

  futureinternet-14-00292




futureinternet-14-00292







Future Internet 2022, 14(10), 292; doi:10.3390/fi14100292




Article



Experimenting with Routing Protocols in the Data Center: An ns-3 Simulation Approach



Leonardo Alberro *[image: Orcid], Felipe Velázquez, Sara Azpiroz, Eduardo Grampin[image: Orcid] and Matías Richart[image: Orcid]





Instituto de Computación (InCo), Universidad de la República (UdelaR), Montevideo 11300, Uruguay









*



Correspondence: lalberro@fing.edu.uy







Academic Editor: Michael Sheng



Received: 8 September 2022 / Accepted: 10 October 2022 / Published: 14 October 2022



Abstract

:

Massive scale data centers (MSDC) have become a key component of current content-centric Internet architecture. With scales of up to hundreds of thousands servers, conveying traffic inside these infrastructures requires much greater connectivity resources than traditional broadband Internet transit networks. MSDCs use Fat-Tree type topologies, which ensure multipath connectivity and constant bisection bandwidth between servers. To properly use the potential advantages of these topologies, specific routing protocols are needed, with multipath support and low control messaging load. These infrastructures are enormously expensive, and therefore it is not possible to use them to experiment with new protocols; that is why scalable and realistic emulation/simulation environments are needed. Based on previous experiences, in this paper we present extensions to the ns-3 network simulator that allow executing the Free Range Routing (FRR) protocol suite, which support some of the specific MSDC routing protocols. Focused on the Border Gateway Protocol (BGP), we run a comprehensive set of control plane experiments over Fat-Tree topologies, achieving competitive scalability running on a single-host environment, which demonstrates that the modified ns-3 simulator can be effectively used for experimenting in the MSDC. Moreover, the validation was complemented with a theoretical analysis of BGP behavior over selected scenarios. The whole project is available to the community and fully reproducible.






Keywords:


ns-3; routing; data center












1. Introduction


Content-centric, cloud-based networking is the dominant model in the current Internet, with the pervasive presence of content providers with data center infrastructures deployed throughout the whole world. Content delivery networks (CDNs) replicate content in locations close to users, in order to improve their quality of experience, while over the top (OTT) providers behave in a similar way, consolidating the Internet distributed data center model. Moreover, resource virtualization is making its contribution to the Internet architecture shift as well, since the usual way to deploy online applications is to use cloud computing providers, which, not surprisingly, also base their operations on data centers with ubiquitous connectivity.



Both content and computing business are based in huge data centers with similar basic functions such as compute, store, and replicate data using message exchange among servers, taking advantage of supporting communication infrastructure. These data centers, which may comprise hundreds of thousands of servers, are called massive scale data centers (MSDC).



The traffic between users and applications running in the data center is called north–south traffic, while on the other hand, east–west traffic is the one exchanged by servers within the data center; the latter represents 85% of the total [1].



The traffic demand in MSDC, much higher than the traditional internet, requires specific solutions at the forwarding, routing and transport levels, taking advantage of the topological possibilities offered by Fat-Trees, inspired by Clos networks [2]. These networks, originally conceived to build non-blocking switching matrices for telephone networks, are made up of multiple levels of switches, where each switch of one level is connected to all those of the next level, obtaining a high path diversity as a result.



In a previous work [3], we experimented with data center routing protocols in emulated environments such as Kathara [4,5], Megalos [6], CORE [7] or Mininet [8], complementing the work presented in [9], where the Sibyl framework is used for evaluating implementation of routing protocols in fat-trees, including the Border Gateway Protocol (BGP) in the data center [10], Openfabric (IS-IS with flooding reduction) [11], and Routing in Fat Trees (RIFT) [12,13]. This framework presents wall-clock independent metrics, which permits us to normalize the results disregarding the underlying execution environment.



These previous works are based on the routing protocols from the Free Range Routing (FRR) suite, an open source implementation of BGP, OSPF, RIP, IS-IS, and other protocols, inheriting the code base of the Quagga project [14].



As mentioned in the previous work, emulated devices run exactly the same firmware of hardware devices, therefore implementing identical functionality. Moreover, emulated devices are exposed to real-life software errors, which permits us to not only evaluate functionality, but also resilience. On the other hand, re-implementation of network protocols and applications is needed for discrete event simulation, weakening the chances of testing real use cases. Nevertheless, a simulator provides an environment for replicable experiments always guaranteeing the same conditions and provides fine management of the timing issues.



With these considerations in mind, in this paper we present a port of FRR, to the Direct Code Execution (DCE) [15] mode of the ns-3 Network Simulator [16]. ns-3 is a discrete event network simulator for Internet systems, widely supported in the networking community. ns-3 has a mode of execution called DCE [17], which allows using native code (properly compiled) in the simulations. In this way, it is possible to execute existing implementations of network protocols or applications within ns-3. Therefore, it is possible to reconcile the virtues of discrete event simulators with emulation, which preserves the real implementation of protocols and applications. Moreover, this approach permits us to run a fair comparison among different experimentation frameworks which run FRR.



Thus, we seek to perform the necessary implementations so that ns-3 can support FRR, in order to develop simulations in ns-3 DCE that use FRR code. While FRR implements a set of network protocols, the scope of this work is to support the implementation provided for BGP. For the implementation of the simulations, we will focus on the fat tree CLOS topology, which is widely used in massive data centers. The aim is to study the behavior of the BGP protocol in this context.



The main contribution of our work consists of a simulation platform to test and analyze routing protocols in the context of MSDCs. This platform provides the ability to simulate the FRR suite and in particular the MSDC routing algorithms. To achieve this, our work includes: (i) an extension of DCE to support the FRR suite, (ii) a FRRHelper class, which facilitates the instantiation and usage of FRR in a simulation script, (iii) an extension of the fat-tree topology generator VFTGen [18] to produce ns-3 simulation scripts, (iv) a comparison and validation between emulation and simulation-based approaches for BGP in data center, and (v) a comparison and validation between the experimental results and a theoretical analysis of BGP behavior over selected scenarios.



The remainder of this paper is organized as follows: Section 2 provides the background and presents the Sibyl framework as related work. Section 3 describes the process of porting FRR to ns-3, using the DCE module. Section 4 exposes the validation of the port and the experimental results generated. Consequently, a basic functional evaluation is described. Secondly, a comparison against the Sibyl framework is carried out. Finally, a validation against a theoretical analysis of BGP behavior over two selected scenarios is performed. In Section 5, a performance analysis is exposed. It evaluates the scalability, memory usage and execution times for different network sizes. Additionally, two features to improve the performance of the port are described; and a comparison between the execution times in the simulated and emulated environment is exhibited. Finally, in Section 6, we discuss the most relevant aspects and conclusions of this work.




2. Background and Related Work


There are different approaches to network control plane debugging, namely model-based verification, and testing over emulation or simulation environments. In this work, we concentrate on testing tools. Regarding emulation tools, we have been working with scalable environments such as CORE, Mininet, Kathará and Megalos, where an actual protocol implementation can be tested in a controlled environment. Moreover, the Sibyl framework, which works over Kathará and Megalos, assembles different tools for protocol evaluation over fat-trees.



In the case of simulations, re-implementation is often needed. This presents a major drawback for protocol debugging, and therefore it is not the most usual path to follow. Some previous works have attempted to offer real code execution over a simulator but, to the best of our knowledge, only DCE has a working environment tested with many real world implementations. In Section 3, we present in more detail the characteristics of ns-3 and DCE, and the FRR port effort.



2.1. The Sibyl Framework


In this section, we will briefly describe the Sibyl framework that we will use as a baseline for comparison and validation of our proposal, given the public availability of a complete data-set of experiments [19].



Kathará is a network emulation system that accurately reproduces the behavior of a real system, using Docker containers [20] to implement devices, which represents a lightweight alternative to standard virtualization solutions, allowing devices to use different images in the same network scenario (for example, different implementations of a given network protocol).



Kathará supports different virtualization managers, and in order to support horizontal scalability, it uses Kubernetes [21], adopting the name Megalos. Since it runs distributed in a cluster of servers, the low level connectivity of emulated devices is implemented using a Virtual Extensible LAN (VXLAN) data plane with an EVPN BGP control plane.



The Sibyl framework integrates the aforementioned environments, tailored to perform a large number of experiments on parametric fat-tree topology configurations. During each experiment, Sibyl performs a series of steps, starting by generating a topology, deploy nodes running specific containers and network links, start the experiment and capture relevant PDUs, shutting down and analyzing the results (for further details, see [9]).



We used the results gathered following these steps as a baseline for comparison with other experimentation environments, in particular with the FRR port to ns-3 presented in this paper.



2.1.1. Sibyl Fat-Tree Experimentation Tools


In this section, we describe the tools included in the Sibyl framework, as follows:




	
VFTGen [18] automatically generates and configures fat-tree topologies for Sibyl. It takes as input the parameters of a fat-tree.



	
Sibyl RT Calculator is a tool for generating the expected forwarding tables of the network nodes of a fat-tree, taking into account the routing protocol (e.g., BGP) and the type of test (e.g., Node Failure).



	
Sibyl Analyzer is a tool to analyze the results of the experiments using the packets exchanged by the nodes during an experiment.









2.1.2. The Timing Issue


Sibyl implements a wall-clock independent metric, which permits us to normalize the results disregarding the underlying execution environment.



This is necessary for emulated environments, where underlying hardware resources cannot be taken for granted. On the other hand, execution time is completely under control in discrete event simulations, permitting us to measure performance parameters with certainty. This is the main reason to attempt the FRR port to ns-3, along with the fact that DCE permits us to execute native code.





2.2. Fat Tree Networks


Fat-tree networks are topologically partially ordered graphs, and “level” denotes the set of nodes at the same height in such a network, where the nodes of level zero (the lowest) are called Leaves, those of level one are Spines, and the ones of level two are Top of Fabric (ToF) or Cores. The subset of Leaf and Spine nodes that are fully interconnected is called a Point of Delivery (PoD). Level two is called the aggregation level and has the responsibility of connecting different PoDs.



Following the notation described in [12], a fat-tree topology can be specified by three parameters:   K  L E A F   ,   K  T O P    and R.   K  L E A F    and   K  T O P    describe the number of ports pointing north or south for the leaf and spine nodes, respectively. Finally, the number of links from a ToF to a PoD are denoted by R and called “redundancy factor”. As an example, the Figure 1 shows a fat-tree with    K  L E A F   = 2  ,    K  T O P   = 2   and   R = 1  . For simplicity, from now on we assume    K  L E A F   =  K  T O P   = K  .



Observe that there are two types of fat trees: single-plane and multi-plane. In a single-plane topology, each ToF is connected to all the Top of PoD (ToP). This topology has the maximum value of redundancy factor, with   R = K  . In these topologies, the number of ports for each ToF is at least   P × K  , which might be unfeasible if P and/or K are too large.



On the other hand, in a multi-plane topology, ToFs are partitioned into planes:     N = K / R   sets, each with the same number of nodes. All the ToFs of the same plane are connected to the same set of spines of each PoD. The topology shown in the Figure 1 can be described as a multi-plane fat-tree with   K = 2   and   R = 1   and   N = K / R = 2   ToF planes. It is worth noting that in this configuration, redundancy is sacrificed to increase the number of PoDs.





3. FRR Port to ns-3 DCE


In this section, we detail the process of porting FRR to ns-3, using the DCE module. The process involved: (i) changes to DCE to be able to execute the FRR code, which implied re-implementing some functions from the C library (glibc) that are used by FRR, also fixing some bugs found in existing DCE code; (ii) minor changes to the code of FRR, in order to solve some problems that were difficult to find another solution to; (iii) implementing a class FrrHelper in a way that makes it easy to write scripts that use the port, and (iv) carrying out tests in order to evaluate and validate the port, which we will see in Section 4 and Section 5. The aforementioned port is open source and is available at [22].



3.1. Background on ns-3 and DCE


ns-3 [16] is a discrete-event network simulator used mainly in research and education. It is open-source and free, licensed under the GNU GPLv2 license.



Both ns-3 core and models are implemented in C++. It is built as a library that can be linked both statically and dynamically by a main C++ program, which defines the network topology and starts the simulation [23]. Typically, to run a simulation in ns-3, a C++ program is created (script in the ns-3 nomenclature) that defines the topology and configuration for the simulation. This program includes at the end a call to the Run() function of the Simulator class that will start the simulation.



Regarding Direct Code Execution (DCE) [15], it is a framework for ns-3 that allows us to execute existing implementations of network applications or protocols within ns-3 without any changes to the source code. This permits us to execute existing real applications such as the ping application or even more, the entire Linux networking stack within an ns-3 simulation.



Thus, in a ns-3 simulation which uses DCE, the network topology as well as channel configurations will be done in ns-3, while applications running on nodes can use DCE, including Linux native applications or actual implementations of network protocols, such as Linux’s TCP, as shown in Figure 2.



There are two ways to run DCE: basic mode and advanced mode. Basic mode uses the ns-3 networking stack, while advanced mode uses the Linux networking stack. The latter is done using the Linux kernel as a library.



The design of DCE takes its idea from the library operating system (LibOS [24]). DCE is structured around three components: Core, Kernel and POSIX, as shown in Figure 3. First, at the bottom level is the Core module that handles memory virtualization: stack, heap and global variables. Above that is the Kernel layer that takes advantage of these services to provide an execution environment for the Linux network stack within the simulator. For Advanced Mode, DCE uses the Linux kernel implementation of layer 3 and 4 protocols and Layers 1 and 2 are simulated with ns-3. DCE takes care of synchronization, making the Linux kernel see ns-3 network devices as if they were real devices. Finally, the POSIX layer builds on top of the Core and Kernel layers to re-implement the standard socket API for use by simulated applications.



DCE runs each simulated process on the same host process. This model makes it possible to synchronize and schedule each simulated process without having to use inter-process synchronization mechanisms. What’s more, it allows the user to track the behavior of the experiment by different processes without having to use a distributed debugger, which tends to be more complex. The threads in each simulated process are managed by a task handler, implemented in DCE, synchronized with the simulated host and isolated from the other simulated hosts.



Since the loader of the host system aims to ensure that each process does not contain more than one instance of each global variable, DCE provides its own implementation of the loader with a specific loading mechanism to instantiate each global variable, once per simulated instance.



The POSIX implementation in DCE replaces the use of the traditional glibc library. Thus, when an application running on top of DCE makes a call to glibc, DCE intercepts the call and executes the re-implemented function. Most of these functions are simply a handshake to the corresponding function in the host’s glibc library. However, calls that involve system resources must be re-implemented. These include calls involving network resources, the system clock, or memory management. DCE classifies the functions of the library glibc using the macros DCE or NATIVE. The former are functions that are re-implemented by DCE, while the latter are passed to the operating system’s own library.




3.2. Previous Work: Quagga Port


Quagga is a routing software suite, providing implementations of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4 for Unix platforms. FRR is a fork of Quagga, which has been embraced by both industry and the community, replacing Quagga as the suite of choice for open source routing projects. FRR incorporates implementations of protocols used in data centers such as OpenFabric [26], and allows the necessary modifications to be incorporated into BGP for routing in large-scale data centers.



Quagga has been ported to DCE in 2008 [27]. The Quagga module in DCE allows using Quagga routing protocols implementation as models in the network simulation. To date, the Quagga DCE project is no longer actively maintained, being its last update in 2012. Despite this, the project is still functional and can be executed with DCE without major problems. Quagga support in DCE is not complete.



To make it easier to use Quagga in simulations, the project provides a QuaggaHelper class. This class provides methods that can be used from the simulation scripts to install a protocol on a node and configure it. During the port of FRR, we drew heavily on this class to develop a FrrHelper to provide similar facilities. Additionally, the fact that not all features work with the ns-3 stack (Basic Mode) motivated us to focus on the Linux stack (Advanced Mode) for the FRR port.




3.3. DCE Extensions to Support FRR


As previously mentioned, DCE does not support all existing glibc functions; therefore, when porting a new application to DCE, it is possible that multiple errors appear due to unrecognized function symbols, since they were not declared in DCE. Therefore, the process of adding support for a new application is very cumbersome, and it is mostly based on trial and error until all needed functions are detected and correctly implemented in DCE.



During the process of porting FRR to DCE, we found several (10) functions that were not declared in the POSIX layer of DCE. For seven of them, it was necessary to implement their functionality inside DCE because they are related to memory allocation, timing, file operations, disk allocation and threading. The other three are functions where their by FRR does not involve system resources, therefore, it is enough to indicate DCE to use the original glibc implementation (use the NATIVE macro). These extensions can be found in our public repository [22].



In addition to these added functions, we detected two bugs in memory management in functions already implemented under the DCE macro. Two Pull Requests were performed in the ns-3 DCE project due to the correction of these bugs [28,29]. In addition, another Pull Request was made with the necessary functions to execute the code of FRR. At the time of writing this paper, the Pull Requests are pending review.




3.4. FRR Extensions to Run over DCE


In addition to the extensions to DCE mentioned in the previous section, changes were made in FRR in order to run FRR over DCE. These changes were made for practicality reasons, due to the difficulty of adapting DCE to run FRR in its original form. The changes took two forms: changes in the method of compiling and changes in the source code.



In general, in order for an application to run in DCE, it needs to relocate the executable binary into memory. In turn, these executable files need to be built with specific options for the compilation and linking stages as explained in the ns-3 DCE manual. For the case of FRR, which is a framework optimized for several different platforms and also for real networking hardware, we need to tune the compiling process.



Compiler optimizations often use function symbols that DCE does not implement. For example, when compiling FRR with the default compiling configuration, the obtained binary uses symbols such as __strndup or pthread_condattr_setclock. Therefore, we opt to disable some compiler optimization so as to reduce the number of new functions to implement in DCE.



Regarding source code changes to FRR, we perform some minimal modifications to avoid the usage of some unimplemented glibc’s function symbols in DCE. The changes are related to the log buffering of FRR, which does not have impact on the functionality of the application. The compiling and source code changes are summarized in a compilation script available in [30].




3.5. Helper Class for Running FRR over DCE


To assist in the creation of simulations using the FRR port, we created a ns-3-dce-frr module within the ns-3 DCE project. This is based on the existing ns-3-dce-quagga module of the ns-3-dce-quagga port.



The ns-3-dce-frr module includes, among other things, simulation examples and the FrrHelper. The latter contributes to the configuration of the environment required for the deployment of simulations and assists on the instantiation of the selected daemons of FRR where indicated (one or multiple simulated nodes), with zebra being installed implicitly.



Moreover, the FrrHelper creates the necessary directories, configuration files and loads the programs to be executed by the nodes. In addition, the FrrHelper also includes methods for the configuration of the ported daemons: zebra, BGP and OSPF. Furthermore, a frr-utils class has been implemented that provides useful functions for both the FrrHelper and the simulations.




3.6. Fat Tree Generator for ns-3 DCE


In order to be able to execute multiple test cases on different configurations of fat-trees, without the need to implement them each time, we develop a fat-tree generator for ns-3 DCE inspired in the Kathará analogous VFTGen [18].



This makes it easy to automate, create, and reproduce test cases. To create this generator, the utilities vftgen-utils and vftgen-classes were implemented, which are responsible for building the topology. That is, according to the indicated parameters, they create the appropriate number of ns-3 nodes, connect them according to the corresponding fat-tree and assign them appropriate IP addresses.





4. Validation and Experimental Results


Our implementation has been evaluated using three different approaches: (i) a simple functional evaluation, (ii) a comparison against the Siybl framework, and (iii) a theoretical analysis.



4.1. Functional Evaluation


Several test cases has been developed along the process of implementing changes and additions to ns-3 DCE to allow the execution of FRR, following an iterative and incremental approach.



The core of FRR architecture is the zebra daemon, which manages IP routing by updating the operating system’s kernel routing tables. It also permits to discover interfaces and redistribute routes among the different routing protocols running on the host [31].



Thus, in order to verify the correct functionality of the implementation, it is necessary to run zebra and routing protocols’ implementations together; in this case, we focus on BGP. Under normal operation, BGP will learn prefixes and install entries in the kernel routing tables via zebra, allowing the node data plane to forward IP packets. Note that BGP may run without zebra, if we only want to verify the control plane operation (without packet forwarding).



Therefore, for any given scenario, the verification method consists in checking routing table updates. Likewise, connectivity tests can also be performed using, for example, the ping command.



For this evaluation, we selected three scenarios and validate the correct execution:




	
Running zebra and BGP in a single node: This scenario allows us to test that FRR with zebra and the chosen routing protocol can be loaded and executed in a node.



	
Running zebra and BGP in a network: We implemented some scenarios based on Kathará project labs [32], such as BGP Simple Peering and BGP Prefix Filtering, which permit us to test BGP update propagation and filtering among peers, and BGP Multi-homed Stub, which is a more complex scenario.



	
Running other routing protocols: Although our focus is on BGP, all the FRR daemons should run on ns-3 DCE. Therefore, we evaluate running OSPF in the same networks from the previous scenario. It is worth mentioning that no particular change was necessary in the OSPF case, and consequently, we expect that other protocols will also work correctly without the need to make further modifications to the implementation; this is reasonable since, by the architecture of FRR, most of the complexity is contained in the zebra daemon.








After the correct execution of these scenarios, and having verified that the routing tables are correctly updated, we can conclude that zebra and BGP are running correctly in ns-3 DCE, validating our extension.




4.2. Comparison against Sibyl Framework


Given that our focus is on evaluating routing protocols over Clos networks, we decided to validate our implementation running several experiments over the same network topologies used by the Sibyl framework [9]. Using these same scenarios in ns-3 DCE gave us the opportunity to compare the results, since Sibyl framework defines various fat-tree based scenarios.



4.2.1. Experimental Setup


The experiments consist on recording the number of Protocol Data Units (PDUs) exchanged among nodes until convergence of the routing protocol. In our case of study (the BGP protocol), this is equivalent to the number of BGP UPDATE messages. It worth noting that each experiment consider the propagation of a single network prefix for each leaf node in the topology, without losing generality in the results.



When a simulation starts and the BGP protocol begins to execute, the nodes start exchanging UPDATE messages, until convergence is reached and the UPDATE messages cease to be exchanged. Convergence occurs when all topology information has been distributed (i.e., multi-path connectivity has been reached for every network prefix). Any change in the topology, or in the routing table of a node, generates a new exchange of UPDATE messages until convergence is reached again.



A scenario comprises a certain fat-tree topology (determined by the parameters k_leaf, k_top and redundancy) and five different situations (test cases) that are described below:




	
Bootstrap: The objective is to study the standard behavior of the protocol in the topology when it is started, without any failure.



	
Node Failure: This test case is used both to verify that BGP converges after a switch failure, and also to count the number of PDUs that the protocol exchanged for that purpose. The fault can be introduced in any type of switch in the topology, that is, Leaf, Spine or Tof. It is done by shutting down the BGP daemon on the given switch.



	
Node Recovery: In this test case, the objective is to count the number of PDUs exchanged by the switches, after one of them fails and is replaced by a new one. Like the previous case, this case can be run on a Leaf, Spine, or Tof. We implement this case by raising the topology without running BGP on the node in question, we wait for it to converge and then we start BGP. This is equivalent to crashing the node and then starting it again.



	
Link Failure: This case also has two goals. On the one hand, to verify BGP convergence after a link failure, and on the other hand, to count the number of PDUs for this purpose. The test can be run for both the Leaf–Spine link case and the Spine–Tof link case, simply by pulling down a given interface.



	
Link Recovery: This case counts the number of PDUs after a failed link is replaced. That is, the simulation is started and the protocol is expected to converge. Link failure is then caused and the protocol is again expected to converge. Finally, the link is recovered and the new convergence is expected. The number of PDUs that are taken into account are those exchanged in this last phase.








Each scenario is named using the following criterion: x_y_z_case-level, where:




	
x is the k_leaf parameter.



	
y is the k_top parameter.



	
z is the redundancy parameter.



	
case represents the test case, which can be link-failure, link-recovery, node-failure, or node-recovery.



	
level depends on the case:



- If the case is link-failure or link-recovery, level can be leaf-spine or spine-tof, referencing the level where link failure or recovery occurred.



- If the case is node-failure or node-recovery, level can be leaf, spine or tof, referencing the level where the failure or recovery of the node occurred.








The different scenarios where configured using the same values for k_leaf and k_top parameters so as to have homogeneous switches at the different levels of the fat-trees. On the other hand, for a given value of k_leaf and k_top, we variate the redundancy parameter, always considering that it divides the k_top value. Moreover, during the different executions of the test cases, we vary the level where the failure is produced so as to cover all the possibilities.




4.2.2. Execution Environment


All the experiments presented were executed on a server machine running Ubuntu 16.04 with 30 CPUs AMD Opteron 63xx class and with 244 GB of RAM memory.



We configure the simulation duration so as to allow convergence while minimizing it. For this, we studied several simulations to find the best values for each scenario. The final configurations for the simulation duration (in simulated time) for each scenario are:




	
Bootstrap: 10 s.



	
Node-failure and link-failure: 20 s. This time allows for the bootstrap to finish and converge, produce the failure in the node or link and then wait again for convergence.



	
Node-recovery and link-recovery: 30 s. In this case, after the failure and the convergence, the node or link is recovered and we have to wait again for convergence.








The simulations are configured to generate traffic capture files (.pcap) for every interface of each node simulated. This files are then processed so as to count the number of BGP’s UPDATE messages exchanged.




4.2.3. Results


The results of all the experiments executions are shown in Appendix A. As can be seen from Table A1, the number of PDUs (BGP UPDATES) obtained with our simulations in ns-3 DCE exactly match the number obtained with the Sibyl emulations for most of the scenarios. This exact match between the results in ns-3 DCE and the emulation platform strongly validates the accuracy of our simulation platform. In particular, this shows that with the proposed platform, we can execute the exact same BGP algorithm that runs in the Sibyl emulation approach.



Regarding the scenarios where there are differences, we should note that there are some Sibyl scenarios that present more than one result. This is due to the fact that the emulations are not deterministic, and depend, for example, on the host machine resource usage. For the cases where we have more than one result from Sibyl, the results obtained in our simulations are between these values or very close to them. These differences also demonstrate one of the main advantages of the simulation against the emulation given that in the simulation the results are deterministic and reproducible. The exact same result can be obtained independently of the underlying hardware or software where it is run.



In Table 1, we select some specific results. In particular, we show two cases with a significant difference between our experiments and the Sibyl framework results. If we consider the couple of scenarios painted in blue in Table 1, the result in scenario 10_10_1_node-failure-spine for Sibyl is roughly half the result obtained in ns-3 DCE; we argue that this is an outlier in Sibyl, as we will further show in Section 4.3.1. Regarding 12_12_1_node-failure-leaf scenario, note that the result for Sibyl is smaller, but in the same order than the one of ns-3 DCE; here, we argue that the vector-distance nature of BGP and its well known characteristic of “path hunting” is responsible for this difference, as we further explain in Section 4.3.2.



Note that we can also compare the results of the simulations with and without the zebra daemon running. As explained in Section 5, we executed the experiments disabling zebra in order to reduce the resource consumption of the simulation. In most of the scenarios considered, this change does not affect the number of BGP updates exchanged in the experiment. Nevertheless, in some cases there exists a small difference (actually, in 8 out of 250 experiments, 3.2%). Most of the misalignment in the results are experienced in node-failure-leaf scenarios, due to the very reason we mentioned above: the path-vector nature of BGP may cause extra UPDATE messages to be exchanged, as explained in Section 4.3.2.



In the following section, we also compare the obtained results against a theoretical model of the behavior of BGP.





4.3. Theoretical Analysis of BGP Behavior over Selected Scenarios


In this section, we will analyze the BGP behavior over the scenarios presented before, taking advantage of the regularity of the fat-trees multi-plane with   R = 1  , which can be described by a single parameter k [33]. In effect, in a fat-tree topology of k PoDs, there are k switches (each with k ports) in each PoD, arranged in two levels (Leafs and Spines) of   k / 2   switches each. Each Leaf is connected to the   k / 2   Spines and vice versa. There are    ( k / 2 )  2   Core switches, each of which connects to k PoDs.



The aim of this theoretical analysis is to find an expression in function of k that describes the number of packets exchanged in two scenarios: the fail of a leaf, and the fail of a spine. These scenarios were intentionally selected after the differences in results shown in Table 1.



Remember that the experiments propagate one prefix per leaf, i.e., in a fat-tree of k PoDs there are a total of    k 2  / 2   prefixes, or equivalently, leaf nodes.



4.3.1. Case Spine Node Failure


To analyze the behavior of BGP when a spine node fails, we divided the problem into three sub-problems: (1) the PoD of the failure, (2) the PoD with no failures and (3) the spine–core links. Since the goal is to find an expression that models the total number of packets exchanged after the failure, dividing the problem into sub-problems is equivalent to dividing the expression into sums.



	
First note that each leaf needs connectivity information for    k 2  / 2   prefixes; while    k 2  / 2 − 1   prefixes are “foreign”, the remaining one is directly connected. When the fails occurs, in the PoD of the fail there are   k / 2   leaf nodes aware of the failure. The BGP process of each leaf node will recalculate the routes and will notice that for every known prefix, one possible next-hop is missing. Consequently, it will send, for each known prefix, a BGP update with the next-hop attribute updated. Thus, we have   k / 2   leafs sending    k 2  / 2 − 1   packets (the total number of prefixes in the fabric which have lost a next-hop) through their   k / 2 − 1   links. Consequently, the total amount of BGP packets in the PoD of the failure equals   k / 2 ×  ( k / 2 − 1 )  ×  (  k 2  / 2 − 1 )   .



	
The rest of the PoDs learn about the failure through the spine connected to the same plane as the faulty spine, through the corresponding core switch. This spine sends a BGP withdraw containing all the prefixes no longer reachable through the corresponding core switch (all the prefixes inside the PoD with the failure) to all its neighbors (  k / 2   leaves in this PoD). After that, each leaf recalculate its routes and notice that each prefix received in the withdraw are no longer reachable through one of its next hops. Consequently, it will send, for each of these   k / 2   prefixes, a BGP update to all its neighbors (  k / 2   spines). Consequently, the total amount of BGP packets in each PoD without a failure equals   ( k / 2 ) + ( k / 2 ) × ( k / 2 ) × ( k / 2 )  .



	
The faulty spine was connected to   k / 2   core switches. Because the topology considered is multi-plane with   R = 1  , these core nodes have exactly one link with each PoD. After the failure, each core connected with the faulty spine have no longer reachability to the prefixes of the corresponding PoD, and it must send a BGP withdraw for the prefixes of such PoD to all its neighbors (  k − 1   spines). After that, when a spine connected to these cores receives the withdraw from all of them, it will notice that it no longer has reachability to the prefixes of the given PoD, and it will send the correspondent withdraw upstream to the cores; therefore, a total of two BGP packets traverse every core–spine link. In effect, we have   k / 2   cores, which send and receive one BGP withdraw through all their “live” interfaces (  k − 1  ). Consequently, the total amount of BGP packets in the core–spine links equals   2 × ( k − 1 ) × k / 2 = ( k − 1 ) × k   packets.






Put together, and multiplying the expression for the PoDs without a failure times the amount of such PoDs (  k − 1  ), we arrive at a total BGP packets of   k / 2 ×  ( k / 2 − 1 )  ×  (  k 2  / 2 − 1 )  +  ( k − 1 )  ×  (  ( k / 2 )  +  ( k / 2 )  ×  ( k / 2 )  ×  ( k / 2 )  )  +  ( k − 1 )  × k  . Simplifying, we obtain the polynomial


    k 4  4  −   3  k 3   8  +   5  k 2   4  − k  











Figure 4 compares packet growth as a function of the number of nodes for the results of ns-3, Sibyl and the polynomial expression. Notice that the results of ns-3 fits the polynomial exactly. On the other hand, Sibyl results shows a deviation from the polynomial, and there are far less results for this particular case. In fact, the Sibyl results for   k = 20   double those expected following the theoretical expression. If we look closely at the presented analysis (step 1), the Sibyl packet count for this case barely exceeds the number of packets needed to update the routes within the PoD of the failure. Therefore, our assumption that the difference for the scenario 10_10_1_node-failure-spine shown in Table 1 is an outlier is confirmed.




4.3.2. Case Leaf Node Failure


To analyze this case, let us consider what happens at the routing level when a leaf fails; this is analogous to a prefix that is no longer reachable, and   k / 2   links down in the PoD of the failure. When a leaf is no longer reachable, its neighbors (  k / 2   spines of the given PoD) will notify the fact with a BGP withdrawn that will spread throughout the fabric. In terms of packet count, this implies that each node in the fabric will send a BGP withdrawn out all of its interfaces. Similarly, two packets must be observed on each fabric link.



The total number of links of a fat-tree multi-plane with   R = 1   are    k 3  / 2   (before the leaf failure). As mentioned,   k / 2   links go down after the failure, and consequently, if each link carries two packets, the total amount of BGP packets for a leaf failure is   2 × (  k 3  / 2 − k / 2 )   or equivalently


   k 3  − k  



(1)







Note that this is a lower bound due to the following. When a Leaf node receives from a Spine the aforementioned withdrawal, its routing table still holds the reachability information for the given prefix using the rest of the spines, and therefore the leaf “thinks” it can still reach the prefix. This race condition can cause the leafs to send an BGP Update announcing the (now inexistent) routes to its corresponding spines in the PoD. Every announced route contains in its AS-PATH the ASN of the spine that receives it, and therefore is discarded by it. Thanks to the specific numbering of ASNs in the fat-tree, the inexisting route is no longer propagated, and the “path hunting” is stopped early. A simple way to find an expression that models that behavior is by adding one more packet for every spine–leaf link to the above expression (1). To determine the number of links, first we count the number of links inside a normal PoD, i.e.,   k / 2 × k / 2   and multiply this by the amount of normal PoDs (  k − 1  ). Then, the number of links in the PoD of the failure is   k / 2 × ( k / 2 − 1 )  . Consequently, the total amount of BGP packets that model this behavior is


    5  k 3   4  −   3 k  2   



(2)







Figure 5 compares packet growth as a function of k for the results of ns-3, Sibyl and the polynomials expressions for the Leaf Node failure scenario. Note that while Sibyl results follow polynomial (1), ns-3 DCE results follow both (1) and (2) alternatively. Regardless, the results are correct since both behavior may occur due to the nature of BGP and timing of control plane packets.






5. Performance Analysis


Given the possible massive size of a network (in number of nodes and links) in MSDCs, it is important to study how the simulator performs and scales with different network’s sizes.



Specifically, we decided to evaluate the scalability in two aspects, memory usage and simulation runtime for different network sizes.



Even more, while developing and testing our implementation, we notice that the performance regarding memory usage and simulation time was a limiting factor to obtain results with big networks. Therefore, we decided to incorporate two features to improve the performance: disable the zebra daemon and disable IPv6 support.



Regarding the first one, our implementation allows us to run a simulation without running the zebra daemon. In fact, a routing protocol in FRR does not need zebra to execute, therefore it can be tested correctly without using zebra. On the other hand, when disabling zebra, we lost the data plane functionality, and the kernel routing tables are not updated. This means that the nodes will exchange routing information following the routing protocol algorithm, but the routes will not be saved. As a consequence, there will not be connectivity between nodes.



Nevertheless, as our objective is to study the behavior of the control plane only, in particular the convergence of BGP under different situations, the previous drawbacks do not affect our results.



So as to be able to run a routing protocol (and BGP in particular) without zebra, some modifications and extensions are needed. For example, it is not possible to discover neighbor interfaces. For the case of BGP, this implies that in the configuration it is not possible to refer to the BPG peers in a generic form using the interface. Instead, we must use the IP address. In our code, we provide all the configurations and modifications of the FrrHelper to run simulations with the zebra daemon disabled.



Regarding IPv6, we notice a high load of IPv6 control packets such as ICMPv6 Router Solicitation and ICMPv6 Router Advertisement in our simulations. This was due to the use of the Linux kernel in DCE, which includes IPv6 in all interfaces by default. Therefore, our solution allows us to easily disable the use of IPv6 in all interfaces by executing a single command.



Additionally, in the results we also show the execution time of each scenario. It can be seen that the experiments without zebra can run faster, taking approximately half of the time to execute in comparison with the experiments with zebra. Even more, when running without zebra, the simulations use much less RAM memory, which allows us to experiment with bigger scenarios. Without zebra, we were able to run a scenario with 1125 nodes (15_15_1_*) while when using zebra, the biggest scenario was one with 320 nodes (8_8_1_*).



In summary, if the objective of a given use case is only to test the control plane of a routing algorithm, it is recommended to disable the zebra daemon, as it has shown to improve the simulations performance in execution time and consumed memory.



In order to illustrate the performance improvement that the above changes produced, the example 6_6_6_link-failure-spine-tof was run. In it, the changes will be applied independently, and then all together. Table 2 illustrates the results of execution time, memory used and improvement percentage for the introduced change.



This improved version allows us to scale the experiments and perform the same scenarios performed with Sibyl in the work of reference [9]. Despite both experimentation environments managing the internal time differently, we can still compare the execution times and the resource consumption of each environment. These comparisons, for scenarios implementing the densest fat-tree topologies, are shown in Table 3. The resources available for the ns-3 environment are the presented in Section 4.2.2, i.e., 30 CPUs and 244 GB of RAM. On the other hand, the scenarios 2_2_1 to 8_8_1 from Sibyl were executed on a cluster of 22 VMs, each with 2-core vCPUs and 8 GB of vRAM, while the scenarios 10_10_1 to 16_16_1 were executed on a cluster composed of 160 VMs, each with 4-core vCPUs and 8 GB vRAM.



It is worth noting that our environment use a single CPU, this is due to the nature of the ns-3 simulator with DCE. Additionally, in addition to the information provided in the table, we observed a RAM saturation in the largest scenario performed. This can explain the gap between the execution time presented in the last of the simulated scenarios in ns-3.




6. Discussion and Conclusions


As a general result, we can conclude that the FRR port to ns-3 DCE is functionally correct and promisingly scalable. In fact, running control plane-only experiments (i.e., without the zebra daemon) on a single server, we were able to achieve competitive results as Sibyl running on a cluster of computing nodes.



In terms of execution times, the results were very satisfactory. ns-3 DCE shows a performance almost close to the Sibyl-emulated environment for scenarios up to 320 nodes, which were run on infrastructures with similar resources. On the other hand, for scenarios with more than 320 nodes, ns-3 DCE shows an average time 2.4 times higher than Sibyl, but with a cumulative vRAM ratio of 5.2 times lower.



The port validation included a theoretical analysis of the behavior of BGP for the datacenter on multi-plane fat-tree topologies. This analysis exposes how to find a formal expression that describes the growth of control packets injected into the network after a failure scenario. Although this analysis validated the results obtained, it is worth noting that the implementations of the routing protocols may be subject to race conditions or limited by the available resources that slightly vary the behavior based on optimizations of the implementations.



In this paper, we focused on BGP in the datacenter, and briefly commented about the execution of other routing daemons of the FRR suite. In this regard, another straightforward line of future work is to undertake a thoroughly testing of other routing daemons, in principle in the MSDC scope. To this end, Openfabric (IS-IS with flooding reduction) is already implemented and ready to run.



Overall, to the best of our knowledge, in this work we provide a functionally correct and scalable FRR port to ns-3 DCE, ready to use by researchers and practitioners alike. For the time being, we only focused on the control plane of Fat-Tree network routing protocols, reaching competitive results with less resource consumption. A foreseeable line of research shall include the forwarding plane, enabling research on traffic behavior in MSDC and/or other topologies.







Author Contributions


Conceptualization, L.A., E.G., M.R., S.A. and F.V.; methodology, L.A., E.G., M.R.; software, S.A. and F.V.; validation, S.A., F.V. and L.A.; formal analysis, L.A., E.G. and M.R.; investigation, L.A., E.G. and M.R.; writing—original draft preparation, L.A., E.G., M.R., S.A. and F.V.; writing—review and editing, L.A., E.G. and M.R.; visualization, L.A., S.A. and F.V; supervision, E.G. and M.R. All authors have read and agreed to the published version of the manuscript.




Funding


This research was partially funded by the Uruguayan National Research and Innovation Agency (ANII) under Grant No. POS_NAC_M_2020_1_163847.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Acknowledgments


We would like to thank our colleagues from the Computer Networks research group at Università Roma Tre, Italy, for the facilitation of execution times reported by the Sibyl framework in their environment.




Conflicts of Interest


The authors declare no conflict of interest.





Appendix A




[image: Table] 





Table A1. Comparison of execution time and number of PDUs exchanged between the proposed ns-3 simulation platform and Sibyl for all the scenarios.






Table A1. Comparison of execution time and number of PDUs exchanged between the proposed ns-3 simulation platform and Sibyl for all the scenarios.





	
Scenario

	
Number

	
Execution

	
PDUs

	
Execution

	
PDUs

	
PDUs




	

	
of Nodes

	
Time

	
ns-3

	
Time

	
ns-3

	
Sibyl




	

	

	
w/o Zebra

	
w/o Zebra

	
w Zebra

	
w Zebra

	






	
2_2_1_link-failure-leaf-spine

	
20

	
1:07.19

	
44

	
1:18.73

	
44

	
-




	
2_2_1_link-failure-spine-tof

	
20

	
0:53.28

	
45

	
1:30.77

	
45

	
-




	
2_2_1_link-recovery-leaf-spine

	
20

	
0:54.39

	
69

	
1:20.07

	
69

	
-




	
2_2_1_link-recovery-spine-tof

	
20

	
1:04.59

	
72

	
1:40.31

	
72

	
-




	
2_2_1_node-failure-leaf

	
20

	
0:59.59

	
60

	
1:24.61

	
60

	
60




	
2_2_1_node-failure-spine

	
20

	
1:01.74

	
56

	
1:40.42

	
56

	
-




	
2_2_1_node-failure-tof

	
20

	
1:02.40

	
72

	
1:21.33

	
72

	
-




	
2_2_1_node-recovery-leaf

	
20

	
0:52.62

	
96

	
1:03.42

	
96

	
-




	
2_2_1_node-recovery-spine

	
20

	
0:58.33

	
160

	
1:50.73

	
160

	
-




	
2_2_1_node-recovery-tof

	
20

	
0:55.88

	
168

	
1:19.57

	
168

	
-




	
2_2_2_link-failure-leaf-spine

	
10

	
0:37.19

	
16

	
0:46.51

	
16

	
-




	
2_2_2_link-failure-spine-tof

	
10

	
0:30.20

	
12

	
0:52.36

	
12

	
-




	
2_2_2_link-recovery-leaf-spine

	
10

	
0:33.69

	
29

	
0:32.79

	
29

	
-




	
2_2_2_link-recovery-spine-tof

	
10

	
0:32.03

	
26

	
0:32.48

	
24

	
-




	
2_2_2_node-failure-leaf

	
10

	
0:34.74

	
28

	
0:50.99

	
28

	
28




	
2_2_2_node-failure-spine

	
10

	
0:32.22

	
18

	
0:36.68

	
18

	
-




	
2_2_2_node-failure-tof

	
10

	
0:34.83

	
24

	
0:50.47

	
24

	
-




	
2_2_2_node-recovery-leaf

	
10

	
0:32.05

	
48

	
0:48.94

	
48

	
-




	
2_2_2_node-recovery-spine

	
10

	
0:34.10

	
68

	
0:47.40

	
68

	
-




	
2_2_2_node-recovery-tof

	
10

	
0:35.70

	
72

	
0:32.06

	
72

	
-




	
4_4_1_link-failure-leaf-spine

	
80

	
4:15.53

	
312

	
5:23.27

	
312

	
-




	
4_4_1_link-failure-spine-tof

	
80

	
4:15.09

	
427

	
5:10.87

	
427

	
-




	
4_4_1_link-recovery-leaf-spine

	
80

	
4:37.03

	
409

	
5:49.97

	
409

	
-




	
4_4_1_link-recovery-spine-tof

	
80

	
4:23.28

	
542

	
5:33.42

	
542

	
-




	
4_4_1_node-failure-leaf

	
80

	
4:12.73

	
504

	
5:17.12

	
504

	
504




	
4_4_1_node-failure-spine

	
80

	
4:28.11

	
1128

	
5:57.28

	
904

	
-




	
4_4_1_node-failure-tof

	
80

	
4:14.70

	
1568

	
5:39.91

	
1568

	
-




	
4_4_1_node-recovery-leaf

	
80

	
4:31.55

	
768

	
6:09.64

	
768

	
-




	
4_4_1_node-recovery-spine

	
80

	
4:13.09

	
1808

	
6:00.58

	
1808

	
-




	
4_4_1_node-recovery-tof

	
80

	
4:16.72

	
2320

	
6:11.65

	
2320

	
-




	
4_4_2_link-failure-leaf-spine

	
40

	
2:11.22

	
96

	
3:03.51

	
96

	
-




	
4_4_2_link-failure-spine-tof

	
40

	
2:07.43

	
112

	
3:15.35

	
112

	
-




	
4_4_2_link-recovery-leaf-spine

	
40

	
2:20.26

	
145

	
3:29.08

	
145

	
-




	
4_4_2_link-recovery-spine-tof

	
40

	
2:07.44

	
162

	
3:10.86

	
162

	
-




	
4_4_2_node-failure-leaf

	
40

	
2:10.24

	
248

	
3:08.23

	
248

	
248




	
4_4_2_node-failure-spine

	
40

	
2:13.89

	
292

	
3:00.28

	
292

	
-




	
4_4_2_node-failure-tof

	
40

	
2:06.92

	
672

	
2:59.16

	
672

	
-




	
4_4_2_node-recovery-leaf

	
40

	
2:09.55

	
384

	
3:11.17

	
384

	
-




	
4_4_2_node-recovery-spine

	
40

	
2:11.83

	
640

	
3:11.03

	
640

	
-




	
4_4_2_node-recovery-tof

	
40

	
2:00.63

	
1040

	
3:22.35

	
1040

	
-




	
4_4_4_link-failure-leaf-spine

	
20

	
1:05.64

	
72

	
1:16.44

	
72

	
-




	
4_4_4_link-failure-spine-tof

	
20

	
1:03.96

	
56

	
1:31.83

	
56

	
-




	
4_4_4_link-recovery-leaf-spine

	
20

	
1:12.47

	
97

	
1:19.03

	
97

	
-




	
4_4_4_link-recovery-spine-tof

	
20

	
1:10.85

	
78

	
1:32.06

	
78

	
-




	
4_4_4_node-failure-leaf

	
20

	
0:58.07

	
120

	
1:44.26

	
120

	
120




	
4_4_4_node-failure-spine

	
20

	
1:08.24

	
196

	
0:59.93

	
196

	
-




	
4_4_4_node-failure-tof

	
20

	
1:07.31

	
224

	
1:30.04

	
224

	
-




	
4_4_4_node-recovery-leaf

	
20

	
1:03.67

	
192

	
1:15.28

	
192

	
-




	
4_4_4_node-recovery-spine

	
20

	
1:09.48

	
384

	
1:49.51

	
384

	
-




	
4_4_4_node-recovery-tof

	
20

	
1:06.60

	
400

	
0:59.46

	
400

	
-




	
6_6_1_link-failure-leaf-spine

	
180

	
10:42.61

	
996

	
14:40.34

	
996

	
996




	
6_6_1_link-failure-spine-tof

	
180

	
10:27.84

	
1529

	
14:17.19

	
1529

	
1529, 1577




	
6_6_1_link-recovery-leaf-spine

	
180

	
11:11.31

	
1213

	
15:53.67

	
1213

	
1069, 1238




	
6_6_1_link-recovery-spine-tof

	
180

	
10:55.97

	
1796

	
16:14.04

	
1796

	
1657, 1796




	
6_6_1_node-failure-leaf

	
180

	
10:41.58

	
1716

	
13:52.94

	
1716

	
1716, 1734




	
6_6_1_node-failure-spine

	
180

	
10:12.82

	
4704

	
15:13.56

	
4704

	
4704, 4726




	
6_6_1_node-failure-tof

	
180

	
10:19.49

	
8712

	
14:31.77

	
8712

	
8712, 8808




	
6_6_1_node-recovery-leaf

	
180

	
10:38.73

	
2592

	
14:44.55

	
2592

	
2592, 3444




	
6_6_1_node-recovery-spine

	
180

	
10:23.92

	
7872

	
15:32.47

	
7872

	
8686, 9362




	
6_6_1_node-recovery-tof

	
180

	
9:56.09

	
11,256

	
14:51.07

	
11,256

	
11,190, 11,316




	
6_6_2_link-failure-leaf-spine

	
90

	
5:08.22

	
288

	
7:25.55

	
288

	
288, 358




	
6_6_2_link-failure-spine-tof

	
90

	
5:03.01

	
396

	
7:19.56

	
396

	
396, 456




	
6_6_2_link-recovery-leaf-spine

	
90

	
5:26.72

	
397

	
7:34.14

	
397

	
325, 397




	
6_6_2_link-recovery-spine-tof

	
90

	
5:26.11

	
500

	
7:43.13

	
500

	
439, 506




	
6_6_2_node-failure-leaf

	
90

	
5:16.17

	
852

	
7:12.16

	
852

	
852, 858




	
6_6_2_node-failure-spine

	
90

	
5:09.56

	
1446

	
8:01.95

	
1446

	
1446




	
6_6_2_node-failure-tof

	
90

	
5:05.01

	
3960

	
7:21.65

	
3960

	
3960




	
6_6_2_node-recovery-leaf

	
90

	
4:49.43

	
1296

	
7:27.46

	
1296

	
1296, 1926




	
6_6_2_node-recovery-spine

	
90

	
5:09.29

	
2580

	
7:21.40

	
2580

	
2916, 3247




	
6_6_2_node-recovery-tof

	
90

	
5:13.78

	
5208

	
7:29.28

	
5208

	
5208, 5310




	
6_6_3_link-failure-leaf-spine

	
60

	
3:13.01

	
228

	
5:07.65

	
228

	
228




	
6_6_3_link-failure-spine-tof

	
60

	
3:32.99

	
264

	
4:34.69

	
264

	
264




	
6_6_3_link-recovery-leaf-spine

	
60

	
3:31.02

	
301

	
5:07.55

	
301

	
253, 301




	
6_6_3_link-recovery-spine-tof

	
60

	
3:46.15

	
332

	
5:25.22

	
332

	
295, 338




	
6_6_3_node-failure-leaf

	
60

	
3:28.60

	
564

	
5:30.40

	
564

	
562, 564




	
6_6_3_node-failure-spine

	
60

	
3:27.40

	
1086

	
4:29.95

	
1086

	
1086




	
6_6_3_node-failure-tof

	
60

	
3:32.06

	
2376

	
4:37.03

	
2376

	
2376, 2942




	
6_6_3_node-recovery-leaf

	
60

	
3:26.27

	
864

	
4:54.17

	
864

	
864, 1002




	
6_6_3_node-recovery-spine

	
60

	
3:24.86

	
1860

	
5:41.32

	
1860

	
1836, 2413




	
6_6_3_node-recovery-tof

	
60

	
3:25.22

	
3192

	
5:08.39

	
3192

	
3354, 3450




	
6_6_6_link-failure-leaf-spine

	
30

	
1:46.37

	
168

	
2:14.63

	
168

	
168, 541




	
6_6_6_link-failure-spine-tof

	
30

	
1:44.24

	
132

	
2:37.48

	
132

	
132




	
6_6_6_link-recovery-leaf-spine

	
30

	
1:48.37

	
205

	
2:29.47

	
205

	
181, 205




	
6_6_6_link-recovery-spine-tof

	
30

	
1:47.56

	
164

	
2:32.80

	
164

	
151, 170




	
6_6_6_node-failure-leaf

	
30

	
1:43.67

	
276

	
2:26.95

	
276

	
276




	
6_6_6_node-failure-spine

	
30

	
1:47.86

	
726

	
2:39.75

	
726

	
726




	
6_6_6_node-failure-tof

	
30

	
1:44.04

	
792

	
2:29.69

	
792

	
792




	
6_6_6_node-recovery-leaf

	
30

	
1:42.01

	
432

	
3:08.22

	
432

	
432




	
6_6_6_node-recovery-spine

	
30

	
1:46.04

	
1140

	
2:28.39

	
1140

	
1104, 1182




	
6_6_6_node-recovery-tof

	
30

	
1:45.79

	
1176

	
2:28.30

	
1176

	
1176




	
8_8_1_link-failure-leaf-spine

	
320

	
21:56.54

	
2288

	
29:13.19

	
2288

	
2288




	
8_8_1_link-failure-spine-tof

	
320

	
20:06.32

	
3735

	
29:26.26

	
3735

	
3743




	
8_8_1_link-recovery-leaf-spine

	
320

	
22:56.82

	
2673

	
35:14.27

	
2673

	
2417




	
8_8_1_link-recovery-spine-tof

	
320

	
22:28.77

	
4218

	
34:43.00

	
4218

	
4218




	
8_8_1_node-failure-leaf

	
320

	
21:16.01

	
4080

	
30:44.58

	
4080

	
4076, 4080, 4088




	
8_8_1_node-failure-spine

	
320

	
21:12.30

	
15,152

	
30:26.00

	
15,152

	
15,152, 15,197




	
8_8_1_node-failure-tof

	
320

	
20:56.05

	
28,800

	
28:37.21

	
28,800

	
28,958, 29,058




	
8_8_1_node-recovery-leaf

	
320

	
21:26.21

	
6144

	
33:47.08

	
6144

	
8172, 10,228




	
8_8_1_node-recovery-spine

	
320

	
21:09.10

	
22,816

	
31:55.63

	
22,816

	
22,848




	
8_8_1_node-recovery-tof

	
320

	
21:26.99

	
34,848

	
30:46.45

	
34,848

	
34,622, 35,076




	
8_8_2_link-failure-leaf-spine

	
160

	
9:51.76

	
640

	
15:02.54

	
640

	
640




	
8_8_2_link-failure-spine-tof

	
160

	
9:52.78

	
960

	
14:14.68

	
960

	
960




	
8_8_2_link-recovery-leaf-spine

	
160

	
10:59.49

	
833

	
16:07.96

	
833

	
705, 855




	
8_8_2_link-recovery-spine-tof

	
160

	
10:33.65

	
1146

	
14:20.73

	
1146

	
1033, 1154




	
8_8_2_node-failure-leaf

	
160

	
10:28.93

	
2032

	
14:30.95

	
2032

	
2028, 2032




	
8_8_2_node-failure-spine

	
160

	
9:56.79

	
4488

	
14:38.23

	
4488

	
4488, 4510




	
8_8_2_node-failure-tof

	
160

	
10:18.38

	
13,440

	
14:32.53

	
13,440

	
13,440, 13,680




	
8_8_2_node-recovery-leaf

	
160

	
10:15.41

	
3072

	
15:36.29

	
3072

	
4584




	
8_8_2_node-recovery-spine

	
160

	
10:05.70

	
7136

	
14:24.24

	
7136

	
7104, 10,439




	
8_8_2_node-recovery-tof

	
160

	
9:38.98

	
16,416

	
13:43.01

	
16,416

	
16,599, 16,832




	
8_8_4_link-failure-leaf-spine

	
80

	
4:53.83

	
416

	
7:01.98

	
416

	
416, 447




	
8_8_4_link-failure-spine-tof

	
80

	
4:51.56

	
480

	
7:02.12

	
480

	
480




	
8_8_4_link-recovery-leaf-spine

	
80

	
5:18.90

	
513

	
7:16.01

	
513

	
449, 513




	
8_8_4_link-recovery-spine-tof

	
80

	
5:14.52

	
570

	
7:09.06

	
570

	
521, 578




	
8_8_4_node-failure-leaf

	
80

	
5:06.75

	
1008

	
6:52.72

	
1008

	
1008, 1024




	
8_8_4_node-failure-spine

	
80

	
5:02.55

	
2696

	
6:27.52

	
2696

	
2696




	
8_8_4_node-failure-tof

	
80

	
4:59.97

	
5760

	
6:39.84

	
5760

	
5760




	
8_8_4_node-recovery-leaf

	
80

	
4:57.09

	
1536

	
6:42.37

	
1536

	
1784, 2278




	
8_8_4_node-recovery-spine

	
80

	
4:52.50

	
4064

	
7:18.56

	
4064

	
4400, 4802




	
8_8_4_node-recovery-tof

	
80

	
5:04.17

	
7200

	
6:54.38

	
7200

	
7200




	
8_8_8_link-failure-leaf-spine

	
40

	
2:31.42

	
304

	
3:19.37

	
304

	
304




	
8_8_8_link-failure-spine-tof

	
40

	
2:02.31

	
240

	
3:03.47

	
240

	
240




	
8_8_8_link-recovery-leaf-spine

	
40

	
2:04.05

	
353

	
3:59.65

	
353

	
321, 353




	
8_8_8_link-recovery-spine-tof

	
40

	
1:54.87

	
282

	
3:36.25

	
282

	
265, 290




	
8_8_8_node-failure-leaf

	
40

	
2:05.69

	
496

	
3:45.87

	
496

	
496




	
8_8_8_node-failure-spine

	
40

	
1:56.52

	
1800

	
3:30.05

	
1800

	
1800




	
8_8_8_node-failure-tof

	
40

	
2:16.27

	
1920

	
3:16.83

	
1920

	
1920




	
8_8_8_node-recovery-leaf

	
40

	
2:07.44

	
768

	
3:48.72

	
768

	
768, 888




	
8_8_8_node-recovery-spine

	
40

	
2:21.66

	
2528

	
3:23.44

	
2528

	
2613, 2856




	
8_8_8_node-recovery-tof

	
40

	
2:09.00

	
2592

	
3:43.65

	
2592

	
2592, 2960




	
10_10_1_link-failure-leaf-spine

	
500

	
43:21.57

	
4380

	
53:33.93

	
4380

	
-




	
10_10_1_link-failure-spine-tof

	
500

	
35:48.74

	
7429

	
52:05.10

	
7429

	
-




	
10_10_1_link-recovery-leaf-spine

	
500

	
40:25.85

	
4981

	
1:03:15

	
4981

	
-




	
10_10_1_link-recovery-spine-tof

	
500

	
38:10.10

	
8192

	
59:07.93

	
8192

	
-




	
10_10_1_node-failure-leaf

	
500

	
36:31.21

	
7980

	
54:41.84

	
7980

	
7980




	
10_10_1_node-failure-spine

	
500

	
37:16.85

	
37,480

	
53:23.76

	
37,480

	
18,390




	
10_10_1_node-failure-tof

	
500

	
35:52.55

	
72,200

	
55:32.04

	
72,200

	
36,072




	
10_10_1_node-recovery-leaf

	
500

	
40:15.09

	
12,000

	
55:27.11

	
12,000

	
-




	
10_10_1_node-recovery-spine

	
500

	
36:11.80

	
52,640

	
58:46.43

	
52,640

	
-




	
10_10_1_node-recovery-tof

	
500

	
37:35.48

	
84,040

	
54:39.94

	
84,040

	
-




	
10_10_2_link-failure-leaf-spine

	
250

	
16:59.57

	
1200

	
23:04.10

	
1200

	
1200




	
10_10_2_link-failure-spine-tof

	
250

	
17:04.08

	
1900

	
26:00.38

	
1900

	
1900




	
10_10_2_link-recovery-leaf-spine

	
250

	
18:30.72

	
1501

	
26:21.99

	
1501

	
1301, 1501




	
10_10_2_link-recovery-spine-tof

	
250

	
18:25.44

	
2192

	
27:09.12

	
2192

	
2011, 2202




	
10_10_2_node-failure-leaf

	
250

	
17:31.08

	
3980

	
24:08.59

	
3980

	
3980, 3996




	
10_10_2_node-failure-spine

	
250

	
16:21.09

	
10,810

	
23:40.49

	
10,810

	
10,810, 10,833




	
10_10_2_node-failure-tof

	
250

	
16:44.71

	
34,200

	
23:44.88

	
34,200

	
34,527, 34,788




	
10_10_2_node-recovery-leaf

	
250

	
17:46.35

	
6000

	
25:01.38

	
6000

	
6000, 7976




	
10_10_2_node-recovery-spine

	
250

	
16:41.62

	
15,940

	
24:22.66

	
15,940

	
15,661, 19,401




	
10_10_2_node-recovery-tof

	
250

	
17:13.10

	
40,040

	
24:49.72

	
40,040

	
41,188, 41,667




	
10_10_5_link-failure-leaf-spine

	
100

	
6:22.98

	
660

	
8:42.60

	
660

	
660




	
10_10_5_link-failure-spine-tof

	
100

	
6:14.27

	
760

	
8:32.91

	
760

	
760, 820




	
10_10_5_link-recovery-leaf-spine

	
100

	
6:52.48

	
781

	
9:46.89

	
781

	
701, 781




	
10_10_5_link-recovery-spine-tof

	
100

	
6:52.53

	
872

	
10:36.91

	
872

	
811, 882




	
10_10_5_node-failure-leaf

	
100

	
6:43.43

	
1580

	
8:57.90

	
1580

	
1580




	
10_10_5_node-failure-spine

	
100

	
6:41.49

	
5410

	
8:41.55

	
5410

	
5410




	
10_10_5_node-failure-tof

	
100

	
6:34.09

	
11,400

	
8:57.93

	
11,400

	
11,544, 11,550




	
10_10_5_node-recovery-leaf

	
100

	
6:31.91

	
2400

	
9:57.73

	
2400

	
3180, 2790




	
10_10_5_node-recovery-spine

	
100

	
6:39.00

	
7540

	
9:25.65

	
7540

	
7510, 7490




	
10_10_5_node-recovery-tof

	
100

	
6:38.31

	
13,640

	
9:25.54

	
13,640

	
14,798, 15,178




	
10_10_10_link-failure-leaf-spine

	
50

	
3:09.21

	
480

	
4:35.08

	
480

	
480




	
10_10_10_link-failure-spine-tof

	
50

	
3:14.54

	
380

	
4:21.50

	
380

	
380




	
10_10_10_link-recovery-leaf-spine

	
50

	
3:31.83

	
541

	
5:10.14

	
541

	
501, 541




	
10_10_10_link-recovery-spine-tof

	
50

	
3:15.08

	
432

	
4:37.93

	
432

	
411, 442




	
10_10_10_node-failure-leaf

	
50

	
3:13.24

	
780

	
4:22.19

	
780

	
780




	
10_10_10_node-failure-spine

	
50

	
3:11.36

	
3610

	
4:14.41

	
3610

	
3610




	
10_10_10_node-failure-tof

	
50

	
3:12.86

	
3800

	
4:25.57

	
3800

	
3800




	
10_10_10_node-recovery-leaf

	
50

	
3:11.31

	
1200

	
4:31.73

	
1200

	
1580, 1582




	
10_10_10_node-recovery-spine

	
50

	
3:02.23

	
4740

	
5:03.15

	
4740

	
4670, 4710




	
10_10_10_node-recovery-tof

	
50

	
3:08.48

	
4840

	
4:46.55

	
4840

	
4840, 5540




	
12_12_1_link-failure-leaf-spine

	
720

	
1:37:58

	
7464

	
not enough vRAM

	
-




	
12_12_1_link-failure-spine-tof

	
720

	
1:19:03

	
12,995

	
not enough vRAM

	
-




	
12_12_1_link-recovery-leaf-spine

	
720

	
1:28:55

	
8329

	
not enough vRAM

	
-




	
12_12_1_link-recovery-spine-tof

	
720

	
1:24:22

	
14,102

	
not enough vRAM

	
-




	
12_12_1_node-failure-leaf

	
720

	
1:22:40

	
17,244

	
not enough vRAM

	
13,800




	
12_12_1_node-failure-spine

	
720

	
1:19:23

	
78,456

	
not enough vRAM

	
-




	
12_12_1_node-failure-tof

	
720

	
1:19:27

	
152,352

	
not enough vRAM

	
-




	
12_12_1_node-recovery-leaf

	
720

	
1:20:34

	
20,736

	
not enough vRAM

	
-




	
12_12_1_node-recovery-spine

	
720

	
1:20:01

	
104,880

	
not enough vRAM

	
-




	
12_12_1_node-recovery-tof

	
720

	
1:21:15

	
172,848

	
not enough vRAM

	
-




	
12_12_3_link-failure-leaf-spine

	
240

	
19:05.59

	
1488

	
25:35.76

	
1488

	
1488




	
12_12_3_link-failure-spine-tof

	
240

	
19:54.03

	
2208

	
25:56.47

	
2208

	
2208




	
12_12_3_link-recovery-leaf-spine

	
240

	
21:26.32

	
1777

	
29:01.01

	
1777

	
1585, 1777




	
12_12_3_link-recovery-spine-tof

	
240

	
20:56.25

	
2486

	
28:28.63

	
2486

	
2317, 2498




	
12_12_3_node-failure-leaf

	
240

	
19:53.39

	
5724

	
28:19.25

	
4584

	
4580, 4584, 4628




	
12_12_3_node-failure-spine

	
240

	
19:28.09

	
15,852

	
26:19.43

	
15,852

	
15,929, 16,002




	
12_12_3_node-failure-tof

	
240

	
19:12.64

	
46,368

	
26:11.43

	
463,68

	
47,227, 57,292




	
12_12_3_node-recovery-leaf

	
240

	
19:48.84

	
6912

	
26:56.88

	
6912

	
8052, 11,514




	
12_12_3_node-recovery-spine

	
240

	
19:21.35

	
21,792

	
28:02.68

	
21,792

	
21,797, 23,710, 29,768




	
12_12_3_node-recovery-tof

	
240

	
19:31.33

	
53,040

	
26:09.66

	
53,040

	
53,926, 54,024




	
12_12_4_link-failure-leaf-spine

	
180

	
14:05.84

	
1224

	
18:58.75

	
1224

	
1224




	
12_12_4_link-failure-spine-tof

	
180

	
13:44.66

	
1656

	
18:52.29

	
1656

	
1656, 1680




	
12_12_4_link-recovery-leaf-spine

	
180

	
14:55.32

	
1441

	
21:11.28

	
1441

	
1297, 1441




	
12_12_4_link-recovery-spine-tof

	
180

	
15:11.86

	
1862

	
21:08.28

	
1862

	
1741, 1874




	
12_12_4_node-failure-leaf

	
180

	
14:28.07

	
3852

	
19:42.57

	
3432

	
3430, 3432




	
12_12_4_node-failure-spine

	
180

	
14:28.08

	
12,684

	
19:42.68

	
12,684

	
12,763, 12,775




	
12_12_4_node-failure-tof

	
180

	
13:56.64

	
33,120

	
19:12.50

	
33,120

	
33,930, 34,800




	
12_12_4_node-recovery-leaf

	
180

	
14:16.45

	
5184

	
19:31.86

	
5184

	
5184




	
12_12_4_node-recovery-spine

	
180

	
13:50.67

	
17,184

	
20:41.04

	
17,184

	
-




	
12_12_4_node-recovery-tof

	
180

	
14:33.37

	
38,064

	
19:19.03

	
38,064

	
38,979, 39,312




	
12_12_6_link-failure-leaf-spine

	
120

	
9:39.02

	
960

	
12:19.99

	
960

	
960, 983




	
12_12_6_link-failure-spine-tof

	
120

	
8:50.37

	
1104

	
12:47.93

	
1104

	
1104




	
12_12_6_link-recovery-leaf-spine

	
120

	
10:03.56

	
1105

	
14:16.49

	
1105

	
1009, 1105




	
12_12_6_link-recovery-spine-tof

	
120

	
10:04.93

	
1238

	
13:47.75

	
1238

	
1165, 1250




	
12_12_6_node-failure-leaf

	
120

	
9:44.62

	
2700

	
12:41.80

	
2280

	
2278, 2280, 2292




	
12_12_6_node-failure-spine

	
120

	
9:32.30

	
9516

	
12:41.86

	
9516

	
9516, 9589




	
12_12_6_node-failure-tof

	
120

	
9:35.47

	
19,872

	
12:30.12

	
19,872

	
20,580, 20,712




	
12_12_6_node-recovery-leaf

	
120

	
9:15.39

	
3456

	
12:37.12

	
3456

	
3456, 5146




	
12_12_6_node-recovery-spine

	
120

	
9:27.34

	
12,576

	
13:25.55

	
12,576

	
12,514, 15,936




	
12_12_6_node-recovery-tof

	
120

	
9:09.30

	
23,088

	
12:53.84

	
23,088

	
23,352, 23,625




	
12_12_12_link-failure-leaf-spine

	
60

	
4:14.67

	
696

	
5:56.28

	
696

	
696




	
12_12_12_link-failure-spine-tof

	
60

	
4:04.78

	
552

	
6:10.82

	
552

	
552




	
12_12_12_link-recovery-leaf-spine

	
60

	
4:41.71

	
769

	
6:56.05

	
769

	
721, 769




	
12_12_12_link-recovery-spine-tof

	
60

	
4:38.93

	
614

	
6:57.11

	
614

	
589, 626




	
12_12_12_node-failure-leaf

	
60

	
4:25.29

	
1548

	
6:18.81

	
1128

	
1128




	
12_12_12_node-failure-spine

	
60

	
4:12.53

	
6348

	
6:08.16

	
6348

	
6348




	
12_12_12_node-failure-tof

	
60

	
4:11.17

	
6624

	
6:25.72

	
6624

	
6624




	
12_12_12_node-recovery-leaf

	
60

	
4:22.37

	
1728

	
6:15.41

	
1728

	
1728




	
12_12_12_node-recovery-spine

	
60

	
4:24.15

	
7968

	
6:31.74

	
7968

	
8162, 9469




	
12_12_12_node-recovery-tof

	
60

	
4:23.12

	
8112

	
6:25.38

	
8112

	
8112, 8676




	
14_14_1_link-failure-leaf-spine

	
980

	
2:42:23

	
11,732

	
not enough vRAM

	
-




	
14_14_1_link-failure-spine-tof

	
980

	
2:32:38

	
20,817

	
not enough vRAM

	
-




	
14_14_1_link-recovery-leaf-spine

	
980

	
2:40:38

	
12,909

	
not enough vRAM

	
-




	
14_14_1_link-recovery-spine-tof

	
980

	
2:39:26

	
22,332

	
not enough vRAM

	
-




	
14_14_1_node-failure-leaf

	
980

	
2:41:23

	
27,398

	
not enough vRAM

	
21,924




	
14_14_1_node-failure-spine

	
980

	
2:40:11

	
146,384

	
not enough vRAM

	
-




	
14_14_1_node-failure-tof

	
980

	
2:32:28

	
285,768

	
not enough vRAM

	
-




	
14_14_1_node-recovery-leaf

	
980

	
2:40:42

	
32,928

	
not enough vRAM

	
-




	
14_14_1_node-recovery-spine

	
980

	
2:42:50

	
188,608

	
not enough vRAM

	
-




	
14_14_1_node-recovery-tof

	
980

	
2:36:31

	
318,360

	
not enough vRAM

	
-




	
14_14_2_link-failure-leaf-spine

	
490

	
54:43.59

	
3136

	
59:22.85

	
3136

	
-




	
14_14_2_link-failure-spine-tof

	
490

	
52:49.34

	
5292

	
58:15.27

	
5292

	
-




	
14_14_2_link-recovery-leaf-spine

	
490

	
56:43.90

	
3725

	
1:02:30

	
3725

	
-




	
14_14_2_link-recovery-spine-tof

	
490

	
56:29.84

	
5882

	
1:00:44

	
5882

	
-




	
14_14_2_node-failure-leaf

	
490

	
54:45.50

	
14,070

	
1:01:33

	
14,070

	
10,948




	
14_14_2_node-failure-spine

	
490

	
52:58.71

	
40,782

	
57:15.31

	
40,782

	
-




	
14_14_2_node-failure-tof

	
490

	
53:31.63

	
137,592

	
57:16.83

	
13,7592

	
-




	
14_14_2_node-recovery-leaf

	
490

	
53:24.08

	
16,464

	
57:33.53

	
16,464

	
-




	
14_14_2_node-recovery-spine

	
490

	
53:23.65

	
54,740

	
59:57.35

	
54,740

	
-




	
14_14_2_node-recovery-tof

	
490

	
54:33.18

	
15,3720

	
58:34.59

	
153,720

	
-




	
14_14_7_link-failure-leaf-spine

	
140

	
12:01.43

	
1316

	
19:57.69

	
1316

	
1336




	
14_14_7_link-failure-spine-tof

	
140

	
11:36.53

	
1512

	
18:12.65

	
1512

	
1512, 1635




	
14_14_7_link-recovery-leaf-spine

	
140

	
12:29.71

	
1485

	
21:14.82

	
1485

	
1373, 1485




	
14_14_7_link-recovery-spine-tof

	
140

	
12:07.47

	
1668

	
20:51.26

	
1668

	
1583, 1682




	
14_14_7_node-failure-leaf

	
140

	
12:13.42

	
3878

	
19:14.01

	
3108

	
3108, 3150




	
14_14_7_node-failure-spine

	
140

	
12:02.30

	
15,302

	
19:24.98

	
15,302

	
15,374




	
14_14_7_node-failure-tof

	
140

	
11:36.70

	
31,752

	
20:30.41

	
31,752

	
32,988, 32,990




	
14_14_7_node-recovery-leaf

	
140

	
11:37.59

	
4704

	
20:36.14

	
4704

	
5470, 7014




	
14_14_7_node-recovery-spine

	
140

	
11:53.92

	
19,460

	
19:59.21

	
19,460

	
21,484, 24,662




	
14_14_7_node-recovery-tof

	
140

	
11:45.48

	
36,120

	
19:06.72

	
36,120

	
37,967, 39,645




	
14_14_14_link-failure-leaf-spine

	
70

	
5:20.93

	
952

	
9:06.52

	
952

	
952




	
14_14_14_link-failure-spine-tof

	
70

	
5:16.32

	
756

	
9:00.30

	
756

	
756




	
14_14_14_link-recovery-leaf-spine

	
70

	
5:50.10

	
1037

	
10:22.86

	
1037

	
981, 1037




	
14_14_14_link-recovery-spine-tof

	
70

	
5:44.78

	
828

	
10:41.18

	
828

	
799, 842




	
14_14_14_node-failure-leaf

	
70

	
5:30.51

	
2114

	
9:50.42

	
1540

	
1540, 1552, 1554




	
14_14_14_node-failure-spine

	
70

	
5:39.92

	
10,206

	
10:21.86

	
10,206

	
10,206, 10,308, 10,350




	
14_14_14_node-failure-tof

	
70

	
5:32.21

	
10,584

	
9:21.20

	
10,584

	
10,570, 10,584




	
14_14_14_node-recovery-leaf

	
70

	
5:19.37

	
2352

	
10:15.21

	
2352

	
2730




	
14_14_14_node-recovery-spine

	
70

	
5:32.34

	
12,404

	
10:15.31

	
12,404

	
12,580, 13,024




	
14_14_14_node-recovery-tof

	
70

	
5:50.77

	
12,600

	
9:44.88

	
12,600

	
14,406, 14,574




	
15_15_1_link-failure-leaf-spine

	
1125

	
6:49:52

	
14,370

	
not enough vRAM

	
-




	
15_15_1_link-failure-spine-tof

	
1125

	
5:10:04

	
25,694

	
not enough vRAM

	
-




	
15_15_1_link-recovery-leaf-spine

	
1125

	
7:16:43

	
15,721

	
not enough vRAM

	
-




	
15_15_1_link-recovery-spine-tof

	
1125

	
7:38:04

	
27,437

	
not enough vRAM

	
-




	
15_15_1_node-failure-leaf

	
1125

	
7:21:43

	
33,705

	
not enough vRAM

	
-




	
15_15_1_node-failure-spine

	
1125

	
6:57:28

	
193,470

	
not enough vRAM

	
-




	
15_15_1_node-failure-tof

	
1125

	
7:28:52

	
378,450

	
not enough vRAM

	
-




	
15_15_1_node-recovery-leaf

	
1125

	
7:14:26

	
40,500

	
not enough vRAM

	
-




	
15_15_1_node-recovery-spine

	
1125

	
7:06:44

	
245,535

	
not enough vRAM

	
-




	
15_15_1_node-recovery-tof

	
1125

	
7:06:41

	
418,560

	
not enough vRAM

	
-




	
16_16_1_link-failure-leaf-spine

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_link-failure-spine-tof

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_link-recovery-leaf-spine

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_link-recovery-spine-tof

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_node-failure-leaf

	
1280

	
not enough vRAM

	
not enough vRAM

	
32,736




	
16_16_1_node-failure-spine

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_node-failure-tof

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_node-recovery-leaf

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_node-recovery-spine

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_1_node-recovery-tof

	
1280

	
not enough vRAM

	
not enough vRAM

	
-




	
16_16_8_link-failure-leaf-spine

	
160

	
16:09.07

	
1728

	
27:12.65

	
1728

	
1728




	
16_16_8_link-failure-spine-tof

	
160

	
15:58.80

	
1984

	
23:39.03

	
1984

	
1984




	
16_16_8_link-recovery-leaf-spine

	
160

	
17:09.07

	
1921

	
27:48.62

	
1921

	
1793, 1991




	
16_16_8_link-recovery-spine-tof

	
160

	
16:58.23

	
2162

	
26:25.27

	
2162

	
2065, 2178




	
16_16_8_node-failure-leaf

	
160

	
16:24.14

	
5584

	
24:45.55

	
4064

	
4062, 4064




	
16_16_8_node-failure-spine

	
160

	
16:31.02

	
23,056

	
23:16.42

	
23,056

	
23,262




	
16_16_8_node-failure-tof

	
160

	
16:35.37

	
47,616

	
23:58.30

	
47,616

	
48,543, 48,807




	
16_16_8_node-recovery-leaf

	
160

	
15:59.40

	
6144

	
24:17.76

	
6144

	
8230, 10,174




	
16_16_8_node-recovery-spine

	
160

	
16:20.55

	
28,480

	
25:01.35

	
28,480

	
29,729, 30,013




	
16_16_8_node-recovery-tof

	
160

	
16:54.93

	
53,312

	
24:16.86

	
53,312

	
54,467, 56,962




	
16_16_16_link-failure-leaf-spine

	
80

	
7:09.04

	
1248

	
12:02.83

	
1248

	
1248, 1310




	
16_16_16_link-failure-spine-tof

	
80

	
7:16.87

	
992

	
11:04.84

	
992

	
992




	
16_16_16_link-recovery-leaf-spine

	
80

	
7:42.15

	
1345

	
13:31.50

	
1345

	
1281, 1345




	
16_16_16_link-recovery-spine-tof

	
80

	
7:44.84

	
1074

	
13:39.60

	
1074

	
1041, 1090




	
16_16_16_node-failure-leaf

	
80

	
7:32.59

	
2768

	
12:06.73

	
2016

	
2016




	
16_16_16_node-failure-spine

	
80

	
7:27.18

	
15,376

	
11:50.89

	
15,376

	
15,582, 15,596, 15,599




	
16_16_16_node-failure-tof

	
80

	
7:38.51

	
15,872

	
12:19.22

	
15,872

	
15,376, 15,840, 15,872




	
16_16_16_node-recovery-leaf

	
80

	
7:29.09

	
3072

	
12:13.98

	
3072

	
3070, 4064




	
16_16_16_node-recovery-spine

	
80

	
7:21.55

	
18,240

	
13:44.53

	
18,240

	
18,016, 19,074




	
16_16_16_node-recovery-tof

	
80

	
7:21.64

	
18,496

	
12:05.75

	
18,496

	
19,328, 19,776











References


	



Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021; White Paper; Cisco: San Jose, CA, USA, 2018. [Google Scholar]

	



Clos, C. A study of non-blocking switching networks. Bell Syst. Tech. J. 1953, 32, 406–424. [Google Scholar] [CrossRef]

	



Alberro, L.; Castro, A.; Grampin, E. Experimentation Environments for Data Center Routing Protocols: A Comprehensive Review. Future Internet 2022, 14, 29. [Google Scholar] [CrossRef]

	



Bonofiglio, G.; Iovinella, V.; Lospoto, G.; Di Battista, G. Kathará: A container-based framework for implementing network function virtualization and software defined networks. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar] [CrossRef]

	



Scazzariello, M.; Ariemma, L.; Caiazzi, T. Kathará: A Lightweight Network Emulation System. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–2. [Google Scholar] [CrossRef]

	



Scazzariello, M.; Ariemma, L.; Battista, G.D.; Patrignani, M. Megalos: A Scalable Architecture for the Virtualization of Network Scenarios. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–7. [Google Scholar] [CrossRef]

	



Ahrenholz, J. Comparison of CORE network emulation platforms. In Proceedings of the 2010—MILCOM 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010; pp. 166–171. [Google Scholar] [CrossRef]

	



Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010; Association for Computing Machinery: New York, NY, USA, 2010. Hotnets-IX. [Google Scholar] [CrossRef]

	



Caiazzi, T.; Scazzariello, M.; Alberro, L.; Ariemma, L.; Castro, A.; Grampin, E.; Battista, G.D. Sibyl: A Framework for Evaluating the Implementation of Routing Protocols in Fat-Trees. In Proceedings of the NOMS 2022—2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–7. [Google Scholar] [CrossRef]

	



Lapukhov, P.; Premji, A.; Mitchell, J. Use of BGP for Routing in Large-Scale Data Centers; RFC 7938, RFC Editor; 2016; IETF. Available online: https://datatracker.ietf.org/doc/rfc7938/ (accessed on 9 October 2022).

	



White, R.; Hegde, S.; Zandi, S. IS-IS Optimal Distributed Flooding for Dense Topologies. Internet-Draft Draft-White-Distoptflood-03, IETF Secretariat. 2020. Available online: https://datatracker.ietf.org/doc/html/draft-white-distoptflood-03 (accessed on 9 October 2022).

	



Przygienda, T.; Sharma, A.; Thubert, P.; Rijsman, B.; Afanasiev, D.; Head, J. RIFT: Routing in Fat Trees. Internet-Draft Draft-Ietf-Rift-Rift-16, IETF Secretariat. 2022. Available online: https://datatracker.ietf.org/doc/draft-ietf-rift-rift/ (accessed on 9 October 2022).

	



Aelmans, M.; Vandezande, O.; Rijsman, B.; Head, J.; Graf, C.; Alberro, L.; Mali, H.; Steudler, O. Day One: Routing in Fat Trees (RIFT); Juniper Networks Books: Sunnyvale, CA, USA, 2020. [Google Scholar]

	



Quagga. Available online: https://www.quagga.net/ (accessed on 1 August 2022).

	



Tazaki, H.; Uarbani, F.; Mancini, E.; Lacage, M.; Camara, D.; Turletti, T.; Dabbous, W. Direct code execution: Revisiting library os architecture for reproducible network experiments. In Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA, 9–12 December 2013; pp. 217–228. [Google Scholar]

	



ns-3 Network Simulator. Available online: https://www.nsnam.org (accessed on 30 September 2022).

	



ns-3 Direct Code Execution. Available online: https://www.nsnam.org/about/projects/direct-code-execution (accessed on 30 September 2022).

	



Caiazzi, T.; Scazzariello, M.; Ariemma, L. VFTGen: A Tool to Perform Experiments in Virtual Fat Tree Topologies. In Proceedings of the IM 2021—2021 IFIP/IEEE International Symposium on Integrated Network Management, Virtual, 17–21 May 2021. [Google Scholar]

	



Sibyl Results. Available online: https://gitlab.com/uniroma3/compunet/networks/sibyl-framework/sibyl-results (accessed on 30 September 2022).

	



Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]

	



Kubernetes. 2021. Available online: https://kubernetes.io/ (accessed on 30 September 2022).

	



Azpiroz, S.Y.; Velázquez, F. FRR ns-3 DCE. 2021. Available online: https://gitlab.com/fing-mina/datacenters/frr-ns3 (accessed on 30 September 2022).

	



ns-3 Manual. Available online: https://www.nsnam.org/docs/release/3.34/manual/singlehtml/index.html (accessed on 30 September 2022).

	



Kaashoek, M.F.; Engler, D.R.; Ganger, G.R.; Briceño, H.M.; Hunt, R.; Mazières, D.; Pinckney, T.; Grimm, R.; Jannotti, J.; Mackenzie, K. Application Performance and Flexibility on Exokernel Systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles (SOSP’97), Saint Malo, France, 5–8 October 1997; Association for Computing Machinery: New York, NY, USA, 1997; pp. 52–65. [Google Scholar] [CrossRef]

	



ns-3 Direct Code Execution (DCE) Documentation. 2021. Available online: https://ns-3-dce.readthedocs.io/en/latest/intro.html (accessed on 30 September 2022).

	



White, R.; Zandi, S. IS-IS Support for Openfabric. Internet-Draft Draft-White-Openfabric-07, IETF Secretariat. 2018. Available online: https://datatracker.ietf.org/doc/html/draft-white-openfabric-07 (accessed on 9 October 2022).

	



DCE Quagga. Available online: https://www.nsnam.org/docs/dce/manual-quagga/html/getting-started.html (accessed on 30 September 2022).

	



Fix Bug in Dce Vasprintf. Available online: https://github.com/direct-code-execution/ns-3-dce/pull/132 (accessed on 30 September 2022).

	



Fix Bug in Dce InternalClosedir. Available online: https://github.com/direct-code-execution/ns-3-dce/pull/133 (accessed on 30 September 2022).

	



Azpiroz, S.Y.; Velázquez, F. FRR Compilation and Installation Script for ns-3 DCE. 2021. Available online: https://gitlab.fing.edu.uy/proyecto-2021/scripts/-/blob/master/04-install-frr-SUDO (accessed on 30 September 2022).

	



Free Range Routing. Available online: https://frrouting.org (accessed on 30 September 2022).

	



Kathara-Labs. Available online: https://github.com/KatharaFramework/Kathara-Labs (accessed on 30 September 2022).

	



Medhi, D.; Ramasamy, K. Network Routing, Second Edition: Algorithms, Protocols, and Architectures, 2nd ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2017. [Google Scholar]








[image: Futureinternet 14 00292 g001 550] 





Figure 1. A fat-tree multi-plane topology with   K = 2  ,   R = 1   and   N = 2   planes. 






Figure 1. A fat-tree multi-plane topology with   K = 2  ,   R = 1   and   N = 2   planes.



[image: Futureinternet 14 00292 g001]







[image: Futureinternet 14 00292 g002 550] 





Figure 2. DCE is used for running Linux applications without code changes. On top of that, it enables the use of the Linux network protocol stack in ns-3 simulations. Net devices (and channel) are simulated only with ns-3, while applications and network protocols can use DCE. 






Figure 2. DCE is used for running Linux applications without code changes. On top of that, it enables the use of the Linux network protocol stack in ns-3 simulations. Net devices (and channel) are simulated only with ns-3, while applications and network protocols can use DCE.



[image: Futureinternet 14 00292 g002]







[image: Futureinternet 14 00292 g003 550] 





Figure 3. Architecture of DCE. The application layer is where our programs will be executed using DCE to connect to the core of the network simulator (ns-3). [Prepared by the authors on the basis of an image obtained from [25]]. 






Figure 3. Architecture of DCE. The application layer is where our programs will be executed using DCE to connect to the core of the network simulator (ns-3). [Prepared by the authors on the basis of an image obtained from [25]].



[image: Futureinternet 14 00292 g003]







[image: Futureinternet 14 00292 g004 550] 





Figure 4. Evolution of the results of ns-3 and Sibyl for the Spine failure scenario, in comparison with the evolution of the polynomial     k 4  4  −   3  k 3   8  +   5  k 2   4  − k  . 






Figure 4. Evolution of the results of ns-3 and Sibyl for the Spine failure scenario, in comparison with the evolution of the polynomial     k 4  4  −   3  k 3   8  +   5  k 2   4  − k  .



[image: Futureinternet 14 00292 g004]







[image: Futureinternet 14 00292 g005 550] 





Figure 5. Evolution of the results of ns-3 and Sibyl for the Leaf failure scenario, in comparison with the evolution of the polynomials   P 1 =  k 3  − k   and   P 2 =   5  k 3   4  −   3 k  2   . 






Figure 5. Evolution of the results of ns-3 and Sibyl for the Leaf failure scenario, in comparison with the evolution of the polynomials   P 1 =  k 3  − k   and   P 2 =   5  k 3   4  −   3 k  2   .



[image: Futureinternet 14 00292 g005]







[image: Table] 





Table 1. Representative results for comparison against Sibyl.






Table 1. Representative results for comparison against Sibyl.





	
Scenario

	
Number

	
PDUs

	
PDUs

	
PDUs




	

	
of Nodes

	
ns-3

	
ns-3

	
Sibyl




	

	

	
w/o Zebra

	
w Zebra

	






	
2_2_1_node-failure-leaf

	
20

	
60

	
60

	
60




	
2_2_2_node-failure-leaf

	
10

	
28

	
28

	
28




	
4_4_1_node-failure-leaf

	
80

	
504

	
504

	
504




	
4_4_2_node-failure-leaf

	
40

	
248

	
248

	
248




	
4_4_4_node-failure-leaf

	
20

	
120

	
120

	
120




	
6_6_1_link-failure-leaf-spine

	
180

	
996

	
996

	
996




	
6_6_1_link-recovery-spine-tof

	
180

	
1796

	
1796

	
1657, 1796




	
10_10_1_node-failure-spine

	
500

	
37,480

	
37,480

	
18,390




	
12_12_1_node-failure-leaf

	
720

	
17,244

	
-

	
13,800











[image: Table] 





Table 2. Results of execute the scenario 6_6_6_link-failure-spine-tof after applying performance improvements.






Table 2. Results of execute the scenario 6_6_6_link-failure-spine-tof after applying performance improvements.





	Proposed Feature
	Execution Time
	Memory

Consumption
	Execution Time

Improvement





	None
	2:50.140
	705 MB
	-



	Disable IPv6
	1:44.284
	705 MB
	+38.71%



	Reduce simu time
	2:18.452
	705 MB
	+18.62%



	Without zebra
	1:29.786
	403 MB
	+47.23%



	All together
	1:18.833
	403 MB
	+53.67%










[image: Table] 





Table 3. Comparison of execution times between the environment in ns-3 and the sibyl framework for the failure of a leaf node in fat-trees multi-plane.






Table 3. Comparison of execution times between the environment in ns-3 and the sibyl framework for the failure of a leaf node in fat-trees multi-plane.





	Scenario
	Number

of Nodes
	Execution Time

in ns-3
	Execution Time

in Sibyl





	2_2_1_node-failure-leaf
	20
	0:59
	2:2



	4_4_1_node-failure-leaf
	80
	4:12
	3:4



	6_6_1_node-failure-leaf
	180
	10:41
	6:25



	8_8_1_node-failure-leaf
	320
	21:16
	20:49



	10_10_1_node-failure-leaf
	500
	36:31
	14:18



	12_12_1_node-failure-leaf
	720
	1:22:40
	37:3



	14_14_1_node-failure-leaf
	980
	2:41:23
	1:5:31



	15_15_1_node-failure-leaf
	1125
	7:21:43
	-



	16_16_1_node-failure-leaf
	1280
	-
	1:44:58
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  futureinternet-14-00292


  
    		
      futureinternet-14-00292
    


  




  





media/file8.jpg
Packets.

200,000

150,000

100,000

50,000

@ ns3

@ Sibyl = Polynomial

200

400 600

Number of nodes.

800

1000





media/file11.png
Packets

50,000

40,000

30,000

20,000

10,000

® ns-3

® Sibyl

s P

P2

20

25

30





media/file6.jpg
Application Layer

Ip, iptables, quagga, f, etc

POSIX Layer
sacket, open, time, etc.

Virtalization
Core Layer
TCP |UDP | DCCP| SCTP

ICMP |ARP | IPv6 | 1Pv4
Netfter |Qdisc_| Bridging
Netink | IPSec | Tunneling|

struct i bottom halvesircul
net_device [l timerfinterrupt

(DD

53 (Network
Simulation Core)





media/file10.jpg
Packets

50,000

40,000

30,000

20,000

10000

® ns3

® sibyl

-P1

-P2

o-

10

15

20

2

30





media/file7.png
Application Layer [

ip, iptables, quagga, frr, etc.

POSIX Layer

[ socket, open, time, etc.

Virtualization
Core Layer
TCP

UDP |DCCP

SCTP

ICMP

ARP | IPv6

IPv4

(neep [t

Netfilter | Qdisc | Bridging

memory

Netlink

IPSec

Tunneling

—————————————

ns-3 (Network
Simulation Core)

(‘/





media/file9.png
Packets

200,000

150,000

100,000

50,000

® ns-3

@ Sibyl Polynomial

400 600

Number of nodes

800

1000





media/file5.png
ns-3 Instance

Node 1

)

Applications

)

Protocols

Devices

\

Node 2

Applications

Protocols

e

Devices

(/N






media/file3.png
plane-1

core-1-1

core-1-2

plane-2

core-2-1

core-2-2

PoD-0

spine-0-1

leaf-0-1

spine-0-2

leaf-0-2

spine-1-1

leaf-1-1

spine-1-2

leaf-1-2

spine-2-1

leaf-2-1

spine-2-2

leaf-2-2

spine-3-1

leaf-3-1

spine-3-2

leaf-3-2






media/file0.png





media/file4.jpg
ns-3 Instance
Node 1 Node 2

2 p
sptcaions (06| somcaions 1568
Protocols - | Protocols -

Devices ns3 —— Link ‘m-s ——  Devices ns3 |






media/file2.jpg





