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Abstract: Modern internet of things (IoT) applications can benefit from advanced communica-
tion paradigms, including multicast and anycast. Next-generation internet architectures, such as
information-centric networking (ICN), promise to support these paradigms, but at the same time
they introduce new security challenges. This paper presents a solution that extends an ICN-like archi-
tecture based on software-defined networking (SDN) that supports those communication paradigms.
Using the proposed solution, the underlying architecture is enhanced with a novel security mecha-
nism that allows content “advertisements” only from authorized endpoints. This mechanism prevents
“content pollution”, which is a significant security threat in ICN architectures. The proposed solution
is lightweight, and it enables identity sharing as well as secured and controlled identity delegation.

Keywords: group communication; internet of things; software-defined networking; source routing

1. Introduction

The predominant client–server communication paradigm of the current internet, al-
though it works, impedes the exploitation of the full potentials of emerging architectures,
such as the internet of things.

The internet of things (IoT) promises to interconnect users, software, and devices,
enabling novel, innovating applications. Nevertheless, many of the envisioned IoT systems
require advanced communication paradigms, such as multicast and anycast. Many IoT
scenarios can benefit from group communication toward devices that share some properties
(e.g., all smart lamps of a building). Most legacy IoT systems provide this functionality by
relying on a centralized entity, which acts as an indirection layer that maps application-
layer semantic-rich identifiers (e.g., building1.floor5.lamps) to the corresponding network
addresses (e.g., CoAP and CoAP group communication relies on DNS, and MQTT relies
on a MQTT “broker”). Nevertheless, these systems cannot efficiently handle dynamic
networks (i.e., network with IoT devices that experience churn or move around), neither
can they easily support multiple administrative domains.

Information-centric networking (ICN) [1] in a next-generation internet architecture
that can overcome many of the limitations of IP-based networks and provide the desired
functionality without requiring a centralized indirection point. ICN architectures allow
endpoints to “advertise” content identifiers, extending, at the same time, network routers to
operate using content identifiers (rather than network identifiers). ICN facilitates caching,
and it supports advanced communication paradigms (such as multicast). For these reasons,
ICN architectures are considered by many research efforts to be underlays for IoT systems
(see, for example, the survey of Nour et al. [2]). However, ICN-based systems not only
require modifications to the networking infrastructure, but they also introduce new security
threats, such as “pollution” attacks that require new security solutions. Content pollution
attacks are a kind of denial-of-service attack, where an attacker injects fake content into
the network [3]. Fake content can be cached, amplifying, in this way, the impact of the
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attack [4]. One root cause of a content pollution attack is that any entity is allowed to
advertise and provide any content item.

This paper considers an architecture that abides by the principles of ICN; it has the
same advantages as ICN but, at the same time, it does not require modifications to the
networking architecture. Then, it proposes an efficient solution to prevent content pollution
attacks. The considered architecture leverages software-defined networking (SDN), and it
was originally proposed in [5]. That architecture allows stateless broadcast and multicast by
using content identifier advertisements and Bloom-filters-based network communication.
In particular, in this architecture, Bloom filters are used for “encoding” the network path
that a packet must follow [6]; additionally, edge nodes advertise content identifiers, and
these advertisements are used for creating lookup tables that map a content identifier to
the Bloom filter that should be used in order to reach the nodes that have advertised it. In
order to solve the problem of content pollution, a solution is proposed that enables edge
nodes to validate that an identifier is advertised by an authorized entity: this is achieved
using decentralized identifiers (DIDs) [7].

A DID is a URI-like identifier which resolves to a “DID document” that includes
“information” about the DID owner. DIDs are a standardized self-sovereign identity (SSI)
mechanism. SSIs have received increased attention in the context of the IoT [8]. The
proposed system allows DIDs to be used as content identifiers and a DID document
includes information that can be used for validating that an identifier advertisement has
originated from an authorized entity. Our paper makes the following contributions:

• It proposes a solution that integrates DIDs with a registration system allowing ordinary,
human readable URLs to be used as DIDs. These URLs can then be used for identifying
and/or grouping IoT devices.

• It defines methods that allow DID owners to securely bind a DID to IoT devices,
enabling, in this way, IoT devices to generate “proofs of ownership”, which are used
as the main building block of our security solution.

• It defines protocols that allow DID owners to perform identifier delegation to a third
party in a secure and controlled way.

• It designs the solution to be lightweight since the only operation that an IoT device
should perform is the generation of a digital signature and the only operation that an
edge node should perform is the validation of that signature.

The remainder of this paper is organized as follows. Section 2 presents background
information, and it introduces DIDs and the SDN-based underlay architecture. Section 3
discusses related work in this area. Section 4 details the design of the proposed solution.
The implementation and evaluation of the proposed solution are presented in Section 5.
Section 6 discusses alternative DID methods and ICN underlays as well as the impact of the
proposed solution in lightweight devices. Finally, we present our conclusions in Section 7.

2. Background
2.1. Decentralized Identifiers

Decentralized identifiers (DIDs) are a new type of globally unique identifier, recently
standardized by W3C. DIDs are designed to enable individuals and organizations to
generate their own identifiers using systems they trust [9]. Due to their intriguing security
and privacy properties, DIDs have been investigated as a security solution for many types
of systems, including IoT-based ones (see, for example, [10–12]).

A DID systems is akin to a key–value lookup architecture, where the key is the
decentralized identifier (DID) and the value is a DID document. The actual contents of a
DID document, as well as how it is resolved, depend on the implementation of the specific
DID method.

A DID is a string consisting of three parts: (1) the “did” URI scheme identifier, (2) the
identifier for the DID method, and (3) the DID method-specific identifier [9]. An example
of a DID for the “example” DID method follows.
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did : example : f ddc3256

A DID document may include, among other things, public keys (or “pointers” to
public keys) that can be used as verification methods, e.g., an “authentication” key used for
authenticating the DID “owner”, or an “assertion” key used for verifying digital signatures
generated by the DID owner. A DID document is usually maintained by a DID registry.
A registry implements proper security and access control mechanisms. Registries allow
the DID document owner to manage their corresponding DID documents, as well as third
parties to look up DID documents. Additionally, registries provide proofs of correctness
(e.g., a proof can be a digital signature generated by the registry). In a typical DID system,
any entity can verify that a digital signature has been generated by the owner of a DID by
following a two-step process: (a) retrieve the corresponding DID document, and (b) check
if the digital signature can be verified with (one of) the assertion key(s) included in the
DID document.

In this work, a new DID method is defined, and it is used to protect routing adver-
tisements. The proposed DID method relies on ICN for managing the corresponding
DID documents.

2.2. SDN and Bloom-Filter-Based Forwarding

Software-defined networking (SDN) [13] is a technology that enables the use of pro-
grammable network switches, which can be configured by a centralized entity, known as the
“network controller” (or simply controller). A controller can use a protocol, such as Open-
Flow [14], to configure switches with “rules” that are used for making switching decisions.

Reed et al. [6] leverage this property of SDN and implement source-routing using
Bloom filters [15]. From a high-level perspective, this solution is implemented as follows.
Firstly, it assumes that each outgoing interface of an SDN switch is identified by a bitstring
identifier. Then, each sender can create a “forwarding identifier” using a Bloom filter
constructed by ORing, the identifier of all interfaces through which a packet should be
forwarded; this forwarding identifier is stored in the IPv6 address field of the transmitted
packet. SDN switches are pre-configured with rules that allow them to forward these
packets through the interfaces whose identifier is included in the forwarding identifier.
An interesting property of this solution is that it can implement stateless multicast since
a forwarding identifier may include a complete multicast delivery tree. Another useful
property of this system is that given a forwarding identifier X for a path from a node A to a
node B, and another forwarding identifier Y from the same node A to a node C, by ORing
X and Y, we obtain a forwarding identifier that corresponds to a multicast delivery tree
from A to B and C.

3. Related Work

Many related systems are trying to secure (inter-)networks by using cryptographic
constructions (such as public keys) at the network layer (see, for example, [16–18]). These
systems have broader goals than our approach; therefore, even though they can be used
to achieve similar properties to our solution, they require significant changes to the net-
working infrastructure. Our solution is an overlay approach that can be used on top of any
networking technology. Similarly, our constructions are applied in the edge devices, and
they are transparent to the core network.

DIDs as a mechanism for securing routing messages have been investigated in the
context of next-generation internet architectures. For example, the solution in [19] uses DIDs
to protect the routing layer of information-centric architectures from poison attacks. These
approaches use public keys as the corresponding DID, whereas our solution uses a registrar
service to support URLs as DIDs. Additionally, our solution leverages an ICN-based DID
registry to implement DID document management. Similarly, recent solutions investigate
the use of DIDs for providing access control in the IoT (e.g., [20–22]). Although the goal of
these solutions is different compared to our system, they follow the same principle: they
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use DIDs to derive a key, which is then used for signing and verifying a digital signature.
Nevertheless, these solutions use blockchain to manage trust. Our system uses as a root of
trust a centralized entity. Although our approach introduces a single point of failure, it is
more lightweight, and more realistic to deploy. Furthermore, given that IoT devices do not
have the processing power to interact with the blockchain directly, all these solutions rely
on a “proxy” that mediates the communication between the IoT devices and the blockchain:
this proxy is also a single point of failure. The solution of Enge et al. [23] uses DIDs for
establishing secure communication channels between IoT devices. This solution uses DIDs
only for deriving public keys, whereas our system includes “constraints” that control how
a key can be used. Furthermore, our solutions supports secure and controlled delegation.

Related technologies, such as Verifiable Credentials [24] Macaroons [25], Authorization
capabilities for linked data (ZCAP-LD) [26] and capabilities as defined by the WAVE frame-
work [27] can also be used for expressing “assignments” and “capabilities”. The system
proposed in this paper uses DIDs because are simpler to implement and use, and easier to
verify. Nevertheless, if more complex trust relationships are required, these technologies
can be used instead.

In the context of the IoT, related efforts try to provide security properties at the appli-
cation layer, supporting, at the same time, advanced communication paradigms, such as
publish–subscribe, and group communication (see, for example, group OSCORE [28]).These
efforts are complementary to our approach: with our solution, we are securing the routing
layer, but the used cryptographic material can be provided as an input to application-layer-
security solutions.

4. Design
4.1. Entities and Interactions

The proposed system allows end-user client applications to interact with IoT devices
using an application layer protocol, such as CoAP group communication [29]. IoT devices
can be real devices, virtual devices (e.g., generated by a web of things IoT gateway), and
cloud-based systems: the nature of an IoT device does affect our design. IoT devices are
associated with one or more URLs, referred to as ResourceURL. Similarly, a ResourceURL
can be associated with one more IoT devices. IoT devices advertise their ResourceURL, and
these advertisements are digitally signed. IoT devices are attached directly or indirectly to
an edge node, which is identified by an identifier.

Our system assumes that ResourceURL is of the form

schema : //domain/path

and considers a network of trusted registrars which are responsible for managing the domain
part of ResourceURL. Domain owners register their domains with a registrar; this process is
assumed to be secure in the sense that domains cannot be “hijacked” or “stolen”, i.e., an
attacker cannot impersonate a legitimate user to a registrar. We assume that there is a
mechanism that allows registrars to verify domain ownership. Similarly, we assume that
the public keys of the trusted registrars are well-known. Then, each owner can create an
arbitrary number of ResourceURL by appending paths or by creating sub-domains. An owner
can assign a ResourceURL to an IoT device, or even delegate it to a third party controller.

Figure 1 illustrates an example of ResourceURL management. In this example, there is
a domain called “/smart-city.iot”. The domain owner generates three ResourceURL identi-
fiers and delegates them to three different controllers. Each controller uses the delegated
ResourceURL to create new URLs and assign them to the corresponding IoT device.
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SDN Controller 

Registrars 

Edge-2 Edge-3 

Edge-1 

SDN

/smart-city.iot/energy

/smart-city.iot/traffic

/smart-city.iot/mall

Resource URL Path

/smart-city.iot/traffic/drone Edge-1

/smart-city.iot/traffic/lights Edge-1

/smart-city.iot/energy/wind Edge-2

/smart-city.iot/solar Edge-3

/smart-city.iot/mall/Parking 192.168.1.2

SDN Switch 1 

SDN Switch 2 

SDN Switch 3 

Figure 1. System overview.

4.2. Underlay Network Architecture

Our system builds on the Edge-ICN architecture defined in [5]. In particular, our
system considers edge nodes interconnected using the SDN-based infrastructure described
in Section 2.2. Each edge node is identified by an identifier, and each IoT device is attached
to one of these edge nodes. Moreover, our system assumes that each edge node knows a
“forwarding identifier” toward any other edge node. Finally, SDN switches are configured
with a “special” forwarding identifier used for broadcasting messages; hence, we will refer
to this forwarding identifier as the broadcast forwarding identifier. In our system, the core
network is oblivious to the application-layer identifiers used by endpoints; therefore, the
SDN controllers does not have to be aware of the ResourceURLs used by IoT endpoints and
client applications.

4.3. The Use of Decentralized Identifiers

The proposed system leverages decentralized identifiers (DIDs) to implement secure
URL management. In particular, a new DID method is defined that uses the ICN registry
specified in [30]. This registry allows DID owners to store a DID document in a storage node
in the network. Any entity can read that document by sending an ICN subscription message.
The subscription message, which includes in its header the requested DID, is rooted by the
ICN network to the appropriate node, which in return publishes the requested document
alongside the corresponding document and authorization proofs.

As it is discussed in the following section, a DID in our system is associated with a
ResourceURL domain, and domain is used as our DID method identifier, e.g.,

did : domain : building1.iot

A DID in the proposed system is associated with a DID document, which is a JSON-
encoded data structure that includes two claims:

• id: The DID which the DID document concerns.
• assertion: A list of public keys that can be used for verifying the digital signatures

included in the corresponding advertisements. Each entry in the assertion list includes
the following claims:

– id: An identifier which is unique for the assertion list entries.
– prefix: A URL prefix for which the key can be used for singing advertisements.
– expires: A timestamp after which the defined public key cannot be used for signing

advertisements.
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– edge: The identifier of the edge node in which the IoT device is attached.
– type: The type of the public key.
– publicKey: The public key whose encoding depends on the type.

The type of an element of the assertion list can be either url or JsonWebKey. In the
former case, the publicKey is a pointer to a key defined in another document, and the
publicKey is a JSON web key (JWK) [31].

Listing 1 is an example of a DID document used in our system for the DID “did:domain:smart-
city.iot”

Listing 1. The DID document for the DID “did:domain:smart-city.iot”.

1 {
2 ‘‘id”: ‘‘did:domain:smart−city.iot”,
3 ‘‘assertion”: [{
4 ‘‘id”: ‘‘#key1”,
5 ‘‘expires”: ‘‘1651072705’’,
6 ‘‘prefix”: ‘‘smart−city.iot/’’,
7 ‘‘edge’’:‘‘edge−1’’,
8 ‘‘type”: ‘‘JsonWebKey”,
9 ‘‘publicKey”: {

10 ‘‘crv”: ‘‘Ed25519”,
11 ‘‘x”: ‘‘7a345vc...”,
12 ‘‘kty”: ‘‘OKP”
13 },
14 {
15 ‘‘id”: ‘‘#key2”,
16 ‘‘expires”: ‘‘1651072710’’,
17 ‘‘prefix”: ‘‘smart−city.iot/building1’’,
18 ‘‘edge’’:‘‘edge−2’’,
19 ‘‘type”: ‘‘url”,
20 ‘‘publicKey’’:‘‘did:domain:building1.iot’’
21 }
22 ]
23 }

A DID document is protected by a document proof and an authorization proof. The
document proof is used for verifying the DID document’s integrity. The authorization proof is
used for learning the public key of the DID owner. A document proof is a compact encoded
JSON web signature (JWS) [32], and its payload includes the following claims:

• created: A timestamp indicating the creation time of the proof.
• expires: A timestamp indicating the expiration time of the proof.
• sha-256: The base64url encoded SHA-256 hash of the DID document.

The signature of the proof is generated using EdDSA and the private key of the
DID owner.

The authorization proof is also a compact encoded JWS, and its payload includes the
following claims:

• id: The DID.
• created: A timestamp indicating the creation time of the proof.
• expires: A timestamp indicating the expiration time of the proof.
• controller: The public key of the DID owner.

The signature of an authorization proof is generated by the registrar.
Given a DID and the corresponding DID document, any entity can validate its correct-

ness by executing the following steps:

1. Verify that the DID is included in the id claim of the DID document.
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2. Verify that the document proof has not expired, it includes DID in the id claim, and it
includes the correct value in the sha-256 claim.

3. Verify that the authorization proof has not expired and includes DID in the id claim.
4. Verify that the signature of the authorization proof has been generated by a trusted

registrar and validate it.
5. Validate the signature of the document proof using the public key located in the

controller claim of the the authorization proof.

4.3.1. Domain Registration

Each domain owner should interact with a registrar in order to register a domain that
they own. The registration request includes also a public key, owned by the domain owner.
The outcome of the registration process is the authorization proof, which includes the id
claim, an id of the form did :< domain >, and in the controller claim, the public key sent
by the owner. The proof is signed by the registrar. Since (as we already discussed) the
public keys of the trusted registrars are well-known, anybody can verify the validity of the
latter signature.

4.3.2. Resource URL Assignment

A domain owner can create a ResourceURL and assign it to an IoT device. The IoT
device will “advertise” this ResourceURL and will sign these advertisements using its
private key. ResourceURL assignment is simply implemented by adding a new entry in the
assertion list that includes the public key of the IoT device.

As discussed in Section 4.2, the only cryptographic operation that IoT devices have to
perform is to generate a digital signature every time they send an advertisement message.
There can be cases where an IoT device is not powerful enough to perform this operation.
In these cases, the advertisement process can be delegated to another entity or even to the
edge node. This can be trivially achieved by including the public key of that node in the
corresponding entry of the assertion list.

4.3.3. Resource URL Delegation

There can be cases where a domain owner would like to delegate the administration
of a ResourceURL to a third-party controller. Compared to the assignment process, discussed
in the previous section, with the delegation process, the public key used by the controller is
defined in a DID document owned by the controller. Therefore, a controller can generate
new ResourceURL identifiers (prefixed with the delegated ResourceURL), and assign them
to IoT devices that it controls. The delegation process is implemented by generating a new
item in the assertion list of type “url” and by setting the publicKey claim of that element
equal to the DID of the controller.

4.4. Resource URL Advertisement

Resource URL advertisement extends the advertisement process of the underlying
architecture (defined in [5]) to include a verification process. Resource URL advertisement
in [5] is implemented as follows. Each IoT device advertises its ResourceURL to the edge
node where it is attached, and each edge node forwards this advertisement to the SDN
network using the broadcast forwarding identifier. Therefore, all advertisements are eventually
received by all edge nodes. Using these advertisements, edge nodes construct routing tables
that map a ResourceURL to a set of (local) IoT devices, as well as to a set of (remote) edge
nodes. Therefore, upon receiving a request for a ResourceURL, an edge node may forward
it to one or more locally attached IoT devices and/or to one or more edge nodes (using the
appropriate forwarding identifier). Advertisement messages include the identifier of the
edge node that can be used for reaching the corresponding IoT device as well as a nonce
used for preventing replay attacks.

The additional verification step is implemented as follows. Upon receiving an adver-
tisement, an edge node needs to validate it. In order to do this, it uses the registry operations
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defined in [30] to receive the appropriate DID document(s). An edge node may cache these
documents. An example of this process is illustrated in Figure 2. In this example, an edge
node receives an advertisement for “smart-city.iot/mall”, then it requests the ICN network
to retrieve the DID document for “did:domain:smart-city.iot”; in the retrieved document, it
performs a closer prefix match with the prefixes included in the assertion list, and selects
the appropriate entry. In this example, the entry for “smart-city.iot/mall” is of the type
URL, so the edge node requests the DID document for that URL and locates the desired
key. Finally, the edge node verifies the digital signature of the advertisement using the
key extracted from the DID document.If all validations succeed, the edge node updates its
routing table accordingly. Therefore, advertisements are handled by edge nodes, and they
do not reach IoT devices; hence, IoT devices do not have to perform any DID validation.

SDN

Edge-1 

Adv /smart-city.iot/mall

Read did:domain:smart-city.iot

…
“prefix”: “smart-city.iot/mall‘’,
“type”: “url”,
“publicKey”: “did:domain:mall-owner.iot” 
…

Read did:domain:mall-owner.iot

…
“prefix”: “smart-city.iot/mall‘’,
“type”: “JsonWebKey”,
“publicKey”: {…}
…

Figure 2. Assertion key resolution.

5. Implementation and Evaluation

In order to validate the proposed solution, we emulated an SDN network using the
mininet network emulator [33]. We used open vSwitch programmable switches [34], which
we configured with the appropriate rules for performing Bloom-filter-based switching
using the POX network controller [35]. We implemented did:domain using the jwcrypto
(https://jwcrypto.readthedocs.io/en/latest/) (accessed on 6 October 2022) to generate the
required JSON objects as well as to generate and verify the required JWS signatures.

5.1. Evaluation Scenario

The proposed solution was evaluated through a smart city emulation scenario. In this
scenario, the owner of the domain “smart-city.iot” delegates to 100 building owners the
ResourceURL “smart-city.iot/building-X”, where X is a number between 1 and 100. Then,
each building owner can configure the IoT devices of each smart building to advertise
resources using the delegated URL, e.g., the owner of “building-1” could configure a light
controller to advertise the URL “smart-city.iot/building-1/lights”.

https://jwcrypto.readthedocs.io/en/latest/
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In our evaluation scenario, we consider the topology depicted in Figure 3. In partic-
ular, each building is attached to a different edge node, and each edge node is attached
to a different SDN switch. We group SDN switches in two groups, and we connect all
SDN switches of the same group to another SDN switch. Finally, the latter two SDN
switches are connected using a backbone link. In our evaluation scenario, each building
advertises 50 different ResourceURLs every 10 s and a DID document every 1 min. Adver-
tisements take place almost simultaneously. Table 1 summarizes the parameters used in
our evaluation scenario.

Table 1. Evaluation scenario parameters.

Parameter Value

Number of buildings 100
Number of edge nodes 100
ResourceURL per building 50
Interval between content advertisements 10 s
Interval between DID document advertisements 1 min

.

.

.

.

.

.

Edge Nodes Edge Nodes 

SDN Controller 

SDN Switches SDN Switches

SDN Switches

Figure 3. Evaluation topology. The links between the SDN switches and the controller are not shown
for clarity reasons.

As a baseline for comparison of our system, we consider the trust schema defined
in [36]. This trust schema is used by a popular ICN architecture known as named data
networking (NDN) [37], and it resembles WebPKI. In particular, this schema defines “trust
anchors”, which are public keys used to sign digital certificates. Additionally, each (edge)
router is configured with rules that map prefixes of ResourceURL to identifiers which are
resolved to a digital certificate: this certificate includes a public key that can be used for
validating the digital signature included in the corresponding ResourceURL advertisement.
Therefore, compared to our solution, a trust anchor has the same role as the registrar, the
identifier of a digital certificate is equivalent to a DID, and a digital certificate is equivalent
to a DID document. Similarly to our solution, the solution of [36] can be used for creating
“trust chains”. In the considered use case, a trust anchor would sign a digital certificate for
the domain “smart-city.iot”, and the private key that corresponds to the key included in
the latter certificate would be used to sign the digital certificates of each building.

5.2. Routing State Storage and Computational Overhead

Each edge node maintains a routing table that maps a ResourceURL to either an edge
node identifier or to an IP address: in the former case, the IoT device that has advertised the
corresponding ResourceURL is attached to another edge node, whereas in the latter case, the
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device that has advertised the ResourceURL is attached to the local node. In order to decrease
the storage overhead, entries that share the same prefix and have the same destination edge
node are aggregated. For example, the entries [“smart-city.iot/building-1/lights”, “edge-
10”] and [“smart-city.iot/building-1/power”, “edge-10”] will be aggregated to [“smart-
city.iot/building-1/”, “edge-10”]. Using this approach, each edge node in the considered
evaluation scenario maintains 149 entries: 99 entries that correspond to the smart buildings
attached to other edge nodes, and an additional 50 entries for the URLs of the smart
building attached to that edge node. These entries are due to the ICN functionality of our
system. In addition, the edge router should maintain routing entries used for locating
DID documents. In particular, each building is associated with a different did:domain DID,
and hence, each router should maintain another 100 records. This state is due to the ICN
registry functionality of our system.

In a system built using the solution defined in [36] a routing entry per digital certificate
should be used. Therefore, such a system requires the same routing entries as in our solution.
However, in addition to the routing entries, the solution of [36] requires each router to
be configured with rules that map prefixes to digital certificate identifiers. Since in the
considered use case there are 100 buildings and each building uses its own key to sign
advertisements, each router should be configured with 100 additional rules. It should be
highlighted that in addition to the extra routing state, the solution defined in [36] creates
additional administrative overhead since every time a digital certificate changes (which
means its identifier also changes), the corresponding rules in the routers must be updated.

Routing in our system is implemented using longest prefix match at the edge routers
and Bloom-filter-based forwarding in the core network. Using a solution such as the one
proposed in [38], an ordinary PC can perform a few millions lookups per second in a
routing table that contains 3,000,000 entries. Similarly, the solution presented in [6], which
is used in the core of our architecture for implementing Bloom-filter-based forwarding,
requires switches from SDN to perform just an OR operation per outgoing link.

5.3. Communication Overhead

Our solution introduces the communication overhead for retrieving DID documents.
In the considered scenario, every time an edge node receives an advertisement, it requests
the network to retrieve two DID documents: the DID document that corresponds to
“smart-city.iot”, and the DID document that corresponds to the building owner. It is
reminded, however, that the underlying ICN architecture allows edge nodes to construct
multicast delivery trees; hence, multiple requests concerning the same item can be satisfied
using a single multicast delivery. However, this requires that the requests arrive almost
simultaneously to the edge node. Since we know that an advertisement will trigger
requests for DID documents, we evaluate a strategy based on which an edge node adds
some delay before responding to a DID document request, hoping that during that period,
more requests concerning the same DID will arrive. In order to evaluate the impact of
this strategy, we consider that only two buildings, one in each side of the backbone link,
advertise ResourceURLs (every 10 s), and we measure the number of DID documents that
are transferred through the backbone link in one minute. We consider three strategies:
edge nodes add no delay, edge nodes add 2 ms delay, and edge nodes add 4 ms delay.
The obtained results can be seen in Figure 4. As it can be observed, by adding 4 ms delay,
all requests for DID documents arrive at edge nodes; therefore, they can all be satisfied by
a single multicast transmission. As a result, only two DID documents are transferred over
the backbone link.
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Figure 4. Number of DID documents transferred over the backbone link if 0, 2, or 4 ms delay is added
before responding to DID document request.

Similarly, in a system that uses the solution of [36], an advertisement triggers two
requests: a request for retrieving the certificate that corresponds to “smart-city.iot” and
a request for retrieving the certificate of the building. Therefore, both solutions result in
the same communication overhead. Additionally, the delay-based mechanism can also be
applied for the solution of [36].

5.4. DID Document Storage Overhead

The DID document that corresponds to “smart-city.iot” includes 100 entries in the
assertion list, one for each building, and each entry is of the URL type. An example of such
an entry can be seen in Listing 2. The size of this document is 17,452 bytes.

Listing 2. An assertion entry for the DID “did:domain:smart-city.iot”.

1
2 {
3 ‘‘id”: ‘‘#key2”,
4 ‘‘expires”: ‘‘1651072710’’,
5 ‘‘prefix”: ‘‘smart−city.iot/building1’’,
6 ‘‘edge’’:‘‘edge−2’’,
7 ‘‘type”: ‘‘url”,
8 ‘‘publicKey’’:‘‘did:domain:building1.iot’’
9 }

Each building owner maintains also a DID document that includes 50 entries in the
assertion list, one for each advertised URL. Each entry is of the JsonWebKey type. The size
of each such document is 13,900 bytes.

A digital certificate in a system that uses the solution of [36] includes only a public key;
hence, its size is smaller compared to a DID document (in our use case ≈ 500 bytes). This
happens because the information included in a DID document in our system is distributed
as rules configured in routers in the solution of [36]. On the other hand, an entity authorized
for multiple prefixes should store a certificate per prefix in the solution of [36], whereas in
our solution, the same DID document may include a key that can be used for many prefixes.
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5.5. Computational Overhead

The only operation that each IoT device has to perform is signing an advertisement
message. In a RaspberryPi 2 Model B Rev 1.1 with a 900 MHz quad-core ARM Cortex-A7
CPU and 1 GB RAM, the generation of a signature using EdDSA requires 10.1 ms. Similarly,
signature generation in an Espressif ESP32 WROOM-32 IoT device (240 MHz dual-core
Xtensa LX7 CPU) requires 160 ms. EdDSA signatures are used in our system for providing
authentication of the advertisement messages. In any case, our solution is not tightly
bound to a particular authentication mechanism: other authentication mechanisms that
may be more suitable for constrained devices may be considered and integrated in our
approach. For example, many systems rely on MACs and pre-shared keys for providing
authentication: such an approach could also be used in our system, e.g., by including a
‘hint’ of the used pre-shared key in the DID document. However, such approaches are left
as future work.

Similarly, an edge node in our system has only to verify a digital signature. Using an
Ubuntu 22.04 machine equipped with an intel i7-3770 CPU, 3.40 GHz and 8 GB of RAM,
digital signature verification requires less than 1 ms.

The solution of [36] uses the same signing procedure; hence, its computational over-
head is the same as that in our system.

5.6. Security Evaluation

Providing that the registrar service is secure, our solution has the following secu-
rity properties:

The integrity and the authenticity of advertisements are protected. ResourceURL
advertisements are digitally signed by the IoT devices. The public key of the IoT device is
included in the DID document, whose integrity is protected by the document proof gener-
ated by the DID controller. Therefore, any entity can verify the advertisement signatures.
Additionally, through the authorization proof, any entity can verify that a particular IoT
device is authorized to advertise this specific ResourceURL.

Our solution is resilient to IoT devices’ key breaches. A breached IoT device key
can be used for generating fake advertisements for the ResourceURL for which the IoT
device has been authorized, until the corresponding DID document expires. The impact of
this attack is further decreased by including in the document the identifier of the edge node
in which the IoT device is attached (it is reminded that only the DID owner can modify a
DID document). Then, each edge device can check whether the included identifier matches
its own identifier. With this approach, fake advertisements can only be sent from the same
location where the legitimate IoT device is located, limiting, in this way, the impact of this
attack to a few more valid advertisement messages.

Dependence on the trusted registrar service is minimal. Domain owners rely on the
registrar service in order to receive the authorization proof. When this step is completed,
domain owners can manage, assign and delegate ResourceURL without relying on the
registrars. For example, a domain owner can freely modify the assertion key of a DID
document, as opposed, for example, to a solution based on WebPKI, where an owner would
require a new “digital certificate”.

5.7. Performance–Security Trade-Offs

As discussed in Section 4.4, whenever an edge node retrieves an advertisement, it
has to request the ICN network to retrieve the corresponding DID documents. In order to
decrease the number of such requests, as well decreasing the advertisement verification
time, these documents can be cached. Nevertheless, this means that an edge node may not
have the current version of a DID document. A DID document is updated whenever a new
entry is added in the assertion list or whenever an existing entry is removed. In the former
case, the edge node will not be able to locate the key used for signing the advertisement in
the cached documents; hence, it may refresh its cache. However, in the latter case, the edge
node will consider a signature generated with a revoked key to be valid. Therefore, there is
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a time window between the moment that a key is revoked and the moment that a cache
entry expires during which a revoked key can be used. A solution to this problem that
can be explored in future work is to leverage the ICN functionality and each edge node to
“subscribe” for all future versions of a DID document; this way, every time a DID document
is created, it will be pushed to the edge nodes that have subscribed to its updates.

6. Discussion
6.1. Alternative ICN Underlays

Our solution is applied to the ICN-based architecture defined in [5] but it can also be
applied in other ICN-based solutions. We now examine how our solution can be used with
two other ICN systems.

Named-data networking (NDN) [37] is probably the most popular ICN architecture.
The main difference between NDN and our underlying architecture is that in NDN, all
routers participate in the ICN network as opposed to our underlay architecture, where
only edge routers are aware of the ICN functionality. This means that in NDN, all routers
handle advertisements and maintain routing state. NDN uses the solution defined in [36] to
protect against fake advertisements. Since this solution requires the definition of “rules” in
each router, it is applied only in edge routers (in order to decrease administrative overhead).
Our solution does not require any configuration in routers; hence, if our solution was used
in NDN, all routers could potentially verify advertisements.

The publish–subscribe internet architecture (PSI) [39] is an alternative ICN-based
system. PSI assumes an overlay “rendezvous” system which is responsible for handling ad-
vertisements, as well as for responding to content-lookup requests (hence, this rendezvous
system is similar to DNS). PSI considers that each rendezvous node is responsible for
handling a particular portion of the name space as well as “controlling” which entities
can advertise that portion. In other words, each rendezvous node can hold the role of a
registrar as defined in our system. Hence, our solution fits naturally to PSI.

6.2. Alternative DID Methods

In our system, we defined our own DID method. In this section, we discuss how
our DID method compares to other similar methods that could have been considered in a
solution similar to ours.

did:web [40] is a DID method that stores DID documents in web servers accessed
over HTTPS. The location of the web server is defined in the DID itself; for example,
the DID document that corresponds to “did:web:example.com” can be located at “https:
//example.com” Our DID method uses a similar DID document resolution and it relies
on the same security primitives (did:web requires a valid HTTPS certificate, our method
requires a valid authorization proof). The main difference between the two methods is that
the did:web method does not include the “prefix” property for assertion keys, and therefore,
it is not straightforward as to how to delegate ResourceURL prefixes to other entities.

did:key [41] is a simple DID method where DID documents are implicit. In particular,
a DID in did:key is the encoding of a public key (e.g., using an encoding such as base-58).
Then, this key is used for all verification methods. Using did:key implies that content
name prefixes are also public keys (hence, they are not human-readable). Additionally,
because DID documents are implied, delegation cannot be implemented. On the other
hand, did:key does not require a trusted registrar.

did:self [19] is a DID method that also uses public keys as DIDs. The private key that
corresponds to a DID is used for signing the corresponding DID document. Therefore,
did:self can achieve delegation. Moreover, similar to did:key, it does not require a registrar.
However, did:self does not support human-readable names. Moreover, in case the private
key that corresponds to a DID is breached or lost, the corresponding DID cannot be used
any more; therefore, if that DID is used as a prefix, all content items must be updated to
use a new prefix.

https://example.com
https://example.com
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6.3. Use of Constrained Devices

Although our considered use case is IoT-based, our solution is not designed with
constrained devices in mind. Nevertheless, we believe that it should be possible to apply
our solution even in these devices. EdDSA signatures can be implemented even in devices
with limited capabilities. As Kortesniemi et al. [11] reported, the EdDSA signature can
be performed in 14 million cycles on an 8-bit device, while on a 32-bit low-cost ARM
Cortex-M0 core, the same operation undergoes 3.6 million cycles. Therefore, Cortex-M0
devices, which are available for less than half a dollar in large quantities and run at up to
48 MHz, can perform up to 13 EdDSA signatures per second. Similarly, the power required
to generate an EdDSA signature in a Cortex-M0 processor is 20–34 µJ [11].

7. Conclusions

In this paper, a solution that leverages decentralized identifiers for secure application-
layer routing is proposed. The proposed solution can be easily integrated into existing
approaches since it does not require any modification to the SDN infrastructure. The
proposed solution allows URLs to be used as DIDs by adding a trusted name registration
service; the use of URLs as DIDs enables more user-friendly application-layer solutions, as
well as greater interoperability with legacy systems. The proposed solution is lightweight
since it requires only few ms to perform the necessary cryptographic operations even in IoT
devices; it adds only a few bytes to the routing advertisement messages; it creates minimal
additional routing states; it does not need auxiliary information to be stored per verifying
entity; and it can be easily managed. Finally, the proposed solution has intriguing security
properties: it protects the integrity and authenticity of advertisements, it is resilient to key
breaches, and its dependence on a trust registrar is minimal.

Future work in this area includes solutions for fast revocation so that key breaches
can be handled in a secure and fast manner, as well as tools for automating the process of
domain registration. Furthermore, the use of verifiable credentials as well as the application
of different DID methods and ICN underlays will be further investigated.
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