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Abstract: Many IoT-blockchain systems in which blockchain connections run on an infrastructure-
based network, such as Wi-Fi or LTE, face a severe problem: the single point of failure (SPoF)
(i.e., depending on the availability, an access point of an LTE base station). Using infrastructure-less
networks (i.e., ad hoc networks) is an efficient approach to prevent such highly disruptive events.
An ad hoc network can automatically restore blockchain communication using an ad hoc routing
protocol, even if a node fails. Moreover, an ad hoc routing protocol is more efficient when considering
the IoT nodes’ mobility. In this paper, we first construct IoT-blockchain systems on emulated and
real ad hoc networks with Ethereum and three ad hoc routing protocols (i.e., OLSR, BATMAN, and
BABEL). We then evaluate the blockchain recovery time in static and mobile scenarios. The results
show that BATMAN achieves the best blockchain recovery performance in all investigated scenarios
because BATMAN only determines whether to switch a route by comparing the number of OGM
packets received from a different next-hop. More specifically, in the small-scale real IoT-blockchain,
BATMAN recovers at least 73.9% and 59.8% better than OLSR and BABEL, respectively. In the
medium-scale emulated IoT-blockchain, the recovery time of BATMAN is at least 69% and 60%
shorter than OLSR or BABEL, respectively.

Keywords: IoT; blockchain; OLSR; BATMAN; BABEL; recovery time

1. Introduction

Blockchain is a distributed database that is based on an encrypted chain block structure,
consensus mechanisms, and peer-to-peer communication [1]. Blockchain’s characteristics of
decentralization, transparency, and immutability have been applied to cryptocurrency [2],
mobile communications [3], logistics [4], insurance [5] and in other areas. Recently, there has
been increased interest in applying blockchain to the Internet of Things (IoT) [6] since both
can support each other. On the one hand, the traditional centralized management approach
faces challenges in working effectively in the IoT (e.g., providing security, privacy, etc.).
On the other hand, because of its decentralized nature, blockchain provides permanent
data preservation and tamper-proof features, which can assist the IoT in solving various
security problems. There are several popular blockchain platforms, including Ethereum [7],
ConsenSys Quorum [8], IOTA [9], and IBM Blockchain [10]. Among them, Ethereum is
open-source and supports smart contracts. Hence, more and more studies have focused
on Ethereum to build IoT-blockchain systems. The two most popular types of Ethereum
are public blockchain and private blockchain. The public blockchain is open to everyone—
users can freely access the blockchain network. The private blockchain is only used within
a group or a private organization and only internal personnel can participate. The private
Ethereum blockchain is more suitable for building IoT-blockchain systems.

Most existing IoT-blockchain systems are constructed on infrastructure-based un-
derlying networks (e.g., Wi-Fi, LTE, LoRA), where a centralized node, such as an access
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point and a base station, manages the communication between IoT devices. Once the
control node collapses, the whole IoT-blockchain system inevitably breaks down (i.e., the
single point of failure (SPoF) issue). In addition, the IoT-blockchain system faces another
problem when considering mobility—if an IoT device moves out of the coverage of the
central control node, it can no longer communicate with any node, making blockchain
communication ineffective on the mobile node. These problems motivated us to develop
an infrastructure-less network for IoT-blockchain systems. The infrastructure-less network
(or ad hoc network) can decentralize the underlying network of the IoT-blockchain system
and relax the dependence on the control node [11]. Moreover, when an IoT node moves out
of its neighbor’s communication range, it can still maintain communication in a multi-hop
manner. In such networks, the IoT nodes find the intermediate node and forward the pack-
ets using ad hoc routing protocols. In previous work [12], we investigated the blockchain
recovery time in a simple, static IoT-Ethereum blockchain system with optimized link state
routing (OLSR) and "better approach to mobile ad hoc network" (BATMAN) protocols. The
promising early results stimulated us to investigate the issue further.

Unlike other studies, we investigate here IoT-blockchain systems with Ethereum and
ad hoc routing protocols in static and mobile scenarios. We consider a small-scale system
with real IoT devices and an emulated one of larger scale. Then, we evaluate the recovery
performance of blockchain communication on the IoT-blockchain systems. In addition to
OLSR and BATMAN, we investigate one more ad hoc protocol, named BABEL [13]. We
choose BABEL first since it has been proposed more recently than OLSR and BATMAN.
Moreover, it has several unique features, such as its design based on several older routing
protocols (e.g., DSDV, AODV, HSDV), while still providing link cost estimation as with
OLSR. In [14], the authors compared these three routing protocols in a mesh network
and found that both BATMAN and BABEL outperformed OLSR in terms of multi-hop
performance and route rediscovery latency. Moreover, in [15], the authors compared
OLSR, BATMAN, and BABEL in several ad hoc networks considering different network
parameters. They found that BABEL performed best in terms of throughput whilst having
the smallest overhead. Therefore, BABEL may have the potential to restore blockchain
communication quickly. The contributions of the paper include the following:

• We built a real IoT-blockchain system using the private Ethereum blockchain, four
Raspberry Pis, and three ad hoc routing protocols. Furthermore, we used the emulator
Mininet-WiFi [16] to construct a bigger system with nine more IoT devices than the
real one.

• We thoroughly compared the blockchain recovery time of OLSR, BATMAN, and
BABEL in static and mobile scenarios.

• The evaluation results show that BATMAN achieved the best performance for blockchain
recovery in our system—at least 69% and 59.8% better than OLSR and BABEL, respec-
tively.

The remainder of this paper is organized as follows. Section 2 describes related work.
Section 3 presents the background to IoT-blockchains and ad hoc routing protocols. In
Section 4, we describe the methodology. In Section 5, the evaluation results are presented.
Finally, Section 6 concludes the paper.

2. Related Work

There is increasing interest in applying blockchain to IoT. In [17], the authors in-
troduced a repeatable and testable IoT blockchain application platform named PlaTI-
BART. They showed how PlaTIBART can be used to develop and analyze fault-tolerant
IoT blockchain applications. In [18], the authors first illustrated how a combination of
blockchain and IoT can simplify and bring benefits to modern supply chains. They then
derived six research propositions and described how blockchain technology affects the
scalability, security, information flow, traceability, and interoperability of IoT. The authors
of [19] proposed a blockchain-based decentralized IoT self-counting voting system frame-
work to solve fairness problems in the self-counting voting system, such as adaptability and
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abortion problems caused by malicious voters. In [20], the authors focused on introducing
blockchain as a decentralized technology into the transportation systems in smart cities.
The vehicles can work together without the permission of a central control node. The data
transfer between vehicles uses a peer-to-peer network where each node communicates
directly with every other node and is verified by its associated endpoint node. Blockchain is
also applied in the healthcare IoT. For example, remote patient monitoring technology faces
severe privacy and security risks when transmitting data and recording data transactions.
The security and privacy issues associated with these medical data may lead to delays in
progressing patients’ treatment. To solve this problem, the authors of [21] proposed the
use of blockchain to provide secure management and analysis of medical data. However,
blockchain is computationally expensive and requires high bandwidth and additional com-
puting power. Therefore, the authors proposed a new framework for a revised blockchain
model suitable for IoT devices.

When researchers have explored the combination of blockchain and IoT, they have paid
little attention to the underlying network. Research has been primarily based on the most
common underlying networks, such as infrastructure-based networks, which are prone to
single point of failure problems. Utilizing an ad hoc network (i.e., using ad hoc routing) for
the IoT-blockchain system can prevent this risk. Ad hoc routing protocols have previously
been thoroughly investigated. However, they have rarely been studied with the blockchain.
In [22], the authors provided an overview of ad hoc routing protocols that have been
proposed in the literature. They presented performance comparison results for all routing
protocols. The authors of [23] investigated and compared the performance of several
routing protocols, including AODV, PAODV, CBRP, DSR and DSDV. They simulated various
workloads and scenarios and showed that, although CBRP helps to reduce routing request
packets, its overhead is higher than DSR due to its periodic hello messages. Compared
with DSR and CBRP, AODV had the shortest end-to-end packet delay. PAODV showed a
slight improvement over AODV. In [24], the authors implemented and analysed a testbed
considering OLSR and BATMAN’s link quality window size (LQWS) parameters. They
evaluated the influence of mobility on a mobile ad hoc network’s throughput. The authors
also evaluated the performance of the testbed in terms of throughput, round-trip time
(RTT), jitter, and packet loss. They found that TCP throughput improved when LQWS was
reduced. In [25], the authors studied vehicular networks, where MANET routing protocols
are typically designed and analyzed with 2-D scenarios. Since there is no guarantee of
how these will support a 3-D topology, the authors evaluated and compared MANET
routing protocols, including AODV, DSDV, and DSR and location-based routing. They
found that topology-based protocols achieved acceptable transmission rates and path
expansion performance, while location-based protocols achieved higher data rates. In our
work, we choose OLSR, BATMAN, and BABEL because OLSR and BATMAN have been
investigated and compared in different scenarios and networks. For example, the authors
of [26] evaluated OLSR and BATMAN when low-power nodes transmitted VoIP data
streams. In [27], the authors assessed the performance of OLSR and BATMAN by moving
devices up and down different floors in a school building. As a novel routing protocol of
the same type as OLSR and BATMAN, BABEL continues to demonstrate characteristics of
some old routing protocols.

Most closely related studies have not researched blockchain communication recovery
in the ad hoc IoT-Blockchain system. In [28], the authors focused on combining IoT and
blockchain for smart home applications. However, they only investigated an infrastructure-
based network and considered static scenarios. In [29], combining IoT and blockchain for
UAVs in a real deploymentwas investigated and a key management mechanism based
on blockchain technology was proposed. Although the authors of [11] investigated the
recovery time in an ad hoc IoT-blockchain system, they only focused on a single ad hoc
routing protocol: OLSR. Moreover, the evaluation was conducted on a small-scale network.
To highlight the differences between previous studies and ours, we summarize them in
Table 1. An earlier version of this study was published in [12], which only considered
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the evaluation of two routing protocols (i.e., OLSR and BATMAN) in a static four-node
emulated network. Here, we first extend the assessment with the new routing protocol,
BABEL. Second, we deploy IoT-blockchain systems on actual IoT nodes with real blockchain
and routing protocols. In addition, we investigate the performance in a larger network size
for emulation. Finally, compared to the previous investigation, we also evaluate mobile
scenarios that may occur in several IoT-blockchain applications.

Table 1. Comparison of this study with previous studies.

Underlying
Network Application Evaluation

Environment Network State Characteristic Ref.

Infrastructure-
based

Combining IoT
and blockchain
for smart home

Simulation Static

Propose a
blockchain-
based smart

home gateway
architecture

[28]

Ad hoc
Combining IoT
and blockchain

for UAVs
Real Mobile

Propose a
blockchain-

based
distributed key
management
scheme for

FANET

[29]

Ad hoc Combining IoT
and blockchain Real Static

Evaluate the
recovery time
of OLSR in a

small network

[11]

Ad hoc
Combining

blockchain and
IoT

Emulation and
Real

Static and
mobile

Evaluate com-
munication

recovery
performance of

OLSR,
BATMAN,

BABEL

This study

3. Background of IoT-Blockchain with Ad Hoc Network
3.1. Ethereum Blockchain

In this investigation, the IoT-blockchain systems include blockchain applications and
several IoT devices. Some examples of IoT-blockchains considered in this research include
smart home (for static scenarios) and smart community (for mobile scenarios) [30]. In the
former, the blockchain deployment is straightforward and has been investigated elsewhere.
In the latter, the smart community utilizes wireless sensor networks, mobile networks,
and other communication technologies to integrate security, property management and
other systems to provide a safe, comfortable and convenient modern living environment
for community residents. The protection of community residents’ identity information
faces security problems, such as privacy leakage and identity fraud. The high reliability,
traceability, and difficulty of tampering with blockchain can protect the security of residents’
identity information. A smart contract may trigger transactions when the resident’s privacy
information is updated or uploaded. In such a case, a single point of failure should be
avoided. Moreover, if a failure does happen, the IoT-blockchain should be automatically
recovered. In this investigation, we use Ethereum, which has a set of virtual machines
(EVM) that can execute a Turing-complete scripting language and smart contract. A smart
contract is a piece of code written on the blockchain, which can be automatically executed
once an event triggers the terms in the contract. In other words, it can be triggered when
conditions are met without human control. In the Ethereum blockchain, there are normal
nodes and miner nodes. The miner nodes prove the correctness of a transaction and
record it on the blockchain. Then, all the nodes will work together to maintain and store
the transaction data through a consensus mechanism. The best-known and most widely
used consensus mechanism is Proof of Work (PoW). In PoW, the miner nodes compute a
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mathematical problem to find a random number (called nonce) that satisfies the block-out
requirement. If the miner finds a nonce value that meets the need, it can successfully
generate a new block on the blockchain and receive a corresponding reward. This process
is known as mining. In an IoT-blockchain network, when a node completes a transaction,
it uploads it to its transaction pool (txpool) to queue it for verification. It also broadcasts
the transaction to its peer nodes via P2P communication. Its peers continue to broadcast
transactions to their peers so that all nodes in the entire IoT-blockchain network can receive
the transaction and deposit it into their txpools. The new blocks generated when a miner
node verifies a successful transaction are also broadcast to all nodes so that all nodes are
openly and transparently aware of all transaction information and block information across
the blockchain.

Although blockchain brings its decentralized nature to the IoT, many IoT-blockchain
systems still operate on a centralized underlying network. All IoT devices must commu-
nicate via a central node. The IoT-blockchain transmission and communication must go
through the central node. However, once this central node encounters any failure or attack,
the messages transmitted by any node will be interrupted and cannot guarantee even the
most basic mutual communication. The IoT-blockchain system will lose its robustness
and security based on such an underlying network. As mentioned, the underlying ad hoc
network can avoid the problem with its decentralized features. In such a context, ad hoc
routing protocols are also essential, enabling IoT devices to deliver packets to other nodes
based on routing information. Even if there is a problem with the current routing path,
the routing protocol will provide other viable routing options. The performance of ad
hoc routing protocols in the underlying network also affects the upper-layer blockchain
applications, so it is crucial to understand and evaluate the performance of different routing
protocols in the IoT-blockchain network.

3.2. Ad Hoc Network and Routing Protocols

This section presents the three routing protocols investigated in this study: OLSR,
BATMAN, and BABEL.

3.2.1. OLSR

OLSR adopts a multi-point relaying (MPR) mechanism based on the traditional link
state algorithm to reduce the protocol overhead [31] In OLSR, nodes exchange control
packets, including HELLO packets and topology control (TC) packets. OLSR performs
distributed computing to establish a network topology. The node must know the informa-
tion about its neighbor’s link and whether the link connection is bidirectional. So OLSR
will periodically broadcast the HELLO message (the time interval for sending the HELLO
message in our configuration is four seconds) through the four-way handshake to sense
and detect neighbors and determine the bi-directionality of the link between them. The
node only needs to propagate the HELLO message to its one-hop node. When mastering
the link and neighbor information, the node selects a part of its neighbor nodes as its own
MPR and the node becomes an MPR selector (MS). The MPR is responsible for periodically
distributing TC packets to the network, while other non-MPR nodes do not play this role.
The MPR nodes will cover all the two-hop nodes of the MS nodes, so the TC packets
forwarded by the MPR nodes will finally be received by all nodes in the network. Thus,
they can know the topology information of the network. The important parameters of
OLSR are listed in Table 2.

OLSR has an expected transmission count (ETX) indicator, which is closely related to
the link’s quality in the network and is calculated based on the link quality and neighbor
link quality. First, OLSR judges the link quality between nodes based on the loss of OLSR
packets a node receives from its neighbors. The link quality (LQ) indicates how good a
given link between a node and its neighbors is in the direction from the neighbor to the
node. For example, when two out of five packets are lost on the way from a node’s neighbor
to this node, three out of five packets are sent successfully by the neighbor. As a result, the
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probability of successfully transmitting packets from the neighbor to this node becomes
40%, and this probability is the LQ. The neighbor link quality (NLQ), on the other hand,
expresses how good a given link between a node and its neighbors is in the direction from
that node to the neighbor. When judging the successful transmission rate of packets on
the bidirectional connection between the node and its neighbors, it can be obtained by
LQ × NLQ. ETX indicates how many transmissions are required to transmit the packet to
the node or its neighbors, which can be calculated by 1

LQ×NLQ .

Table 2. OLSR parameters.

Parameter Value Meaning

HELLO_INTERVAL Default: 2 s Interval for hello packets

REFRESH_INTERVAL Default: 2 s Interval for nodes to keep track of the latest
connectivity change

TC_INTERVAL Default: 5 s Interval for transmitting TC packets

NEIGHB_HOLD_TIME Default: 6 s Holding time of neighboring information

TOP_HOLD_TIME Default: 15 s Holding time of topology information

3.2.2. BATMAN

BATMAN is designed to let all nodes in the ad hoc network master the information of
the best end-to-end path between other nodes [32]. Each node only perceives and maintains
the best next-hop information for all other destination nodes. There is only one type of
broadcast message: the origination message (OGM) in BATMAN. Every node broadcasts
the OGM packets to inform neighboring nodes of its existence. These neighbors rebroadcast
the OGM packets according to specific rules to inform their neighbors of the presence of
the original originator. Therefore, the network will be gradually flooded with originator
information. The OGM data packet is broadcast and forwarded by UDP; its data packet is
52 bytes and it contains at least the originator’s address, the node address which transmits
the packet, the time to live (TTL), and the sequence number. The OGM packets will be
broadcast periodically (the default interval for sending OGM packets is one second). When
an OGM packet is received by the node at least once, or exceeds the TTL value, it will not
be sent again.

A unique data structure in BATMAN is called a sliding window, the size of which
can be adjusted. When each node receives the OGM packet broadcast or it is forwarded
by its next-hop node, it will store the sequence number of the OGM packet in the sliding
window. When some OGM packet sequence numbers are stored within the size range of
the sliding window, they are all regarded as newly received OGM packets. However, when
the sequence numbers of some OGM packets are not within the sliding window range, they
are regarded as old packets. The node will receive OGM packets from different next hops
through various links. According to the neighbor ranking mechanism in BATMAN, the
node will compare the number of newly received current OGM packets to know the link
from which it receives the largest quantity of new OGM packets’ sequence numbers as the
best link. The one-hop node on this link is the best next hop for this node to reach other
destination nodes. The main parameters of BATMAN are shown in Table 3.

Table 3. BATMAN parameters.

Parameter Value Meaning

OGM_INTERVAL Default: 1 s Interval for sending OGM packets

PURGE_TIMEOUT Default: 200 s Time for removing the node in BATMAN’s database

WINDOW_SIZE Proposed in
RFC: 8 Size of the sliding window
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3.2.3. BABEL

Babel is a loop-avoiding distance vector routing protocol for IPv6 and IPv4 and is
based on the Bellman–Ford algorithm [13]. BABEL inherits the old routing protocols,
such as DSDV and AODV, and also introduces an ETX indicator, such as OLSR. Such a
design makes BABEL robust and efficient to use in unstable networks and able to select the
appropriate link more intelligently. The characteristics of BABEL are as follows: First, it
will not directly switch the link when the link quality changes, but will continue to use the
originally used route, which can minimize the impact of route changes and switch. This
impact is that route fluctuations may occur when nodes constantly switch routes between
the destination node. Therefore, BABEL allows nodes to maintain the original routing
path when facing multiple routes with similar link quality to the initial route and avoid
switching back and forth on numerous routes. The second feature is that, when BABEL
detects a failure in the original route, it will compulsorily request routing information
and can quickly synchronize the information of the new route after the route is updated.
BABEL achieves the goal of avoiding loops mainly by applying appropriate feasibility
conditions. A feasibility condition (FC) means a route is feasible only if its metric is less
than any previous route updates.

A BABEL node detects its neighbors by exchanging two kinds of information: HELLO
messages and I Heard You (IHU) messages. Each node broadcasts a HELLO message (the
default time to send a HELLO message is four seconds) to detect its neighbor nodes. When
the node knows the existence of a neighbor, the node will also periodically send an IHU
message (the default sending IHU time is twelve seconds) to the neighbor to tell it that
it has received the HELLO message. When a node and its neighbor know the existence
of each other, the node can also estimate the receiving cost of the link and share it with
the neighbor node. In a network configured with BABEL, the node needs to periodically
transmit the updated route message to all other nodes, making all nodes understand the
whole network’s topology and the receiving cost of every link. Some of the important
parameters of BABEL are shown in Table 4.

Table 4. BABEL parameters.

Parameter Value Meaning

HELLO_INTERVAL Default: 4 s (for
wireless network) Interval for sending hello packets

IHU_TIMEOUT Default: 12 s Interval for advertising IHU packets

UPDATE_INTERVAL Default: 16 s Interval for advertising or withdraws routes

4. Methodology

This section first introduces the construction of IoT-blockchain systems. We then
present the evaluation methodology.

4.1. Constructing IoT-Blockchain System
4.1.1. Ad Hoc Network

We describe the construction of the IoT-blockchain system from the bottom layer to
the top. In the real system, we connect four Raspberry Pis (RPs), each of which operates
in ad hoc mode. We configure the ad hoc network by modifying the system file (i.e., in
the /etc/network directory) of RPis. We can add ad hoc network-related content, such as
ESSID, channel, IP address, etc., to the file. In addition to the real system, we also build a
bigger one using an emulator. We leverage the network emulator Mininet-WiFi, which can
emulate Wi-Fi nodes while supporting real IP, transport, and application layers. First, we
create nine nodes to simulate IoT devices, which operate according to the IEEE 802.11 g
standard. None of them are connected to any access points and their wireless interfaces are
set to the ad hoc mode. We also adjust the signal range propagated by each node so that
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some nodes in this ad hoc network need the help of relay nodes to communicate with other
nodes that are not within the same signal range. At this stage, we complete the physical
connection for the system.

Then in the IoT-blockchain system, we introduce three different ad hoc routing proto-
cols. First, we use the configuration file (i.e., olsrd.conf) on each node to configure OLSR.
In the file, we add options representing properties of OLSR in our systems. We mainly
set the sending time interval of HELLO and TC packets, the hold time for this control
information, and so on. We store this configuration file in the /etc directory and then
use OLSR’s debug command to check if OLSR is successfully enabled. For the BATMAN
configuration, we choose to install the BATMAN IV version, named BATMAN ADV. This
BATMAN version runs on layer2 as a kernel module running on the Linux system. It uses
raw Ethernet frames to transmit routing information. To configure and debug this kernel
module, BATMAN ADV introduces a tool called batctl. In the configuration, we mainly
use the batctl tool and several commands to configure BATMAN ADV on the wireless
interface of each node. During the configuration process, the batctl tool will create a virtual
interface bat0 for each node and assign a new IP address to this interface. This interface
is a BATMAN ADV instance. The configuration of BABEL requires compiling various
script files in the BABEL folder. Then, we install BABEL’s default configuration file with
one command. Most importantly, we must stop the network manager when configuring
BABEL on each node interface, as this may cause BABEL to publish all cached route entries.
Finally, we can enable BABEL with a command on each node’s wireless interface.

4.1.2. Blockchain Deployment

After establishing the underlying network in real and emulated IoT-blockchain sys-
tems, we deploy the Ethereum private blockchain to it. We select the private blockchain
because, compared to the public blockchain, the number of devices that join the private
blockchain is limited. Devices process less workload (i.e., processing transactions and
blocks), which means that each device consumes less energy and resources. We first install
Geth, the classic client for Ethereum, and then create folders for each device to store its
information. In this folder, we make a genesis block file to define and create the first
block in the blockchain. We also create an account for each device stored in the folder.
Then, we can enable the device in the blockchain and enter the console through a series of
options (e.g., device IP address, blockchain network id, the port number for devices’ P2P
communication, etc.). When each device successfully enters the blockchain console, we
query the details of the devices enode in the blockchain, through which we can connect
devices. We choose a stable connection, that is, store the enode information of other devices
in each device. When the device starts, it will automatically obtain a blockchain connection
with other devices, eliminating the need to manually connect while the device is running.
Once each device has a blockchain connection, we deploy a smart contract. The main
content of this smart contract is to initialize a random value and recursively multiply it by
a fixed value. To make the smart contract work, we have the device trigger the function
in the smart contract by passing a transaction file containing the fixed value. Every time
the device sends a transaction file, its terminal interface will display the transaction’s hash
value and the geth log will record more detailed transaction information and transaction
processes in the device account folder.

4.2. Evaluation Methodology
4.2.1. Network Performance Evaluation

When creating the IoT-blockchain system, it is important to investigate the network
performance to confirm the correctness, as well as the capacity, of the systems. Similar to
other studies, we also focus on testing the throughput and RTT. For the former, we use
iperf3, while ping is adopted for RTT measurements. For the throughput or RTT tests, we
select two devices: the sender and the receiver in either the real or emulated IoT-blockchain
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systems. Then we conduct the measurement multiple times and collect and calculate
the results.

4.2.2. Recovery Evaluation

We then focus on evaluating blockchain recovery under different scenarios. We define
the recovery time as the time for the routing protocol to resume routing plus the time for
blockchain transactions to continue synchronization in the IoT-blockchain system. When
the system is static in both real and emulated IoT-blockchain systems, we fail the devices
by the following methods: First, we use the tcptraceroute tool to query the routing table to
find the relay nodes between the sender and the receiver. We find that OLSR and BABEL
always choose a fixed routing path, while BATMAN switches routes due to the change in
the number of OGM packets received. Therefore, when using OLSR and BABEL, we let
the interface of a fixed relay node close to emulate the failure. When using BATMAN, we
shut down a relay node that is frequently selected. As a result, the path between the sender
and the receiver will lose connectivity and the ability to forward packets. In this case, the
ad hoc routing protocols will re-update the routes to maintain the new network topology.
Each routing protocol has a different process for finding new routes, as described below.

OLSR needs to know and maintain the topology and routing changes of the whole
network. When there is a problem with the relay node between the sender and the receiver,
the MPR node selected by the sender can no longer perform its duty of delivering network
topology information (i.e., TC packets). Therefore, the sender needs a new MPR node to
be responsible for forwarding packets. As mentioned in the previous content, in the static
IoT-blockchain system we shut down the sender’s MPR. The sender needs to detect that it
has lost connectivity with its neighbor node by sending multiple HELLO messages and
then spending some time identifying a new MPR node. The movement of the receiver in
a mobile IoT-blockchain system also causes a shift and re-selection of the sender’s MPR.
Finally, all nodes need to be aware of the new changes in the network topology before they
completely resume routing. Based on the recovery process of OLSR, the recovery time with
OLSR can be calculated as Equation (1) below:

Trecovery = TMPR_lost + TNEIGHB_HOLD_TIME + Tpure_blockchain, (1)

where TMPR_lost means the time for the sender to realize its current MPR has lost; it is equal
to three or four times the HELLO_INTERVAL. Tpure_blockchain means the recovery time of
the blockchain itself.

BABEL is more flexible than OLSR in that it can mandatorily request routing informa-
tion proactively when it knows that there is a problem with the routing path it has been
choosing. But BABEL also needs some time to recover because, when a node detects its
neighbors to build a route, it needs to send HELLO and IHU packets. BABEL also sends
packets about updating neighbors when it has identified a new neighbor. Equation (2)
represents the recovery time when using BABEL in the IoT-blockchain system. It is ex-
pressed as:

Trecovery = Tneighbor_update + Tpure blockchain, (2)

where Tneighbor_update means the time for the sender to update its new neighbor. It equals
three times the HELLO_INTERVAL. Several IHU packets and one updated packet are
included in the time it takes for BABEL to realize that there is a problem with the current
neighbor node and find a new relaying neighbor node.

BATMAN detects its neighbors and builds a network route only by OMG packets.
BATMAN does not require the sender to know the topology change of the whole network,
but only the sender needs to know its best next-hop to the receiver. The sender selects the
best next-hop by comparing the number of OGM packets received from different next-hop
nodes. So when the current best next-hop has a problem, and the sender gets no more OGM
packets from it, the sender will choose the new best next-hop once the number of OGM
packets received from another next-hop exceeds that of the OGM packets received from the
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current best next-hop which has a problem. More specifically, BATMAN implements route
translation based on the number of OGM packets in the sliding window range. BATMAN
switches routes immediately when the number of OGM packets received from another
next-hop is even one more than that of the OGM packets obtained from the current selected
best next-hop. Equation (3) shows the recovery time of BATMAN.

Trecovery = Tswitch_next_hop + Tpure_blockchain, (3)

where Tswitch_next_hop means the time for the sender to switch the best next-hop to the
receiver. It changes into the range between OGM_INTERVAL and WINDOW_SIZE ×
OGM_INTERVAL.

When there is no blockchain connection, we can first have ICMP packets transmitted
between them by a sender pinging the receiver. This is followed in a manner that causes
temporary communication failure between the receiver and the sender mentioned above.
Using the Wireshark tool, we can see that the sender keeps sending ICMP request packets
but it cannot receive ICMP response packets from the receiver during communication
failure. However, when the routing protocol resumes communication, the sender can
receive ICMP response packets again. So, we consider that the time interval between when
the sender does not receive the ICMP response packet and when this packet is received
again is ad hoc routing recovery time. In addition to the time it takes for the ad hoc routing
protocol to recover the route, the blockchain itself also takes time to recover. We obtain the
recovery time for the entire IoT-blockchain system as follows: We let the sender send one
transaction per second and the transaction is quickly broadcast to the receiver device. The
synchronization of transactions between them can be said to be timely. However, when
the IoT-blockchain system fails, as described above, some transactions sent by the sender
cannot be broadcast to the receiver promptly. At this point, the number of transactions
queued in the sender’s txpool continues to increase, while the number of transactions
queued in the receiver’s txpool remains unchanged. Once the routing protocol updates
the routing table, the device can learn the new topology of the network, then the sender
and receiver can communicate again. Once routing and blockchain are restored, then the
IoT-blockchain system’s communication resumes. At this point, the sender re-broadcasts
all previously unsynchronized transactions in its txpool to the receiver and the receiver
conveniently resumes synchronization of transactions with the sender. We consider the
interval between the time when the receiver is unable to synchronize transactions and the
time when transactions are resumed again as the recovery time. We calculate the recovery
time based on the detail information and corresponding timestamps in the geth log of the
receiver. For better understanding, we describe the method of obtaining the recovery time
in the IoT-blockchain system in the flowchart in Figure 1.

In [33], the authors define the workflow when broadcasting transactions between a
blockchain node and its peer nodes. When a sender node sends a transaction file that can
trigger a smart contract, the transaction is submitted to the sender’s txpool and queued for
validation. At this point, the sender’s geth log will record “Submitted transaction”, indicat-
ing that the sender has uploaded a transaction to its txpool and is waiting to be validated
and broadcast. When the transaction is successfully verified, the sender will broadcast it
to all peer nodes. When the peer node receives the broadcast transaction, the transaction
is still stored in its txpool and queued for validation. At this point, the peer enters the
“Promoted queued transaction” phase, and this message is recorded in the peer’s geth log.
According to the above workflow, we focus on the timestamp corresponding to the “Pro-
moted queued transaction” message in the receiver’s geth log. Based on the change in the
number of transactions over time, we can calculate the time when the transaction resumes
synchronization, which is when the IoT-blockchain restores blockchain communication.
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Ad-hoc routing and blockchain 

recovery
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Identifying the synchronization 

lost and resuming points

Subtracting the time stamps 

and getting the recovery time End

Figure 1. Method of obtaining IoT-blockchain’s recovery time.

5. Evaluation
5.1. Real IoT-Blockchain System
5.1.1. Static Scenario

The real IoT-blockchain system includes four RPis deployed on the fifth floor of
Building 1 of the Faculty of Engineering, Chiba University, Japan. Each node runs on the
Ubuntu Mate 20.04 with the Wi-Fi card in ad hoc mode. The detailed information of each
node and ad hoc routing protocol are shown in Table 5. Figure 2a presents the system’s
connection diagram and the distance between nodes. The distances between device1 and
device2 and device3 and device4 are all 8 m. While the distances between device1 and
device4, and device2 and device3 are 41 m. The black dashed lines between the devices
indicate the ad hoc connection. We let device2 and device4 join the blockchain network;
the red dotted line in the figure indicates the blockchain connection between them. We
have device2 as the sender and device4 as the receiver of transactions. We find that, when
using all three routing protocols, device2 always chooses the same path to send packets
to device4 (i.e., device2-device1-device4). When evaluating the recovery time, we shut
down the relay node between the sender and receiver (i.e., device1) (e.g., by using a specific
Linux command).
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Figure 2. Real IoT-blockchain system evaluation. (a) Static scenario; (b) Mobile scenario.

Table 5. RPi, Ethereum, and routing configurations.

Raspberry Pi model 4B
OS Ubuntu Mate 20.04 LTS

Linux kernel verison 5.4.0
CPU Quad core Cortex-A72@1.5 GHz

Ethereum Geth 1.10.9-stable-eae3b194

OLSR olsrd 0.9.9
BATMAN batman IV

BABEL babeld 1.12.1

We first evaluate the network performance of the static IoT-blockchain system. We
measure TCP throughput, RTT on different links, and RTT from the sender to the receiver.
Each throughput or RTT experiment is repeated ten times. Each RTT experiment is con-
ducted with 50 ICMP packets via ping. Since OLSR, BATMAN, BABEL share the same
performance, we present the typical results in Figure 3, in which Figure 3a,b show the
throughput and RTT, respectively. At each condition, the y-axis shows the maximum, mini-
mum, and average. Note that, as shown in Figure 2a, we label the name of each link and
the two paths from the sender to the receiver. They are path1 (i.e., device2-device1-device4)
and path2 (i.e., device2-device3-device4). The results show the consistency between RTT
and throughput and the dependence of throughput on distance.

We then evaluate the recovery performance of three ad hoc routing protocols in the
IoT-blockchain system. We conduct ten experiments to obtain the average, maximum, and
minimum values of the blockchain recovery time when using OLSR, BABEL, and BATMAN.
We collect from the geth logs of the receiver how the number of transactions in its txpools
varies over time. Then we can calculate the recovery time of communication in the IoT-
blockchain system. The results are shown in Figure 4a, where the protocols are shown in
the x-axis. We can see that BATMAN has the lowest recovery time. This is because when
the relay node (i.e., device1) failed, the sender no longer received OGM packets broadcast
or forwarded from device1. However, the sender also receives OGM packets directly from
another node (i.e., device3). Once the number of OGM packets received from device3
exceeds that obtained from device1, the sender immediately switches to a new route. To get
a closer observation of the recovery process, we plot the time consumed by each process’s
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component in Figure 4b. In the figure, we use stacked bars to display the average values of
different parts of the recovery time when using each routing protocol. For OLSR, TMPR_lost
and TNEIGHB_HOLD_TIME accounted for a total of 60.6% and Tpure_blockchain for 39.4%. For
BABEL, Tneighbor_update accounted for 83.3% and Tpure_blockchain for 16.7%. For BATMAN,
Tswitch_next_hop accounted for 69.2% and Tpure_blockchain accounted for 30.8%.
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Figure 3. Throughput and RTT of real IoT-Blockchain system. (a) Throughput; (b) RTT.
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Figure 4. Recovery time of real IoT-blockchain in static scenario. (a) Recovery time; (b) Average
recovery time with components.

5.1.2. Mobile Scenario

In the mobile scenario, we put the receiver on a chair and move it around the floor.
The red arrow in Figure 2b shows the moving trajectory. The receiver starts moving at the
initial position and stays at the final one marked in the figure. When the receiver is within
the communication range of the sender, they can communicate directly. Communication
is lost when the receiver moves out of range of the sender’s coverage signal. Then, the
ad hoc routing protocols on the devices need to find a new path. It is obvious that the
routing protocols will select device1 as a relay node for the new route, thus restarting the
blockchain communication between the sender and the receiver.

We use the method in the previous section to check and calculate the blockchain
recovery time in the IoT-blockchain system. We find the information and timestamp in
the receiver’s geth log corresponding to when some transactions are broadcast simulta-
neously. The recovery time results with the three ad hoc routing protocols are shown in
Figure 5a. Similar to the static scenario, the results show that BATMAN has better recovery
performance than OLSR and BABEL. It is 73.9% faster than OLSR and 61.8% faster than
BABEL. During its recovery, the receiver with BATMAN only needs to compare the number
of OGM packets received from different relay nodes to select a new route quickly. The
values of different components of each recovery time with each ad hoc routing protocol are
shown in Figure 5b. For OLSR, TMPR_lost and TNEIGHB_HOLD_TIME are about 54.5% of the
total recovery time, while Tpure_blockchain occupies 45.5%. For BABEL, Tneighbor_update and
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Tpure_blockchain are about 68.4% and 31.6% of the total recovery, respectively. In BATMAN,
Tswitch_next_hop consumes 59.8% of the time, and Tpure_blockchain about 40.2%.
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Figure 5. Recovery time of real IoT-blockchain in mobile scenario. (a) Recovery time; (b) Average
recovery time with components.

5.2. Emulated IoT-Blockchain
5.2.1. Static Scenario

The previous evaluation provides insights into the simple IoT-blockchain system with
the protocols. This section investigates a bigger system, as shown in Figure 6, where the
IoT nodes form a 3 × 3 grid topology. We chose the grid topology because it is a classic
topology for investigating ad hoc routing protocols. In the system, each IoT device can have
at least two neighbors and the ad hoc routing protocols have multiple choices of routing
paths. Our topology has also been investigated in [34], where the authors built wireless
sensor networks with a nine-node grid in an indoor environment. We consider placing the
devices at different distances from each other because, in most cases, the network nodes
are at different, or even very random, distances. In Figure 6, each IoT device is 50 m away
from its neighbors in the horizontal direction and 30 m away from its neighbors in the
vertical order. In Figure 6a, the black dotted line represents the ad hoc connection between
each IoT device. Figure 6b shows the design of the blockchain network; the red dotted
lines represent the blockchain connection. All IoT devices join the blockchain and are fully
connected. The environment and software for constructing the system are listed in Table 6.
We use Mininet-WiFi on an Ubuntu 20.04 machine, Ethereum, and the routing protocols
are similar to the ones in the real IoT-blockchain system.

Similar to the previous section, we first measure the system’s network performance;
the results are shown in Figure 7. Figure 7a,b shows the throughput and RTT between
different nodes in the IoT-blockchain system, respectively. We investigated not only the
performance of the two neighboring nodes’ links, but also the link between the sender
and the receiver. From the results, we can see that the performance of the emulated IoT-
blockchain system is the same when the links have similar roles. The maximum throughput
between a node and its one-hop neighbor node is about 7 Mbps, while the minimum RTT
is about 0.5 ms. When the node has more hops (e.g., four hops between the sender and
the receiver), the throughput value is lowest and the RTT value is highest, i.e., the average
throughput is 2.695 Mbps, and the average RTT is 2.75 ms.

Table 6. Emulated environment.

OS Ubuntu 20.04.3 LTS
CPU Intel Core i7-8565U CPU@1.80 GHz × 8

Mininet-WiFi version 2.6

Ethereum Geth 1.10.9-stable-eae3b194

OLSR olsrd 0.9.9
BATMAN batman IV

BABEL babeld 1.12.1
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Figure 6. Emulated IoT-blockchain system. (a) Ad-hoc network connection; (b) Blockchain connection.

In our system, to interact with the smart contract, one of the IoT devices sends a
transaction containing the fixed value. In this evaluation, IoT device4 acts as the sender
sending the transaction file and IoT device9 acts as the receiver. When evaluating recovery
performance, we must understand the routing path between the sender and receiver when
using each routing protocol. We found that with OLSR, IoT device4 always chose the
same route to propagate packets to IoT device9 (i.e., IoT device4-IoT device1-IoT device2-
IoT device3-IoT device9). In the case of BABEL, IoT device4 also selects a fixed path to
route to an IoT device9 like OLSR. However, BATMAN is different from the other two
protocols. The routing path from IoT device4 to IoT device9 changes, but we find that
IoT device4 frequently selects a route to IoT device9 (i.e., IoT device4-IoT device1-IoT
device2-IoT device3-IoT device9). We shut down one of the relay nodes between the sender
and the receiver to make the path fail. With OLSR and BATMAN, we shut down IoT
device2 while the BABEL IoT device6’s interface is down. We then evaluate and collect the
communication recovery time of the IoT-blockchain system. Figure 8a shows the average,
maximum, and minimum recovery time for the ten experiments in the static scenario with
the IoT-blockchain system and three routing protocols. The results show that BATMAN
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achieves the shortest recovery time. It has an average recovery time of 5.2656 s, which is 69%
faster than OLSR and 60% quicker than BABEL. When the sender transmits the transactions
to the receiver, the failure of one of the two-hop relay nodes, device2, prevents the sender
from continuing to receive OGM packets from it. However, the sender keeps receiving
OGM packets from the other two-hop relay nodes (e.g., IoT device6 and IoT device7). Once
the number of OGM packets received from the two nodes is more significant than that
obtained from IoT device2, BATMAN can select a new relay node. A closer examnination
of the different components of the average recovery time is provided in Figure 8b. In
OLSR, TMPR_lost and TNEIGHB_HOLD_TIME consumed 82.2% of the total recovery time in
this evaluation. On the other hand, the value of Tpure_blockchain is about 17.8%. For BABEL,
Tneighbor_update occupied 90.8% of the total process’s time and Tpure_blockchain occupied 9.2%.
For BATMAN, Tswitch_next_hop was about 57% of the total recovery time and Tpure_blockchain
was about 43%.
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Figure 7. Throughput and RTT of emulated IoT-blockchain system. (a) Throughput; (b) RTT.
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Figure 8. Recovery time of emulated IoT-blockchain in static scenario. (a) Recovery time; (b) Average
recovery time with components.

5.2.2. Mobile Scenario

In this section, we investigate blockchain recovery when the receiver moves. The
receiver gradually starts from a position close to the sender and has a speed of 1 m per
second. The yellow arrow indicates the direction of movement in Figure 9, where Figure 9a
shows the starting point and Figure 9d shows the final destination. When the receiver is
within the signal range of the sender, they can communicate directly. However, when the
receiver moves outside the sender’s signal range, the first communication failure occurs,
and the routing protocols need to recalculate and find a new one-hop relay node. Moreover,
the second communication failure occurs when the receiver continues to move outside
the communication range of the first-hop relay node. At this point, the routing protocol
looks for a new second-hop relay node from the sender to the receiver again. Finally, the
third communication failure occurs when the receiver moves outside the communication
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range of the sender’s second-hop relay node. The IoT-blockchain system performs a final
communication recovery, finding a third-hop relay node from the sender to the receiver.
The recovery time results for the different occasions in the emulated mobile IoT-blockchain
system are shown in Figure 10a. From the results, we observe that, in our nine-node
IoT-blockchain system, the receiver’s movement causes three occasions of communication
recovery. The result of each communication recovery shows that BATMAN is the least
time-consuming. On the first occasion, BATMAN takes 6.22 s to recover, which is 72.3%
and 72.1% faster than OLSR and BABEL, respectively. For the second occasion, the recovery
time of BATMAN is 5.92 s, which is 71.35% quicker than OLSR and 70.4% faster than
BABEL. On the last occasion, BATMAN is 5.95 s, 73.3% and 72.36% faster than OLSR and
BABEL, respectively. Similar to the previous evaluation, we plot the average values with
different components of the recovery process with the protocols in Figure 10b. We can
see that OLSR’s TMPR_lost and TNEIGHB_HOLD_TIME is about 65.2% of the total recovery
time and Tpure_blockchain is 34.8%. With BABEL, Tneighbor_update, in this case, is about 57.3%
of the recovery time and Tpure_blockchain consumes the remaining 42.7%. With BATMAN,
Tswitch_next_hop, Tpure_blockchain are 49.8% and 50.2% of the recovery time, respectively.
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Figure 9. Emulated IoT-blockchain system with a mobile node. (a) Receiver’s initial position;
(b) During the movement (1); (c) During the movement (2); (d) Final position.

On the basis of the experimental results, we can see that BATMAN is faster than
OLSR and BABEL in resuming blockchain communication. This is because, when using
BATMAN, the sender only transmits OGM packets to probe its neighbor nodes. In contrast
to OLSR, BATMAN does not require the sender to know the topology of the entire network.
It only needs to know its best next hop to reach the receiver. The means of knowing the best
next-hop is determined by the number of OGM packets the sender receives from different
one-hop nodes transmitted or forwarded. These OGM packets are deposited in a sliding
window between the sender and its one-hop neighbor nodes. When the number of OGM
packets received from a one-hop node within the sliding window is more significant than
those received from other one-hop neighbor nodes, the sender identifies this node as its best
next-hop to the receiver. So once the sender’s current best next-hop fails, it does not send
any more OGM packets to the sender but keeps the number of OGM packets before the
failure. However, the other next-hops of the sender are still normal, so they will continue to
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send OGM packets to the sender. Even if the number of OGM packets received from other
next-hops is one larger than the number received from the failed best next-hop, BATMAN
will immediately switch the route and choose the one with better link quality.
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Figure 10. Recovery time of emulated IoT-blockchain in mobile scenario. (a) Recovery time; (b) Aver-
age recovery time with components.

For BABEL, the recovery time is the second smallest among the three. This is, firstly,
because it does not send only one type of packet to probe its neighbors to establish routes
like BATMAN. Instead, it sends two packages, HELLO and IHU, and it takes time to
enable the nodes and neighboring nodes to recognize each other’s existence and establish
connections. BABEL has a faster recovery time than OLSR because, when the sender
realizes a failure with the selected link, it requests new routing information instead of
waiting to receive new topology information about the network, as in OLSR.

6. Conclusions

This study investigates the recovery time of IoT-blockchain systems with infrastructure-
less underlying networks that can avoid SPoF. We first create emulated and real IoT-
blockchain networks with the private Ethereum blockchain and three ad hoc routing
protocols, OLSR, BATMAN, and BABEL. We then extensively evaluate the recovery time of
the systems in static and mobile scenarios. The experimental results show that BATMAN
has the best ability to recover the blockchain communication in a real IoT-blockchain system.
More specifically, it recovers 74.9% faster than OLSR and 59.8% faster than BABEL in the
static scenario and 73.9% faster than OLSR and 61.8% faster than BABEL in the mobile
one. In the emulated IoT-blockchain system with more nodes, BATMAN still maintains its
outstanding features. In the static scenario, BATMAN achieves 69% and 60% faster recovery
than OLSR and BABEL, respectively. BABEL, in turn, restores faster than OLSR, which
has the second-lowest recovery time. In a bigger network with node mobility, BATMAN
outperforms the others and can recover the blockchain in 6.22 s, 5.92 s, and 5.95 s, following
the different stages, respectively
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