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Abstract: Hardware acceleration of cryptography algorithms represents an emerging approach to
obtain benefits in terms of speed and side-channel resistance compared to software implementations.
In addition, a hardware implementation can provide the possibility of unifying the functionality
with some secure primitive, for example, a true random number generator (TRNG) or a physical
unclonable function (PUF). This paper presents a unified PUF-ChaCha20 in a field-programmable
gate-array (FPGA) implementation. The problems and solutions of the PUF implementation are
described, exploiting the metastability in latches. The Xilinx Artix-7 XC7A100TCSG324-1 FPGA
implementation occupies 2416 look-up tables (LUTs) and 1026 flips-flops (FFs), reporting a 3.11%
area overhead. The PUF exhibits values of 49.15%, 47.52%, and 99.25% for the average uniformity,
uniqueness, and reliability, respectively. Finally, ChaCha20 reports a speed of 0.343 cycles per bit
with the unified implementation.

Keywords: ChaCha20; PUF; RISC-V

1. Introduction

A secure system’s root of trust (RoT) requires some primitives to guarantee a minimum
level of security [1–3]. For example, true random number generators (TRNG), physical
unclonable functions (PUF), and cryptography algorithms can be used in a system’s key
generation and booting processes. Typically, each secure primitive is implemented in a stan-
dalone peripheral in the system, increasing the area overhead. In addition, a performance
reduction is generated by moving the key into the respective usage module. Therefore,
an approach consisting of unifying such modules with hardware security primitives is
adopted to reduce the area overhead, exploiting different physical phenomena in the orig-
inal peripheral. For example, a static random access memory (SRAM) can be used to
generate a TRNG-PUF, exploiting the bit line’s time response and leakage current [4–6]. In
addition, a TRNG and a non-volatile random access memory (NVRAM) can be unified,
exploiting the metastability in the sense amplifier [7] or reading the bit cell noise [8]. On
the other hand, a PUF-NVRAM is unified using the initial charges into the floating gates’
bit cells [9]. Another method consists of the unification of a TRNG-crypto core based on
the metastability response using hold violations [10].

The static and dynamic entropies used in PUFs and TRNGs, respectively, are generated
with different physical phenomena. Additionally, depending on the physical phenom-
ena, the entropy source of the PUFs and TRNGs needs calibration or the utilization of
particular techniques in the implementation to reduce the undesirable effects. For example,
the metastability in flip-flops (FFs) can be used to generate a TRNG using two clocks with
different frequencies [11–13]. In addition, a clock manager can generate a PUF, calibrating
the clock frequencies to obtain a stable and unique response [14]. In another way, a TRNG
based on frequency collapse can be implemented with a noise generator to guarantee
that physical phenomena occur [15]. However, the mismatch causes an increase in the
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static entropy, generating a stable and unique response in the physical phenomena of the
PUF implementation [16]. Therefore, some strategies have been proposed to mitigate the
systematic mismatch to generate a robust TRNG [17,18]. Furthermore, the implementation
of an FPGA introduces an additional mismatch, increasing the implementation difficulty in
the entropy source [19]. On the other hand, the cross-coupled inverter pair [20] and the
NAND [21,22] latches are used in many TRNG implementations. However, TRNGs based
on the metastability of latches require a calibration step due to the static entropy generated
by the mismatch. Because of the many potential problems caused by the mismatch in the
TRNG application, a calibration step or technique is mandatory in the implementation.
Nevertheless, the mismatch can be exploited to generate a PUF implementation without a
calibration step, reducing resource utilization.

Cryptography algorithms are used in data transmission, providing a secure end-to-end
channel for vital information. However, side-channel attacks affect software implemen-
tations [23–25]. Therefore, new approaches are proposed to mitigate the vulnerabilities
using in-memory computation [26] or hardware implementations [27–29]. The cipher most
used in Transport Layer Security (TLS) is the advanced encryption standard (AES) [30].
Nonetheless, a new approach is proposed in TLS version 1.3, generating another alternative
to the AES cipher [31,32]. The new cipher is the ChaCha20 based on Salsa20 [33], using
20 rounds in the operational matrix.

This work presents a unified PUF-ChaCha20 crypto core in an FPGA implementation.
The main contribution of the current work is the unification of the PUF and crypto core
without a significant area overhead, providing a new security approach in internet security
in the one-time key (OTK) generation of the ChaCha20-Poly1305 AEAD into TLS version
1.3. Additionally, part of this work involves the determination of constraints and strategies
for implementing a PUF without a calibration step. The static entropy in the implemen-
tation generates a PUF application using the unbalanced latches caused by the mismatch
variations. In addition, the latches are used in one internal state of the ChaCha20 core with-
out a calibration step, reducing resource utilization. The PUF presents, on average, 49.15%
uniformity, 47.52% uniqueness, and 99.25% reliability in nominal conditions. The crypto
core occupies 2416 LUTs and 1026 FFs in an FPGA implementation. Finally, the ChaCha20
with an internal PUF can generate a salted key using the static entropy created by the
metastability in latches.

The remainder of this paper is organized as follows. Section 2 describes the utilization
of the new approach of the unified PUF-crypto core in TLS. Section 3 discusses the architec-
ture and the analytical model of the implemented PUF. Section 4 illustrates the ChaCha20
architecture unified with the PUF. Section 5 shows the results of the unified PUF-ChaCha20
implementation. Finally, Section 6 presents the conclusion of the paper.

2. Transport Layer Security

Transport Layer Security (TLS) is used in end-to-end connections for computer net-
works, providing the cyber security requested by websites, as shown in Figure 1. TLS
version 1.2 [34] showed an increase in the percentage of use in websites from 2016 to 2021.
However, the new release of TLS was published in 2018, removing some insecure ciphers.
TLS 1.3 [30] reported a five times greater amount of usage in the last year, demonstrating
the relevance of the new approach. In addition, ChaCha20 is introduced in this TLS version,
providing a different solution than a cipher based on AES. The new authenticated encryp-
tion with additional data (AEAD) is constructed with ChaCha20 and Poly1305 primitives
for cipher and message authentication codes, respectively.

Figure 2 illustrates a typical TLS handshake procedure. The handshake describes the
series of steps for exchanging information between a client and a server. The handshake
sends a client hello to the server, including the TLS version, the cipher suites, and the
supported client public key. Next, the server sends a server hello with a certificate and
cipher suites selected in response to the client hello. The client verifies the certificate
provided by the server, authenticating the owner of the domain. Finally, the server decrypts
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the master key provided by the client, establishing a secure symmetric encryption. The
data are exchanged using the AES-GCM, AES-CCM, or ChaCha20-Poly1305 defined in the
cipher suites used in the hello process.
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Figure 1. Percentage of use of Transport Layer Security version 1.2 and 1.3 in websites [32].
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Figure 2. TransporT Layer Security 1.3 handshake protocol [32].

Figure 3 shows the ChaCha20-Poly1305 AEAD procedure. The procedure starts with
the generation of the one-time key (OTK) used in the Poly1305 message authentication code
(MAC) process of the AEAD. Conventionally, ChaCha20 generates an OTK using the values
of the key and nonce with a counter and plaintext initialized in zero. In addition, the OTK
can also be created using a linear-feedback shift register (LFSR) [35]. Next, the additional
authenticated data (AAD) with an arbitrary length is introduced in the Poly1305. Then,
the encryption/decryption process is applied to the plaintext or ciphertext. However,
sometimes the plaintext or ciphertext in step 3 is not a full block with 512 bits, requiring
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an output filter in the ChaCha20. When the encryption/decryption process is finished,
a final block is introduced in Poly1305, containing the lengths of data processed and the
introduced AAD. Finally, the MAC is generated.
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Figure 3. ChaCha20-Poly1305 AEAD procedure.

Figure 4 illustrates the typical and proposed PUF-based OTK generation. The proposed
OTK generation uses a PUF unified with a crypto core, obtaining the counter’s initial value.
In the proposed OTK generation, the ChaCha20 takes the key, nonce, zero-initialized
plaintext and the counter value obtained in the PUF response, mitigating the potential
risks caused by the initial value change in the counter in the zero-initialized counter. After
20 rounds of ChaCha20, the first 256 bits of the CipherText is the OTK.

One-Time Key 
GenerationTypical Proposed

ChaCha20Key
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Zero
Counter

 

Poly1305
OTK

After 20 rounds 256

Zero 
Plain
text

ChaCha20Key
Nonce

Poly1305
OTK

After 20 rounds 256

Zero 
Plain
text

Counter
 PUF

Figure 4. Block diagram of one-time key generation.

3. Physical Unclonable Function
3.1. Physical Phenomena

Figure 5 illustrates the typical physical phenomena that generate static entropy for
a PUF application. Commonly, static entropy is obtained by the process variation of the
implementation, which causes alterations in the frequency response in ring oscillators
(ROs) [36,37] and the time of frequency collapse in multi-modal RO [38,39]. However, exter-
nal circuits are necessary for collecting the static entropy. On the other hand, the dynamic
entropy caused by metastability can affect the typical response of the latch, generating a
random number [20–22]. Nevertheless, the process variation can generate enough static
entropy in latches.
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Figure 5. The PUF architectures based on RO, multi-modal RO, and latches.

Figure 6 shows the response scenarios in a metastable latch. First, the latch presents
the same probability of obtaining a one and zero in the response when the latch is balanced.
The balanced latches are used for a TRNG application. However, the process variations
impose problems when balancing the latch, which require a calibration step [7,20,21]. On
the other hand, the unbalanced latches produce a stable and unique response. Therefore,
the stable and unique response in the unbalanced latches can be used for PUF applica-
tions, exploiting the process variations in the latch. In addition, the latches are used as a
memory, independent of the balance. Therefore, the unbalanced and balanced latches can
be combined with digital implementations, unifying the logic functions with a PUF or a
TRNG application.
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Figure 6. Metastability response in balanced and unbalanced latches.

3.2. Analytical Model

The analytical model of the PUF is based on the metastability response in latches. The
metastability in latches has been studied for TRNG applications, presenting an analytical
model depending on the mismatch and noise based on a loop gain model [17]. The voltage
in the nodes VQ and VQN are modelled using functions depending on the opposite voltage
node (VQ = f (VQN) and VQN = f (VQ)). In addition, the mismatch (δm(Q) and δm(QN)) and
noise (δn(Q) and δn(QN)) are added to the response of each voltage node in (1).

VQ = g(VQN) + δm(Q) + δn(Q)

VQN = f (VQ) + δm(QN) + δn(QN)
(1)

When the latch is balanced, the δn(Q) and δn(QN) generate a random response. In
addition, the δm(Q) and δm(QN) impose a bias in the latch response. The undesirable effects
in each node generate voltage variations in each node. When the VQ and VQN exceed the
maximum voltages tolerated (V(QF) and V(QNF)), the response of the latch is obtained. The
result of the loop gain model approximates the response to (VQ = (a ∗ VQN) + b). The
coefficients a and b are calculated using the V(QF) and V(QNF) values in (2), respectively.
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a =
f (VQF)−VQNF
VQF−g(VQNF)

b =
VQFVQNF− f (VQF)g(VQNF)

VQF−g(VQNF)

(2)

Finally, the response of the latch in a metastable response is denoted by [(a ∗VQ)+ b] >
[ f (VQ)− δm(QN) − δn(QN)]. The latch response depends on the relationship between each
node’s voltage, noise, and mismatch. Therefore, a PUF implementation needs to increase
the process variations represented in the mismatch and reduce the noise introduced in
the latch.

3.3. Implementation

Figure 7 shows the architecture of the implemented PUF. The PUF exploits the metasta-
bility in NOR latches. The PUF architecture is designed to be unified with a crypto core,
changing the operational mode of the latches between PUF and memory with the signal
mode. Therefore, the counter’s value can be generated in the PUF mode or stored in the
crypto core mode. The PUF implementation consists of two branches of latches, and the
32-bit challenge selects which branch is used for the PUF output response. Each branch
consists of 32 PUF latches. The implemented latches present an unbalanced response in all
bits due to the lack of calibration and implementation strategies to improve the mismatch.
The length of the challenge and response of the PUF implementation is 32 bits. In addition,
the unified PUF generates an overhead of one cycle in the crypto core function.

Figure 8 illustrates the techniques applied to reduce the noise and improve the process
variation to obtain unbalanced latches in the implementation. The latches are constructed
with NOR cells using the LUT-6 primitive of the FPGA. In addition, the INIT value of the
NOR function in the LUT differs in each latch. Therefore, the mismatch of the implemented
latch increases in the PUF application. Additionally, a placement blockage is implemented
in the slices of the latch, reducing the noise introduced by external circuits into the latch.
On the other hand, the static entropy source implemented in the latch must operate as an
elementary bit memory. The entropy source is implemented in one of the internal stages of
a ChaCha20 crypto core as described in Section 4. Finally, the PUF-ChaCha20 is connected
to a system on chip (SoC) based on an RISC-V for testing the implementation [40].
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Figure 7. PUF block diagram implementation.
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4. ChaCha20

The ChaCha20 cipher is implemented using a permutation matrix using a nonce, key,
counter, and some constants [31,32]. This cryptography function is based on the Salsa20
algorithm [33]. ChaCha20 is used in TLS 1.3 to provide another solution different from
the cipher based on the AES [30]. Figure 9 illustrates the architecture of the implemented
ChaCha20 core. The architecture uses four quarter round (QR) operators to permute the
operation regs in the block function highlighted in blue. Additionally, a finite state machine,
highlighted in red, controls the permutation of the operational regs depending on the actual
round (column or diagonal). Therefore, a column or diagonal round is finished in one
cycle. In the last round, the values of the initial and operation regs are added to obtain
the keystream. Finally, a crypto f unction, highlighted in green, applies an XOR operation
between the plain text and the keystream. The PUF is implemented in the initial regs,
replacing the regs with latches. The signal mode switches between the memory and PUF
operations in the latches. In addition, a 32-bit challenge is used to select one of the two
branches of each latch to obtain the response of the PUF.
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Figure 9. Architecture of the ChaCha20 crypto core [31].
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Figure 10 depicts the quarter round (QR) operation implemented in the ChaCha20
crypto core. The inputs (a ,b, c, and d) each denote one stage of the operational matrix.
Each stage of the initial and operational matrix consists of a 32-bit register. The results
(A, B, C, and D) are stored in the same position as those used earlier in the round. The
QR operator is implemented using an add, rotate, and XOR operations [41]. The rotate
operation, highlighted in red, is implemented using a wire permutation to reduce the
area required.

a

b

c

d

add

<<< 
16

add

<<< 
12

add

<<< 
8

add

<<< 
7

A

B

C

D

ARX cell ARX cell ARX cell ARX cell

Figure 10. Implementation of the quarter round (QR) operation [31].

Figure 11 shows the organization of the initial stages, column, and diagonal rounds
of the ChaCha20 matrix. The initial stages are stored in the initial regs, using 128 bits of
constants, 256 bits of the key, 96 bits of nonce, and 32 bits of counter. However, the counter
stage is implemented using the latches described in Section 3.3. ChaCha20 works in a
normal function when the latches are used to store the counter’s value. On the other hand,
the latches in the metastable mode generate a random number depending on the process
variations inside the latches. In addition, the ChaCha20 core can initialize a pseudo-key
derivation using the value of the latches in metastability mode, permuting the key and the
nonce used in the ChaCha20 algorithm for the ChaCha20-Poly1305 AEAD.

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Column Round

Diagonal Round

Constant_0 Constant_1 Constant_2 Constant_3

Key_0 Key_1 Key_2 Key_3

Key_4 Key_5 Key_6 Key_7

Counter 
PUF Nonce_0 Nonce_1 Nonce_3

Initial States of ChaCha20

Figure 11. Structure of the column and diagonal rounds, along with the initial states of the PUF-
ChaCha20 core.

5. Results

This section shows the implementation results in a Xilinx Artix-7 XC7A100TCSG324-1
FPGA. The uniqueness, uniformity, and reliability are measured in three different FP-
GAs. The inter- and intra-chip Hamming distances (HMD) and Hamming weights are
measured in nominal conditions. The occupied resources are compared with other PUF
implementations in FPGAs, which are based on different physical phenomena.
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The quality of the presented PUF implementation is estimated using uni f ormity,
uniqueness, and reliability [42–44]. The uni f ormity represents the average Hamming
weight in the PUF response, as calculated by (3), where a is the total number of mea-
sured responses of the PUF and ri is the number of ones in each response. The uniqueness
denotes the PUF’s capability to generate different responses between distinct devices mea-
sured using the average inter-die Hamming distance as shown in (4). There, b is the number
of chips measured, and R(i,j) denotes the n-bit response with a particular challenge, which
is the same for each chip of the two that are compared. Reliability indicates the ability of the
PUF implementation to reproduce the same response for a particular challenge under differ-
ent conditions and is measured by the intra-die Hamming distance (5). Here, c is the total
number of measurements with the same challenge applied to a particular PUF. Additionally,
R f and Ri are the n-bit reference iteration responses for the same challenge, respectively.
Table 1 compares the quality of the PUF responses of our implementation and the quality
of the PUF responses of other implementations based on different physical phenomena.
The ideal values for uni f ormity, uniqueness, and reliability are 50%, 50%, and 100%, respec-
tively. The uni f ormity, uniqueness, and reliability values in Equations (3)–(5) are presented
as normalized values.

Table 1. Summary and comparison of the PUF quality.

This Work [36] [45]

Uniformity [%] 49.15 49.61 47.20

Uniqueness [%] 49.85 49.95 39.10

Reliability [%] 99.25 99.13 98.89

Topology Unbalanced Latches RO with Hybrid Logic Galois RO

Figure 12 illustrates the intra- and inter-chip Hamming distances in our PUF imple-
mentation. The intra- and inter-chip Hamming distances are measured in three different
FPGAs using 1000 different challenges. The challenges used in the test are randomly
selected and are not repeated. The PUF exhibits an average intra-chip Hamming distance
of 0.75% with a 0.2% standard variation. Additionally, the implementation exhibits an
average intra-chip Hamming distance of 49.85% with a 2.2% standard variation.

Uni f ormity =
1
a

a

∑
i=1

ri (3)

Uniqueness =
2

b(b − 1)

b−1

∑
i=1

b

∑
j=i+1

HMD(Ri, Rj)

n
(4)

Reliability =
1
c

c

∑
i=1

HMD(Ri, R f )

n
(5)

Table 2 shows the resources occupied in the PUF-ChaCha20 implementation in an
FPGA. The implementation presents a 3.1% resource overhead caused by the unified
functions compared to [31]. On the other hand, the performance is compared with other
ChaCha20 implementations, denoting a 0.8% performance reduction in comparison to [31]
caused by the cycle necessary to configure the mode of the PUF implementation. The
implementation exhibits 0.343 cycles/byte in the crypto core mode.
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Figure 12. Inter- and intra-PUF Hamming distances in nominal conditions.

Table 2. Performance summary and comparison in the FPGA.

Slices Performance
[Cycles/Byte]

Module LUT FF Total Standalone

This work 2416 1026 3442 0.343

[31] 2288 1058 3338 0.340

[41] 2369 2152 4521 0.530

6. Conclusions

In this paper, we present a unified PUF crypto core implementation, exploiting
the metastability of the latches in an FPGA. The implemented crypto core contains the
ChaCha20 cipher using a 4-QR module. The PUF is implemented in one of the stages of the
ChaCha20 core using unbalanced latches. The PUF challenge is introduced to select each
output bit between two branches of latches. The PUF-ChaCha20 implementation occupies
2416 LUTs and 1026 FFs, resulting in a 3.1% resource overhead. The PUF application is
tested in three XC7A100TCSG324-1 Xilinx FPGAs, resulting in responses with a uniformity
of 49.15%, a uniqueness of 49.85%, and a reliability of 99.25%, on average. Finally, the uni-
fied implementation can be used in OTK generation for ChaCha20-Poly1305 AEAD in TLS
1.3, generating an additional secure approach in end-to-end computer networks.
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