a model where the attacker knew the number of fake honeypots but did not know
the services running on these honeypots. This assumption did not help the defender to
fulfill their role but the attacker already knew what to attack and the graph was not very
conclusive. Using probabilistic metrics that can be read from the Common Vulnerability
Scoring System [16], some authors [15] developed an attack policy that characterized the
attacker and the likelihood of a situation occurring inside the network, where the optimal
state was reached when the attacker reached the maximal reward.

Our method proposes that the cost of each node in the attack graph is defined as
a ratio of the node cost and how many vulnerabilities coexist on that node. The cost of
the first node is distributed to the following nodes based on some rules till it reaches the
targeted node to be defended. Therefore, the initial hardening is focused on the first node
with the greatest impact. Even if the attacker is using some tools for reconnaissance, not all
the information about the hosts and the services which are running on these hosts can be
found. Even if there is no possibility to know all the vulnerabilities that coexist on a specific
host, the defender can use the MITRE ATT&CK framework with the known vulnerabilities
and misconfiguration status. The ATT&CK framework can provide a status report and
help the defender better understand the network issues and decide whether to focus on a
misconfiguration, security issue or other vulnerabilities [17]

Our approach is to adopt the partially observable Markov decision process (POMDP)
so that we focus on the defender’s strategy to deceive the attacker and try to maximize their
reward. As stated previously, using scanning tools, the attacker can gain some knowledge
about the network in the reconnaissance state, and we can assume that each player can
observe the partial state. Thus, we propose a solution for the partially observable stochastic
game using the partially observable Markov decision process.

Notations:

V represents a vulnerability, where V = [V1, V2, V3, . . ., Vn];
F represents all the states in the action space, where F = [f1, f2, f3, . . ., fn];
Oa represents the attacker’s observations, where Oa = [oa

1, oa
2, oa

3, . . ., oa
n];

Od represents the defender’s observations, where Od = [od
1 , od

2 , od
3 , . . ., od

n];
B represents the belief states, where B = [b1, b2, b3, . . ., bn].

A vulnerability is represented by a node V and the edge connecting two nodes V1 and
V2 leads us to the statement that a second vulnerability represented by a second node V2
can be exploited only if the first vulnerability V1 is exploited. On their side, the attacker
decides which node to attack by exploiting the vulnerability, and on the defender’s side,
they decide how many honeypots to use and where to deploy them along the graph edge.

At this stage, we introduce Oa as an attacker’s observation set and Od as a defender’s
observation set and

Pr(oa
n, od

n, fn| f1, oa
1, od

1) (10)

as being the probability of transition from state f1 to state fn while observing Oa, Od under
actions A, D.

Future Internet 2022, 14, 362 7 of 15

Ga(f , d, a) represents the attacker’s payoff in state f, so we can assume that

V(bn) = maxan [G
a(an, fn) + ∑

f∈F
τ(f1, d, fn)V(f1)] (11)

Introducing in (11) the probable state update function τ(f1, d, fn) connects the belief
space to the action space and represents the core component of the function.

The state transition and the observation of each transition must be known to calculate
this function, and the defender knows the state transition model.

Observations are connected to the attacker’s actions, which denote the probability of
seeing observation O while transitioning from belief state b to a state of belief b(f).

Od(od
1 , f1, a1) = Pr(oa

1| f1, a1, b1) (12)

The defender can estimate that at a given state f ∈ F, the attacker played a specific
action and calculate the possibility function as follows:

Pr(od
1 | f1, a1, b1) = ∑

f∈F
Pr(od

1 | f1, a1, f1)b(f1) (13)

From the survey in [7], we can see the difference between the two methods presented
above by mentioning that the Markov decision process (MDP) can be applied to the visible
state when we know everything about the network, but our proposed model using POMDP
can be applied to the invisible state when an opponent in a game must observe, collect
information and then act. Because the defender cannot be sure about a particular state,
they need to determine in which state they are in by perceiving the environment and the
concept of the belief state space can be introduced.

4. Results
4.1. Modeling the System

Let us consider some notations to help us understand the model. On every host, there
were multiple running services which can be real (λreal) or honeypot (λhoneypot) services. In
our model, we took several hosts, which could be considered as servers, on top of which
were configured running services such as web services, database services, file host services,
etc. Among the real services, there were honeypots that served as decoys for attackers.

The model is presented in Figure 2 where the access to the cloud (outside) is made
through a router, firewalls protect the inside network with applied rules, and on every
physical machine, there are running multiple virtual machines (hosts). These hosts can be
real ones or honeypots, but the mirroring is made for the ones with high interest.

Figure 2. System model representation.

Future Internet 2022, 14, 362 8 of 15

In our system, we used notations to describe the services which could be in three states
at any time:

State 1. The service (λ) is running/opened (λreal).
State 2. The service is a honeypot (λhoneypot).
State 3. The service is a closed (λclosed).

The multitude of services in every state that is on a host or server can be noted with

Λ = {λ1, λ2, . . ., λn} (14)

but because of the honeypots, the services become

Λ = {λ11, λ12, . . ., λ1n} (15)

In our system, there were several services provided which could be in the four states:

State 1. λ10 the service is closed;
State 2. λ11 the service is opened;
State 3. λ20 the user from the network cannot access the service;
State 4. λ21 the user from the network can access the service.

To define a simple strategy, let us take into consideration that a service can be real, a
honeypot or closed, then from (15), we can decide when the attacker can access the services

λ = {λ111, λ121, . . ., λ1n1} (16)

and when the attacker cannot access the services

λ = {λ110, λ120, . . ., λ1n0} (17)

From (16) and (17), it results that the simple strategy α is

α = {λ111, λ110} (18)

To calculate the attacker’s and defender’s payoffs, we must define the following
parameters with conditions

Gd > 0;
Ca is the cost of the attacker and has the relation Gd ≥ Ca > 0;
Gh > 0 is the honeypot’s payoff;
γ ≥ 1 the damage factor of the attacker;
η ≥ 1 is the deceive factor of using a honeypot.

We can calculate the payoffs for the two cases:
Case 1. The defender is providing a real service on a host and the attacker can access

it; then, the payoffs are
Ga = γGd − Ca (19)

and
Gd = −γGa (20)

Case 2. The defender is providing a fake service and the payoffs are

Ga = −ηGh − Ca (21)

and
Gd = ηGh (22)

Having a system with s services/hosts can result in the payoff matrix in Table 2.

Future Internet 2022, 14, 362 9 of 15

Table 2. Payoff matrix.

Attacker Defender
λ21 λ20 λ21 λ20

λ110
λ11 (−γGd/s, γGd/s− Ca) (0,0) (Gd, Gd) (0,0)
λ10 (0,−Ca) (0,0) (−Gd,−Gd) (0,0)

λ111
λ11 (ηGh/s,−ηGd/s− Ca) (0,0) (0,−Gd) (0,0)
λ10 (0,−Ca) (0,0) (0,−Gd) (0,0)

Using the payoff matrix described in Table 2, we can state that we have a m ∗m matrix
X = (xij)mm where xij is represented by the row player’s payoff when the ith strategy is
picked while the column player chooses the jth strategy, and in general, we can write the
following payoff matrix

−γGd/s γGd/s− Ca 0 0
0 −Ca 0 0

ηGh/s −ηGd/s− Ca 0 0
0 0,−Ca 0 0

 (23)

4.2. Evaluating the System

For the simulation, we focused on the game between the attacker and the defender; we
used Gambit V15.1.1, which is a library of game theory software and tools for the analysis
of finite extensive and strategic games [18], and MATLAB R2021b v9.11.0.

The parameters used for running the simulation are defined in Table 3.

Table 3. Simulation parameters.

Parameter Value Observation

Gd 50 Defender’s payoff
Ca 40 Attacker’s cost
Gh 40 Honeypot’s payoff
γ 2 Damage factor
η 1 Deceive factor

N1 1 A network with 1 service/host
N10 10 A network with 10 services/hosts
N50 50 A network with 50 services/hosts
N100 100 A network with 100 services/hosts

Using Gambit to simulate one service/host and applying the payoff matrix in (23), we
could observe that the attacker had a real advantage and predominance, suggesting that
the defender could suffer great losses (Figure 3).

Figure 3. Results of the dominance for N1.

We can notice from Figures 4–6 that when the number of servers or hosts increased
and the resources available for honeypots were usable, the results showed that the domi-
nance was transferring to the defender’s side and the attacker could not easily access the
network anymore.

Future Internet 2022, 14, 362 10 of 15

Figure 4. Results of the dominance for N10.

Figure 5. Results of the dominance for N50.

Figure 6. Results of the dominance for N100.

We can notice that when the number of services/hosts increased, the payoff of the
defender decreased, being influenced by the honeypots’ costs. Furthermore, the attacker’s
payoff decreased at the same time as the increase in the defender’s payoff, and the cost of
attacking the network rapidly grew to the point where it was very risky to be caught, or
too much time was consumed.

In a big network, there can be more than 1000 hosts or services, but applying our
method of placing honeypots, we can conclude that 50 honeypots are enough for a defense
strategy. There is no need to deploy more honeypots and all the data that are gathered can
be used in order to mitigate an attacker’s infiltration in the system. The purpose of the
experiment was to show the use of honeypots to increase the security of a system, but the
question was to know when a system administrator can be assured that the number of fake
nodes can help them out in protecting the network with fewer costs.

Using the extensive (tree) game from Gambit v15.1.1, we introduced the values ob-
tained in Figures 3–6 and then calculated the Nash equilibrium and the results shown in
Figures 7–10 demonstrate that our proposed method had a great output for the defender.
The honeypots decreased the attacker’s dominance and increased the chances that the
defender would observe and stop their actions.

Figure 7. Results of the dominance for N1.

Future Internet 2022, 14, 362 11 of 15

Figure 8. Results of the dominance for N10.

Figure 9. Results of the dominance for N50.

Figure 10. Results of the dominance for N100.

The Nash equilibrium is the strategy with a high probability that an attacker would
take into consideration, while the defender is trying to solve the imperfect game with less
information. The defender places the honeypots based inside the network and the attacker
tries to avoid them and not being spotted. Both players are paying some costs, the defender
for placing the honeypots and the attacker for trying to evade them and access real hosts.
We found out that the game could come to an idle phase when both attacker and defender
responses resp(d) and resp(a) were equal to 0. This meant that both persons in that game
were not making any moves and were in idle mode.

In our case, the reward of the defender increased when the attacker was caught, and the
capture cost also increased. However, for a large network with more than 50 services/hosts,
the cost of deploying honeypots is very high, but it forces the attacker to step back to avoid
high-risk actions; therefore, the defender’s reward decreases, but the network is safe.

The comparison between our algorithm and a fixed policy for honeypot allocation
shows that this last one does not recognize the dynamics of the game and is not flexible
because all the information is gathered at the beginning of the game.

Future Internet 2022, 14, 362 12 of 15

Now, using the values from Table 3, we can calculate the optimal strategy using (23)
−100 10 0 0

0 −40 0 0
40 −90 0 0
0 −40 0 0

 (24)

To solve this payoff matrix and use the algorithm developed in [19], we must convert
the matrix to have no negative entries by adding a suitable fixed number to all the entries
in the matrix. Let us add 110, and the new matrix is

10 120 110 110
110 70 110 110
150 20 110 110
110 70 110 110

 (25)

Thus, solving two linear programming problems determines the optimal strategies

min(x1 + x2 + x3 + x4) (26)

10x1 + 110x2 + 150x3 + 110x4 ≥ 1

120x1 + 70x2 + 20x3 + 70x4 ≥ 1

110x1 + 110x2 + 110x3 + 110x4 ≥ 1

110x1 + 110x2 + 110x3 + 110x4 ≥ 1

and

max(y1 + y2 + y3 + y4) (27)

10y1 + 120y2 + 110y3 + 110y4 ≤ 1

110y1 + 70y2 + 110y3 + 110y4 ≤ 1

150y1 + 20y2 + 110y3 + 110y4 ≤ 1

110y1 + 70y2 + 110y3 + 110y4 ≤ 1

To calculate in Matlab the optimal strategy, we translated the linear program function
into the format

min(x1 + x2 + x3 + x4)
−10x1 − 110x2 − 150x3 − 110x4 ≤ −1

−120x1 − 70x2 − 20x3 − 70x4 ≤ −1

−110x1 − 110x2 − 110x3 − 110x4 ≤ −1

−110x1 − 110x2 − 110x3 − 110x4 ≤ −1

To find the solution, we used the linprog function from the optimization toolbox in
Matlab so

c = [1, 1, 1, 1];
a = [−10, −110, −150, −110; −120, −70, −20, −70; −110, −110, −110, −110; −110, −110, −110, −110];

b = [−1, −1, −1, −1];
lb = [0, 0, 0, 0]

Applying the formula x = linprog(c, a, b, [], [], lb), we found the optimal solution as

xr = (0.0032, 0, 0, 0.0088) (28)

Future Internet 2022, 14, 362 13 of 15

and for the second LP, we used the translation of (25) and obtained

min(−y1 − y2 − y3 − y4)

10y1 + 120y2 + 110y3 + 110y4 ≤ 1

110y1 + 70y2 + 110y3 + 110y4 ≤ 1

150y1 + 20y2 + 110y3 + 110y4 ≤ 1

110y1 + 70y2 + 110y3 + 110y4 ≤ 1

c = [−1, −1, −1, −1];
a = [10, 120, 110, 110; 110, 70, 110, 110; 150, 20, 110, 110; 110, 70, 110, 110];

b = [1, 1, 1, 1];
lb = [0, 0, 0, 0]

so after applying in Matlab the command y = linprog(c, a, b, [], [], lb), we obtained

yr = (0.004, 0.008, 0, 0) (29)

After applying the linprog function in Matlab for 1, 10, 50, and 100 service(s)/host(s)
in our environment using the method described earlier, we calculated the payoff matrix.
The Matlab simulation results presented in Figure 11 show that the costs for both players
increased significantly with N increasing.

Figure 11. Linear programming matrix results.

With more than 50 honeypots, the costs for both players increase and the probability
of the attacker being caught is extremely high, so using a defense strategy with only
50 honeypots can be applied successfully.

5. Conclusions

In this paper, we proposed a solution for keeping real services/hosts safe by deploying
honeypots. The game-theoretic approach and analysis verified in Matlab and Gambit
demonstrated the effectiveness of our model but also compared our results with some
existing models such as fixed allocation. The equilibrium in the zero-sum game proposed
adjusted the allocation of honeypots based on probabilities. With more than 50 honeypots,

Future Internet 2022, 14, 362 14 of 15

the costs for both players increased, the attacker lost much time and the probability of
being caught was extremely high. Even if the network was bigger and had more than
1000 real hosts, a defense strategy could be applied using only 50 honeypots. Another
interesting result was that the defender’s and attacker’s payoffs were influenced by the
number of nodes and in a network with more than 50 honeypots, the costs for both players
were increasing rapidly and were not sustainable anymore. This method of protection can
help even if the attacker is using some techniques such as machine learning algorithms
in order to detect honeypots. Huang [8] developed a detection algorithm for honeypots
but the costs for the attacker would still increase and this aspect should be addressed in
future work in order to determine the strength of our model when faced with a machine
learning algorithm.

Further research is needed to test our model in a real lab environment and map some
attack techniques to improve the model.

Author Contributions: All authors have contributed equally to this manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CCP Cloud computing providers
ENISA European Union Agency for Cybersecurity
DOS Denial of service
CoA Course of action
CoASG Course-of-action Stackelberg game
CVSS Common Vulnerability Scoring System
POMDP Partially observable Markov decision process
MDP Markov decision process

References
1. Almeshekah, M.; Spafford, E. Planning and Integrating Deception into Computing Security Defenses. In Proceedings of the 2014 New

Security Paradigms Workshop, Victoria, BC, Canada, 15–18 September 2014; pp. 127–138.
2. Whaley, B. Stratagem: Deception and Surprise in War; Center for International Studies, Massachusetts Institute of Technology:

Cambridge, MA, USA, 1969; p. 146.
3. Yuill, J. Defensive Computer—Security Operations: Processes, Principles and Techniques; ProQuest: Cambridge, UK, 2006; pp. 1–20.
4. Boyd, J. Essence of Winning and Losing. 1995. Available online: http://www.danford.net/boyd/essence.htm (accessed on 11

September 2022).
5. Yoon, S.; Cho, J.H.; Kim, D.S.; Moore, T.J.; Free-Nelson, F.; Lim, H. Attack graph-based moving target defense in software-defined

networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1653–1668. [CrossRef]
6. Lallie, H.S.; Debattista, K.; Bal, J. A review of attack graph and attack tree visual syntax in cyber security. Comput. Sci. Rev. 2020,

35, 100219. [CrossRef]
7. Zeng, J.; Wu, S.; Chen, Y.; Zeng, R.; Wu, C. Survey of Attack Graph Analysis Methods from the Perspective of Data and Knowledge

Processing. Secur. Commun. Netw. 2019, 2019, 2031063. [CrossRef]
8. Huang, C.; Han, J.; Zhang, X.; Liu, J. Automatic identification of honeypot server using machine learning techniques. Secur.

Commun. Netw. 2019, 2019, 2627608. [CrossRef]
9. Khouzani, M.H.R.; Liu, Z.; Malacaria, P. Scalable min-max multi-objective cyber-security optimization over probabilistic attack

graphs. Eur. J. Oper. Res. 2019, 278, 894–903. [CrossRef]
10. Lippmann, R.; Ingols, K. An Annotated Review of Past Papers on Attack Graphs; MIT Lincoln Laboratory Project Report; MIT Lincoln

Laboratory: Lexington, MA, USA, 2005; pp. 5–22.

http://www.danford.net/boyd/essence.htm
http://doi.org/10.1109/TNSM.2020.2987085
http://dx.doi.org/10.1016/j.cosrev.2019.100219
http://dx.doi.org/10.1155/2019/2031063
http://dx.doi.org/10.1155/2019/2627608
http://dx.doi.org/10.1016/j.ejor.2019.04.035

Future Internet 2022, 14, 362 15 of 15

11. Barik, M.S.; Sengupta, A.; Mazumdar, C. Attack Graph Generation and Analysis Techniques. Def. Sci. J. 2016, 66, 559–567.
[CrossRef]

12. Swiler, L.P.; Phillips, C.; Gaylor, T. A Graph-Based Network—Vulnerability Analysis System. pp. 1–10. Available online:
https://digital.library.unt.edu/ark:/67531/metadc690855/m1/7/ (accessed on 11 September 2022).

13. Shandilya, V.; Simmons, C.S.; Shiva, S. Use of Attack Graphs in Security Systems. J. Comput. Netw. Commun. 2014, 2014, 818957.
[CrossRef]

14. Anwar, A.; Kamboua, C.; Nandi, L. Honeypot Allocation over Attack Graphs in Cyber Deception Games. In Proceedings of
the 2020 International Conference on Computing, Networking and Communications (ICNC): Communication and Information
Security Symposium, Big Island, HI, USA, 17–20 February 2020; pp. 1–6.

15. Durkota, K.; Lisy, V.; Bosansky, B.; Kiekintveld, C. Approximate Solutions for Attack Graph Games with Imperfect Information; Part of
the Lecture Notes in Computer Science Book Series; Springer: Berlin, Germany, 2015; pp. 1–7.

16. Mell, P.; Scarfone, K.; Romanovsky, S. A Complete Guide to the Common Vulnerability Scoring System, Version 2.0; Forum of Incident
Response Security Teams (FIRST): Cary, NC, USA, 2007.

17. Florea, R.; Craus, M. Modeling an Enterprise Environment for Testing Openstack Cloud Platform against Low-Rate DDoS Attacks.
In Proceedings of the 2022 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
19–21 October 2022.

18. McKelvey, R.D.; McLennan, A.M.; Theodore, L. Gambit: Software Tools for Game Theory, Version 15.1.1. Available online:
http://www.gambit-project.org (accessed on 11 September 2022).

19. Yang, Y.; Guo, Y.; Feng, L.; Di, J. Solving two-person zero-sum game by Matlab. Appl. Mech. Mater. 2011, 50–51, 262–265.
[CrossRef]

http://dx.doi.org/10.14429/dsj.66.10795
https://digital.library.unt.edu/ark:/67531/metadc690855/m1/7/
http://dx.doi.org/10.1155/2014/818957
http://www.gambit-project.org
http://dx.doi.org/10.4028/www.scientific.net/AMM.50-51.262

	Introduction
	Related Work
	Materials and Methods
	Attack Graphs: A Model for Risk Analysis
	Attack Graph Framework
	Problem Formulation

	Results
	Modeling the System
	Evaluating the System

	Conclusions
	References

