
Citation: Serrano, R.; Duran, C.;

Sarmiento, M.; Dang, T.-K.; Hoang,

T.-T.; Pham, C.-K. A Unified PUF and

Crypto Core Exploiting the

Metastability in Latches. Future

Internet 2022, 14, 298. https://

doi.org/10.3390/fi14100298

Academic Editors: Agostino Forestiero

and Mohamed Abd Elaziz

Received: 30 August 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Unified PUF and Crypto Core Exploiting the Metastability
in Latches
Ronaldo Serrano * , Ckristian Duran , Marco Sarmiento , Tuan-Kiet Dang , Trong-Thuc Hoang
and Cong-Kha Pham

Department of Computer and Network Engineering, The University of Electro-Communications (UEC),
Tokyo 182-8585, Japan
* Correspondence: ronaldo@vlsilab.ee.uec.ac.jp

Abstract: Hardware acceleration of cryptography algorithms represents an emerging approach to
obtain benefits in terms of speed and side-channel resistance compared to software implementations.
In addition, a hardware implementation can provide the possibility of unifying the functionality
with some secure primitive, for example, a true random number generator (TRNG) or a physical
unclonable function (PUF). This paper presents a unified PUF-ChaCha20 in a field-programmable
gate-array (FPGA) implementation. The problems and solutions of the PUF implementation are
described, exploiting the metastability in latches. The Xilinx Artix-7 XC7A100TCSG324-1 FPGA
implementation occupies 2416 look-up tables (LUTs) and 1026 flips-flops (FFs), reporting a 3.11%
area overhead. The PUF exhibits values of 49.15%, 47.52%, and 99.25% for the average uniformity,
uniqueness, and reliability, respectively. Finally, ChaCha20 reports a speed of 0.343 cycles per bit
with the unified implementation.

Keywords: ChaCha20; PUF; RISC-V

1. Introduction

A secure system’s root of trust (RoT) requires some primitives to guarantee a minimum
level of security [1–3]. For example, true random number generators (TRNG), physical
unclonable functions (PUF), and cryptography algorithms can be used in a system’s key
generation and booting processes. Typically, each secure primitive is implemented in a stan-
dalone peripheral in the system, increasing the area overhead. In addition, a performance
reduction is generated by moving the key into the respective usage module. Therefore,
an approach consisting of unifying such modules with hardware security primitives is
adopted to reduce the area overhead, exploiting different physical phenomena in the orig-
inal peripheral. For example, a static random access memory (SRAM) can be used to
generate a TRNG-PUF, exploiting the bit line’s time response and leakage current [4–6]. In
addition, a TRNG and a non-volatile random access memory (NVRAM) can be unified,
exploiting the metastability in the sense amplifier [7] or reading the bit cell noise [8]. On
the other hand, a PUF-NVRAM is unified using the initial charges into the floating gates’
bit cells [9]. Another method consists of the unification of a TRNG-crypto core based on
the metastability response using hold violations [10].

The static and dynamic entropies used in PUFs and TRNGs, respectively, are generated
with different physical phenomena. Additionally, depending on the physical phenom-
ena, the entropy source of the PUFs and TRNGs needs calibration or the utilization of
particular techniques in the implementation to reduce the undesirable effects. For example,
the metastability in flip-flops (FFs) can be used to generate a TRNG using two clocks with
different frequencies [11–13]. In addition, a clock manager can generate a PUF, calibrating
the clock frequencies to obtain a stable and unique response [14]. In another way, a TRNG
based on frequency collapse can be implemented with a noise generator to guarantee
that physical phenomena occur [15]. However, the mismatch causes an increase in the

Future Internet 2022, 14, 298. https://doi.org/10.3390/fi14100298 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14100298
https://doi.org/10.3390/fi14100298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-5501-0914
https://orcid.org/0000-0003-3746-8320
https://orcid.org/0000-0002-3544-8839
https://orcid.org/0000-0003-2616-2510
https://orcid.org/0000-0002-4078-0836
https://orcid.org/0000-0001-5255-4919
https://doi.org/10.3390/fi14100298
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14100298?type=check_update&version=1

Future Internet 2022, 14, 298 2 of 12

static entropy, generating a stable and unique response in the physical phenomena of the
PUF implementation [16]. Therefore, some strategies have been proposed to mitigate the
systematic mismatch to generate a robust TRNG [17,18]. Furthermore, the implementation
of an FPGA introduces an additional mismatch, increasing the implementation difficulty in
the entropy source [19]. On the other hand, the cross-coupled inverter pair [20] and the
NAND [21,22] latches are used in many TRNG implementations. However, TRNGs based
on the metastability of latches require a calibration step due to the static entropy generated
by the mismatch. Because of the many potential problems caused by the mismatch in the
TRNG application, a calibration step or technique is mandatory in the implementation.
Nevertheless, the mismatch can be exploited to generate a PUF implementation without a
calibration step, reducing resource utilization.

Cryptography algorithms are used in data transmission, providing a secure end-to-end
channel for vital information. However, side-channel attacks affect software implemen-
tations [23–25]. Therefore, new approaches are proposed to mitigate the vulnerabilities
using in-memory computation [26] or hardware implementations [27–29]. The cipher most
used in Transport Layer Security (TLS) is the advanced encryption standard (AES) [30].
Nonetheless, a new approach is proposed in TLS version 1.3, generating another alternative
to the AES cipher [31,32]. The new cipher is the ChaCha20 based on Salsa20 [33], using
20 rounds in the operational matrix.

This work presents a unified PUF-ChaCha20 crypto core in an FPGA implementation.
The main contribution of the current work is the unification of the PUF and crypto core
without a significant area overhead, providing a new security approach in internet security
in the one-time key (OTK) generation of the ChaCha20-Poly1305 AEAD into TLS version
1.3. Additionally, part of this work involves the determination of constraints and strategies
for implementing a PUF without a calibration step. The static entropy in the implemen-
tation generates a PUF application using the unbalanced latches caused by the mismatch
variations. In addition, the latches are used in one internal state of the ChaCha20 core with-
out a calibration step, reducing resource utilization. The PUF presents, on average, 49.15%
uniformity, 47.52% uniqueness, and 99.25% reliability in nominal conditions. The crypto
core occupies 2416 LUTs and 1026 FFs in an FPGA implementation. Finally, the ChaCha20
with an internal PUF can generate a salted key using the static entropy created by the
metastability in latches.

The remainder of this paper is organized as follows. Section 2 describes the utilization
of the new approach of the unified PUF-crypto core in TLS. Section 3 discusses the architec-
ture and the analytical model of the implemented PUF. Section 4 illustrates the ChaCha20
architecture unified with the PUF. Section 5 shows the results of the unified PUF-ChaCha20
implementation. Finally, Section 6 presents the conclusion of the paper.

2. Transport Layer Security

Transport Layer Security (TLS) is used in end-to-end connections for computer net-
works, providing the cyber security requested by websites, as shown in Figure 1. TLS
version 1.2 [34] showed an increase in the percentage of use in websites from 2016 to 2021.
However, the new release of TLS was published in 2018, removing some insecure ciphers.
TLS 1.3 [30] reported a five times greater amount of usage in the last year, demonstrating
the relevance of the new approach. In addition, ChaCha20 is introduced in this TLS version,
providing a different solution than a cipher based on AES. The new authenticated encryp-
tion with additional data (AEAD) is constructed with ChaCha20 and Poly1305 primitives
for cipher and message authentication codes, respectively.

Figure 2 illustrates a typical TLS handshake procedure. The handshake describes the
series of steps for exchanging information between a client and a server. The handshake
sends a client hello to the server, including the TLS version, the cipher suites, and the
supported client public key. Next, the server sends a server hello with a certificate and
cipher suites selected in response to the client hello. The client verifies the certificate
provided by the server, authenticating the owner of the domain. Finally, the server decrypts

Future Internet 2022, 14, 298 3 of 12

the master key provided by the client, establishing a secure symmetric encryption. The
data are exchanged using the AES-GCM, AES-CCM, or ChaCha20-Poly1305 defined in the
cipher suites used in the hello process.

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge
 o

f u
se

 in
 w

eb
si

te
s

[%
]

2016 2017 2018 2019 2020 2021 2022
Year

TLS 1.2

TLS 1.3

Figure 1. Percentage of use of Transport Layer Security version 1.2 and 1.3 in websites [32].

Client Server

- Create private and public key.

- List of cipher suites.
- Client public key (ECDHE).
- Signature of the algorithm (RSA).

Execute

Send

- Create private and public key
(key shared) from the private key.
- Generate a master key.
- Hashed master key.
- Sign the certificate.

- Cipher suites selected.
- Group key shared (ECDHE).
- Signature algorithm (RSA).
- Server certificate.

- Verify the certificate (RSA).
- Generate the master key from
the public server and client
private key (HMAC-SHA2)

- Master key.
- Client ready.

- Data exchange.

- Data exchange.

Client hello Server hello

 Data exchange using AES-GCM,
AES-CCM or ChaCha20-Poly1305.

- Decrypts the Master key.

- Server ready.
- Data exchange.

Figure 2. TransporT Layer Security 1.3 handshake protocol [32].

Figure 3 shows the ChaCha20-Poly1305 AEAD procedure. The procedure starts with
the generation of the one-time key (OTK) used in the Poly1305 message authentication code
(MAC) process of the AEAD. Conventionally, ChaCha20 generates an OTK using the values
of the key and nonce with a counter and plaintext initialized in zero. In addition, the OTK
can also be created using a linear-feedback shift register (LFSR) [35]. Next, the additional
authenticated data (AAD) with an arbitrary length is introduced in the Poly1305. Then,
the encryption/decryption process is applied to the plaintext or ciphertext. However,
sometimes the plaintext or ciphertext in step 3 is not a full block with 512 bits, requiring

Future Internet 2022, 14, 298 4 of 12

an output filter in the ChaCha20. When the encryption/decryption process is finished,
a final block is introduced in Poly1305, containing the lengths of data processed and the
introduced AAD. Finally, the MAC is generated.

Inputs
And

Steps

ChaCha
One-Time

Key

AAD
Input

Encrypt
Decrypt
Process

Zero
Plaintext

ChaCha20
Poly1305

AEAD
Procedure

Step 1 Step 2 Step 3 Step 4

Filter
Process

Step 5
Final
Block
Input

Step 6

Key
Nonce

Plaintext

MAC
Process

Ciphertext
Zero

Counter
Arbitrary

AAD

Full or
partial
final

message
 block

Final
block TAG

Figure 3. ChaCha20-Poly1305 AEAD procedure.

Figure 4 illustrates the typical and proposed PUF-based OTK generation. The proposed
OTK generation uses a PUF unified with a crypto core, obtaining the counter’s initial value.
In the proposed OTK generation, the ChaCha20 takes the key, nonce, zero-initialized
plaintext and the counter value obtained in the PUF response, mitigating the potential
risks caused by the initial value change in the counter in the zero-initialized counter. After
20 rounds of ChaCha20, the first 256 bits of the CipherText is the OTK.

One-Time Key
GenerationTypical Proposed

ChaCha20Key
Nonce

Zero
Counter

Poly1305
OTK

After 20 rounds 256

Zero
Plain
text

ChaCha20Key
Nonce

Poly1305
OTK

After 20 rounds 256

Zero
Plain
text

Counter
 PUF

Figure 4. Block diagram of one-time key generation.

3. Physical Unclonable Function
3.1. Physical Phenomena

Figure 5 illustrates the typical physical phenomena that generate static entropy for
a PUF application. Commonly, static entropy is obtained by the process variation of the
implementation, which causes alterations in the frequency response in ring oscillators
(ROs) [36,37] and the time of frequency collapse in multi-modal RO [38,39]. However, exter-
nal circuits are necessary for collecting the static entropy. On the other hand, the dynamic
entropy caused by metastability can affect the typical response of the latch, generating a
random number [20–22]. Nevertheless, the process variation can generate enough static
entropy in latches.

Future Internet 2022, 14, 298 5 of 12

Multi-modal RORO Latch

 Counter A

 Counter B

Race Arbiter

PU
F

C
on

tr
ol

le
r

Out

Frequency
Detector Counter

Out

S

R

Q

Enable

Enable

Frequency
CollapseTA < TB

QN

Figure 5. The PUF architectures based on RO, multi-modal RO, and latches.

Figure 6 shows the response scenarios in a metastable latch. First, the latch presents
the same probability of obtaining a one and zero in the response when the latch is balanced.
The balanced latches are used for a TRNG application. However, the process variations
impose problems when balancing the latch, which require a calibration step [7,20,21]. On
the other hand, the unbalanced latches produce a stable and unique response. Therefore,
the stable and unique response in the unbalanced latches can be used for PUF applica-
tions, exploiting the process variations in the latch. In addition, the latches are used as a
memory, independent of the balance. Therefore, the unbalanced and balanced latches can
be combined with digital implementations, unifying the logic functions with a PUF or a
TRNG application.

VQ

V Q
 [V

]

VQN [V]

Balanced Latch

VQN

VDD

VDD

VDD
2

2
VDD0

0

V Q
 [V

]

VQN [V]

VDD

VDD

VDD
2

2
VDD0

0

Unbalanced Latch

VQ

VQN

TRNG
Application

PUF
Application

Figure 6. Metastability response in balanced and unbalanced latches.

3.2. Analytical Model

The analytical model of the PUF is based on the metastability response in latches. The
metastability in latches has been studied for TRNG applications, presenting an analytical
model depending on the mismatch and noise based on a loop gain model [17]. The voltage
in the nodes VQ and VQN are modelled using functions depending on the opposite voltage
node (VQ = f (VQN) and VQN = f (VQ)). In addition, the mismatch (δm(Q) and δm(QN)) and
noise (δn(Q) and δn(QN)) are added to the response of each voltage node in (1).

VQ = g(VQN) + δm(Q) + δn(Q)

VQN = f (VQ) + δm(QN) + δn(QN)
(1)

When the latch is balanced, the δn(Q) and δn(QN) generate a random response. In
addition, the δm(Q) and δm(QN) impose a bias in the latch response. The undesirable effects
in each node generate voltage variations in each node. When the VQ and VQN exceed the
maximum voltages tolerated (V(QF) and V(QNF)), the response of the latch is obtained. The
result of the loop gain model approximates the response to (VQ = (a ∗ VQN) + b). The
coefficients a and b are calculated using the V(QF) and V(QNF) values in (2), respectively.

Future Internet 2022, 14, 298 6 of 12

a =
f (VQF)−VQNF
VQF−g(VQNF)

b =
VQFVQNF− f (VQF)g(VQNF)

VQF−g(VQNF)

(2)

Finally, the response of the latch in a metastable response is denoted by [(a ∗VQ)+ b] >
[f (VQ)− δm(QN) − δn(QN)]. The latch response depends on the relationship between each
node’s voltage, noise, and mismatch. Therefore, a PUF implementation needs to increase
the process variations represented in the mismatch and reduce the noise introduced in
the latch.

3.3. Implementation

Figure 7 shows the architecture of the implemented PUF. The PUF exploits the metasta-
bility in NOR latches. The PUF architecture is designed to be unified with a crypto core,
changing the operational mode of the latches between PUF and memory with the signal
mode. Therefore, the counter’s value can be generated in the PUF mode or stored in the
crypto core mode. The PUF implementation consists of two branches of latches, and the
32-bit challenge selects which branch is used for the PUF output response. Each branch
consists of 32 PUF latches. The implemented latches present an unbalanced response in all
bits due to the lack of calibration and implementation strategies to improve the mismatch.
The length of the challenge and response of the PUF implementation is 32 bits. In addition,
the unified PUF generates an overhead of one cycle in the crypto core function.

Figure 8 illustrates the techniques applied to reduce the noise and improve the process
variation to obtain unbalanced latches in the implementation. The latches are constructed
with NOR cells using the LUT-6 primitive of the FPGA. In addition, the INIT value of the
NOR function in the LUT differs in each latch. Therefore, the mismatch of the implemented
latch increases in the PUF application. Additionally, a placement blockage is implemented
in the slices of the latch, reducing the noise introduced by external circuits into the latch.
On the other hand, the static entropy source implemented in the latch must operate as an
elementary bit memory. The entropy source is implemented in one of the internal stages of
a ChaCha20 crypto core as described in Section 4. Finally, the PUF-ChaCha20 is connected
to a system on chip (SoC) based on an RISC-V for testing the implementation [40].

Branch
1

Branch
2

1

32

2 3
…

1
23

…32

OUT

Counter
Mode

Challenge

Init PUF
32

32 32

3232

1 2
3

…
32

32

Figure 7. PUF block diagram implementation.

Future Internet 2022, 14, 298 7 of 12

PUF

RISC-V
Processor

and
ChaCha20

 RV32I

QSPI

GPIOTimer

RAM

I$ D$

AHB-Lite BUS

UART

APB BUS

AHB-Lite
APB

Debug
Module JTAG

To JTAG
Controller

ChaCha20

PUF

NOR1

NOR2

FF
Blockage

Blockage

Branch
1

Branch
2

Figure 8. Strategies and constraints in the PUF implementation.

4. ChaCha20

The ChaCha20 cipher is implemented using a permutation matrix using a nonce, key,
counter, and some constants [31,32]. This cryptography function is based on the Salsa20
algorithm [33]. ChaCha20 is used in TLS 1.3 to provide another solution different from
the cipher based on the AES [30]. Figure 9 illustrates the architecture of the implemented
ChaCha20 core. The architecture uses four quarter round (QR) operators to permute the
operation regs in the block function highlighted in blue. Additionally, a finite state machine,
highlighted in red, controls the permutation of the operational regs depending on the actual
round (column or diagonal). Therefore, a column or diagonal round is finished in one
cycle. In the last round, the values of the initial and operation regs are added to obtain
the keystream. Finally, a crypto f unction, highlighted in green, applies an XOR operation
between the plain text and the keystream. The PUF is implemented in the initial regs,
replacing the regs with latches. The signal mode switches between the memory and PUF
operations in the latches. In addition, a 32-bit challenge is used to select one of the two
branches of each latch to obtain the response of the PUF.

Initial regs

FSM

Matrix Adder

Serializer

Crypto Function

QR_0 QR_1 QR_2 QR_3

Operation regs

Plain Text
Cipher Text

To
Little

Endian
Key

Nonce

Counter

Init

Next

Ready

FSM

Block Function

96

256

32

512

512

Challenge

Mode
PUF OUT

PUF

32

32

Init PUF
32

Figure 9. Architecture of the ChaCha20 crypto core [31].

Future Internet 2022, 14, 298 8 of 12

Figure 10 depicts the quarter round (QR) operation implemented in the ChaCha20
crypto core. The inputs (a ,b, c, and d) each denote one stage of the operational matrix.
Each stage of the initial and operational matrix consists of a 32-bit register. The results
(A, B, C, and D) are stored in the same position as those used earlier in the round. The
QR operator is implemented using an add, rotate, and XOR operations [41]. The rotate
operation, highlighted in red, is implemented using a wire permutation to reduce the
area required.

a

b

c

d

add

<<<
16

add

<<<
12

add

<<<
8

add

<<<
7

A

B

C

D

ARX cell ARX cell ARX cell ARX cell

Figure 10. Implementation of the quarter round (QR) operation [31].

Figure 11 shows the organization of the initial stages, column, and diagonal rounds
of the ChaCha20 matrix. The initial stages are stored in the initial regs, using 128 bits of
constants, 256 bits of the key, 96 bits of nonce, and 32 bits of counter. However, the counter
stage is implemented using the latches described in Section 3.3. ChaCha20 works in a
normal function when the latches are used to store the counter’s value. On the other hand,
the latches in the metastable mode generate a random number depending on the process
variations inside the latches. In addition, the ChaCha20 core can initialize a pseudo-key
derivation using the value of the latches in metastability mode, permuting the key and the
nonce used in the ChaCha20 algorithm for the ChaCha20-Poly1305 AEAD.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Column Round

Diagonal Round

Constant_0 Constant_1 Constant_2 Constant_3

Key_0 Key_1 Key_2 Key_3

Key_4 Key_5 Key_6 Key_7

Counter
PUF Nonce_0 Nonce_1 Nonce_3

Initial States of ChaCha20

Figure 11. Structure of the column and diagonal rounds, along with the initial states of the PUF-
ChaCha20 core.

5. Results

This section shows the implementation results in a Xilinx Artix-7 XC7A100TCSG324-1
FPGA. The uniqueness, uniformity, and reliability are measured in three different FP-
GAs. The inter- and intra-chip Hamming distances (HMD) and Hamming weights are
measured in nominal conditions. The occupied resources are compared with other PUF
implementations in FPGAs, which are based on different physical phenomena.

Future Internet 2022, 14, 298 9 of 12

The quality of the presented PUF implementation is estimated using uni f ormity,
uniqueness, and reliability [42–44]. The uni f ormity represents the average Hamming
weight in the PUF response, as calculated by (3), where a is the total number of mea-
sured responses of the PUF and ri is the number of ones in each response. The uniqueness
denotes the PUF’s capability to generate different responses between distinct devices mea-
sured using the average inter-die Hamming distance as shown in (4). There, b is the number
of chips measured, and R(i,j) denotes the n-bit response with a particular challenge, which
is the same for each chip of the two that are compared. Reliability indicates the ability of the
PUF implementation to reproduce the same response for a particular challenge under differ-
ent conditions and is measured by the intra-die Hamming distance (5). Here, c is the total
number of measurements with the same challenge applied to a particular PUF. Additionally,
R f and Ri are the n-bit reference iteration responses for the same challenge, respectively.
Table 1 compares the quality of the PUF responses of our implementation and the quality
of the PUF responses of other implementations based on different physical phenomena.
The ideal values for uni f ormity, uniqueness, and reliability are 50%, 50%, and 100%, respec-
tively. The uni f ormity, uniqueness, and reliability values in Equations (3)–(5) are presented
as normalized values.

Table 1. Summary and comparison of the PUF quality.

This Work [36] [45]

Uniformity [%] 49.15 49.61 47.20

Uniqueness [%] 49.85 49.95 39.10

Reliability [%] 99.25 99.13 98.89

Topology Unbalanced Latches RO with Hybrid Logic Galois RO

Figure 12 illustrates the intra- and inter-chip Hamming distances in our PUF imple-
mentation. The intra- and inter-chip Hamming distances are measured in three different
FPGAs using 1000 different challenges. The challenges used in the test are randomly
selected and are not repeated. The PUF exhibits an average intra-chip Hamming distance
of 0.75% with a 0.2% standard variation. Additionally, the implementation exhibits an
average intra-chip Hamming distance of 49.85% with a 2.2% standard variation.

Uni f ormity =
1
a

a

∑
i=1

ri (3)

Uniqueness =
2

b(b − 1)

b−1

∑
i=1

b

∑
j=i+1

HMD(Ri, Rj)

n
(4)

Reliability =
1
c

c

∑
i=1

HMD(Ri, R f)

n
(5)

Table 2 shows the resources occupied in the PUF-ChaCha20 implementation in an
FPGA. The implementation presents a 3.1% resource overhead caused by the unified
functions compared to [31]. On the other hand, the performance is compared with other
ChaCha20 implementations, denoting a 0.8% performance reduction in comparison to [31]
caused by the cycle necessary to configure the mode of the PUF implementation. The
implementation exhibits 0.343 cycles/byte in the crypto core mode.

Future Internet 2022, 14, 298 10 of 12

Intra-die Inter-die

µ = 0.75
σ = 0.2

µ = 49.85
σ = 2.2

5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

Hamming distance [%]

N
um

be
r

of
 S

am
pl

es

Figure 12. Inter- and intra-PUF Hamming distances in nominal conditions.

Table 2. Performance summary and comparison in the FPGA.

Slices Performance
[Cycles/Byte]

Module LUT FF Total Standalone

This work 2416 1026 3442 0.343

[31] 2288 1058 3338 0.340

[41] 2369 2152 4521 0.530

6. Conclusions

In this paper, we present a unified PUF crypto core implementation, exploiting
the metastability of the latches in an FPGA. The implemented crypto core contains the
ChaCha20 cipher using a 4-QR module. The PUF is implemented in one of the stages of the
ChaCha20 core using unbalanced latches. The PUF challenge is introduced to select each
output bit between two branches of latches. The PUF-ChaCha20 implementation occupies
2416 LUTs and 1026 FFs, resulting in a 3.1% resource overhead. The PUF application is
tested in three XC7A100TCSG324-1 Xilinx FPGAs, resulting in responses with a uniformity
of 49.15%, a uniqueness of 49.85%, and a reliability of 99.25%, on average. Finally, the uni-
fied implementation can be used in OTK generation for ChaCha20-Poly1305 AEAD in TLS
1.3, generating an additional secure approach in end-to-end computer networks.

Author Contributions: Supervision, C.-K.P., C.D. and T.-T.H.; methodology, R.S., M.S. and T.-K.D.;
investigation, R.S.; writing—original draft preparation, R.S.; writing—review and editing, R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the New Energy and Industrial Technology Development
Organization (NEDO) project JPNP16007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Future Internet 2022, 14, 298 11 of 12

Acknowledgments: This paper is based on results obtained from project JPNP16007, commissioned
by the New Energy and Industrial Technology Development Organization (NEDO).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, V.B.Y.; Chattopadhyay, A.; Haj-Yahya, J.; Mendelson, A. ITUS: A Secure RISC-V System-on-Chip. In Proceedings of the

32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 418–423.
2. Nasahl, P.; Schilling, R.; Werner, M.; Mangard, S. HECTOR-V: A Heterogeneous CPU Architecture for a Secure RISC-V Execution

Environment. In Proceedings of the ACM Asia Conference on Computer and Communications Security (ASIA CCS), Virtual,
7–11 June 2021; pp. 187–199.

3. Hoang, T.-T.; Duran, C.; Serrano, R.; Sarmiento, M.; Nguyen, K.-D.; Tsukamoto, A.; Suzaki, K.; Pham, C.-K. Trusted Execution
Environment Hardware by Isolated Heterogeneous Architecture for Key Scheduling. IEEE Access 2022, 10, 46014–46027. [CrossRef]

4. Taneja, S.; Rajanna, V.K.; Alioto, M. 36.1 Unified In-Memory Dynamic TRNG and Multi-Bit Static PUF Entropy Generation for
Ubiquitous Hardware Security. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco,
CA, USA, 13–22 February 2021; Volume 64, pp. 498–500. [CrossRef]

5. Taneja, S.; Rajanna, V.K.; Alioto, M. In-Memory Unified TRNG and Multi-Bit PUF for Ubiquitous Hardware Security. IEEE J.
Solid-State Circuits 2022, 57, 153–166. [CrossRef]

6. Nam, J.W.; Ahn, J.H.; Hong, J.P. Compact SRAM-Based PUF Chip Employing Body Voltage Control Technique. IEEE Access 2022,
10, 22311–22319. [CrossRef]

7. Serrano, R.; Duran, C.; Sarmiento, M.; Pham, C.K. A Unified NVRAM and TRNG in Standard CMOS Technology. IEEE Access
2022, 10, 79213–79221. [CrossRef]

8. Ray, B.; Milenković, A. True Random Number Generation Using Read Noise of Flash Memory Cells. IEEE Trans. Electron Devices
2018, 65, 963–969. [CrossRef]

9. Ardila, J.; Santamaria, J.; Florez, K.; Roa, E. A Stable Physically Unclonable Function Based on a Standard CMOS NVR. In
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 10–21 October 2020; pp. 1–4.
[CrossRef]

10. Taneja, S.; Alioto, M. Fully Synthesizable Unified True Random Number Generator and Cryptographic Core. IEEE J. Solid-State
Circuits 2021, 56, 3049–3061. [CrossRef]

11. Amaki, T.; Hashimoto, M.; Onoye, T. An Oscillator-based True Random Number Generator with Jitter Amplifier. In Proceedings
of the IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 725–728.
[CrossRef]

12. Peetermans, A.; Rozic, V.; Verbauwhede, I. A Highly-Portable True Random Number Generator Based on Coherent Sampling. In
Proceedings of the 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 9–13
September 2019; pp. 218–224. [CrossRef]

13. Chen, T.; Ma, Y.; Lin, J.; Cao, Y.; Lv, N.; Jing, J. A Lightweight Full Entropy TRNG With On-Chip Entropy Assurance. Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 2431–2444. [CrossRef]

14. Wieczorek, P.; Golofit, K. Metastability occurrence based physical unclonable functions for FPGAs. Electron. Lett. 2014, 50, 281–283.
[CrossRef]

15. Yang, K.; Fick, D.; Henry, M.B.; Lee, Y.; Blaauw, D.; Sylvester, D. 16.3 A 23 Mb/s 23 pJ/b fully synthesized true-random-number
generator in 28 nm and 65 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 280–281. [CrossRef]

16. Yang, K.; Dong, Q.; Blaauw, D.; Sylvester, D. 14.2 A physically unclonable function with BER < 10−8 for robust chip authentication
using oscillator collapse in 40 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) Digest
of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [CrossRef]

17. Serrano, R.; Duran, C.; Sarmiento, M.; Hoang, T.T.; Tsukamoto, A.; Suzaki, K.; Pham, C.K. A Robust and Healthy Against PVT
Variations TRNG Based on Frequency Collapse. IEEE Access 2022, 10, 41852–41862. [CrossRef]

18. Park, J.; Kim, B.J.; Sim, J.Y. A PVT-Tolerant Oscillation-Collapse-Based True Random Number Generator with an Odd Number of
Inverter Stages. IEEE Trans. Circuits Syst. Ii Express Briefs 2022, 69, 4058–4062. [CrossRef]

19. Serrano, R.; Duran, C.; Hoang, T.T.; Sarmiento, M.; Nguyen, K.D.; Tsukamoto, A.; Suzaki, K.; Pham, C.K. A Fully Digital True
Random Number Generator With Entropy Source Based in Frequency Collapse. IEEE Access 2021, 9, 105748–105755. [CrossRef]

20. Mathew, S.K.; Srinivasan, S.; Anders, M.A.; Kaul, H.; Hsu, S.K.; Sheikh, F.; Agarwal, A.; Satpathy, S.; Krishnamurthy, R.K.
2.4 Gbps, 7 mW All-Digital PVT-Variation Tolerant True Random Number Generator for 45 nm CMOS High-Performance
Microprocessors. IEEE J. Solid-State Circ. 2012, 47, 2807–2821. [CrossRef]

21. Torii, N.; Yamamoto, D.; Matsumoto, T. Evaluation of Latch-Based Physical Random Number Generator Implementation on
40 Nm ASICs. In Proceedings of the International Workshop on Trustworthy Embedded Devices (TrustED), Hofburg Palace,
Vienna, 28 October 2016; pp. 23–30.

http://doi.org/10.1109/ACCESS.2022.3169767
http://dx.doi.org/10.1109/ISSCC42613.2021.9366019
http://dx.doi.org/10.1109/JSSC.2021.3125255
http://dx.doi.org/10.1109/ACCESS.2022.3153359
http://dx.doi.org/10.1109/ACCESS.2022.3193639
http://dx.doi.org/10.1109/TED.2018.2792436
http://dx.doi.org/10.1109/ISCAS45731.2020.9180411
http://dx.doi.org/10.1109/JSSC.2021.3090247
http://dx.doi.org/10.1109/ISCAS.2011.5937668
http://dx.doi.org/10.1109/FPL.2019.00041
http://dx.doi.org/10.1109/TCAD.2021.3096464
http://dx.doi.org/10.1049/el.2014.0143
http://dx.doi.org/10.1109/ISSCC.2014.6757434
http://dx.doi.org/10.1109/ISSCC.2015.7063022
http://dx.doi.org/10.1109/ACCESS.2022.3167690
http://dx.doi.org/10.1109/TCSII.2022.3184950
http://dx.doi.org/10.1109/ACCESS.2021.3099534
http://dx.doi.org/10.1109/JSSC.2012.2217631

Future Internet 2022, 14, 298 12 of 12

22. Tao, S.; Dubrova, E. TVL-TRNG: Sub-Microwatt True Random Number Generator Exploiting Metastability in Ternary Valued
Latches. In Proceedings of the IEEE International Symposium on Multiple-Valued Logic (ISMVL), Novi Sad, Serbia, 22–24 May
2017; pp. 130–135.

23. Najm, Z.; Jap, D.; Jungk, B.; Picek, S.; Bhasin, S. On Comparing Side-channel Properties of AES and ChaCha20 on Microcontrollers.
In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018;
pp. 552–555. [CrossRef]

24. Saraiva, D.A.F.; Leithardt, V.R.Q.; de Paula, D.; Sales Mendes, A.; González, G.V.; Crocker, P. PRISEC: Comparison of Symmetric
Key Algorithms for IoT Devices. Sensors 2019, 19, 4312. [CrossRef] [PubMed]

25. Darbar, S.; Mervin, J.; Selvakumar, D. Side Channel Leakage Assessment Strategy On Attack Resistant AES Architectures. In
Proceedings of the 24th International Symposium on VLSI Design and Test (VDAT), Bhubaneswar, India, 23–25 July 2020; pp. 1–6.
[CrossRef]

26. Aamir, M.; Sharma, S.; Grover, A. ChaCha20-in-Memory for Side-Channel Resistance in IoT Edge-Node Devices. IEEE Open J.
Circuits Syst. 2021, 2, 833–842. [CrossRef]

27. Chou, Y.-H.; Lu, S.-L.L. A High Performance, Low Energy, Compact Masked 128-Bit AES in 22 nm CMOS Technology. In
Proceedings of the International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 22–25 April
2019; pp. 1–4. [CrossRef]

28. Kumar, R.; Suresh, V.; Kar, M.; Satpathy, S.; Anders, M.A.; Kaul, H.; Agarwal, A.; Hsu, S.; Chen, G.K.; Krishnamurthy, R.K.; et al.
A 4900-µm2 839-Mb/s Side-Channel Attack-Resistant AES-128 in 14-nm CMOS With Heterogeneous Sboxes, Linear Masked
MixColumns, and Dual-Rail Key Addition. IEEE J. Solid-State Circuits 2020, 55, 945–955. [CrossRef]

29. Hong, Y.-L.; Weng, Y.-K.; Huang, S.-H. Hardware Implementation for Fending off Side-Channel Attacks. In Proceedings of the
IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Penghu, Taiwan, 15–17 September 2021; pp. 1–2.
[CrossRef]

30. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3; RFC 8446; RFC Editor: Marina del Rey, CA, USA, 2018.
[CrossRef]

31. Serrano, R.; Duran, C.; Hoang, T.-T.; Sarmiento, M.; Tsukamoto, A.; Suzaki, K.; Pham, C.-K. ChaCha20-Poly1305 Crypto Core
Compatible with Transport Layer Security 1.3. In Proceedings of the International SoC Design Conference (ISOCC), Jeju Island,
Korea, 6–9 October 2021; pp. 17–18.

32. Serrano, R.; Duran, C.; Sarmiento, M.; Pham, C.K.; Hoang, T.T. ChaCha20-Poly1305 Authenticated Encryption with Additional
Data for Transport Layer Security 1.3. Cryptography 2022, 6, 30. [CrossRef]

33. Bernstein, D.J. The Salsa20 Family of Stream Ciphers. In New Stream Cipher Designs: The eSTREAM Finalists; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 84–97. [CrossRef]

34. Rescorla, E.; Dierks, T. The Transport Layer Security (TLS) Protocol Version 1.2; RFC 5246; RFC Editor: Marina del Rey, CA, USA,
2008. [CrossRef]

35. Nir, Y.; Langley, A. ChaCha20 and Poly1305 for IETF Protocols; RFC 8439; RFC Editor: Marina del Rey, CA, USA, 2018. [CrossRef]
36. Deng, D.; Hou, S.; Wang, Z.; Guo, Y. Configurable Ring Oscillator PUF Using Hybrid Logic Gates. IEEE Access 2020, 8,

161427–161437. [CrossRef]
37. Garcia-Bosque, M.; Aparicio, R.; Díez-Señorans, G.; Sánchez-Azqueta, C.; Celma, S. An analysis of the behaviour of a PUF based

on ring oscillators depending on their locations. In Proceedings of the 17th Conference on Ph.D Research in Microelectronics and
Electronics (PRIME), Villasimius, Italy, 12–15 June 2022; pp. 361–364. [CrossRef]

38. Zayed, A.A.; Issa, H.H.; Shehata, K.A.; Ragai, H.F. Ultra-Low Power Oscillator Collapse Physical Unclonable Function Based on
FinFET. IEEE Access 2021, 9, 27696–27707. [CrossRef]

39. Park, J.; Kim, B.; Sim, J.Y. A BER-Suppressed PUF with an Amplification of Process Mismatch Effect in an Oscillator Collapse
Topology. IEEE J. Solid-State Circuits 2022, 57, 2208–2219. [CrossRef]

40. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanović, K. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1.
In Technical Report UCB/EECS-2016-118; EECS Department, University of California: Berkeley, CA, USA, 2016.

41. Pfau, J.; Reuter, M.; Harbaum, T.; Hofmann, K.; Becker, J. A Hardware Perspective on the ChaCha Ciphers: Scalable
Chacha8/12/20 Implementations Ranging from 476 Slices to Bitrates of 175 Gbit/s. In Proceedings of the 32nd IEEE In-
ternational System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 294–299. [CrossRef]

42. Maiti, A.; Gunreddy, V.; Schaumont, P. A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable
Functions. In Embedded Systems Design with FPGAs; Athanas, P., Pnevmatikatos, D., Sklavos, N., Eds.; Springer: New York, NY,
USA, 2013; pp. 245–267. [CrossRef]

43. Gu, C.; Hanley, N.; O’neill, M. Improved Reliability of FPGA-Based PUF Identification Generator Design. ACM Trans.
Reconfigurable Technol. Syst. 2017, 10, 1–23. [CrossRef]

44. Jack, M.; Máire, O. Fast DRAM PUFs on Commodity Devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020,
39, 3566–3576. [CrossRef]

45. Garcia-Bosque, M.; Díez-Señorans, G.; Sánchez-Azqueta, C.; Celma, S. Proposal and Analysis of a Novel Class of PUFs Based on
Galois Ring Oscillators. IEEE Access 2020, 8, 157830–157839. [CrossRef]

http://dx.doi.org/10.1109/APCCAS.2018.8605653
http://dx.doi.org/10.3390/s19194312
http://www.ncbi.nlm.nih.gov/pubmed/31590354
http://dx.doi.org/10.1109/VDAT50263.2020.9190580
http://dx.doi.org/10.1109/OJCAS.2021.3127273
http://dx.doi.org/10.1109/VLSI-DAT.2019.8741835
http://dx.doi.org/10.1109/JSSC.2019.2960482
http://dx.doi.org/10.1109/ICCE-TW52618.2021.9603186
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.3390/cryptography6020030
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.17487/RFC5246
http://dx.doi.org/10.17487/RFC8439
http://dx.doi.org/10.1109/ACCESS.2020.3021205
http://dx.doi.org/10.1109/PRIME55000.2022.9816767
http://dx.doi.org/10.1109/ACCESS.2021.3058678
http://dx.doi.org/10.1109/JSSC.2022.3157811
http://dx.doi.org/10.1109/SOCC46988.2019.1570548289
http://dx.doi.org/10.1007/978-1-4614-1362-2_11
http://dx.doi.org/10.1145/3053681
http://dx.doi.org/10.1109/TCAD.2020.3012218
http://dx.doi.org/10.1109/ACCESS.2020.3020020

	Introduction
	Transport Layer Security
	Physical Unclonable Function
	Physical Phenomena
	Analytical Model
	Implementation

	ChaCha20
	Results
	Conclusions
	References

