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Abstract: Cloud–fog computing is a large-scale service environment developed to deliver fast,
scalable services to clients. The fog nodes of such environments are distributed in diverse places and
operate independently by deciding on which data to process locally and which data to send remotely
to the cloud for further analysis, in which a Service-Level Agreement (SLA) is employed to govern
Quality of Service (QoS) requirements of the cloud provider to such nodes. The provider experiences
varying incoming workloads that come from heterogeneous fog and Internet of Things (IoT) devices,
each of which submits jobs that entail various service characteristics and QoS requirements. To
execute fog workloads and meet their SLA obligations, the provider allocates appropriate resources
and utilizes load scheduling strategies that effectively manage the executions of fog jobs on cloud
resources. Failing to fulfill such demands causes extra network bottlenecks, service delays, and
energy constraints that are difficult to maintain at run-time. This paper proposes a joint energy- and
QoS-optimized performance framework that tolerates delay and energy risks on the cost performance
of the cloud provider. The framework employs scheduling mechanisms that consider the SLA
penalty and energy impacts of data communication, service, and waiting performance metrics on
cost reduction. The findings prove the framework’s effectiveness in mitigating energy consumption
due to QoS penalties and therefore reducing the gross scheduling cost.

Keywords: SLA-based scheduling; cloud–fog computing; resource allocation; QoS optimization;
energy-efficient scheduling; genetic algorithms

1. Motivation

The continued progression in service and the demand for short response delays play a
vital role in shaping the performance of large-scale, service-based environments. Cloud–fog
computing is an example of such an environment developed to deliver fast executions and
scalable services [1–4]. Fog computing in particular presents a decentralized computing
infrastructure, in which services and resources could be connected to a cloud [5,6]. It is
based on bringing the intelligence and processing power of the cloud to places close to
where data are generated and acted upon, which are called edge devices or fog gateways.
The goal is to process as much data as possible locally on fog computing nodes co-located
with fog devices, so as to mitigate latency and bandwidth requirements of processing such
data entirely on a remote cloud [7–9].

Fog nodes are typically connected to distributed smart sensors and IoT devices that
collect data from an operating environment [10–12]. Each fog node by itself operates
independently, as it decides on which data to process locally and which data to send
remotely to the cloud for further analysis [13–15]. Short-term jobs delivered from such
sensor-based and IoT devices are processed locally in their corresponding fog nodes,
whereas resource-intensive jobs are sent by fog nodes (in the form of fog jobs) to the cloud
computing environment. Nevertheless, a huge volume of fog jobs is still transmitted
by fog nodes to the cloud service provider for further processing and analysis [16,17].
Such jobs have various operational characteristics [18,19], time-sensitivities [20,21], energy
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constraints [22–24], and service costs [25,26]. They tend to arrive in a random manner to the
cloud service provider, as well as entail different QoS requirements and service demands
that are to be fulfilled. Thus, reliability and network bandwidth are challenged in satisfying
the obligations of such data in the cloud.

A cloud provider in turn experiences heterogeneous fog workloads of several timing
variations and service difficulties [27–29]. Such workloads increase not only in volume but
also in complexity, which strictly forces execution latencies and energy complications on the
cloud service provider [30,31]. The latter utilizes a pool of cloud resources in its data center
to accommodate incoming fog workloads and thus allocates sufficient resources to achieve
reliability and economies of scale. To execute such workloads, the service provider employs
job scheduling and balancing schemes so that cloud resources are effectively utilized.

However, a client of a fog node typically tends to request a service that is both cost-
efficient and high in performance [32,33]. To effectively meet such fog requests, a cloud
service provider strives to maintain an efficient cost of service and energy consumption.
Existing scheduling strategies often account for optimizing system performance based
on response time and resource utilization metrics. Recent scheduling strategies start to
incorporate factors of energy consumption when scheduling decisions are triggered.

A major limitation in such service schedulers is that they are not developed to manage
mutual performance impacts between the fog service environment and the cloud computing
environment. Such schedulers do not predict resource workloads, which is due to the lack
of the load-management frameworks required to constantly measure system bottlenecks in
fog environments along with cloud-resource queues.

Furthermore, such schedulers adopt allocation methods that focus on improving
performance by only deciding on an optimal allocation of each individual fog job based
on available cloud resources, so that particular performance metrics and QoS penalties
are enhanced, in which, however, the energy constraints of fog jobs due to such backlog
bottlenecks and SLA violations are not employed. As such, existing strategies do not
optimize the energy efficiency performance based on the QoS obligations of fog jobs,
resulting in the metric of measuring client satisfaction formulating schedules that lack a
joint energy- and QoS-optimized performance.

2. Objectives

A cloud service provider must employ a management framework that utilizes various
SLA requirements, energy complications, service demands, and cost obligations of fog jobs
of different characteristics to effectively complete workload executions. The framework
must formalize cost-aware schedules that employ:

• The communication bandwidth allocated by fog environments;
• The waiting delays incurred due to backlog bottlenecks delivered by fog nodes and

congestion in the resource queues of the cloud;
• The cost of services provided by the cloud;
• The energy constraints developed due to serving such fog jobs;
• The SLA penalties of fog jobs incurred due to service violations.

The scheduling framework is intended to provide services to fog jobs with heavy
computations, for which it utilizes the power and speed of a remote cloud computing data
center to serve heavy fog demands that cannot be processed locally in the fog environment
due to the performance limitations of fog nodes.

3. Problem Statement

Recent advances in critical cloud–fog computing infrastructures as service-based dy-
namic environments have accelerated the deployment of intelligent devices to accomplish
specific tasks and achieve market goals. Consider the example of applying IoT and sensory-
based fog systems in vehicular networks. Some time-critical data, such as accident data, are
of high importance to ambulance/police departments and must be sent to control systems
equipped with powerful computing resources to take countermeasures. Delays in the
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processing of such data result in monetary and catastrophic effects, in which QoS require-
ments and agreements produce penalties reflective of such effects. Hence, the integration
of such devices into cloud–fog computing environments constructs reliable networks that
can further monitor, collect, analyze, and process data efficiently.

Constraints on energy consumption, response time, and bandwidth requirements are
inevitable challenges that have further attracted the attention of researchers. A fog com-
puting environment increasingly produces a large volume of jobs waiting to receive cloud
services, each of which consumes resources and energy to strictly meet SLA obligations.
The growing volume of fog data potentially produces backlog bottlenecks that cause execu-
tion difficulties on cloud computing resources, which are structured with computational
processing power to tackle complex fog workloads.

Operation costs on fog clients and cloud service providers increase by increasing not
only the cost of servicing fog jobs and SLA violation penalties but also the cost of the
energy required to communicate and execute such fog demands. For instance, consider a
fog node that requests a task to be serviced on a remote cloud within a specific tardiness
limit. The longer the waiting and service times of the fog job in the cloud–fog environment,
the higher the service cost and energy consumption required to meet the job’s demand. Sim-
ilarly, the performance metrics of the response and execution times incur high performance
costs when their time values increase in the service environment.

The research question arises when a scheduler formulates fog jobs for execution using
the computing power of cloud resources so that QoS requirements are met while energy is
concurrently saved. In this paper, the performance enhancement is focused on the side of
the cloud computing environment, and thus the problem addressed is stated as follows:

Consider the case of fog nodes that deliver job workloads of various QoS expectations and
energy demands to a cloud computing environment that comprises identical computing
resources to service fog jobs. Each fog job is subject to SLA obligations that define
constraints of service cost and execution energy. It is required to deploy and service fog
jobs in the cloud computing environment such that energy is preserved and the cost of
service is mitigated.

4. Background and Related Work

Cloud computing, as a distributed paradigm, hosts heterogeneous resources pooled
in data centers to serve the demands of applications and IoT jobs [1,34,35]. Such demands
present challenges to the cloud computing environment in meeting the QoS obligations
of clients, in which a cloud service provider strives to provision sufficient resources so
as to meet the jobs’ execution demands and satisfy their SLA requirements [36,37]. How-
ever, the huge number of cloud resources allocated brings energy challenges to cloud data
centers, in which energy consumption greatly increases and so does the cost of opera-
tion [38–40]. Together with QoS, energy consumption in cloud computing has consequently
attracted the attention of researchers from academia and industry [41–43]. It becomes of
paramount importance for a cloud provider to satisfy the QoS obligations of clients while
simultaneously achieving energy efficiency based on QoS during the scheduling process.

The existing work in the literature presents various execution models and techniques
to tackle such service challenges in the cloud–fog environment. A model for assigning
tasks to servers is formulated in Dong et al. [44] with the goal of minimizing the energy
consumption of servers in the cloud data center. They propose a scheduling scheme
that allocates tasks to a minimum number of servers while the response time of jobs
is kept within an acceptable range, in which the scheme has proven its effectiveness
against the random-based scheduling. Li et al. [25] propose a load balancing model that
ensures user satisfaction by efficiently executing tasks at a reduced cost. However, energy
efficiency is not effectively incorporated with respect to the QoS penalties of schedules in
the execution procedure.

Tadakamalla et al. [45] present a model that controls the fraction of data processed re-
motely on cloud servers against the fraction of data processed locally on fog servers, where
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a utility function is proposed to optimize the performance metrics of average response
time and cost. The task scheduling process has been optimized on a cloud–fog comput-
ing environment by Dang et al. [46], in which efficient scheduling algorithms assign jobs
among fog regions and clouds. Tsai et al. [47] adopt an optimal task scheduling procedure
that considers the operating cost and execution time of a task in a cloud–fog computing
environment. The procedure particularly formulates globally optimal schedules that are
computed based on task requirements and usage costs of resources. Nevertheless, jobs are
modeled without considering energy factors when service decisions are triggered in the
algorithm designs.

Furthermore, Guo et al. [48] decided on the optimal scheduling of virtual machines
on queues of the cloud system with heterogeneous workloads, but with considerations
of energy in the scheduling process. In contrast, Anjos et al. [49] present an algorithm
that selects a suitable cloud or mobile-edge computing server to schedule IoT workloads,
with the goal of achieving a better service time with a low cost. The energy required to
perform such tasks are employed in the scheduling process, however, without correlating
energy consumption with a QoS penalty of schedules formulated on resources.

In addition, an optimization framework to meet the deadlines of cloud applications
is proposed in Alamro et al. [50], in which they utilize a Probability of Completion be-
fore Deadlines (PoCD) metric to quantify the probability of a job to meet its deadline.
Perret et al. [51] present a deadline-based scheduler that orders jobs for execution in the
cloud according to their laxity and locality, in which the algorithm demonstrates its efficacy
against time-shared and space-shared scheduling algorithms. In both deadline schedulers,
penalties for the energy consumption incurred due to executing a job and for violating
deadlines of jobs are missing factors.

A delay-aware Earliest Deadline First (EDF) algorithm is proposed by Sharma et al. [52]
that allocates tasks for execution on a four-tier architecture. The algorithm demonstrates its
effectiveness in improving the performance of energy consumption during the execution
and scheduling processes of tasks. Wu et al. [53] also present an energy-efficient scheduling
algorithm that minimizes the energy consumption for IoT workflows. Xue et al. [54] propose
a scheduling algorithm to minimize the energy consumption in the cloud computing
environment. They present a QoS model with respect to response time and throughput of
jobs, as well as present an energy model for physical machines of the cloud environment.
However, proposed algorithms do not measure mutual performance impacts between the
energy consumption of machines and the QoS requirements of jobs.

In addition, the genetic algorithm, as a metaheuristic approach, has been extensively
applied to mitigate the complexity of scheduling problems. Nguyen et al. [55] tackle the
scheduling process in cloud–fog computing systems by formulating a model that accounts
for different performance constraints and applying metaheuristic approaches to solve a
multi-objective optimization scheduling problem. Similarly, such approaches are applied
by Ben-Alla et al. [56] to propose a job scheduling method for cloud environments based
on dynamic dispatch queues.

Arora et al. [57] analyze popular first-come first-served, shortest job first, round
robin, Min-Min, Max-Min, genetic, and ant colony optimization scheduling algorithms by
comparing them in terms of response time and makespan. Thus, the genetic approach has
proven its effectiveness in achieving the best performance on the metric of response time,
whereas the ant colony optimization algorithm outperforms other scheduling algorithms in
terms of makespan. In addition, the genetic approach has been utilized in Salido et al. [58]
to solve the job-shop scheduling problem and produce a good-quality, energy-efficient
scheduling solution in a reasonable time. Their approach adopts machine resources that
are modeled to consume different energy rates for processed jobs. Zhang et al. [59] also
minimize the energy consumption in a job-shop scheduling problem by utilizing a multi-
objective, genetic-based approach.

In contrast, Lin et al. [60] propose a framework in which they employ modern artificial
intelligence techniques to overcome limitations of traditional heuristic-based scheduling
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algorithms and cope with dynamic changes in cloud environments. The framework uti-
lizes the power of the deep learning approach to propose a model for scheduling jobs
in cloud data centers. In addition, the framework adopts a deep Q-network model for
resource allocation to deploy virtual machines to physical servers to execute jobs. Moreover,
a scheduling scheme is proposed by Cui et al. [61] to minimize average waiting times and
makespans under different deadline constraints, in which a reinforcement-learning-based
approach is utilized in a grid and in Infrastructure-as-a-Service (IaaS) cloud computing en-
vironments.

Furthermore, Zhang et al. [62] propose a resource management framework for vir-
tualized two-tier cloud data center environments, in which the framework demonstrates
better performance in improving resource utilization and obtains an energy saving of
13.8%. The enhancement in energy consumption is also achieved in Zhao et al. [63] by a
multi-objective scheduling algorithm, as well as in Paul et al. [64], in which a commonly
used approach in control theory called model predictive control is utilized to address the
scheduling problem for deferrable jobs in a tiered architecture data center.

Overall, the proposed scheduling methods in existing frameworks and models do not
optimize the performance of energy efficiency based on the QoS obligations of fog jobs. It is
required that client satisfaction is to be measured based on a metric that accounts for joint
energy andQoS performance optimization, and hence, a pragmatic satisfaction between the
fog jobs of the cloud environment and service providers is met. Such satisfactions are to
be assessed by deriving a performance metric that measures the QoS of fog jobs so as to
penalize the amounts of energy consumption and violations of service and subsequently
formulare schedules across the cloud–fog computing environment.

5. Contributions

A service management framework is designed to incorporate the QoS penalty and
energy consumption of fog jobs waiting for execution in resource queues of the cloud
environment such that cost of service and energy is mitigated. The framework employs
an analytical model for communication and computational performance metrics derived
to calculate the service cost. In this perspective, the communication bandwidth is the
performance metric that affects the QoS delivered to fog clients. A high bandwidth allocated
to fog nodes can, for instance, mitigate the latency incurred from the transmission time of
data jobs. Moreover, the resource demands of fog jobs proportionally influence transmission
and computational energy, and as a result, energy constraints affect job latencies in that fog
jobs with high resource demands demand high communication and computational energy
consumption.

The management framework employs the following: (i) the allocation cost of the
communication bandwidth assigned for a job delivered from a fog node; (ii) the waiting
cost of a fog job in the resource queues of the cloud computing environment; (iii) the
execution cost of a fog job in the cloud resource allocated for it; and (iv) the SLA violation
cost if the service of a fog job does not meet its QoS deadline and tardiness constraints. The
contributions of this paper are summarized as follows:

• Designing a cost model based on a performance metric derived by utilizing QoS
obligations and energy demands of fog jobs transmitted for execution in the cloud
computing environment, in which the performance of energy efficiency is optimized
based on the QoS of fog jobs;

• Employing information of resource usage required by fog workloads to decide on
their optimal allocation to cloud resources, so as to serve the demands of fog nodes
such that the cost of service is mitigated;

• Considering mutual performance impacts between quality metrics of fog jobs allocated
for execution and factors of energy consumption required to service such jobs, so
as to achieve pragmatic client satisfaction and mitigate the gross energy cost of job
workloads queued for execution across the cloud–fog environment;
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• Mitigating the management complexity of the scheduling model so that schedules of
minimum cost of QoS and energy penalties are evolved in a reasonable time.

Overall, schedules are formulated based on a joint energy- and QoS-optimized per-
formance wherein the performance is predicted and evaluated using the cost of service
and energy. Optimal schedules are thus formulated on queues of cloud resources such
that the cost of service and energy are minimized, so as to maximize the probability of
satisfied clients. The system performance is assessed on modeled fog jobs generated with
heterogeneous service characteristics, energy demands, and SLA penalties.

6. Service Management Framework

The scheduling and allocation framework is developed to manage the execution of
fog jobs in the cloud–fog computing environment. The framework is analyzed on a service-
based environment modeled by employing a queuing system that represents a fog layer
with IoT devices and a cloud layer with a job dispatcher associated with cloud resources.
Table 1 shows an alphabetical summary of the notations and concepts used in the paper.

Table 1. Summary of notations.

Notation Definition Notation Definition

ai Arrival time of a fog job Ji to the cloud layer µ Service rate of a server
β Schedule ordering for a set of fog jobs m Index of a cloud resource

cω
β

i|cd The time spent by a fog job Ji in the dispatcher’s queue µΓ Bandwidth penalty mean

cω
β
i

The waiting time of a fog job Ji governed by ordering β
in resource queues Q of the cloud environment µω Waiting penalty mean

c(t)i Target completion time of a fog job Ji µE Penalty execution mean
C Penalty cost µα SLA penalty mean
di The departure time of a fog job Ji from the cloud layer n Maximum number of cloud resources
Ei Prescribed service time of fog job Ji in the cloud layer ρΓ

i Penalty cost of bandwidth usage per time unit of data
ε Energy cost ρω

i Penalty cost of waiting tωβ
i for a fog job Ji

eγ,Γi Energy cost per time unit of bandwidth allocation ρEi Penalty cost of servicing a fog job Ji in a cloud resource Rm
Ei,Γ Total bandwidth energy cost of a fog job Ji ρα

i Penalty cost of SLA violation of a fog job Ji in a cloud resource Rm

em,ωi
Energy cost per time unit of waiting tωβ

i in
a resource queue Qm

Q A set of cloud queues

Ei,ω Total cost of waiting energy of a fog job Ji Qm The mth cloud queue

em,Ei

Energy cost per time unit of service Ei in the
cloud resource Rm

q Communication bit-rate

Ei,E Total cost of service energy of a fog job Ji R A set of cloud computing resources

em,αi
Energy cost per time unit of SLA violation α

β
i with

the cloud service provider
Rm The mth cloud resource

Ei,α Total cost of SLA-violation energy of a fog job Ji rtβ
i

The response time of a fog job Ji governed by ordering β
across the cloud–fog environment

ξi Service cost per time unit of execution Ei tωβ
i

The total waiting time of a fog job Ji governed by ordering β
across the cloud–fog environment

z Maximum number of allocations exist u Energy consumption per bit in the fog layer
F A set of fog nodes ν Arbitrary scaling factor
Fg gth fog node ψi Waiting cost per time unit of waiting tωβ

i

fωβ
i

The waiting time of a fog job Ji governed by ordering β
in the fog environment χΓ

i Scaling factor on penalty cost of bandwidth usage

g Index of a fog node χω
i Scaling factor on penalty cost of waiting

G Maximum number of fog nodes χEi Scaling factor on penalty cost of service
i Index of a fog job χα

i Scaling factor of penalty cost SLA violation
J A set of fog jobs zi,m Allocation of a fog job Ji on queue Qm of cloud resource Rm

Ji The ith fog job ζi SLA cost incurred per time unit of SLA violation α
β
i

κΓ Monetary cost factor for bandwidth allocation penalty α
β
i SLA violation for a fog job Ji

κω Monetary cost factor for waiting penalty Γi Bandwidth allocated for a fog job Ji in the fog layer
κE Monetary cost factor for execution penalty Λi The cost of bandwidth usage incurred per data unit of a fog job Ji
κα Monetary cost factor for SLA violation penalty λΓ Rate of energy consumption g
` Maximum number of fog jobs in the stream λE Rate of energy cost em,Ei
Li Service deadline of a fog job Ji λω Rate of energy cost em,ωi
lωi Tardiness allowance for a fog job Ji λα Rate of energy cost em,αi

6.1. System Architecture and Queuing System Model

The architecture of the cloud–fog computing environment consists of a fog tier and a
cloud tier, as shown in Figure 1. The fog tier comprises a set of fog devices interconnected
together that deliver jobs of different service characteristics to fog nodes F as follows:

F = F1, F2, . . . , FG, ∀g∈ [1, G]. (1)

Jobs received by a fog node Fg are atomic and independent of each other; they hold
no information to be exchanged with other jobs from other fog nodes. Data that cannot be
processed locally on fog nodes F are transmitted to a remote cloud for further analysis and
processing. In this paper, the performance enhancement is modeled to tackle the execution
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of those jobs sent to the cloud, in that it models the portion of the data analyzed and
processed in the cloud. The cloud tier is structured with a number of homogeneous servers,
each of which entails a queue with infinite capacity to buffer incoming fog jobs for execution
in its computing resource. Factors incurred due to server failures and server-to-server
communications are not considered.

Fog Layer

Cloud Layer

Fog Layer

IoT Devices

Figure 1. Cloud–fog architecture.

The M/M/N queuing model is adopted to design the cloud computing system, where
N represents the number of cloud resources that exist in the system, as shown in Figure 2.
A system-queue, called a cloud dispatcher cd, receives fog environment jobs and allocates
them for execution on cloud resources for further processing. The arrival behavior of fog
jobs to the dispatcher cd of the cloud tier is modeled as a Poisson process. The time between
consecutive arrivals of such fog jobs follows an exponential distribution with a particular
arrival rate. The service demand of each fog job in a cloud resource is assumed to be known
in advance based on prediction methods applied on incoming workload history to estimate
a job’s execution time, and thus it is modeled from an exponential distribution with a
service rate µ [65,66].

Fog jobs allocated by the cloud dispatcher cd to resource queues are allowed to be
both reordered in the same queue and migrated from one queue to another. A fog job
can be executed by only one cloud resource at a time. A cloud resource can execute only
one fog job at a time. Cloud resources are available to provide services at any time. The
service discipline of such fog jobs in cloud resources is non-preemptive; a fog job cannot be
interrupted once it starts data execution in a cloud resource.
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Fog Layer

(IoT Devices)

Cloud Layer
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Figure 2. System architecture.

6.2. Cost Analytical Model

The scheduling optimality problem is formalized for a given bag of fog jobs waiting to
receive services from the cloud computing environment. The design of the cloud system
employs a set of identical computing resources R, namely, virtual machines, available to
service fog demands:

R = {R1, R2, R3, . . . , Rn}, ∀m∈ [1, n] (2)

Each resource Rm in the cloud environment entails a queue Qm that holds incoming
fog jobs waiting to receive service, which formulates a queuing system Q that reflects
resources R in the cloud environment as follows:

Q = {Q1, Q2, Q3, . . . , Qn}, ∀m∈ [1, n] (3)

A set of ` atomic, independent fog jobs J are delivered from fog nodes and received by
the dispatcher cd of the cloud environment as follows:

J = {J1, J2, J3, . . . , J`}, ∀i∈ [1, `] (4)

Fog jobs J arrive in a random manner to the cloud dispatcher cd. The index i of each
fog job Ji indicates and signifies its arrival ordering to the dispatcher cd. For instance, J1 is
the first job to arrive, J2 is the second job, and so on. Jobs allocated by the dispatcher cd
are queued in cloud resources R for execution based on a scheduling order β described as
follows:

β =
n⋃

m=1

I(Qm) (5)

where I(Qm) represents indices of fog jobs in the resource-queue Qm. For instance, I(Q2) =
{4, 1, 3, 6} signifies that fog jobs J4, J1, J3, and J6 are queued in Q2 such that fog job J4
precedes J1, which in turn precedes J3, and so on. It is assumed that zi,m represents an
allocation of a fog job Ji to either a queue Qm or a cloud resource Rm associated with that
queue Qm as follows:
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zi,m =

{
1, Fog job Ji is allocated to the schedule of a cloud resource Rm

0, No allocation for job Ji to a cloud resource Rm
(6)

Since fog jobs J are submitted by different fog nodes, they come to the cloud dispatcher
cd with diverse computational demands and QoS obligations. Each fog job Ji is thus
stamped with a prescribed execution time Ei and an arrival time ai, where Ei denotes
the service time required by a cloud resource Rm to execute the demand of the fog job Ji,
whereas ai denotes the arrival time of fog job Ji to the cloud dispatcher cd.

Each fog job Ji waits in the cloud tier to receive service from a cloud resource Rm.
The time spent by a fog job Ji in the dispatcher’s queue is ignored, modeled by cω

β

i|cd:

cω
β

i|cd = 0 (7)

However, the time spent by a fog job Ji in resource queues Q is modeled by cω
β
i , which

is formalized according to a scheduling order β in the cloud tier. Once a fog job Ji receives
a service and leaves the cloud tier, the time of departure is modeled by di, which in turn
models a response time rtβ

i that is a function of the execution time Ei of fog job Ji in a cloud

resource Rm, and the total waiting time tωβ
i of a fog job Ji governed by a scheduling order

β in the cloud–fog environment so far, as follows:

tωβ
i = fωβ

i + cω
β
i (8)

rtβ
i = Ei + tωβ

i (9)

where fωβ
i models the waiting time of a fog job Ji in the fog environment, and cω

β
i models

the waiting time of fog job Ji in the cloud computing environment. Fog jobs J are governed
by various SLAs, each of which entails a job’s service deadline Li that in turn stipulates a
target completion time c(t)i for the fog job Ji in the cloud environment. The c(t)i represents
an explicit QoS obligation on the cloud service provider to complete the servicing of the
fog job Ji, which incurs a waiting time allowance lωi that represents a service deadline Li
at the level of resource queuing Q as follows:

Li = c(t)i − ai

= Ei + lωi
(10)

Ji =
{

ai, Ei, c(t)i

}
(11)

For a fog job Ji that starts the service at its allocated cloud resource Rm, an SLA violation
α

β
i occurs when its response time rtβ

i is higher than its pre-defined service deadline Li,
which accordingly incurs a QoS penalty described as follows:

(rtβ
i −Li) =

{
α

β
i > 0, The fog job Ji is not satisfied of the cloud service

α
β
i ≤ 0, The fog job Ji is satisfied of the cloud service

(12)

Utilizing such execution and service factors, a penalty cost C and an energy cost ε are
accordingly formalized to model and evaluate the system performance across the cloud–fog
computing environment. The penalty cost C and energy cost ε are formulated based on
the communication and queue waiting tωβ

i across the cloud–fog environment, the SLA

violation α
β
i in the cloud environment, the service Ei in the cloud environment, and the

bandwidth allocation Γi in the fog environment. Such QoS attributes are selected to measure
system performance because they can be easily captured and predicted in the queuing
system adopted to model the system design
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6.2.1. Communication Penalty Cost for Bandwidth Allocation Γi in Fog Environment

Each fog job Ji demands a pre-defined bandwidth requirement denoted by Γi allocated
to communicate data between fog nodes and the cloud tier. A cost Λi of bandwidth usage is
incurred per data unit of a fog job Ji, modeled by an exponential distribution of bandwidth
penalty mean µΓ as follows:

Λi = exp(µΓ) (13)

The communication bandwidth Γi allocated for a fog job Ji in the fog tier is subject
to an SLA that stipulates an exponential bandwidth penalty cost curve modeled by ρΓ

i ,
formulating the total penalty cost of bandwidth usage per time unit of data as follows:

ρΓ
i = κΓ ∗ (1− e−ν Λi Γi ) (14)

where κΓ is a monetary cost factor for the bandwidth allocation penalty and ν is an arbitrary
scaling factor.

6.2.2. QoS Penalty Cost for Queue Waiting tωβ
i across the Cloud–Fog Environment

For each fog job Ji waiting in resource queues Q of the cloud tier to receive service,
there exists a waiting cost denoted by ψi for each time unit of waiting tωβ

i , modeled by an
exponential distribution with a waiting penalty mean µω as follows:

ψi = exp(µω) (15)

As explained in 8, the waiting fωβ
i of a fog job Ji in the fog environment and its

waiting cω
β
i in the cloud environment compose a total waiting tωβ

i . Thus, the waiting tωβ
i

of a fog job Ji reaching the cloud tier is subject to an SLA that stipulates an exponential
waiting penalty cost curve modeled by ρω

i , formulating the penalty cost for each time unit

of waiting tωβ
i as follows:

ρω
i = κω ∗ (1− e−ν ψi ( fωβ

i +cω
β
i )) (16)

where κω is a monetary cost factor for the waiting penalty.

6.2.3. QoS Penalty Cost for Cloud Service Ei in the Cloud Environment

After waiting for cω
β
i in the cloud tier and tωβ

i in total, a fog job Ji starts the execution
Ei in a cloud resource Rm with a service cost denoted by ξi per time unit of execution, which
is modeled by an exponential distribution with a penalty execution mean µE as follows:

ξi = exp(µE ) (17)

The service execution Ei of a fog job Ji in a cloud tier is subject to an SLA that stipulates
an exponential service penalty cost curve modeled by ρEi , forming the cost of servicing a
fog job Ji in a cloud resource Rm as follows:

ρEi = κE ∗ (1− e−ν ∑n
m=1( ξi Ei zi,m)) (18)

where κE is a monetary cost factor for execution penalty.

6.2.4. QoS Penalty Cost for Cloud SLA Violation α
β
i in the Cloud Environment

A violation in the SLA agreed upon with the cloud service provider is caused if a
fog job Ji waits for a time longer than the waiting time allowance lωi prescribed in the
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SLA. A time unit of SLA violation α
β
i incurs an SLA cost ζi modeled by an exponential

distribution with an SLA penalty mean µα as follows:

ζi = exp(µα) (19)

The service-level violation α
β
i of a fog job Ji in a cloud tier is subject to an SLA that

stipulates an exponential penalty cost curve modeled by ρα
i as follows:

ρα
i = κα ∗ (1− e−ν ∑n

m=1( ζi α
β
i zi,m)) (20)

where κα is a monetary cost factor for the SLA violation penalty.

6.3. Problem Formulation: Minimum Cost of QoS and Energy Penalty

The problem is modeled by analyzing the performance penalty cost of QoS and
energy for allocating and serving a fog job Ji across the cloud–fog computing environment,
represented by C and ε, respectively.

6.3.1. Penalty Cost C of QoS across the Cloud–Fog Environment

The total penalty cost of scheduling the stream ` across the cloud–fog computing
environment is given by C, which formulates the performance of:

• The communication penalty cost ρΓ
i of bandwidth Γi allocated to transmit a fog job Ji;

• The service penalty cost ρEi to execute a time unit of Ei for a fog job Ji in a cloud
resource Rm;

• The waiting penalty cost ρω
i for each time unit of waiting tωβ

i to queue a fog job Ji in
resource queues Q of the cloud tier;

• The violation penalty cost ρα
i of not fulfilling SLA of a fog job Ji.

Thus, the schedule penalty cost C across the cloud–fog computing environment is
modeled by:

C =
l

∑
i=1

(χΓ
i ρΓ

i + χω
i ρω

i + χEi ρEi + χα
i ρα

i ) (21)

∑
i
(χΓ

i + χω
i + χEi + χα

i ) = 1, ∀i∈ [1, l] (22)

where χΓ
i , χω

i , χEi , and χα
i are scaling factors for communication, service, waiting, and SLA-

violation penalty costs, respectively.
The objective is to formalize the performance penalty cost by allocating a stream ` of

fog jobs J in the cloud tier with a scheduling order β, such that the QoS penalty cost C is
minimized at the level of the cloud–fog computing environment, and thus the schedule
performance is optimized, as follows:

minimize
β

(C) ≡ minimize
β

l

∑
i=1

(Λi Γi + ψi tωβ
i + ξi Ei + ζi α

β
i ) (23)

Each cloud resource Rm can only execute one fog job Ji at a time. The service execution
discipline of a fog job Ji is non-preemptive; a fog job Ji cannot be interrupted once it starts
the execution on a cloud resource Rm. Cloud resources R are homogeneous, and hence the
cost of servicing any fog job Ji on any cloud resource Rm is similar.

6.3.2. Penalty Cost ε of Energy across the Cloud–Fog Environment

Scheduling the stream ` of fog jobs J across the cloud–fog computing environment
incurs an energy cost ε that formulates the energy performance of bandwidth allocation Γi,
waiting tωβ

i in a resource queue Qm in the cloud tier, service time Ei in a cloud resource Rm,

and SLA violation α
β
i with the cloud service provider.
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As such, a fog job Ji is delivered by a fog device for execution in cloud resources
R. Allocating a bandwidth Γi for a fog job Ji in the fog tier incurs an energy cost eγ,Γi per
time unit of bandwidth allocation, that is, a function of an energy consumption per bit
u modeled by an exponential distribution with a rate λΓ and a communication bit-rate q
modeled by a uniform distribution as follows:

eγ,Γi = u× q (24)

u = exp(λΓ) (25)

q = uniform() (26)

which, as a result, incurs a total bandwidth energy cost Ei,Γ modeled by:

Ei,Γ =
z
∑

γ=1

(
Γi × eγ,Γi × zi,γ

)
(27)

Once a fog job Ji arrives to the cloud computing environment, the cloud dispatcher
cd allocates a resource Rm that fulfills the job’s QoS waiting requirements with the least
energy cost. There exists an energy cost em,ωi per time unit of waiting tωβ

i in a resource
queue Qm in the cloud tier modeled by an exponential distribution with a rate λω, which
accordingly incurs a total waiting energy cost Ei,ω modeled by:

Ei,ω =
n

∑
m=1

(
tωβ

i × em,ωi × zi,m
)

(28)

em,ωi = exp(λω) (29)

When a fog job Ji is delivered from a resource queue Qm to start the service in a cloud
resource Rm, an energy cost em,Ei is incurred for each time unit of service Ei in the cloud
resource Rm modeled by an exponential distribution λE , which thus incurs a total service
energy cost Ei,E modeled by:

Ei,E =
n

∑
m=1

(
Ei × em,Ei × zi,m

)
(30)

em,Ei = exp(λE ) (31)

If, however, an SLA violation occurs, an energy cost em,αi is developed per each time
unit of SLA violation α

β
i with the cloud service provider modeled by λα, which therefore

incurs a total SLA violation energy cost Ei,α modeled by:

Ei,α =
n

∑
m=1

(
α

β
i × em,αi × zi,m

)
(32)

em,αi = exp(λα) (33)

As such, the entire cost of energy ε for a stream ` of fog jobs J across the cloud–fog
computing environment is modeled by:

ε =
l

∑
i=1

(
Ei,Γ + Ei,ω + Ei,E + Ei,α

)
(34)
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The objective is to formulate a schedule for a stream ` of fog jobs J in the cloud tier
with a scheduling order β such that the entire cost of energy ε is minimized at the level of
the cloud–fog computing environment, as follows:

minimize
β

(ε) =
l

∑
i=1

( z
∑

γ=1
(Γi × eγ,Γi × zi,γ)+

n

∑
m=1

(
(tωβ

i × em,ωi + Ei × em,Ei + α
β
i × em,αi )× zi,m

)) (35)

7. Evaluation

The case study conducted in this paper evaluates the efficacy of the cost-aware schedul-
ing framework in serving heterogeneous job workloads. The cloud–fog computing envi-
ronment is built in Java, in which queues are utilized to implement the cloud layer. Service
demands, QoS requirements, and service cost of energy for each fog job are generated using
the mathematical model proposed in this paper. The implementation of the framework is
coded using a Workstation with 8GB main memory in a Core i7-8550U CPU @ 1.80 GHz
1.99 GHz.

7.1. Workload Characterizations and Design of the Cloud–Fog Computing Environment

The IoT layer consists of devices distributed throughout the fog environment, that
are with various platforms and architectures. Such devices are modeled in this paper by
sensors that detect, collect, and transmit data for processing in fog nodes and the cloud
computing environment. Jobs delivered by such device sensors are thus heterogenous in
their service demands, costs, and QoS requirements. The cloud layer consists of computing
servers resided in data centers that provide on-demand services with high processing
performance. A one-tier cloud layer is adopted with three servers [R1, R2, R3], each of
which respectively entails a queue [Q1, Q2, Q3] to buffer fog jobs J for execution and each
server follows the M/M/1 queuing system.

Fog nodes F deliver a set of ` atomic, independent fog jobs J to the dispatcher cd of
the cloud layer. The dispatcher cd utilizes a scheduling strategy to allocates each fog job
Ji on a particular cloud queue [Q1, Q2, Q3] for execution. Since the service demand Ei for
each fog job Ji can be estimated beforehand using workload prediction models, the Ei is
thus assumed to be known in advance and modeled by an exponential distribution with a
service mean µE =1 as follows:

Ei = exp(µE =1) (36)

7.2. Modeling for Penalty Cost C of QoS

The bandwidth penalty mean at the fog layer is set for µΓ =1.0, which makes the
cost Λi of bandwidth usage per data unit of a fog job Ji to be Λi =exp(µΓ =1.0), accord-
ing to Equation (13). At the cloud layer, the waiting penalty mean is to be µω =1.0,
and the execution penalty mean is to be µE =1.0, which respectively produce a waiting
cost ψi =exp(µω =1.0) per time unit of waiting using Equation (15) and a service cost
ξi =exp(µE =1.0) per time unit of execution according to Equation (17). An SLA penalty
mean is similarly set for µα =1.0, which, as a result, incurs an SLA cost ζi =exp(µα =1.0)
per time unit of service violation as in Equation (19).

7.3. Modeling for Penalty Cost ε of Energy

The energy model determines the consumption at the transmission stage in the fog
layer and the waiting/execution stage in the cloud layer. The model presents that the
energy consumed to execute a fog job Ji in a cloud resource Rm is higher than the energy
required to hold a fog job Ji in a cloud queue Qm waiting for execution in the cloud resource
Rm. Yet, the bandwidth energy consumed at the fog layer required for transmitting a fog
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job Ji to be executed at the cloud layer is higher than the energy consumed to execute such
a job in a cloud resource Rm.

At the fog layer, the energy consumption per bit g (measured in Joule per bit) is
modeled by the rate λΓ =0.3, and hence, g=exp(0.3), according to Equation (25). The com-
munication bit-rate (measured in bits per second) according to Equation (26) is modeled
by q=uniform(). As a result, the energy cost per time unit of bandwidth allocation Γi is
modeled by eγ,Γi =exp(0.3)×uniform(), as in Equation (27).

At the cloud layer, the energy cost per time unit of waiting tωβ
i in a resource queue

Qm is modeled by Equation (29) to become em,ωi =exp(1.0) with the rate λω =1.0. For a
fog job Ji being serviced in a cloud resource Rm, the energy cost per time unit of service
Ei in the cloud resource Rm is modeled using Equation (31) by em,Ei =exp(0.2) with the

rate λE =0.2. Similarly, the energy cost developed per time unit of SLA violation α
β
i with

the cloud service provider is modeled by em,αi =exp(0.2) using Equation (33) with the rate
λα =0.2. It is shown that rates of execution λE and SLA violation λα are modeled to be
higher than the rate of waiting λω , but to be lower than the rate of data communication λΓ.

7.4. The Genetic Approach

The process of scheduling fog jobs J in the cloud layer such that the QoS penalty cost
C and the energy penalty cost ε are mitigated is an NP problem. The huge number of fog
jobs J received at the cloud layer makes it difficult to formulate cost-optimal schedules in a
timely manner. However, the permutation genetic algorithm, as a meta-heuristic search
strategy, demonstrates its effectiveness in such cases [67–69]. The genetic algorithm and
virtualized-queue design scheme proposed in [41,65,66] demonstrate their effectiveness in
efficiently exploring and exploiting the scheduling space such that a near-optimal schedule
of jobs is formed in a reasonable time, which are adopted in this paper to find a cost
near-optimal schedule of fog jobs J at the cloud layer.

As such, a fitness function is formed to evaluate the quality of each virtualized queue
(chromosome). The fitness value fr,G of a chromosome r in a generation G represents the
penalty cost C of the QoS and the penalty cost ε of energy, each of which computes a nor-
malized fitness value Fr for each schedule candidate. Accordingly, Russian Roulette is used
to select a set of schedule candidates to produce the population of the next generation using
crossover and mutation operators. Two fitness values are presented: fQr,G to represent the
fitness of the cost C of QoS penalty and fEr,G to represent the fitness of the cost ε of energy
penalty. The Single-Point crossover and Insert mutation genetic operators are utilized to
evolve the schedule of fog jobs J at the cloud layer. The rates of such operators are both set
to be 0.1 of the population size in each generation. The population size is set to 10, and the
maximum number of tours is set to 3000.

7.5. Discussions on Obtained Results

Findings of applying the cost-aware scheduling framework across the cloud–fog
computing environment validates the performance and demonstrates the framework’s
effectiveness in mitigating cost C of the QoS penalty and cost ε of energy for formulated
schedules at the cloud layer.

7.6. Cost C of QoS Penalty of Schedules

The schedules of fog jobs J at the cloud layer are formulated on cloud resources
to mitigate the cost C of the QoS penalty. The performance optimality is measured by
evaluating the quality of formulated schedules on cloud queues Q. Table 2 presents the
assessment of the QoS penalty cost C by utilizing the genetic approach, where a system
state of a virtualized-queue for 30 fog jobs is evaluated.
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Table 2. QoS penalty cost of schedules across the cloud–fog computing environment.

Virtualized 1

Queue
Initial 2 Enhanced 3 Improvement

C Penalty C Penalty Cost % Penalty %

Cloud Tier 4 [Figure 3] 30 3.3× 106 0.963 2.06× 106 0.865 39.3% 10.2%

Q1 [Figure 4a] 16 1.62× 106 0.802 1.11× 106 0.670 31.4% 16.4%
Q2 [Figure 4b] 9 0.84× 106 0.569 0.42× 106 0.342 50.2% 39.9%
Q3 [Figure 4c] 5 0.83× 106 0.565 0.47× 106 0.376 43.3% 33.4%

1 It represents the total number of jobs in each queue of the cloud tier. For instance, the first entry of the table
means that 16 jobs are allocated to queue of server 1. 2 It represents the penalty cost of QoS for jobs in the virtual
queue according to the their initial scheduling before using the genetic solution. 3 It represents the penalty cost of
QoS for jobs in the virtual queue according to the their enhanced scheduling formulated after using the genetic
solution. 4 It represents the total number of jobs in the cloud tier, the 3 queues combined together.
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Figure 3. Cost of QoS penalty scheduling for a virtualized queue of 30 jobs across the cloud–fog
computing environment.

The cost C of schedule in the initial state is 3.3×106, which results in a 0.963 QoS
penalty. When the genetic algorithm is employed, the cost C of schedule is accordingly
enhanced to a near-optimal value of 2.06×106 with a 0.865 QoS penalty. Thus, the cost
C and QoS penalty of schedule are improved by 39.3% and 10.2%, respectively. Figure 3
corroborates such findings and shows the mitigation of the QoS penalty cost C for fog jobs
J at the level of cloud layer, in which the genetic algorithm utilizes only 3000 iterations to
reach a near-optimal penalty cost.

Furthermore, the QoS penalty cost C is calculated at the level of each resource queue at
the cloud layer. For that, queue Q1 in Table 2 entails 16 fog jobs organized in a virtualized-
queue. The cost C of QoS in the initial system state is 1.62×106, which produces a 0.802
penalty. The cost C is enhanced to become 1.11×106 with a 0.67 penalty. The cost C and
penalty are improved by 31.4% and 16.4%, respectively. Figure 4a affirms such improve-
ments and assures the effectiveness of the genetic algorithm along with the virtualized-
queue design scheme in enhancing the cost performance C of the QoS penalty for fog jobs
of queue Q1 in only 600 iterations.
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Figure 4. Cost of QoS Penalty scheduling for each server in the cloud environment. (a) Virtualized
queue of 16 jobs. (b) Virtualized queue of 9 jobs. (c) Virtualized queue of 5 jobs.

In addition, the cost C and penalty of queue Q2 in Table 2 are improved by 51.9%
and 45.3%, respectively. Similarly for the virtualized queue of Q3 with five fog jobs,
the improvements are 32.7% on the schedule cost C and 28.1% on the penalty. The cost
of the QoS penalty in Figure 4b for the virtualized queue of Q2 and Figure 4c for the
virtualized queue of Q3 foster such findings in a reasonable time, which overall emphasizes
the performance of reaching a near-optimal QoS penalty cost C within 200 and 100 iterations,
respectively.

7.7. Cost ε of the Energy Penalty of Schedules

The schedule optimality is evaluated by computing the cost ε of the energy penalty
at the cloud layer. Fog jobs J are allocated on resource queues Q of the cloud by utilizing
the virtualized queue design scheme. Table 3 presents the cost ε of the energy penalty for
job schedules at the cloud layer where an allocation of 30 fog jobs on a virtualized queue
is assessed.

Table 3. Energy penalty cost of schedules across cloud–fog computing environment.

Virtualized 1

Queue
Initial 2 Enhanced 3 Improvement

ε Penalty ε Penalty Cost % Penalty %

Cloud Tier 4 [Figure 5] 30 12.46× 106 0.712 5.53× 106 0.425 55.6% 40.4%

Q1 [Figure 6a] 16 2.91× 106 0.252 1.46× 106 0.136 49.8% 46.2%
Q2 [Figure 6b] 9 5.26× 106 0.409 2.53× 106 0.224 51.9% 45.3%
Q3 [Figure 6c] 5 4.29× 106 0.349 2.89× 106 0.251 32.7% 28.1%

1 It represents the total number of jobs in each queue of the cloud tier. For instance, the first entry of the table
means that 16 jobs are allocated to the queue of server 1. 2 It represents the penalty cost of energy for jobs in the
virtual queue according to the their initial scheduling before using the genetic solution. 3 It represents the penalty
cost of energy for jobs in the virtual queue according to the their enhanced scheduling formulated after using the
genetic solution. 4 It represents the total number of jobs in the cloud tier, the 3 queues combined together.

The energy cost ε at the cloud layer is initially 12.46×106, which carries a 0.712 penalty.
The genetic approach is applied along with the virtualized queue design scheme, and hence,
the energy cost ε is enhanced to become 5.53×106 with a 0.425 penalty. It is shown that
improvements on the cost ε and penalty reach 55.6% and 40.4%, respectively. Figure 5
demonstrates such conclusions and shows the efficacy of the genetic algorithm in formulat-
ing a near-optimal energy cost schedule in only 3000 iterations for a virtualized queue of
30 fog jobs.

In addition, the energy cost ε and penalty are measured at the level of each cloud
queue. For instance, the allocation of nine fog jobs of Q2 on a virtualized queue produces
an initial energy cost ε of 5.26×106 with a 0.409 penalty, which is enhanced to 2.53×106

with a 0.224 penalty, as shown in Table 3. The improvements achieved on the energy cost ε
and penalty of queue Q2 are 51.9% and 45.3%, respectively.



Future Internet 2022, 14, 333 17 of 21

 

40

50

60

70

80

90

100

110

120

130

1 301 601 901 1201 1501 1801 2101 2401 2701 3001

C
o

st
 o

f 
E

n
er

g
y
 P

en
al

ty
 f

o
r 

Jo
b

s 

at
 t

h
e 

L
ev

el
 o

f 
C

lo
u
d

 T
ie

r
x
 1

0
5

Iteration Number

Figure 5. Cost of energy penalty scheduling for a virtualized queue of 30 jobs across the cloud–fog
computing environment.

Similarly, the improvements are proven on queues Q1 and Q3. For queue Q1, the en-
ergy cost ε is mitigated from 2.91×106 to 1.46×106 with a 49.8% enhancement, whereas the
penalty is mitigated from 0.252 to 0.136 with a 46.2% reduction. For queue Q3, reductions
in the energy cost ε and penalty reach 32.7% and 28.1%, respectively. Figure 6a–c illustrate
the mitigation of the cost ε of energy penalty in a reasonable time for queues Q1, Q2,
and Q3, respectively, wherein only 200 iterations are utilized to reach a near-optimal cost ε
of energy penalty.
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Figure 6. Cost of energy penalty scheduling for each server in the cloud environment. (a) Virtualized
queue of 16 jobs. (b) Virtualized queue of 9 jobs. (c) Virtualized queue of 5 jobs.

8. Conclusions

The cost-aware framework demonstrates its efficacy in managing the allocation and
execution of fog jobs in a cloud–fog computing environment. Scheduling and load balanc-
ing decisions are frequently triggered at run-time such that quality and service obligations
of fog jobs are fulfilled. It is shown that the framework emphasizes the notion of energy-
efficient scheduling based on the QoS penalty of fog jobs, in which the formulations of
scheduling decisions in the framework tolerate risks of delays and energy on the cost per-
formance.

The scheduling mechanisms employed in the framework demonstrate the effectiveness
of decisions in incorporating the impacts of SLA obligations and energy incurred due to
communication, service, and waiting performance metrics on cost reduction. Such decisions
mitigate the cost of energy and cost of QoS penalty required to execute fog workloads,
as well as cope with heterogeneity and variations in IoT workloads experienced in the
cloud computing environment with considerations to SLA obligations for each fog job.
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The improvement in energy cost at the level of the cloud tier has reached around 55%,
which results in around a 40% enhancement in the QoS penalty. At the queuing level of the
tier, the improvements in cost and penalty reach around 52% and 45%, respectively.

The genetic-based approach utilized in the framework shows a great enhancement
in forming near-optimal schedules in a reasonable time, and the approach improves the
cost performance of energy and QoS penalties as well. It is shown that an optimal schedule
with a reduced cost of energy penalty is formulated at the queuing level of the cloud tier by
utilizing only 200 genetic iterations. In addition, only 3000 genetic iterations are employed
to mitigate the cost of the energy penalty at the tier level of the cloud environment. Future
directions include proposing a resource allocation framework, in which the goal is to decide
on an optimal set of resource configurations and setups such that QoS requirements are met.
It involves proposing an SLA penalty and profit models based on workloads’ heterogeneity
and client demands for resources, that are to be utilized by the framework so that client
satisfactions are maximized.
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