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Abstract: With the blooming of blockchain-based smart contracts in decentralized applications, the
security problem of smart contracts has become a critical issue, as vulnerable contracts have resulted
in severe financial losses. Existing research works have explored vulnerability detection methods
based on fuzzing, symbolic execution, formal verification, and static analysis. In this paper, we
propose two static analysis approaches called ASGVulDetector and BASGVulDetector for detecting
vulnerabilities in Ethereum smart contacts from source-code and bytecode perspectives, respectively.
First, we design a novel intermediate representation called abstract semantic graph (ASG) to capture
both syntactic and semantic features from the program. ASG is based on syntax information but
enriched by code structures, such as control flow and data flow. Then, we apply two different
training models, i.e., graph neural network (GNN) and graph matching network (GMN), to learn
the embedding of ASG and measure the similarity of the contract pairs. In this way, vulnerable
smart contracts can be identified by calculating the similarity to labeled ones. We conduct extensive
experiments to evaluate the superiority of our approaches to state-of-the-art competitors. Specifically,
ASGVulDetector improves the best of three source-code-only static analysis tools (i.e., SmartCheck,
Slither, and DR-GCN) regarding the F1 score by 12.6% on average, while BASGVulDetector improves
that of the three detection tools supporting bytecode (i.e., ContractFuzzer, Oyente, and Securify)
regarding the F1 score by 25.6% on average. We also investigate the effectiveness and advantages of
the GMN model for detecting vulnerabilities in smart contracts.

Keywords: smart contract; vulnerability detection; static analysis; abstract semantic graph; graph-
matching network

1. Introduction

Powered by the emerging technique of blockchain (e.g., Ethereum [1]), smart contracts,
the concept of which was first raised in the late 1990s [2], have been reactivated and
applied in various commercial fields, such as financial trades, supply chains, e-voting,
etc. Technically, smart contracts are executable codes that run on top of the blockchain to
facilitate, execute, and enforce an agreement between untrustworthy parties [3]. These
codes and terms of the agreement therein are recorded in a distributed and public ledger,
inheriting the immutable and distributed natures of blockchain [4]. After being deployed,
smart contracts are triggered by transaction events, and enable decentralized applications
running on a virtual executing environment (i.e., sandboxed environment) provided by
the blockchain. For example, Ethereum [1] provides an ecosystem for smart contracts
to develop decentralized applications using solidity and the Ethereum virtual machine
(EVM). The former is a specific programming language to write smart contracts, while
the latter is a Turing-complete virtual machine integrated into the Ethereum to execute
contract bytecodes.

Like other computer programs, smart contracts also suffer from security vulnerabilities.
In fact, many security incidents have happened to smart contracts, resulting in enormous
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financial losses. In 2016, the notorious DAO attack due to the reentrancy vulnerability in
Ethereum caused losses of ETC 3.6 million (i.e., cryptocurrencies of Ethereum) worth over
CNY 60 million at that time [5]. In 2017, a bug in a smart contract library used by the Parity
Multisig Wallet caused the loss of CNY 30 million and the freezing of CNY 150 million
worth of ETC [6]. In 2018, attackers exploited an integer overflow vulnerability in the
BEC smart contract to transfer an extremely large amount of tokens to malicious accounts,
causing instantaneous evaporation of over CNY 900 million [7]. The above cases are not
isolated, and security vulnerabilities of smart contacts are disclosed every year [8]. Even
worse, with the population of decentralized finance (i.e., DeFi), attacks on smart contracts
and financial losses are surging [9]. Hence, security vulnerability has become a critical
issue in smart contract applications.

In contrast to other scenarios, the problem of security vulnerabilities in smart contracts
faces more challenges, which can be summarized into three aspects. First, smart contracts
are publicly available and hold increasing financial values, making them extremely tempt-
ing targets for attackers [10]. Second, although smart contracts can be obfuscated by only
publishing the bytecode, it can still be decompiled for security analysis, which makes it a
target of choice for attackers. Third, defects in smart contracts cannot be rectified due to the
immutable nature of blockchain, which suggests the significant importance of vulnerability
detection, especially before deployment on the blockchain.

Recently, many research efforts have been focused on detecting the security vulnerabili-
ties of smart contracts [11–27], while most of them are inspired by or inherited from popular
methods in conventional software testing. For example, fuzzing, an automated software
testing technique that involves providing invalid, unexpected, or random data as inputs to
a computer program, is used to explore the state space of smart contract executions and
thus detect deep vulnerabilities [11–14]. Symbolic execution, another software-testing tech-
nique that executes programs with symbolic inputs instead of concrete ones, is also applied
to find vulnerabilities for smart contracts [15–19]. Both fuzzing and symbolic execution
need smart contracts to be actually executed, which requires certain testing environments.
In contrast to them, formal verification establishes mathematical models to determine the
correctness of software behaviors before deployment. Owing to the usually small code
size of smart contracts, formal verification methods are quite applicable to this scenario
and thus are attracting growing attention from both academic fields and Solidity language
committees [20–23]. Static analysis is another debugging method that examines the code
without having to execute it. Program features or intermediate representations are extracted
from smart contracts for vulnerability detection [24–27]. Among the above approaches,
static analysis is considered a competitive and practical way to detect vulnerabilities in
smart contracts since it does not necessitate actual code execution or complex formal spec-
ifications. However, learning more directional vulnerability features is a key factor to
determine the effectiveness of static analysis tools. Most existing methods prefer to utilize
abstract features and violation patterns to identify vulnerabilities [24–27], without taking
full advantage of syntactic information and code structures.

In this paper, we build a graph representation of smart contracts, i.e., abstract semantic
graph (ASG), based on a set of existing graph representations, such as abstract syntax tree
(AST), control flow graph (CFG), and data flow graph (DFG). The basic idea of ASG is
to mix up the above multi-views together into one single view such that more syntactic
and semantic information can be preserved. In order to detect vulnerabilities of smart
contracts in forms of both source code and bytecode, we propose two novel approaches
called ASGVulDetector and BASGVulDetector through calculating the similarity between the
code under test and the known vulnerable code via the graph matching network (GMN).
Our approaches generally consist of three steps: Firstly, smart contracts are transformed to
graph representations. Secondly, graph embedding is conducted to calculate vector repre-
sentations for these contracts. Thirdly, similarities of each code pairs are measured through
GMN. To fully utilize the abstract code structures, we construct an ASG by enriching the
AST with control flow and data flow when the source code is available, while the ASG of a
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smart contract in bytecode is extracted by decompiling and enriching basic block sequences
with control flow. Based on that, we apply two training models, i.e., graph neural network
(GNN) and GMN, on ASG to investigate the impact of different models. To validate the
effectiveness of the proposed approaches, we conduct extensive experiments on a dataset
of smart contracts, as well as comparing them with competitive vulnerability detection
tools. The main contributions of this paper are summarized as follows.

• We design a novel graph representation ASG for smart contracts in forms of source
code and bytecode, which takes advantage of both syntactic information and code
structural features.

• We apply a graph-matching network model based on the ASG representation for
vulnerability detection in smart contracts. We adopt two different training models,
i.e., GNN and GMN, to analyze the difference between their performance.

• We implement two tools called ASGVulDetector and BASGVulDetector for smart con-
tracts in source code and bytecode, respectively, and conduct extensive experiments
to evaluate their effectiveness and superiority through comparisons with competitors.

The rest of this paper is organized as follows: Section 2 introduces the background of
smart contracts, potential vulnerabilities, and graph-matching network. Section 3 briefly
reviews existing approaches on the vulnerability detection of smart contracts. Section 4
elaborates details of the proposed approaches while Section 5 gives the experimental results.
FInally, conclusions and suggestions on future work are provided in Section 6.

2. Background
2.1. Smart Contract in a Nutshell

Smart contracts are simply programs stored on a blockchain that execute when prede-
fined conditions are met, as shown in Figure 1. They essentially automate the execution of
an agreement between untrustworthy parties without the involvement of a trusted third
party. There are various blockchain platforms that support smart contracts, among which
Ethereum is the most common one [28]. It provides a decentralized ecosystem for smart
contracts through a specific programming language called Solidity and a Turing-complete
machine called EVM. The general workflow of a smart contract is as follows. First, source
codes that represent terms of an agreement are written in a high-level language (e.g., Solid-
ity) and then complied into bytecodes (e.g., EVM codes). Then, the bytecodes are uploaded
to the blockchain in a form of a transaction, and stored in a block of the distributed ledger.
Once the predetermined condition is satisfied, these bytecodes are translated into instruc-
tions or operation codes running on EVM to execute business logic.
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Figure 1. Blockchain-based smart contract.
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Since smart contracts encapsulated in blockchain transactions are publicly accessible,
code flaws can be analyzed and exploited by anyone, including attackers. Moreover, due
to the immutable nature of blockchain, errors in smart contracts cannot be rectified once
deployed. As the financial values held in the blockchain network are increasing, smart
contracts have already become tempting targets. It is worth noting that both the source
code and bytecode of smart contracts are choices of a target for attackers.

2.2. Four Types of Vulnerabilities in Smart Contracts

Smart contract platforms could encounter vulnerabilities at the blockchain level, EVM
level, and contract level [11]. In this paper, we focus on contract-level vulnerabilities.
Particularly, we consider four types of vulnerabilities that are related to code appearance
and structures. More types and details of smart contract vulnerabilities can be found in
related work [29,30].

2.2.1. Reentrancy

Reentrancy vulnerability happens when a built-in token transfer function, i.e., call.value,
can call back to itself from an external invocation. In other words, such a function can be
re-entered to perform unexpected token transfers.

Figure 2 shows an example code of reentrancy vulnerability. The attack occurs when a
function makes an external call to another untrusted contract (e.g., msg.sender.call.value at
line 7). Then, the untrusted contract can make a recursive call back to the original function
(e.g., withdraw()) to drain funds. The underlying cause of reentrancy vulnerability is that the
vulnerable contract allows external calls to take over the control flow and make unexpected
changes to internal variables. The notorious DAO attack is the most famous example of a
reentrancy hack [5].

Figure 2. An example smart contract with reentrancy vulnerability.

2.2.2. Timestamp Dependency

Timestamp-dependency vulnerability happens when smart contracts utilize the value
of block.timestamp, which is a block built-in variable, as a part of the call condition to execute
critical operations (e.g., token transfer). The value of block.timestamp is generated by the
node executing the smart contract (e.g., anonymous miners), which makes it manipulable
and vulnerable to attacks.

2.2.3. Block info Dependency

Similar to the timestamp-dependency vulnerability, block-info-dependency vulner-
ability happens when the execution of a smart contract relies on block-related variables,
such as block.number, block.hash, etc. However, since these values are more predictable
due to the blockchain protocol, block-related variables can be manipulated to perform
unexpected behaviors.
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2.2.4. Tx.Origin Attack

Tx.Origin is a global variable that refers to the address of the account that launches
the transaction. The Tx.Origin attack could happen when the variable Tx.Origin is used to
authorize calls from external accounts (e.g., Tx.Origin == msg.sender). This vulnerability
can be exploited jointly with the phishing attack to drain a contract of all funds.

2.3. Graph-Matching Network

Graph-structured objects are widely encountered in many real-world applications.
In the past few years, GNNs have been an effective class of deep learning methods for
learning the representations as well as performing supervised prediction based on graph-
structured objects, such as social media network [31], vehicular network [32], and program
code structures [27]. GMN is an extension to GNNs for the purpose of graph similarity
learning [33]. Instead of computing graph representations independently for each graph,
GMNs take a pair of graphs as input and compute a similarity score by a cross-graph
attention mechanism at the cost of certain computation efficiency.

3. Related Work

Extensive studies have been focused on vulnerability detection in smart contracts.
According to the software-testing technique used to reach the goals, existing approaches
can be classified into four categories: fuzzing, symbolic execution, formal verification,
and static analysis.

Fuzzing is an automated software testing technique that feeds the program under test
with a large volume of random inputs to identify code errors and security vulnerabilities
from black, grey or white box perspectives. Jiang et al. [11] proposed the first fuzzing
framework called ContractFuzzer for detecting security vulnerabilities in smart contracts
on the Ethereum platform. ContractFuzzer generates fuzzing inputs according to the ABI
specifications of smart contracts, and instruments EVM to provide feedback during the
execution. However, ContractFuzzer only supports a custom set of built-in detectors. In con-
trast to that, Grieco et al. [12] implemented another Ethereum smart contract fuzzer called
Echidna, which supports a large set of features based on experience with security audits,
such as custom property checking, assertion checking, and estimation of maximum gas
usage. Inspired by the well-known fuzzer for C programs, i.e., AFL, Nguyen et al. [14]
proposed an adaptive fuzzer called sFuzz for Ethereum smart contracts. It combines
the strategy in AFL and a lightweight multi-objective adaptive strategy targeting those
hard-to-reach branches. To explore more transition states and thereby detect deep vulnera-
bilities, Wüstholz et al. [13] designed a greybox fuzzer for smart contracts called Harvey,
which is equipped with two key techniques, i.e., input prediction and demand-driven
sequence fuzzing.

Symbolic execution is a way of executing a program abstractly so that one abstract
execution covers multiple possible inputs that share the same program path. It has been
widely used to explore the program states and detect security vulnerabilities for smart
contracts. Luu et al. [15] built a symbolic execution tool called Oyente for Ethereum smart
contracts, which takes bytecodes as input and consists of four main components to perform
CFG construction, symbolic execution, constraint solving, and false alarm filtering. On the
basis of Oyente, Torres et al. [16] proposed a symbolic execution framework combined with
taint analysis called Osiris, focusing on accurately detecting integer vulnerabilities in smart
contracts of the Ethereum platform. Mossberg et al. [17] implemented a dynamic symbolic
execution framework called Manticore for analyzing binaries of Ethereum smart contracts.
Its flexible architecture allows performing symbolic execution on alternative platforms.
To effectively find vulnerable transaction sequences in smart contracts, So et al. [18] pre-
sented a symbolic execution technique called Smartest, which utilizes statistical language
models to guide symbolic execution so that it can effectively prioritize program paths that
are likely to reveal vulnerabilities. In view of the fact that most smart contract symbolic ex-
ecution tools perform analysis on bytecode, Lin et al. [19] designed a source-level symbolic
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execution for Ethereum smart contracts, which can take advantage of high-level semantic
information in the source code.

Formal verification conducts mathematical analysis to prove or disprove the correct-
ness of a program by checking its formal model against a certain formal specification.
Tsankov et al. [21] presented a formal verification tool called Securify to detect vulnerabili-
ties in smart contracts. It is integrated with compliance and violation patterns described
in domain-specific language to examine whether there are loopholes in the contracts.
Bai et al. [20] established the formal model of smart contracts and utilized model checking
to verify the correctness as well as important properties of the contracts. Albert et al. [22]
proposed a formal verification tool called SAFEVM, which consists in decompiling the
Ethereum bytecode into a C program with ERROR annotations so that existing verification
engines developed for C programs can be used to verify these bytecodes. Antonino et al. [23]
designed a bounded model checker for Solidity called Solidifer, which leverages Boogie,
an intermediate verification language, to capture accurate semantics of Solidity’s memory
model, lazy contract deployment and memory precise verification harness.

Static analysis is a method of computer program debugging by examining the source
code without executing the program, which can guarantee full code coverage and fast
detection efficiency. Tikhomirov et al. [24] proposed an extensible static analysis tool called
SmartCheck for Ethereum smart contracts, which converts Solidity code into XML-based
intermediate representation and checks it against XPath patterns derived from vulnerable
behaviors. Similarly, Feist et al. [25] represented another static analysis tool called Slither,
which translates Solidity code into a user-defined intermediate representation called Slith-
erIR. Moreover, it combines data flow and taint analysis techniques to extract more semantic
information and detect pattern violations. Xue et al. [26] summarized existing strategies to
avoid reentrancy vulnerability as path protection techniques (PPTs), and proposed a static
analysis tool called Clairvoyance for reentrancy bug detection. It relies on a cross-contract
inter-procedural CFG (ICFG) representation and PPT patterns to identify potential paths
that contain reentrancy. As the most similar work to our approaches, Zhuang et al. [27]
constructed a contract graph to represent both syntactic and semantic structures of a smart
contract function. Based on that, the graph neural network and temporal message propaga-
tion network are separately introduced as the training models for vulnerability detection.
However, the graph defined in this work involves three types of nodes with complex edge
information, which can fail to generalize across different contracts.

Although the above studies provide promising approaches for vulnerability detection
in smart contracts, there still remain limitations and challenges. In general, fuzzing and
symbolic execution have to execute the smart contracts, either concretely or symbolically,
which require sandboxed environments and have execution overhead. Formal verification-
based techniques are limited by the rarely available formal specification of built-in functions.
Static analysis is an effective way to find bugs, but usually relies on the accuracy of an
intermediate representation to feature the code. Furthermore, patterns or models for
detecting bugs are of key importance to the performance of vulnerability detection. Most
existing static analysis methods require source code to perform vulnerability detection.
In this paper, we attempt to address these issues through a novel graph representation for
both source code and bytecode, coupled with the graph-matching network technique.

4. Methodology

This section elaborates details of the proposed methodology, which mainly consists of
graph generation and similarity learning.

4.1. Framework

The underlying idea of our approaches is that ASG, extended syntactic information
with more code structural features, is expected to preserve more syntactic and semantic
information. Furthermore, GMN has been proved to be an effective model for matching
graph-structured objects [33]. Figure 3 illustrates the general framework of the proposed
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approaches, which is comprised of two main phases, including model training and vulner-
ability prediction.
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Figure 3. The general framework of our proposed approaches. (a) Model training (b) Vulnerabil-
ity prediction.

As shown in Figure 3a, given a dataset that contains both benign and malicious con-
tracts, the workflow of model training can be further divided into two steps. The first step
is to generate ASG from the code. When the source code is available, ASG is based on the
AST but enriched by control flow and data flow. Otherwise, it consists of decompiling
and augmenting basic block sequences with control flow. The second step is to calculate
vector representations for smart contracts using GNN, then utilize GMN to learn simi-
larities between the graph pairs. Note that our two proposed tools ASGVulDetector and
BASGVulDetector only differ in the graph generation step; the other following procedures
are performed in the same manner.

To reduce the false positive rate of detection, each type of vulnerability can be isolated
by an independent trained model. Nevertheless, each type of vulnerability is predicted
through the same procedure, as shown in Figure 3b. First, suspicious vulnerability types
of trained models should be selected before the sample contract is fed to the tool. Then,
the sample contract is processed as a fresh input to the training model, which means
procedures of ASG generation, graph embedding will be conducted to obtain a vector
representation of the sample contract. Finally, such a vector is evaluated in the trained
model in terms of similarity with known vulnerabilities. In order to detect different types
of vulnerabilities, the sample contract will be evaluated through different trained models
in series, parallel, or any combination thereof.

4.2. Abstract Semantic Graph Generation

Graph representation has more capabilities to preserve the semantic features of a pro-
gram [34]. There already exists plenty of sets of graph representations, including AST, CFG,
and DFG, which are derived from different aspects, such as syntax, control flow, and data
flow, separately. AST provides the abstract syntactic structure of the source code, where leaf
nodes represent operands and non-leaf nodes represent operators. This is quite useful to
figure out key syntactic features. For example, if a smart contract contains call.value, it can



Future Internet 2022, 14, 326 8 of 21

be regarded as a candidate of reentrancy vulnerability. However, in most cases, control flow
and data flow, which represent the order of statements and the processing flow of variables,
respectively, are more likely to reveal program behaviors at runtime. The underlying idea
of ASG is to combine the above multi-views together into one single view such that more
syntactic and semantic information can be preserved in this novel kind of intermediate
representation for smart contracts. In this way, it is more feasible and efficient to use one
single graph instead of multiple graphs to train the neural network model.

4.2.1. ASG from Source Code

Given the source code in Solidity of a smart contract, it can be parsed into AST by
a mature set of compiler tools, e.g., SolidityParser and solc-ast. The top part of Figure 4
illustrates an example AST parsed from the Simple contract in Figure 1.
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Figure 4. Abstract semantic graph generation based on abstract syntax tree and enriched by control
flow and data flow.

It can be observed that AST provides a fine-grained syntactic representation of the
source code. However, with the scale of the program increasing, its AST would be extremely
complicated. Directly leveraging AST as the basis will largely increase the numbers of nodes
and edges in ASG, which can result in intractable problems such as gradient exploding in
the follow-up model training phase. In this case, ASG takes a statement-level granularity,
which is a single line of code-based elements, as annotated by orange circled numbers in
Figure 4, to construct the dedicated graph. Formally, ASG is an abstract semantic graph
G = (V, E), where V is a set of nodes and E is a set of edges in the graph. Each node vi ∈ V
represents a statement of the source code, while an edge ei,j ∈ E indicates that there exists
either a control dependency (in control flow) or a data dependency (in data flow) from
node vi to vj.
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Control flow reflects the orders of statements in the smart contract. Similar to other
programming language, Solidity uses keywords such as if, while, for, continue, and break
to control statement orders; rest statements without these keywords are executed con-
secutively. The control flow can also be extracted from the source code, and thus can be
introduced into the ASG accordingly. Note that each node of both ASG and CFG represents
the same statement of the contract. Formally, a direct edge ei,j =< vi, vj > indicates that
statement vj is executed after the completion of statement vi. Figure 4 also gives an exam-
ple control flow for the Simple contract, where most of control edges are sequential and
only one if statement can change the execution order. In a contract that involves complex
business logic, its control flow can be more sophisticated.

Data flow is another orthogonal representation of the source code, which describes
data dependencies between a number of operations. However, data dependencies rely
on the execution orders of the statements. Hence, the search of data dependencies has to
consider every control path that leads to the endpoint of the data dependency. Formally,
a direct edge ei,j =< vi, vj > indicates that data produced by statement vi are consumed by
statement vj. An example data flow for the Simple contract is also demonstrated in Figure 4.
There are two variables, i.e., amount and userBalance, defined and used in the smart contact.
It can be investigated that variable userBalance in v3 is related to the if statement in v4
through variable amount. Such a relationship is quite meaningful for analyzing program
behaviors, yet can hardly be obtained from AST or control flow.

The overall workflow of ASG generation is depicted by Algorithm 1. The source code
of a given smart contract S is parsed to its AST (Line 1), which is used to initialize ASG in
statement-level granularity (Line 2). Then, AST is traversed with awareness of control flow
structure and variable definitions (Lines 4–13). Note that control edges can be pointed out
with the aid of CFG provided by a Solidity compiler tool (Lines 5–9), while variables defined
in the program are recorded in an individual set VariableSet simultaneously (Lines 10–12).
After the control edges are all determined, there will be a set of control paths in the ASG.
Thus, data edges are appended to the ASG by examining every variable along each control
path (Lines 14–18). With the completion of all above procedures, the ASG for the given
smart contract is obtained finally. An example ASG of the Simple contract is illustrated at
the bottom of Figure 4. Note that sequential edges from the control flow are omitted in the
example ASG since the sequence number of each node is self-explained.

Algorithm 1 ASG generation from source code.

Input: Source code of smart contract, S
Output: Abstract semantic graph, ASG

1: Parse the source code of S to an abstract syntax tree AST
2: Initialize ASG with AST in statement-level granularity
3: VariableSet←∅
4: for each node v in AST do . Add edges of control flow
5: if v is in the control flow then . such as for, while, if, etc.
6: Add control edge(s) to ASG
7: else
8: Add sequential edge(s) to ASG
9: end if

10: if v is a variable definition then
11: Add var(s) in statement v to the set of VariableSet
12: end if
13: end for
14: for each var in VariableSet do . Add edges of data flow
15: if var is in a control path of ASG then
16: Add data edge(s) between each pair of nodes that both contain var
17: end if
18: end for
19: return ASG
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4.2.2. ASG from Bytecode

Recently, many smart contracts have been uploaded to the blockchain in forms of
bytecode without publishing the source code. In this case, generating ASG from bytecode
is much more challenging [35], but they share the same methodology, targeting to extract
syntactic and semantic features to represent the code. Given the bytecode of a smart contract,
we set up three steps to generate ASG from the bytecode, including decompilation, CFG
construction, and normalization. For the purpose of clarity, we use BASG (Bytecode ASG)
to denote ASG from bytecode in this section. Figure 5 illustrates an example of BASG,
which is generated based on basic block sequences and enriched by control flow.
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Figure 5. Bytecode abstract semantic graph generation based on basic block sequences and enriched
by control flow.

Bytecode is a string of hexadecimal numbers; in order to extract syntactic information
from the bytecode, it should be decompiled the first time. The bytecode deployed on the
blockchain, i.e., runtime code, can be divided into three code segments. The first segment
contains the opcodes that the EVM executes. The second segment is optional, and usually
used to store static data. The last segment contains metadata, such as hashes of the code
and compiler version. In Figure 4, an example of bytecode is also provided. According
to the yellow paper of Ethereum [36], we can easily obtain opcodes from the bytecode.
For instance, the bytecode 0 × 6070604001 can be decompiled to (PUSH1, 0 × 70, PUSH1,
0 × 40, ADD), where opcode 0 × 60 indicates PUSH1 with one operand (i.e., 0 × 70 and
0 × 40) and opcode 0× 01 indicates ADD. Thus, EVM will execute two PUSH1 instructions
to push two values, i.e., 0 × 70 and 0 × 40, to the stack, then consume these two elements
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to execute an ADD instruction, leaving their sum 0 × B0 as a result. By traversing all of the
runtime code, the opcodes of the overall smart contract can be obtained.

Although opcodes provide elementary information about the bytecode, they are still
not quite analyzable. In order to obtain more semantic information and thus to understand
the program behaviors, these opcodes should be analyzed in an organized form. In this
case, we construct CFG to further represent the code as follows. First, the opcodes are
grouped in basic blocks, which are also utilized as nodes of BASG. Then, opcodes that alter
the control flow of the program (e.g., JUMP and RETURN) are resolved to augment control
edges to the BASG. A basic block is a sequence of opcodes that are executed consecutively
without any instruction that alters the flow of control. In Solidity, opcodes that can alter
the control flow are mainly listed as JUMP, JUMPI, STOP, REVERT, RETURN, INVALID,
and SELFDESTRUCT, but for jump-like instructions, the destination needs to be resolved
from the stack. We employ the symbolic stack execution technique [35] to obtain these
control edges. Accurate CFG construction for the bytecode is still an ongoing research topic
which is beyond the scope of this paper.

Before the current form of BASG is fed to the training model, it is required to perform
normalization to mitigate syntax noises, thus improving the semantic expressiveness of the
BASG. We consider to normalize both opcodes and operands in this step. On one hand,
opcodes with the same functionality, such as PUSH1 and PUSH32, are normalized to a
general form, such as PUSHX. Stack operators that manipulate elements internally, such
as DUP, POP, and SWAP, can be omitted from the semantic perspective. Table 1 lists all
mappings from original opcodes to their normalized forms. On the other hand, in bytecode,
operands that follow opcodes are usually hexadecimal numbers, which are determined
by the program layout. Directly leveraging them as features will introduce noises in the
training model, whereas replacing them with uniform notations has little influence on
featuring the code. The operand normalization mappings used in this paper are provided
in Table 2, where we classify the opcodes into six categories according to the types of their
operands, i.e., arithmetic, block, logic, memory, store, and bit.

Table 1. Opcode normalization.

Opcode Normalized Code

LOG0-LOG4 LOGX
PUSH1-PUSH32 PUSHX

DUP1-DUP16 -
SWAP1-SWAP16 -

POP -

Table 2. Operand normalization.

Opcode Normalized Operand

ADD, MUL, SUB, EXP, SIGNEXTEND ArithData
BLOCKHASH, COINBASE, TIMESTAMP,

NUMBER, DIFFICULTY, GASLIMIT BlockData

LT, GT, SLT, SGT, EQ, ISZERO LogicData
MLOAD MemData
SLOAD StorData

BYTE, SHL, SHR, SAR
AND, OR, XOR, NOT BitData

The overall workflow of BASG generation is described by Algorithm 2. The bytecode
of a smart contract B is decompiled to opcodes at first time (Line 1), which are grouped
in basic blocks according to the opcodes alerting the flow of control (Lines 2–10). Each
basic block is regarded as a node of the BASG. Then, control edges consisting of fall edges,
conditional edges, and unconditional edges are augmented to the BASG (Lines 11–13).
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Finally, opcodes and operands are normalized to their general forms following the rules as
aforementioned (Lines 14–17).

Algorithm 2 BASG generation from bytecode.

Input: Bytecode of smart contract, B
Output: Bytecode abstract semantic graph, BASG

1: Decompiling B to extract Opcodes
2: BB←∅
3: for op in Opcodes do . Obtain basic block
4: if op is [JUMP JUMPI STOP REVENT RETURN INVALID SELFDESTRUCT] then
5: BASG.Node.add(BB) . Add current basic block
6: BB←∅
7: else
8: BB.add(op) . Add current Opcode
9: end if

10: end for
11: BASG.Edge.addFallEdges()
12: BASG.Edge.addConditionalEdges()
13: BASG.Edge.addUnconditionalEdges()
14: for BB in BASG.Node do . Normalization
15: NormalizeOpcode(BB.Opcode)
16: NormalizeOperand(BB.Operand)
17: end for

4.3. Graph Similarity Learning

Compared to traditional deep neural network models such as the convolutional neural
network (CNN) and recurrent neural network (RNN), the graph neural network (GNN) is
more applicable to handle graph structured data, whereas the graph matching network
(GMN) enhances it through a cross-graph attention-based matching mechanism. In this
paper, we use a GNN for graph embedding, and jointly apply a GMN to learn the similarity
between each pair of contract graphs.

4.3.1. Contract Graph Embedding

So far, we transformed a smart contract to its graph representation. In ASG, each node
represents a statement of the source code, while each edge represents a control or data
dependency in the code. In BASG, each node represents a basic block of the bytecode,
while each edge represents a control dependency. Although such a contract graph is able
to represent plentiful syntactic and semantic information of the program, it is usually in a
high-dimension space and can hardly be processed by a deep neural network. Thus, it has
to be further converted to a vector representation, which is formally called embedding.

We use a gated graph neural network (GGNN) for graph embedding. Given a contract
graph G = (V, E), xi and xi,j are feature vectors of node vi and edge ei,j, respectively. Then,
these features are encoded through separate multi-layer perceptrons (MLPs):

h(0)
i = MLPnode(xi), ∀i ∈ V

eij = MLPedge(xij), ∀(i, j) ∈ E,
(1)

where h(0)
i is the embedding of node vi in the initial state (state 0), and eij is the embedding

assigned to edge ei,j. The hidden state of nodes are updated in the message passing step by

mj→i = fmessage

(
h(t)

i , h(t)
j , eij

)
, ∀(i, j) ∈ E

h(t+1)
i = fupdate(h

(t)
i , ∑

j
mj→i),

(2)
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where fmessage is a message function that collects messages from node vi’s neighborhoods,
and fupdate is a node update function that combines these messages and the last hidden
state of node embedding. In this paper, we use an MLP and a gated recurrent unit (GRU)
for the two functions, respectively. At each iteration t of the GNN, ∑j mj→i aggregates
the set of embeddings of vi’s neighborhoods through a simple sum function. Based on
that, fupdate generates the updated embedding h(t+1)

i for each node. After T iterations of
the GNN message passing, a set of embeddings of all nodes are obtained and denoted as{

h(T)
i

}
i∈V

. To compute the graph-level representation for a contract, we follow the readout

function proposed in [33]:

hG = fG

({
h(T)

i

}
i∈V

)
= MLPG

(
∑
i∈V

σ
(

MLPgate

(
h(T)

i

))⊙
MLP

(
h(T)

i

))
, (3)

which leverages the weighted sum with gating vectors to aggregate across nodes. Note that
given the graph representations hG1 and hG2 for two graphs G1 and G2, their similarity can
be calculated using metrics such as Euclidean, Hamming, or cosine similarities, and thus
can already be used for vulnerability detection, which will be investigated in Section 5.5.

4.3.2. Graph Matching Network

Rather than separately mapping each contract graph to a vector in GNN, GMN takes a
pair of contract graphs at a time and learns the embeddings through cross-graph attention-
based matching. Initially, the encoding step of GMN is the same as that of GNN, as shown
in Equation (1). The main difference between the two models lies on the propagation
process, which can be described as the following:

mj→i = fmessage

(
h(t)

i , h(t)
j , eij

)
, ∀(i, j) ∈ E1 ∪ E2

µj→i = fmatch

(
h(t)

i , h(t)
j

)
, ∀i ∈ V1, j ∈ V2, or i ∈ V2, j ∈ V1

h(t+1)
i = fupdate

h(t)
i , ∑

j
mj→i, ∑

j′
µj′→i

,

(4)

where we still use an MLP and a GRU for fmessage and fupdate, respectively, and fmatch is
introduced to exchange cross-graph information through

aj→i =
exp

(
sh

(
h(t)

i , h(t)
j

))
∑j′ exp

(
sh

(
h(t)

i , h(t)
j

))
µj→i = aj→i

(
h(t)

i − h(t)
j

)
,

(5)

with sh as a vector similarity metric and aj→i as the attention weight. In this paper, we

use cosine similarity for sh. It can be observed that the updater h(t+1)
i of GMN not only

considers the last hidden state and the aggregated message, but also takes ∑j′ µj′→i as input,

which measures the differences between h(t)
i and all its neighborhoods. For the readout

function of GMN, we still follow Equation (3), and the similarity of a graph pair can be
computed by

hG1 = fG

({
h(T)

i

}
i∈V1

)
hG2 = fG

({
h(T)

i

}
i∈V2

)
s = fs

(
hG1 , hG2

)
,

(6)
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where s is a similarity score and fs is a similarity metric.
According to the above setting, most parts of our GMN model are similar to those

of the GGNN model, while differences mainly occur at the propagation stage. We will
evaluate the effectiveness of GMN on improving the performance of vulnerability detection
in smart contracts later.

5. Evaluation

This section evaluates ASGVulDetector and BASGVulDetector by comparing it with
competitive tools in terms of performance and efficiency, while the GMN model used in
the proposed approaches is also investigated extensively.

5.1. Experimental Setup

We implemented prototypes of ASGVulDetector and BASGVulDetector in Python.
The AST of a smart contract in source code was parsed by solc-ast (https://github.com/
iamdefinitelyahuman/py-solc-ast accessed on 21 July 2021), while the machine learning
models were powered by the PyTorch library (https://github.com/pytorch/pytorch ac-
cessed on 18 May 2021). The computer we used for model training and vulnerability
detection was a desktop with Intel Core i7 CPU, 16 GB memory, and NVIDIA Tesla T4 GPU,
running on Ubuntu 20.04 operating system. We collected a dataset of 5735 open-source
smart contracts from SmartBug [37], SolidFI [38], and other labeled contracts, which con-
tains the four types of vulnerabilities, i.e., reentrancy, timestamp dependency, block info
dependency, and Tx.Orgin. These labeled contracts were randomly divided into a training
set and a testing set, with a 70–30 split. In experiments for BASGVulDetector, these smart
contracts were compiled to bytecodes beforehand. The threshold of similarity for the GMN
model to detect vulnerability was set to 0.85, and other parameters of training models were
determined according to the experiment conducted in Section 5.4.

Since our two approaches support different scenarios, i.e., source code and byte-
code, we evaluated them separately. For the purpose of comparisons, in experiments
for ASGVulDetector, we selected three state-of-the-art vulnerability detection tools, i.e.,
SmartCheck [24], Slither [25], and DR-GCN [27], all of which belong to the static analysis
category and are applicable for the source-code scenario. As aforementioned, SmartCheck
converts Solidity code to a XML-based intermediate representation, and detects vulner-
ability by checking XPath patterns. Slither follows the same idea but defines its own
intermediate representation, i.e., SlitherIR, and combines data flow and taint tracking
to analysis the code. Among the above competitors, DR-GCN is the most similar work
to our approaches. It constructs a graph with three types of nodes and four types of
edges, and uses GNN for vulnerability detection. In experiments for BASGVulDetector,
we selected three other vulnerability detection tools, i.e., ContractFuzzer [11], Oyente [15],
and Securify [21], which support bytecode and belong to the categories of fuzzing, symbolic
execution, and formal verification, respectively. ContractFuzzer [11] instruments EVM and
performs fuzz testing on smart contracts. Oyente [15] formalizes the semantics of Ethereum
smart contracts and provides a symbolic execution tool to detect bugs. Securify [21] de-
scribes all compliance and violation patterns in a designated domain-specific language,
and conducts formal verification on smart contracts. Comparisons with the above methods
are expected to validate the effectiveness and advantages of our approaches.

5.2. Performance Evaluation

In the first experiment, we investigated how well the proposed approaches could
detect smart contract vulnerabilities. We compared ASGVulDetector and BASGVulDetector
with their competitors in terms of accuracy (Acc), recall (Rec), precision (Pre), and F1-score
(F1). The performance results of different methods are listed in Tables 3 and 4, respectively,
from which we have the following observations.

https://github.com/iamdefinitelyahuman/py-solc-ast
https://github.com/iamdefinitelyahuman/py-solc-ast
https://github.com/pytorch/pytorch
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Table 3. Performance comparison for ASGVulDetector (‘-’ denotes not applicable).

Vulnerability Method Acc (%) Rec (%) Pre (%) F1 (%)

Reentrancy

SmartCheck 55.70 74.95 62.08 67.91
Slither 70.51 85.93 75.83 80.57

DR-GCN 66.21 81.78 71.08 76.06
ASGVulDetector 84.96 95.37 84.17 89.42

Timestamp dependency

SmartCheck 40.41 77.44 37.45 50.49
Slither 74.19 89.47 77.27 82.93

DR-GCN 50.59 84.22 47.55 60.78
ASGVulDetector 87.02 94.59 89.09 91.76

Block info dependency

SmartCheck - - - -
Slither 67.77 84.46 70.43 76.81

DR-GCN - - - -
ASGVulDetector 88.99 94.01 91.30 92.63

Tx.Origin

SmartCheck 41.12 69.34 43.69 53.60
Slither 60.96 82.09 62.97 71.27

DR-GCN - - - -
ASGVulDetector 81.18 87.58 88.35 87.97

Table 4. Performance comparison for BASGVulDetector (‘-’ denotes not applicable).

Vulnerability Method Acc (%) Rec (%) Pre (%) F1 (%)

Reentrancy

ContractFuzzer 37.94 67.12 31.36 42.75
Oyente 41.64 74.02 42.50 54.00
Securify 53.62 77.46 54.42 63.93

BASGVulDetector 80.59 92.73 80.00 85.90

Timestamp dependency

ContractFuzzer 32.96 82.94 28.36 40.70
Oyente 43.24 76.62 38.45 52.55
Securify 52.06 84.62 50.00 62.86

BASGVulDetector 79.28 92.17 81.36 86.43

Block info dependency

ContractFuzzer 30.52 58.08 28.75 38.46
Oyente - - - -
Securify 49.40 72.15 53.75 61.60

BASGVulDetector 85.04 93.66 86.09 89.71

Tx.Origin

ContractFuzzer - - - -
Oyente - - - -
Securify 47.12 71.93 51.00 59.68

BASGVulDetector 81.56 86.94 89.81 88.35

It can be observed from Table 3 that SmartCheck commonly has the lowest Acc and
F1 among the four tools, e.g., only 55.7% and 67.91% for reentrancy. This phenomenon
can be explained by the XML-based mechanism used in SmartCheck, which is utilized not
only for intermediate representation but also to define violation patterns. Thus, the per-
formance of vulnerability detection is limited by the expressiveness of XML language,
and thus cannot reflect sufficient syntactic and semantic information. In contrast, Slither,
as another tool based on intermediate code, provides much better detection performance
than SmartCheck. This could profit from two intensive designs. One is that Slither uses a
fine-grained intermediate form called static single assignment (SSA) to preserve more se-
mantic information, while the other is that it employs data flow and taint tracking to obtain
more understandings about program behaviors. DR-GCN has a relatively low detection
performance, even worse than Slither. This can be explained by DR-GCN transforming
code fragments of a contract to a graph that contains specific types of nodes and edges,
which reduces the ability of representing smart contracts. In the cases of block info de-
pendency and Tx.Origin, the contract code can even hardly be represented in the required
form, which reveals that DR-GCN is applicable to a limited set of scenarios. Among the
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four methods, ASGVulDetector performs the best in all cases. Specifically, ASGVulDetector
improves the most of the three competitors in the four types of vulnerabilities on F1 score
by 8.9, 8.8, 15.8 and 16.7 percentages, respectively. These improvements reveal the effective-
ness of the enriched graph-based representation as well as the classification power of the
graph-matching network.

As shown in Table 4, ContractFuzzer almost has the lowest detection performance in
all cases. In the case of Tx.Origin, it even cannot find vulnerabilities in reasonable time.
This is due to the fact that the fuzzing technique takes random inputs to trigger bugs,
and thus its performance heavily relies on code coverage and testing time. Oyente, as a
symbolic execution tool, is superior to ContractFuzzer since it can resolve code branches
by constraint solving. However, it is still limited in complex branches, such as resolving
a concrete value for a condition. In contrast to the above two methods, Securify is more
stable and has better performance in all cases. This benefits from the formal methods used
in Securify, but formal specifications covering all Solidity functions still remain challenging.
BASGVulDetector wins the three competitors in all cases, improving Security in the four
types of vulnerabilities on F1 score by 22.0, 23.6, 28.1, and 28.7 percentages, respectively.
These improvements are contributed by our abstract representation of the bytecode, as well
as the power of the GMN model.

5.3. Detection Time Cost

In the second experiment, we investigated the time cost of each method spent on
vulnerability detection. Note that the preparation time for detection, including pattern
extraction in SmartCheck, Slither, and Securify, model training in DR-GCN and our ap-
proaches, was not considered. We only took into account the detection time spent on
each type of vulnerability. The average values for our two approaches are illustrated in
Figures 6 and 7, respectively.
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Figure 6. Comparison of detection time for ASGVulDetector.

In Figure 6, SmartCheck spends more than 10 seconds on vulnerability detection, most
of which is consumed by its XPath pattern matching. In contrast, Slither has more stable
and efficient detection time, i.e., six seconds on average in the four cases. This is contributed
by its specific intermediate representation. As two methods based on machine learning
technique, DR-GCN and ASGVulDetector have a low detection time, since most work is
accomplished during the model training period. However, the time cost of our approach
is slightly higher than DR-GCN, which is mainly caused by the extra matching step in
GMN. Theoretically, the cost of the GNN embedding model used in DR-GCN is in the order
of O(|V|+ |E|), while the cost of that in GMN is O(|V|×|V|), where |V| and |E| are the
numbers of nodes and edges, respectively. Nevertheless, the average detection time of
ASGVulDetector is only around three seconds, which can be acceptable in most applications.
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Figure 7. Comparison of detection time for BASGVulDetector.

In Figure 7, ContractFuzzer takes nearly 350 seconds on average to find a bug since
it needs to actually run the EVM code for certain rounds. Oyente spends much less time
than ContractFuzzer, around 33 seconds per each possible vulnerability detection, which is
mainly consumed by constraint solvers. Securify is regarded as the most time-expensive
one among the four methods, as it needs to transform the bytecode to a specific language
and traverse all patterns to detect violations. BASGVulDetector has the least detection time,
only about six seconds on average. However, compared to ASGVulDetector, it costs more
time since generating and embedding the contract graph for the bytecode is more complex
than those for the source code.

5.4. Impact of GMN Parameters

Due to the fact that the performance of deep neural network is usually affected
by its hyper-parameters, in this experiment, we investigated the impacts of different
parameters on the performance of vulnerability detection. Considering the fact that our
two approaches utilize the same training model, we only analyzed ASGVulDetector in detail,
and gave the experimental results of BASGVulDetector straightforwardly. We considered
four key parameters, i.e., number of epochs, embedding dimension, number of hidden
layers, and learning rate. The proper values obtained in this experiment were applied
to performance evaluation as aforementioned. We chose F1 score to reveal the above
impacts; the results of ASGVulDetector are summarized in Figure 8.

Figure 8a shows the impact of different epoch settings. With the increasing number of
epochs, the F1 scores of the four types of vulnerabilities all grow dramatically before the
data point of 80. After that, the detection performance enters into a stable state, suggesting
that 80 epochs are sufficient to train the neural network. Figure 8b demonstrates the impact
of different embedding dimensions. At the beginning of all four cases, F1 scores increase
significantly with the embedding dimension. However, as the dimension grows larger than
110, the values of the F1 scores drop sharply. This can be explained by small dimensions
limiting the expressiveness of the embedding, but too-large ones suffering from overfitting.
Figure 8c shows the impact of different numbers of hidden layers in GMN. Hidden layers
are of key importance to capture the internal features of a contract graph, but a large number
of hidden layers will significantly increase the complexity of the model. This rule can be
derived from this experiment, where four hidden layers are enough to extract internal
connections inside contract graphs. Figure 8d reveals the impact of different learning rates.
The learning rate is another key hyper-parameter of the neural network, which helps with
network convergence and thus influences detection performance. In this experiment, we
started from a large learning rate, i.e., 0.1, and scaled the value down to find an appropriate
rate, which is suggested to be 0.001.
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Figure 8. Impact of GMN key parameters in ASGVulDetector. (a) Impact of epochs. (b) Impact of
embedding dimension. (c) Impact of number of hidden layers. (d) Impact of learning rate.

In BASGVulDetector, recommended values for the four parameters, i.e., number of
epochs, embedding dimension, number of hidden layers, and learning rate, are 70, 90, 4,
and 0.001, respectively. It is worth noting that BASGVulDetector requires fewer epochs and
embedding dimensions than ASGVulDetector since the contract graph in BASGVulDetector
is less complicated than that in ASGVulDetector.

5.5. Impact of Different Models

Theoretically, GMN improves GNN by introducing a cross-graph matching mecha-
nism. In the last experiment, we investigated the superiority of GMN to GNN with respect
to vulnerability detection in smart contracts. We utilized GNN to perform the same pro-
cesses as GMN did, and adopted the same parameters where applicable. Figures 9 and 10
illustrate the performance impacts of different models for ASGVulDetector and BASGVulDe-
tector, respectively. In all cases, GMN outperforms GGNN. On average, GMN improves
GGNN on F1 score by roughly 25% in ASGVulDetector and around 19% in BASGVulDetector,
respectively.



Future Internet 2022, 14, 326 19 of 21

!

&!

"!

'!

#!

(!

$!

)!

%!

*!

&!!

.((6%$#6)7 8,"(9%#":;<(:(6<(6)7 =+5)*;,6>5;<(:(6<(6)7 8?@A$,B,6

/
G
5<
.
)
,2
5E
H
F

0C1

0011

Figure 9. Impact of different models for ASGVulDetector.
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Figure 10. Impact of different models for BASGVulDetector.

6. Conclusions and Future Work

Vulnerability detection is crucial for blockchain-based smart contracts. Existing stud-
ies have provided a number of promising methods through different software-testing
techniques, i.e., fuzzing, symbolic execution, formal verification as well as static analysis.
In this paper, we proposed two static analysis tools ASGVulDetector and BASGVulDetector
for smart contracts in source code and bytecode, respectively. We designed a novel graph
representation for smart contracts and utilized the pioneer graph-based deep learning
technique GMN for vulnerability detection. The contract graph is able to reflect more
syntactic and semantic information, while GMN provides a good performance guarantee
of similarity learning. Experimental results reveal that ASGVulDetector improves the best
of three source-code only static analysis tools (i.e., SmartCheck, Sliter, and DR-GCN) on F1
score by 12.6% on average, while BASGVulDetector improves that of the three detection
tools supporting bytecode (i.e., ContractFuzzer, Oyente, and Securify) on F1 score by 25.6%
on average. We also investigated the parameters of GMN as well as its superiority to the
GNN model.

However, there are still limitations to the proposed approaches, which can be sum-
marized as two aspects. On one hand, we consider four types of vulnerabilities in this
work, but there exist various types of smart contract vulnerabilities, which contain different
syntactic and semantic characteristics [29,30]. On the other hand, the proposed approaches
require sampling contracts of different vulnerabilities to train specific models, thus being
limited in unknown vulnerability detection. In the future, we plan to study more types of
smart contract vulnerabilities to enhance the scalability of the proposed approaches, and de-
velop new methods to detect unknown vulnerabilities. Generalizing the proposed method
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to other software testing scenarios, such as vulnerability detection for other programming
languages and code clone detection, is another direction for future research.
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