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Abstract: It is meaningful to analyze the market correlations for stock selection in the field of financial
investment. Since it is difficult for existing deep clustering methods to mine the complex and nonlinear
features contained in financial time series, in order to deeply mine the features of financial time series
and achieve clustering, a new end-to-end deep clustering method for financial time series is proposed. It
contains two modules: an autoencoder feature extraction network based on TCN (temporal convolutional
neural) networks and a temporal clustering optimization algorithm with a KL (Kullback–Leibler)
divergence. The features of financial time series are represented by the causal convolution and the
dilated convolution of TCN networks. Then, the pre-training results based on the KL divergence are fine-
tuned to make the clustering results discriminative. The experimental results show that the proposed
method outperforms existing deep clustering and general clustering algorithms in the CSI 300 and S&P
500 index markets. In addition, the clustering results combined with an inference strategy can be used to
select stocks that perform well or poorly, thus guiding actual stock market trades.

Keywords: financial time series; clustering; deep learning; temporal convolutional neural networks

1. Introduction

In the field of financial investment, investors want to profit from the noisy and uncer-
tain stock market. Most studies currently focus on the prediction of the price of a single
stock or its trend classification [1–3]. However, existing studies have shown that even by
using prediction models with high accuracy, it is difficult to obtain objective returns in real
market environments [4,5]. As a result, investors often seek to diversify their portfolios to
avoid large losses from black-swan events. Current methods for stock correlation analysis
mainly mine the complex linkage of stocks through association rules, factor analysis, com-
plex networks, etc. [6]. For example, in the field of economics, Dimitrios et al. [7] used the
continuous wavelet transformation (CWT) to analyze the co-movement spillover effects,
which assumes that stocks in the same industry are highly correlated and that the effects
between different industries may be overlooked. However, the general approach to data
mining requires a degree of competence in the financial field. Clustering algorithms have
excellent results for data without prior knowledge so this study focuses on the application
of clustering algorithms to the correlation of financial time series.

The general purpose of clustering analysis is to classify a set of objects into groups that
are similar to each other, and it is a useful tool for exploratory data analysis in different areas
of science and industry [8]. In the early days, machine learning methods based on k-means,
k-shape, or spectral models could extract data features and categorize them. However, it is
difficult to ensure that the features extracted by such methods fit the clustering structure of
the data because the clustering results depend heavily on the way the data are represented.
Current research on clustering network algorithms in finance focuses on the methods of the
correlation measures for the clustering models [9] and this clustering method is also called
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functional clustering. Functional clustering aims to vectorize the original data in space
with a suitable metric [10–12]. Sun et al. [13] proposed a novel similarity measure based on
extreme point bias compensation to measure the price similarities of SSE 50 constituents.
However, this type of metric is complex and cannot be applied well in other data domains.

In recent years, deep learning has received a lot of attention for its combination
with clustering tasks due to its powerful feature extraction, and representation capabilities
and such methods are called deep clustering [14]. Deep clustering requires that the extracted
data meet the low-dimensional representation suitable for clustering while reflecting the
information characteristics and structural features of the original data [15]. Deep clustering
methods have made great progress in the field of computer vision [16,17]; however, for
unsupervised time-series tasks, their potential has not been fully exploited.

DEC [18] and IDEC [19] are the current novel architectures for unsupervised deep
learning. These models first represent the original data via a neural network vector,
and through this representation, the models then infer the data clustering class distribution.
For example, in DEC, a set of raw inputs is represented by a multi-layer perceptron (MLP)
to obtain a hidden vector that iteratively optimizes the clustering loss with the help of a
self-learning auxiliary target distribution. IDEC adds a reconstruction term to the DEC loss
function to preserve the feature space properties. Li et al. [20] proposed DBC, which replaces
the pre-trained network in DEC with a CNN to extract high-quality features containing pixel
space information and improve the overall clustering performance. Although the above
methods significantly improve the clustering performance, in the financial field, the trends
of different stocks vary widely and the fluctuations of each stock are difficult to capture [21].
The adoption of suitable characterization methods has become a challenge. Temporal
convolutional neural (TCN) networks [22] were proposed by Bai et al. and are currently
used in many tasks that include sequential modeling such as speech recognition, machine
translation, etc. They combine the features of recurrent neural networks (RNN), which
can learn historically meaningful information, and convolutional neural networks (CNN),
which are computationally efficient, thus enabling the processing of sequence modeling
with an advanced training speed while preserving complete temporal characteristics. This
paper combines TCN networks with autoencoder networks and proposes a deep temporal
clustering algorithm called TCN-Deep Clustering.

The rest of this article consists of the following: Section 2 focuses on the autoencoder
temporal clustering model based on temporal convolutional neural networks. Section 3
concentrates on the experimental parameter settings and analysis of the experimental
results. Section 4 validates the return performance by incorporating an inference strategy.
Section 5 concludes the study and provides suggestions for other domains.

2. Financial Time-Series Deep Clustering Network: TCN-Deep Clustering

To address problems where general clustering methods cannot guarantee that the
extracted features fit the clustering structure and current deep clustering algorithms
cannot significantly capture the financial time-series features, an end-to-end deep clustering
algorithm for financial time series is proposed. The architecture of TCN-Deep Clustering
consists of three main components: an encoder, decoder, and temporal clustering layer,
as shown in Figure 1. In the first step, a feature extraction network consisting of an
autoencoder based on a TCN network is pre-trained and in the second step, the temporal
clustering layer is added to fine-tune the hidden feature. The algorithm’s details are
described as follows.
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Figure 1. Architecture of TCN-Deep Clustering.

2.1. Autoencoder Network of TCN

To mine the features of financial time series, this paper designs an autoencoder based on
a TCN network. The TCN network adds two operations compared to a 1D CNN: casual and
dilated convolutions and a connection at the network level with a residual network, as shown
in Figure 2. Each residual block contains two layers of convolutional and nonlinear operations
(with ReLU as the activation function), and weightnorm and dropout layers are also added to
regularize the network in each layer to avoid gradient disappearance caused by the training
process. Unlike the fully connected 1D CNN shown in Figure 3a, causal convolution takes into
account that the time series should only be affected by the current state or the past state, as
shown in Figure 3b. To solve the problem of the limited receptive field of causal convolutional
networks, a TCN network puts forward a dilated convolution. For a one-dimensional input
time series x = [x1, x2, ., xt] , f : {0, 1, 2, . . . k− 1} represents a convolution kernel. The dilated
convolution at xt is calculated with Equation (1):

F(xt) = (x ∗d f )(xt) =
k−1

∑
i=0

i · xt−d·i (1)

where k represents the convolution kernel size, d represents the dilation factor, and t− d · i
represents the past direction. For example, when d = 1 , k = 2 , xt performs the convolution
operation with xt−1 only. Figure 4 presents the TCN network structure with a convolution
kernel of k = 2 and a dilation factor of d = [1, 2, 4, 8]. As shown in Figure 4, the third layer of the
rightmost element can receive eight input elements. Without a dilated convolution, receiving an
input of the same length causes the number of layers in the network to rise to eight, which leads
to a dramatic increase in the number of parameters to be trained.
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Figure 4. Casual Dilated Convolutional Network.

2.2. Training Process

The total loss of TCN-Deep Clustering consists of the sum of the losses of two components:
the reconstruction loss and the KL divergence loss, as shown in Equation (10), which are pre-
sented next in terms of two temporal feature extraction and time-series clustering optimizations.

LTCN− DeepClustering = Lr + Lc (2)

2.2.1. Time-Series Feature Extraction

Suppose x = [x1, x2, . . . , xt] is the original input stock time series. First, carry out the
encoding process f , as shown in Figure 1. The purpose is the characteristic representation of
the original data, the expressions of which are Equations (3) and (4), where σf represents the
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activation function operation in the encoding process, and the activation function used here is
ReLU. w and b1 represent the convolution kernel weights and biases of the encoder process.

zi = f (x) (3)

zi = σf (w ∗ x + b1) (4)

The decoding process g, as shown in the right part of Figure 1, aims to reconstruct the
features as the most similar representation of the original data, where σg is the activation
function of the deconvolution process and w′ and b2 are the convolution kernel weights
and biases in the decoding process, respectively.

x′ = g(zi) (5)

x′ = σg
(
w′ ∗ zi + b2

)
(6)

The autoencoder is an unsupervised learning algorithm in which the loss function
continuously adjusts the autoencoder parameters during the training process. It mini-
mizes Lr to make the reconstructed x′ close to x, which extracts the temporal feature zi.
The reconstruction loss is shown in Equation (7):

Lr =
1
n

n

∑
i=1

∥∥x− x′
∥∥2 (7)

2.2.2. Time-Series Clustering Optimization

After completing the initial feature extraction phase of the TCN autoencoder, the decoder
network of the autoencoder is lifted and only the encoder part of the feature extraction is
retained, and the clustering layer is customized on this basis. Take the temporal feature zi
extracted by the encoder as the input and obtain the stock clustering results through the
similarity measurement (Euclidean distance). According to the optimal number of k clusters
defined in the initial stage, the k cluster centers are obtained. The i-th cluster class center is µi.

Traditional k-means uses the hard labeling approach to measure the similarity of the
sample points to the cluster centers but it cannot measure the uncertainty of data to the cluster
centers, especially if the outlier points are assigned with low accuracy, which may reduce the
quality of clustering. Therefore, in this paper, the t-distribution of soft labels is used to measure
the similarity between the sample points and clustering centers, as shown in Equation (8):

qij =

(
1 +

∣∣zj − µi
∣∣2/α

)− α+1
2

∑i

(
1 +

∣∣zj − µi
∣∣2/α

)− α+1
2

(8)

where
∣∣zj − µi

∣∣2 is the distance from zj to the cluster center µi. qij is the is the probability of
classifying qij to the clustering center µi. α is the degree of freedom of the t-distribution,
which is set to 1. To improve the quality of clustering, the model defines a high-confidence
target probability distribution based on the clustering center, as shown in Equation (9).
pij is the probability that zj is assigned to different clustering centers. fi represents the
probability that all temporal features are assigned to clustering center µi. fi′ represents the
probability that all temporal features are assigned to different clustering centers.

pij =
q2

ij/ fi

∑i′ q2
i′ j/ fi′

, fi = ∑
j

qij (9)
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In order to make the probability distribution of the soft distribution of the clustering
layer qij consistent with the auxiliary target distribution pij, the KL divergence is defined
as the temporal clustering layer loss, as shown in Equation (10):

Lc = KL(P‖Q) = ∑
i

∑
j

pij log
pij

qij
(10)

TCN-Deep Clustering trains the temporal clustering layer using the KL divergence,
thereby optimizing the clustering centers uj and the encoder parameters of the autoencoder
θ(w,b) simultaneously. The gradients of the loss function Lc with respect to the temporal
feature zi and the clustering center uj are calculated as (11) and (12).

∂Lc

∂zi
=

α + 1
α ∑

j

(
1 +

∣∣zi − µj
∣∣2

α

)−1(
pij − qij

)(
zi − µj

)
(11)

∂Lc

∂µi
= −α + 1

α ∑
i

(
1 +

∣∣zi − µj
∣∣2

α

)−1(
pij − qij

)(
zi − µj

)
(12)

The gradient ∂Lc
∂zi

is transferred to the encoder network parameters and used for

backpropagation to calculate the network parameter gradient ∂Lc
∂θ . In this study, the Adam

optimization method was used to optimize the loss function.

2.3. TCN-Deep Clustering Algorithm

The TCN-Deep Clustering algorithm is shown in Algorithm 1. The model inputs
include data set D, which includes a large amount of historical stock data; the number
of clusters K; the maximum iteration N; and the pre-trained iteration Np. The first row
is initialized with k-means, which leads to the initial clustering center. The second and
third rows pre-train the autoencoder network according to the reconstruction loss to obtain
the initial network parameters θ and the temporal feature zj. The fourth to ninth rows are
trained iteratively according to the Adam [23], where the fifth row represents the encoder
extracting the temporal features. The fifth and sixth rows calculate the distance between
the features extracted by the encoder and the clustering centers and assign classes. The 9th
and 10th rows calculate the target distribution and KL divergence. The 11th row indicates
that the iterative process stops when the cluster assignment is less than δ for T consecutive
iterative processes.

Algorithm 1: TCN-Deep Clustering Algorithm.
Model: TCN-Deep Clustering
Input: Data set D; Number of clusters K; Maximum iteration N; Pre-trained
iteration Np;

Output: Clustering results S;
1 K-means initialize the clustering center µ = (µ1, µ2 . . . µk)
2 for i = 1 to Np:
3 Lr =

1
n ∑n

i=1‖x− x′‖2, autoencoder preliminary feature extraction.
4 for i = 1 to N:
5 Encoder extraction of input features: zj = f

(
xj
)

6 Calculating the soft distribution pij of zj with cluster class center µi
7 Assign input data to clusters; Obtain S
8 Calculating the target distribution qij

9 Calculating Lc = KL(P‖Q)=∑i ∑j pij log
pij
qij

10 Based on Adam, to update cluster centers ui and encoder parameters θ
11 end if (i Mod T == 0)&& Cluster assignment is less than the threshold δ
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3. Experimental Settings and Results
3.1. Data Description

This paper focuses on the closing prices of two important index markets in China and
the United States, the CSI 300 and the S&P 500 index. The historical ticker data of the CSI
300 index comes from the Joinquant platform and the historical ticker data of the S&P 500 index
comes from Yahoo Finance. The collected data are shown in Table 1. Stocks with long-term
suspensions and ST stocks were removed from the paper. The time period for the data collected
in the experiment was from 1 January 2015 to 1 July 2018. We divided the time period into
three parts. The first part was the training set; this period was mainly used to define the optimal
number of clustering classes and the selection of the hyperparameters, as well as the application
to obtain the clustering results. The second time period was the observation set, where the
market return analysis was conducted for a similar set of different stocks that was obtained in
the previous step. The third time period was the backtesting phase, where the empirical analysis
was conducted mainly by the stock selection scheme obtained from the analysis. Figure 5a,b
show the closing price movements of randomly selected constituents from the S&P 500 and CSI
300 indices, respectively.

Table 1. Statistics of research data.

Index Stocks
Training Set Observation Set Simulation Set
01/01/2015 01/03/2018 01/06/2018
01/03/2018 01/06/2018 01/07/2018

CSI 300 290 1155 92 30
S&P 500 478 1155 92 30
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Figure 5. The closing price movements of randomly selected constituents from the S&P 500 (a) and
CSI 300 (b) indices.

3.2. The Number of Clusters

This experiment used k-means to initialize the model clustering groups. As the number
of clusters K increased, the samples were divided further and the degree of aggregation of
each cluster gradually increased, and then the SSE naturally decreased gradually. Below, Ci
represents the ith cluster, p represents the sample points of the corresponding cluster, m
represents the center of mass of the corresponding cluster, and SSE is the clustering error of
all clustered samples, which is used to represent the clustering performance. The definition
is given in the following equation:

SSE =
k

∑
i=1

∑
p∈Ci

|p−mi|2 (13)

The core idea of the elbow method is the relationship between the corresponding
k-value and its corresponding SSE, and the rate of decrease of SSE will be reduced when k
is close to the optimal number of clusters. Then, by increasing k and SSE, the decline tends
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to smooth out, as shown in Figure 6. Finally, k = 150 and 100 were selected as the optimal
number of clusters for the S&P 500 and CSI 300 markets, accordingly.
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(b) CSI 300

Figure 6. The relationship between SSE and K.

3.3. Parameter Settings

The network parameters of the TCN encoder–decoder structure for this experiment
are shown in Table 2. The features of the input layer used the stock closing price divided by
the closing price of the previous day, which was then fed into the encoding and decoding
layer structure of the network. The encoding layer corresponds to rows two to eight in
Table 2, which mainly performed a dimension-raising operation on the data. Furthermore,
the decoding layer corresponds to rows ten to eighteen in Table 2, which mainly performed
a dimension-lowering operation on the data. The hidden state dimension was set to
320 dimensions. The number of iterations of the encoder was set to 100 and the Adam
optimizer was adopted during the training process. Meanwhile, the initial learning rate was
set to 0.001. The total number of parameters to be trained for the network reached 309,644.

Table 2. TCN encoder–decoder network structure and parameter settings.

No Type Layer Output Shape Parameters

1 —— Input_1 (InputLayer) (None, None, 1) 0
2 Encoder (Layer 1) residual_block_1 (None, None, 40) 5162
3 Encoder (Layer 2) residual_block_2 (None, None, 40) 9762
4 Encoder (Layer 3) residual_block_3 (None, None, 40) 9762
5 Encoder (Layer 4) residual_block_4 (None, None, 40) 9762
6 Encoder (Layer 5) residual_block_5 (None, None, 40) 9762
7 Encoder (Layer 6) residual_block_6 (None, None, 160) 103,202
8 Encoder (Layer 7) global_max_pooling1d (None,160) 0
9 Encoder (Layer 8) dense (None, 320) 51,520

10 Encoder (Layer 9) activation (None, 320) 0
11 Decoder (Layer 10) dense (None, 796) 255,516
12 Decoder (Layer 11) reshape (None, 796, 1) 0
13 Decoder (Layer 12) decoder_residual_block_1 (None, 796, 40) 5162
14 Decoder (Layer 13) decoder_residual_block_2 (None, 796, 40) 9762
15 Decoder (Layer 14) decoder_residual_block_3 (None, 796, 40) 9762
16 Decoder (Layer 15) decoder_residual_block_4 (None, 796, 40) 9762
17 Decoder (Layer 16) decoder_residual_block_5 (None, 796, 40) 9762
18 Decoder (Layer 17) decoder_residual_block_6 (None, 796, 1) 170

3.4. Evaluation Indicators

The evaluation methods for clustering results can generally be divided into internal
and external evaluation methods. An external evaluation evaluates the goodness of the
clustering results when the true labels are known, and since there were no true labels for the
stock data, an internal evaluation was used. For a clustering method, a lower intra-cluster
aggregation and higher inter-cluster coupling can indicate a better performance of the
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clustering method. In this paper, the SC (Silhouette Score) [24], CH (Calinski–Harabaz) [25],
and DB (Davies–Bouldin) [26] were adopted to evaluate the clustering performance.

3.4.1. SC

The SC is a way of evaluating the effectiveness of clustering. The SC takes a range of
[−1,1], and the larger the SC, the better the clustering performance. The definitions are
defined in Equations (14) and (15).

sci =
bi − ai

max(ai, bi)
(14)

SCtotal =
1
N

N

∑
i=1

sci (15)

Equation (14) represents the SC for a single sample, where ai represents the average distance
between the cluster to which the ith sample belongs and the other samples in the same cluster.
If there is only one sample in the cluster, sci = 0. i ∈ A, ai = average j∈A,i 6=j(dist(i, j)), where
A represents one of the K clusters. bi represents the minimum value of the average distance be-
tween the ith sample and the other clusters. i ∈ A, C 6= A, dist(i, C) = averagej∈C(dist(i, j)).
bi = minC 6=A dist(i, C).

3.4.2. CH

The CH is also an indicator for evaluating good or bad clustering effects that is
calculated much faster than the SC, and is calculated as follows.

CH =
SSB

K− 1
/

SSW
N − K

(16)

SSB = tr(Bk), Bk =
k

∑
q=1

ni
(
cq − ce

)(
cq − ce

)T (17)

SSW = tr(Wk), Wk =
k

∑
q=1

∑
x∈Cq

ni
(
x− cq

)(
x− cq

)T (18)

where SSB is the variance between clusters and SSW is the variance within clusters. The ra-
tio of compactness to separation is the CH index, where cq represents the center point of
cluster q, ce represents the center point of the data set, nq represents the number of data
in cluster q, and Cq represents the data set of cluster q. The sum of the square distances
between each cluster point and its center is used to determine the cluster’s compactness.
The sum of the square distances between the cluster centers and the center of the data set
as a whole is used to determine the degree of separation between the datasets. A higher
CH index indicates improved clustering efficiency.

3.4.3. DB

The DB combines intercluster distance and intracluster dispersion to determine the
performance of the clustering algorithm, which is calculated as follows:

DB =
1
K

K

∑
k=1

max
k′=1,...,K,k′ 6=k

(
σk + σk′

dkk′

)
(19)

where σk is the intracluster dispersion of the kth cluster, dkk′ = |uk − uk′ |, and dkk′ is
the intercluster distance between the kth and k′ clusters, where uk and uk′ represent the
distance between the k and k′ cluster class centers, respectively. A small DB means a nice
clustering performance.
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3.5. Results and Analysis

In order to verify the effectiveness of the proposed method, a series of experimental
metrics of the clustering aggregation degree was obtained by comparing the proposed
method with general clustering methods as well as deep clustering methods. Two categories
of clustering algorithms were used for comparison to verify the effectiveness of TCN-Deep
Clustering. The first category included the general k-means, k-shape, spectral, etc. These
algorithms only utilize the original features of the data and the temporal dependences of
the data are not mined deeply. To verify that the clustering performance can be improved
by deep neural networks, several comparative experiments were implemented. The second
category adopted a deep clustering algorithm, of which DEC is a typical algorithm. It can
also optimize clustering performance by feature extraction but is insensitive to financial
time series.

The proposed method was verified in two index markets and the performance is shown
in detail in Tables 3 and 4. In general, deep clustering algorithms outperformed general
algorithms in terms of clustering aggregation. Although k-means performed best among the
general clustering algorithms, its clustering aggregation was still much smaller than that of
deep clustering algorithms. Meanwhile, spectral performed worst out of all of the clustering
algorithms. As for feature extraction, DEC performed worse than TCN-Deep Clustering in
terms of the CH and DB in the S&P 500 index, whereas the SC had only a slight superiority.
In contrast, TCN-Deep Clustering performed best in the case of the evaluation metrics in the
CSI 300 index.

Table 3. S&P 500 Index clustering results.

Indicator
General Clustering Deep Clustering

K-Means K-Shape Spectral DEC TCN-Deep Clustering

SC 0.1088 0.1086 0.1021 0.1256 0.1168
CH 116.8139 114.3262 107.0936 120.6435 130.9683
DB 1.0986 1.1563 1.1595 1.0553 0.9360

Table 4. CSI 300 Index clustering results.

Indicator
General Clustering Deep Clustering

K-Means K-Shape Spectral DEC TCN-Deep Clustering

SC 0.1272 0.1215 0.1023 0.1315 0.1329
CH 54.0336 54.5807 34.3582 51.1134 63.68
DB 0.9992 1.0509 1.0295 0.9162 0.8175

To further illustrate the clustering effectiveness of TCN-Deep Clustering, the fol-
lowing visualization is shown to explain the rationality behind the clustering shown in
Figures 7 and 8. Four different clusters were randomly selected from each of the two mar-
kets. As shown in these figures, TCN-Deep Clustering clustered stocks with similar price
trends. Taking the S&P500 index as an example, TCN-Deep Clustering was able to catego-
rize them well during trending-up, trending-down, and oscillating markets. The cluster
in Figure 7c, for example, contains two companies, GOOG and GOOGL, which operate
similar businesses and have the same price trends; however, this cluster also includes
non-technology stocks such as EW and FLSV, which also shows in one way that stock prices
are affected by uncertainties among different industries.
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(c) Cluster III contains 6 stocks
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(d) Cluster IV contains 3 stocks

Figure 7. Randomly selected groups from S&P500 based on TCN-Deep Clustering.
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Figure 8. Randomly selected groups from CSI 300 based on TCN-Deep Clustering.

4. Backtest Analysis

In this section, the clustering results of multiple stocks are analyzed using the cluster-
ing algorithm proposed. Based on the combination of the clustering results of TCN-Deep
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Clustering and the historical performance of individual stocks, a number of representative
specific stocks are screened. Thus, a clustering-based stock selection strategy is constructed,
which illustrates the guiding significance of the clustering algorithm proposed in this paper
in the financial context.

Construction of Stock Selection Strategy Based on Clustering Results

The stock selection strategy revolved around a hypothesis: stocks within the same
cluster have similar price movements and achieve similar returns over a given period of
time. During the observation period, we first selected stocks that were above or below
average by setting different thresholds. During the testing period, we bought stocks based
on those above average and sold stocks based on those below average, as shown in Figure 9.

Observation period Simulate

To Sell

To Buy

Figure 9. Visual explanation of buying and selling.

By selecting the stocks we needed to buy and sell in the testing period, we learned
that in most cases, the stocks selected had higher returns than the market average returns,
for example, in the S&P 500 index market shown in Table 5, in the cases where the thresholds
were set to 0.02, 0.04, 0.06, 0.08, 0.1, the stocks to buy revealed higher returns than the
market average returns. The strategy outperformed the market average by 0.77% when the
threshold was set to 0.1. Similarly, in the CSI 300 index market shown in Table 6, the return
reached a maximum of 2.41% (annual return can reach 28.89%) when the threshold was
set to 0.02. Of course, there is some uncertainty in the market, for example, in the S&P
500 index market when the threshold was set to 0.02, the return to buy was lower than the
average market return, and this was also reflected in the CSI market.

Table 5. Returns in S&P 500.

S&P 500
Different Thresholds

Th = 0.02 0.04 0.06 0.08 0.1

To buy 1.0113 1.0068 1.0081 1.0077 1.0125
To sell 1.0070 1.0025 1.0066 0.9899 0.9866

Average 1.0048 1.0048 1.0048 1.0048 1.0048

Table 6. Returns in CSI 300.

CSI 300
Different Thresholds

Th = 0.02 0.04 0.06 0.08 0.1

To buy 0.9455 0.9192 0.9253 0.9290 0.9476
To sell 0.9135 0.9454 0.9256 0.9104 0.9245

Average 0.9214 0.9214 0.9214 0.9214 0.9214

From the above results, it can be verified that TCN-Deep Clustering can be combined
with a stock selection strategy based on historical price performance to obtain stocks that
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outperform the average returns. Specifically, investors can select a period in the past for
clustering analysis and choose the corresponding threshold to invest according to their
investment risk tolerance, at which time the corresponding buying pool and selling pool
will appear, corresponding to stocks in the buying pool that can be bought or added to
and stocks in the selling pool that can be sold or reduced.

5. Conclusions

In this paper, we propose a new deep temporal clustering algorithm defined as TCN-
Deep Clustering, which exploits the important feature extraction capability of TCN net-
works in the field of time series combined with the clustering loss of deep clustering
network algorithms to solve the difficulties in the manual feature extraction of general clus-
tering algorithms and the insensitivity of existing deep clustering networks to time-series
features. The experimental objects are the important index components of two countries,
China and the USA. It is verified by the experimental results that the proposed method can
find stocks with similar price trends and outperforms the general clustering algorithm and
deep clustering algorithm to some extent. To further validate the practicability of the study,
an inference stock selection strategy is constructed by selecting stocks that perform well or
poorly in the same cluster. Through this stock selection strategy, the proposed method can
achieve a good return in the actual market. By excelling in the field of finance, the proposed
method could also achieve significant results in other time-series fields.
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