
����������
�������

Citation: Volkau, I.; Mujeeb, A.;

Dai, W.; Erdt, M.; Sourin, A.

The Impact of a Number of Samples

on Unsupervised Feature Extraction,

Based on Deep Learning for

Detection Defects in Printed Circuit

Boards. Future Internet 2022, 14, 8.

https://doi.org/10.3390/fi14010008

Academic Editors: Remus Brad

and Arpad Gellert

Received: 29 November 2021

Accepted: 21 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

The Impact of a Number of Samples on Unsupervised Feature
Extraction, Based on Deep Learning for Detection Defects in
Printed Circuit Boards

Ihar Volkau 1,* , Abdul Mujeeb 1, Wenting Dai 2, Marius Erdt 3 and Alexei Sourin 2

1 School of Electrical and Electronic Engineering, Nanyang Technological University,
Singapore 639798, Singapore; amujeeb@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore 639798, Singapore; daiw0004@e.ntu.edu.sg (W.D.); assourin@ntu.edu.sg (A.S.)

3 Fraunhofer Research Center, Nanyang Technological University, Singapore 639798, Singapore;
marius.erdt@fraunhofer.sg

* Correspondence: volkau.ihar@ntu.edu.sg

Abstract: Deep learning provides new ways for defect detection in automatic optical inspections
(AOI). However, the existing deep learning methods require thousands of images of defects to be
used for training the algorithms. It limits the usability of these approaches in manufacturing, due to
lack of images of defects before the actual manufacturing starts. In contrast, we propose to train a
defect detection unsupervised deep learning model, using a much smaller number of images without
defects. We propose an unsupervised deep learning model, based on transfer learning, that extracts
typical semantic patterns from defect-free samples (one-class training). The model is built upon a
pre-trained VGG16 model. It is further trained on custom datasets with different sizes of possible
defects (printed circuit boards and soldered joints) using only small number of normal samples. We
have found that the defect detection can be performed very well on a smooth background; however,
in cases where the defect manifests as a change of texture, the detection can be less accurate. The
proposed study uses deep learning self-supervised approach to identify if the sample under analysis
contains any deviations (with types not defined in advance) from normal design. The method would
improve the robustness of the AOI process to detect defects.

Keywords: defect detection; image analysis; machine learning; transfer learning; automatic optical
inspection; unsupervised learning

1. Introduction

The automatic optical inspection (AOI) of printed circuit boards (PCBs) has always
been an important area in any manufacturing process of electronic items, and a variety of
methods have been developed by research communities. Detailed surveys [1–3], published
in 1996, 2014, and 2017, respectively, refer to numerous methods for the automatic inspec-
tion of PCBs. They range from X-ray, laminographic, thermal and ultrasound imaging [1],
and image analysis and computer vision [1,3], to machine learning and neural networks [2].

Historically, manual inspection is the oldest approach to optical inspection [4]. It is,
however, being replaced by computer vision-based methods, with a goal to be more flexible
and exclude human subjectivity. New emerging approaches in AOI include machine learn-
ing (ML)-based methods [2,5,6], which have been proved to be far more successful than
algorithmic approaches in many other areas of image processing, such as face recognition.
ML approach has the advantage that it does not require manual fine tuning of parame-
ters. Comprehensive surveys on PCB defect detection techniques are provided in [2,6]
covering both traditional image processing and ML techniques. In [5], optical inspection
techniques for various elements in semiconductor industry, such as LCD, LED, and wafer,
are described.
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Historically, AOI for PCB started with the following ideas: (a) reference approach
(that compares a template with an input image), (b) reference free approach, that extracts
distinctive features without any template image used, and (c) hybrid methods as combi-
nation of (a) and (b) [7]. Machine learning methods (e.g., [8,9]) were later added to the
group (c) [3]. In [8], robust features were extracted to learn the defect pattern and calculate
random forest; feature densities are computed by using weighted kernel density estimation,
which in turn localizes the defect. In [9], a non-pattern feature-point matching AOI method
was proposed for the inspection of wafer, TFT-LCD and PCB images.

We would like to highlight that the purpose of most of the existing ML methods is
classification and/or identification in dataset with high inter-class variability, but in the
case of PCBs, all input images have rather small variability of image contents. They are
almost identical and essentially belong to the same class, so the problem is to find small
variations caused by manufacturing defects.

Define, measure, analyze, improve, and control (DMAIC) [10] is a strategy of Six
Sigma, which is used in many industries, e.g., health care, market research, service industry,
manufacturing, etc. Implementation of DMAIC aims to ensure minimal defects in the
industrial process (less than 4 defects per million). Under these conditions, to get even few
defective cases is rather hard due to the rarity of defect samples. The task of collecting a
large number of comprehensive samples of defects of all possible categories to be used
for training of supervised learning model is rather unrealistic. For successful supervised
learning, the number of samples of different classes should not only be large but also
balanced. We may not know in advance about all possible classes of defects, and the
identified classes might not have a lot of manifestations to be enough for training. To cope
with such a problem, artificially fabricated samples are often used [6], in which case, the
realism and relevancy of the artificial data becomes a serious issue, since the distribution
and properties of such data could vary from real world samples. Usually, the defects are
grouped into fixed classes, according to the domain area experience, as well as based on
hand-made features. If the complete set of defects is not possible to describe, due to the
unpredictability of variety of possible defects, an unsupervised learning approach might
be employed.

In this article, we develop a method of AOI using ML/DL (deep learning) meth-
ods. The proposed method of identification and localization of defects could be used for
screening for unobserved before and hence not classified in advance types of defects.

The paper consists of the following parts: Section 2 contains review of relevant machine
learning-based AOI studies in defect detection. Section 3 contain problem posing. Section 4
describes datasets and the architecture used for defect detection and localization. Section 5
provides findings of the experiment for different number of samples. Discussion and
analysis of the results are provided in Section 6. Finally, conclusion is given in Section 7.

2. Review

The literature review for this work was done considering different viewpoints, includ-
ing AOI techniques for PCBs and non-PCB items, CV vs. ML techniques, and various types
and application of ML methods. The survey was, however, focused on the potential use of
such methods in the inspection of PCBs. We have divided the literature survey techniques
into traditional CV-based techniques and ML-based techniques.

2.1. Traditional Computer Vision-Based Techniques

PCB inspection is essentially a task of comparing an input to a reference design
with a goal to find deviations. The range of acceptable deviations depends on objects
for inspection. The simplest technique could be to match two images directly pixel by
pixels to find the differences. However, it is rarely used because of its sensitivity to even
minor transformations of images, such as rotation, intensity, etc. Generally, an image is
first converted into a vector of representative parameters, called feature vector, which is
subsequently used for further processing.
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Surface inspection techniques are used in manufacturing to ensure quality of the
produced items. In [11], the inspection techniques are classified into groups based on feature
selection methods, e.g., statistical, structural, filter-based, and model-based. In statistical
methods, the first order statistics (mean, histogram, range etc.) are used in conjunction
with higher order statistics. In [12], Weibull distribution was used on local edges to detect
texture anomalies, and in [13], images were compared using statistical parameters. In
filter-based approaches, banks of filters, such as Gabor filters, Fourier transforms, etc., are
applied to the image to get image features. In problems involving texture backgrounds,
if the knowledge of texture pattern generating process is available, then the model-based
approaches naturally yield very accurate results in texture analysis. Such approaches are
very useful in textile industry. SURF (Speed Up Robust Features) [14] and SIFT (Scale-
Invariant-Feature-Transform) [15] are two of the most popular feature extraction techniques,
which have demonstrated excellent performance in many other applications.

Soldering and layout defects in PCBs are highly specialized domains, containing their
own set of techniques, and most of the existing work employ traditional CV-based tech-
niques. Majority of the existing techniques are customized for defects relevant to specific
soldering technology and/or PCB layout, and they cannot be used for another soldering
technology without significant modification. In [16], soldering defects are categorized in 14
most common types, and various operations, such as image subtraction, logical XOR, etc.,
have been used to detect them.

2.2. Machine Learning-Based Techniques

As mentioned in the previous section, there are various kinds of feature extracting
algorithms, and it is not an easy task to decide on proper features for a given application.
As ML-based methods can extract feature automatically from data, they have become
an attractive alternative to traditional algorithms. Supervised learning and unsupervised
learning are two main categories of ML techniques. In the former, many labelled samples are
needed during training stage, in order to allow the system to extract features automatically,
whereas, in the latter method, no labelled images are used for training. Our task of PCB
defect detection naturally lies in the unsupervised learning category, because large number
of defect samples are not usually available during the training stage.

The idea to use deep learning for defect detection in PCBs appeared around 2000 [17].
Binary images were used, and the authors used a vector quantization neural network,
which was trained using thousands of defective patterns, along with binary morphological
image processing. Many studies have been conducted on the effectiveness of ML-based
methods for defect detection. In [18], a neural network-based feature extraction method was
used for textured images. In [19], a neural network was used for steel defect classification
using supervised learning. A neural network-based inspection algorithm was applied on
the DAGM dataset in [20], which outperformed existing defect detection techniques. In [21],
a convolutional neural network (CNN)-based algorithm was implemented for railway track
fastener defect detection, which could identify and locate defects simultaneously, and it
outperformed traditional methods in speed, as well as accuracy. It could be observed that
the above methods are based on supervised ML methods.

Specifically, for PCBs, several works could be mentioned. Supervised learning for
defect detection was used starting from [6]. Types and number of PCB defects may vary
in different studies. For example, in [7], seven groups of PCB defects were used; in [22],
fourteen types were considered; in [6], six classes were used for training the network, one
normal class, along with five defects (short, copper, spur, mouse bite, and open). The num-
ber of images was increased by data augmentation techniques, as the number of defective
samples was rather small. It is reported that the accuracy of almost 100% has been achieved.
This study was, however, based on images that were artificially rendered; therefore, gener-
alization of the results on real images would not be realistic. Some industry players, such
as VIDI Systems AG (www.vidi-systems.com accessed on 28 November 2021), have pro-
vided automated visual inspection solutions. They have offered supervised learning-based

www.vidi-systems.com
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solutions that presumably work well. They have also proposed an unsupervised solution
(for electromotors) based on autoencoders [23], which employ DBN generative graphical
model. The training was done on normal images (no defect samples).

One-class classification (OCC) is an alternative technique to supervised learning in
situations with insufficient number of each class samples available for training. In this
approach, the whole set of samples is of two types: normal and defective (abnormal). For
example, a set of labeled samples (300 defect images, along with 400 defect-free images)
was used, in [24], for a deep CNN-supervised training to translate the normal samples into
a hypersphere of a multi-dimensional feature space, in which the defect samples should be
mapped outside this hypersphere.

Another OCC technique can be found in [25], where only defect-free samples were
used during training. An end-to-end procedure to detect and localize defects was proposed
by the authors for fabric defect detection. This model was able to detect defects (both seen
and not seen before) in textile fabrics. However, the numbers of fabric pattern images used
for training was not disclosed. In [26], OCC was done by using generative adversarial net-
work (to generate defect patterns and to train normal/defective pattern discriminator) and
the introduction of additional blocks to map the image analyzed to latent space and back.
A convolutional denoising autoencoder (CDA) [27] was used for extraction of essential
features and producing a representation of defect-free fabric patches; the autoencoder (AE)
tries to generate an output image as similar as possible to the input image by producing
an intermediate internal form (i.e., feature vector, which is a compressed representation
of the input, also called a signature). The assumptions are: (a) small differences between
the input and reconstructed output images correspond to tolerable variations, and (b) if
the autoencoder was trained only on normal samples, it would extract knowledge relevant
only to these defect-free samples, hence, it reconstructs anomaly with a high error. Thus,
based on the value of residual between the original input and response output, a decision
about a defect presence could be performed, and the location of the defect can be predicted
because there a large reconstruction error occurs. For PCBs defect detection, usually a PCB
does not have a small size repeatable pattern, thus, reconstruction of the whole PCB by
autoencoder might produce a large error.

In [28], a set of signatures (the output of the “bottleneck” network layer) was used
instead of calculation of the reconstruction error of the AE. It is assumed that normal
and defective classes of samples are separated in the multidimensional feature space of
signatures, and a set of normal signatures forms a compact cluster or several clusters in
this space. A test sample is considered a defect if the distance between its signature and
the cluster of normal signatures is high, otherwise it may be considered normal. The
AE built had 6 convolutional layers and small number of parameters (less than 30,000).
A custom-based architecture was designed for solder defect detection. It showed high
accuracy of 89%. The training set contained 1240 normal solder samples.

The key distinction of our method of technical defect analysis from traditional image
classification lies in the questions: “Does the input look like an object of a certain class (e.g.,
PCB)?” vs. (as in our work) “Does the input comply to the defect-less PCB design?”. We
were motivated by the approach presented in [28], based on a small amount of training
data, consisting of only normal samples, to form a compact set of normal signatures. A
combination of unsupervised learning and transfer learning approaches was employed to
create signatures. We analyze the accuracy of the method for different number of training
samples and discuss the applicability of the approach and what to expect when the training
data are small.

3. Problem Posing

The main objective of this research is to study which unsupervised learning models
would achieve better defect detection. The requirement is that the model training should
be conducted using a comparatively small amount of data (below thousands of samples).
It assumes that the usage of a small volume of defect-free data for training should force
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the network to extract as much information as possible from the available input samples.
This usage of small data is based on two considerations. First, the images under analysis
(say, PCBs with the same design) are nearly identical and, thus, a very limited variability.
This variability could be explained, e.g., by production process fluctuations or errors.
Abundant number of images would not add to the learning information of the model and
to deeper understanding of image. Second, widespread attempts at implementation of
DMAIC process of Six Sigma make the collection of numerous representative defect samples
extremely difficult and not even realistic. As there is no representative collection of defects,
hence there is no way to separate this collection into different classes of possible defects. In
our case, the supervised approach is not a feasible option owing to the practical reasons
explained before. Even if it is possible to collect a small number of defective samples, the
supervised methods would be affected by the unbalanced normal and abnormal samples
in the dataset. Additionally, we have a different type of problem from a classical similarity
matching. We are interested in detection of variations at fine-grained level instead of
similarity at class level, and classification of data unseen before. Closely related types of
deep learning algorithms are (a) fine-grained learning [29] that aims to distinguish between
intra-class objects, such as dog breeds and (b) triplet loss-based Siamese networks [30], as
well as one/few shot classification, to compare objects for similarity [31]. They require to
be trained using a sample set with positive/negative examples or examples of different
classes. In our case, only a relatively small number of the normal samples is available.

We investigated a convolutional neural network (CNN) model that undergoes OCC
training to learn distinctive patterns from the defect-free samples by unsupervised way. The
requirements for the neural network under consideration are: (a) the proposed architecture
should be flexible to be adapted and used in different domains, and (b) the method should
be capable of learning and producing a descriptive signature (multidimensional feature
vector), which is a representative compressed form of the sample. We presume that for
unseen defective sample, the model will be able to generate signatures, which are different
from those of the normal ones, thereby making the normal and defective cases separable in
this feature space. Given a small number of normal samples and the absence of defective
(abnormal) images, we considered two approaches to employ CNN, based on transfer
learning with and without extra training on available samples.

4. Materials and Methods
4.1. Dataset Description

To test the correctness and flexibility of the proposed method and analyze its properties,
we used 2 datasets. The solder images dataset (named as DS hereafter), as shown in Figure 1,
was provided by an IC manufacturer. It consists of two types of defect images and two
types of normal images (Figure 2). All images are scaled to 30 × 120 pixels for processing.
The training set consists of 1240 normal samples (558 from the first type, and 682 from the
second type); the testing set consists of 2251 defective images and 1814 normal images. No
defect samples were used during the training.

Figure 1. (a) PCB with solder joints; (b) Extracted soler joints.



Future Internet 2022, 14, 8 6 of 17

Figure 2. (a) normal (type 1); (b) normal (type2); (c) defect (type1); (d) defect (type 2).

We have used another dataset, containing bare PCBs, with different defects, while
taking into account that there are no publicly available relevant datasets. This is a set
of the PCB images, acquired by a Point Grey FlyCapture camera, setup on industrial
manufacturing line. The resolution of each image is 1288 × 964, and the dataset contains
78 samples of normal PCBs, and 155 samples of defective PCBs with the following defect
types: scratch, broken edges, extra holes, missing holes, and missing washers. Figure 3
shows a sample of defect-free bare PCB from the PCB dataset. As a preprocessing step,
all training and test images were aligned using the SIFT [32] algorithm, and the non-PCB
areas of the images were removed, resulting in the images of 1100 × 600 pixels. These PCB
images were divided into 66 nonoverlapping patches, forming a grid of 11 × 6 patches of
100 × 100 pixels in each patch. A class number K (from 1 to 66) was assigned to each patch,
which corresponds to its grid location on the PCB image. All the samples of the same class,
K, had the same layout, with minor variations, due to manufacturing process, and they
were not the exact copies of each other. Each of the 66 patches were analyzed separately to
verify the correctness of the whole PCB images.

Figure 3. Defect-free printed circuit board.

As our method is based on one class classification, the validation dataset will not be
used for training process; there are no negative samples in the dataset.

4.2. Model Architecture ane Experiment Description

To perform defect analysis, the model should be able to distinguish between normal
and defective patterns. As it is trained only on defect-free samples, the model should be
able to identify correctly the repeatable normal patterns. This problem statement assumes
learning by using a small number of normal samples only. Commonly accepted way to
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perform extraction of features from a new data without an exhaustive training is to use
transfer learning. In our work, we used VGG16 [33] (and also conducted an experiment
with ResNet50 [34], see Section 5), with network weights pre-trained on ImageNet dataset
and pre-defined parameters. VGG16 has 16 layers (13 convolutional layers in 5 convolution
blocks and 3 fully-connected layers, see Figure 4). It was trained on more than 1 million
images to do classification into 1000 categories.

Figure 4. VGG16 model.

Different approaches can be used to utilize a transfer learning network on a custom
dataset; for example, in some cases, the initial layers (the corresponding coefficients) of
VGG16 are frozen and the remaining layers weight coefficients are re-trained and adjusted
using a custom training set.

This approach is mainly used for supervised transfer learning. The number of classes in
the dataset is equal to the number of neurons in the last fully-connected (fc) layer. The original
VGG16 architecture (for the input 224 × 224 × 3) has a FC2 layer (Figure 4) of 4096 elements,
and the output of flattened layer (after 13 convolutional layers) is a tensor of 25,088 elements.

We compared three model architectures to identify which one is better under certain
conditions. The first architecture, hereafter called A1, is comprised of two parts. The initial
layers (i.e., convolutional layers) of the pre-trained VGG16 were frozen and used as the
first part of feature extraction. Two additional fully-connected (FC, Figure 5) layers were
added as the second part of the feature extractor, as it was also done in [35] that implements
unsupervised learning network based on simple geometric transformations. We expect that
this approach provides additional fine-tuning (according to our custom datasets) of the
existing rich feature extraction capability VGG16 network without constructing a custom
CNN model from the scratch.

The RotNet model from [35] allows for the complex features’ extraction from the input
images without labelling the training data, and the author suggested using convolutional
network to recognize 2D-rotations applied to the input data. For example, the input images
could be rotated by 0, 90, 180, and 270 degrees, or as an option, can be flipped horizontally
or vertically. Then, the ConvNet learns how to recognize geometric transformations. At
the same time, by learning the transformation applied, representative features from the
augmented dataset are extracted. As a result, the image representation is learned through
artificial introduction of transformations classes [35], using an unsupervised learning
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process by adding to the process the intermediate (semi-) supervised stage. The image
understanding incorporated into this rotational ConvNet helps to extract the features
essential for the image dataset under analysis, by using “surrogate supervision signals” [35].

Figure 5. Modified VGG16 deep network (architecture A1).

After conducting several experiments, we chose the modification of VGG16 (Figure 6),
which seems to work successfully in our task. The initial convolutional layers in VGG16 were
frozen, and the subsequent fully-connected layers were removed. We have added two fully-
connected layers (FC1 and FC2), each containing 1000 neurons (the number chosen arbitrarily),
followed by a SoftMax layer with the number of outputs equal to the number of classes.

Figure 6. The number in each patch is a distance to the normal cluster. Blue number areas are
identified as normal, red ones are identified defective (the distance is above a threshold).

The frozen VGG16 layers’ output parameters are flattened, which serve as the input to
FC1. We arbitrarily decided to use 1000 elements in FC1 and FC2 each, as our PCB images
are not so varied by its nature, in comparison with ImageNet images of 1000 classes. The
length of dense SoftMax layer corresponds to the number of patches in PCB. The training
of the modified network is done using normal PCBs (66 grids per PCB). We tried several
ways to organize the training process and force our model to learn semantic image features
from patches [36]. The most promising approach appears to be the following:
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• To choose the size of the patch comparable to the size of individual elements, as too
small patch size will lead to extra sensitivity to normal minor changes, and too large
patch size will result in a lack of discriminative power to detect and localize the defect.
The patch size will affect the number of classes K, in which our PCB will be divided.

• To feed the patches randomly rotated by 0, 90, 180, and 270 degrees to the described
configuration of the network.

In our implementation for PCB analysis, the input image (patch) size of 100 × 100 pixels
was chosen. It gave us the flatten layer output tensor of 4608 elements (Figure 4) and the
number of network parameters (before FC layers) as 14.7M. The number of trainable
parameters in FC layers is 5.8M. The network was trained to match the patch (potentially
rotated) to its location on PCB, i.e., to match it to the correct number of class K, which is
the output of the SoftMax layer, using the categorical cross-entropy loss function. After
training the new model by using only the normal patches, we remove the FC2 and the
SoftMax layers, and the output of the FC1 layer is used as the feature vector for a given
input for the architecture A1. Layers FC1 and FC2 extract different information patterns.
Later we will check which layer’s feature vector contains more relevant information about
the input image structures to distinguish a patch with a normal design from a defective one.
The other architectures (A2 and A0) are the same as A1, with the following modifications:
the output feature vectors are output of FC2 (see Figure 5) and FC1 (Figure 4) layers,
respectively. In other words, in A0 architecture we use the feature vector (the output of
FC1 layer) of the original VGG16 without any training by the RotNet. The difference
between A1 and A2 is in the choice of which fully-connected layer outputs to use. The
FC1 layer extracts more generic features of the image processed, and FC2 would operate
with more specific information. It will be shown that the choice between FC1 and FC2 is
crucial. In [35], the authors trained RotNet without usage of transfer learning model as the
pre-trained feature extractor, opposite to this article’s proposed approach.

For the training of the class K patches (K from 1 to 66 in this case), we calculate a set
of normal signatures (representations) for the class K, containing multidimensional feature
vectors. This set defines a cluster, which contains all representations for normal samples for
this class. This cluster may consist of disjoint sets. When a patch (belonging to a certain class
K) of the testing image is analyzed, the feature vector of the patch is calculated first, and
then its distance from the cluster of normal representations of the same class is found. If
this distance exceeds a certain threshold, the patch is considered defective. This process is
repeated for all the patches of the test image, and the location of a defective patch is marked
on the PCB. Currently, the threshold value is set manually and is same for all the classes. The
threshold value cannot be defined automatically as it depends on the product itself, and our
system has no prior information about the nature of the defects and acceptable deviations.

For dataset DS, we use the same architectures A0, A1, and A2, with classes K = 1:2, which
correspond to the number of normal types of solders. Similar to before, only normal images
were used for training, the samples were fetched randomly, and the process of calculations was
repeated several times for different selections. The overall pipeline of the process is as following.
First, a high-quality solder image is captured, which undergoes several pre-processing steps
(e.g., background removal, alignment, noise filtering, etc.) to make it more suitable for further
processing. This neural network is first trained to extracts features and constructs a set of
signatures, which are later used for deciding the presence or absence of a defect.

To calculate the quality of model on testing dataset, F1 and MCC performance mea-
sures have been used, as follows:

F1 Score = 2
Recall ∗ Precision
Recall + Precision

where, Precision = TP
TP+FP , Recall = TP

TP+FN
and MCC = TP∗TN−FP∗FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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and TP, TN, FP, and FN are the numbers of true positive, true negative, false positive, and
false negative, respectively. The F1 score is the harmonic mean of precision and recall
(sensitivity). The Matthews correlation coefficient (MCC) [37] is a measure of the quality
of binary (two-class) classifications. It considers true and false positives and negatives
and is generally regarded as a balanced measure that can be used, even if the classes are
of very different sizes. The MCC is a correlation coefficient between the observed and
predicted binary classifications. It returns a value between −1 and +1. A coefficient of
+1 represents a perfect prediction, 0 represents no better than random prediction, and −1
indicates total disagreement between prediction and observation. The MCC score is high
only if the classifier is doing well on both the negative and positive samples.

To find out how the number of cases for training of the network affects the final
accuracy at testing stage, we conducted the following experiments (the same for datasets
DS and PCB). For architectures A1 and A2, as a training dataset, we used a subset of the
whole dataset, with increasing number of samples and calculate MCC for the result. As a
benchmark for comparison, we chose to use the architecture A0, where the training was
done using all the available normal samples. It would allow us to check whether and when
fine-tuning, using [35], provides better performance for a small training set.

5. Findings

The code of this experiment was implemented in Python using Keras and TensorFlow
frameworks. The result of localization of PCB defects found in PCB is demonstrated in
Figure 6. For solders, the generated output was the classification of sample into “defect” or
“normal”. The running time for processing of one image is less than 0.5 s at computer with
CPU i7, RAM 16GB, and GPU Nvidia GeForce GTX 1060 6GB. The performance measures
of defect detection for different architectures are provided in Tables 1 and 2 for solders and
in Tables 3 and 4 for PCBs. Figures 7 and 8 depict the behavior of MCC for A0, A1, and A2
for solders and PCBs, respectively.

Table 1. Defect detection of solders for A0.

Samples F1 MCC Recall Precision

1200 0.87 0.80 0.85 0.89

Table 2. Defect detection of solders for A1 and A2.

A1 A2

Samples F1 MCC Recall Precision F1 MCC Recall Precision

50 0.88 0.81 0.87 0.89 0.81 0.65 0.98 0.69

100 0.82 0.77 0.89 0.76 0.77 0.55 0.94 0.65

200 0.86 0.80 0.82 0.90 0.77 0.59 0.92 0.66

300 0.87 0.78 0.88 0.86 0.68 0.44 0.76 0.61

400 0.87 0.80 0.83 0.91 0.76 0.57 0.89 0.67

500 0.88 0.80 0.85 0.91 0.74 0.48 0.94 0.61

600 0.88 0.80 0.87 0.89 0.74 0.62 0.86 0.65

700 0.88 0.81 0.87 0.89 0.79 0.65 0.88 0.72

800 0.90 0.84 0.91 0.89 0.76 0.58 0.83 0.70

900 0.89 0.83 0.89 0.89 0.79 0.70 0.84 0.74

1000 0.90 0.85 0.91 0.89 0.83 0.71 0.90 0.77

1200 0.90 0.85 0.91 0.89 0.84 0.72 0.93 0.77
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Table 3. Defect detection of PCBs for A0.

Samples F1 MCC Recall Precision

78 0.88 0.87 0.90 0.87

Table 4. Defect detection of PCBs for A1 and A2.

A1 A2

Samples F1 MCC Recall Precision F1 MCC Recall Precision

8 0.80 0.78 0.80 0.80 0.77 0.76 0.79 0.76

16 0.83 0.82 0.85 0.81 0.81 0.80 0.82 0.80

24 0.84 0.83 0.89 0.79 0.82 0.81 0.83 0.81

32 0.83 0.82 0.86 0.81 0.82 0.81 0.84 0.80

40 0.86 0.85 0.89 0.83 0.83 0.82 0.88 0.80

48 0.83 0.82 0.82 0.84 0.81 0.80 0.84 0.78

56 0.83 0.82 0.82 0.84 0.81 0.79 0.84 0.78

64 0.83 0.82 0.91 0.77 0.82 0.81 0.85 0.79

72 0.84 0.83 0.83 0.84 0.80 0.78 0.86 0.75

78 0.83 0.82 0.87 0.80 0.79 0.78 0.88 0.72

Figure 7. Solder dataset: MCC for A0, A1, and A2.

Among all the types of defects for PCB dataset, the analysis of the results showed
that for missing washers and surface texture defects, the correctness of detection was
extremely low, around 0. Using the ResNet50 [34] network, instead of VGG16, for the
method described did not change the behavior of the results.
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Figure 8. PCB dataset: MCC for A0, A1, and A2.

6. Discussion and Implications

Technical images (such as images of PCBs and solders) demonstrate a pre-defined
design and low variability, so the detailed information about their design is crucial for
the detection of defects. In unsupervised learning, unlabeled samples are used to extract
information about possible patterns in data. Transfer learning technique is utilized to re-use
knowledge learned by a network in some other but related area. In our experiment, we
used VGG16 as a feature extractor in several ways (A0, A1, and A2), using it either alone
or with the RotNet fine-tuning, to compare how network would learn the salient features
from the data and use them for learning of normal patterns in data.

Unsupervised training should extract intrinsic image features, without domain-specific
knowledge. The patterns learned are based on features from pre-trained ImageNet. We
assume that the space of features, extracted by ImageNet, are rather comprehensive. The
approach A0 analyzes whether we could use the features from ImageNet, without fine-
tuning. The approaches A1 and A2 use RotNet fine-tuning upon transfer learning to
find a subspace of broad in scope ImageNet features that more efficiently represents the
features of our image set. The difference between approaches A1 and A2 is that the former
one exploits more generic features of the image, and the latter one uses more specific
information after fine-tuning.

The comparison of signatures of normal samples and sample to analyze is based on
assumption that the transformation of input image into the signature possesses the property
of continuity in feature space. In the consequence, two alike images (having nearly the
same characteristics) will be mapped to feature vectors in the same small vicinity. However,
if an image contains a defect, its signature should be located far from the cluster of the
defect-free samples.

In case of solder dataset DS, the MCC-A1 crossed the plot of MCC-A0 (pretrained
VGG16 neural network without RotNet fine-tuning) when the number of training samples
was above 600 (Figure 7, Tables 1 and 2). MCC-A2 is below both plots. We can conclude
that at some stage the fine-tuning facilitates better extraction of common normal patterns
from the images.

For PCB dataset (Figure 8, Tables 3 and 4), the behavior of MCC-A1 and MCC-A2 is
the same; the first one is above the second. On the contrary to Figure 7, there is no crossing
of MCC-A0 and MCC-A1, i.e., the quality of defect detection for fine-tuned network is
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worse than for untuned one. It could be explained by considering the number of samples in
the DS and PCB sets. In case of PCB dataset, a very small number of training samples and
rather large number of parameters of layers FC1 and FC2 to be trained causes the following
problem. The back-propagation algorithm could not reach a global optimum for thousands
of trainable parameters, due to insufficient number of training samples. It does not learn
much as a small number of input parameters cannot be used for optimization of a much
larger number of network-tunable parameters. As soon as the number of training samples
grows, the results of the optimization keep getting better.

The more normal cases are used for training, the more successful fine-tuning becomes,
and at some stage MCC-A0 goes under MCC-A1, as Figure 7 demonstrates. In both
cases MCC-A1 is above MCC-A2. The similar observation was also made in [35]. The
reason is, the RotNet fine-tuning creates artificial labels and trains the network to learn
and to extract the features related to these artificial classes. As the result, the earlier
located fully-connected layer FC1 (used in model A1) extracts more generic features of the
dataset images. The next layer FC2 (used in A2) is tuned to extract features associated to
artificially introduced class labels (related to transformations of rotation), and not to the
properties of the dataset itself. This observation could explain the manifested difference in
behavior of MCC-A1 and MCC-A2. Hence, usage of dataset specific features FC1 allowed
to make a better decision on presence of a defect, in comparison with transformation
specific features FC2. The model A0 uses the unaltered features, extracted by VGG16 and
trained on ImageNet. These features are not customized for our dataset and demonstrate a
baseline accuracy.

Figures 7 and 8 demonstrate that the accuracy of models A1 and A2 changes with
the grow of the number of training samples. At some level, the information extracted by
RotNet will allows to outperform the baseline accuracy (ref. Figure 7).

Referring to widely used statistical “rule of thumb” [38], which recommends for
reliable estimates to have at least 40 to 60 times as many cases as variables that are relevant;
in order to explain an outcome variable, we could speculate about the number of relevant
features (variables). We could hypothesize that the number of relevant features to detect
defect in solders should be more than 10 (as only when the number of samples is above 600,
the fine-tuning starts showing better result than the baseline MCC-A0), and for PCB dataset
the analysis of rather small number of features would allow detection of above 85 percent
of defects (as MCC-A0 shows the accuracy above 85 percent based on only 78 samples).
We must emphasize that these conclusions are purely speculative and are based on the
mentioned “rule of thumb”.

PCB defects were internally divided into two groups: non-texture defect (scratch/
abrasion/broken edge/missing and extra hole) vs. texture defects (washers and surface
false alarms). Washers were included into texture defects, due to the observation that the
presence or absence of a washer could be distinguished only by the texture of the rim
(Figure 9). As it was mentioned before, texture defect detection was unsatisfactory due to
the fact that training on a limited number of samples could not structure the expected way
the information provided. The performance has been poor, due to the fact that the training
set did not contain enough variety of “normal” texture/background samples; therefore, any
“normal” sample is detected as “defective” if the pattern was not included in the training.
The reason for this is in the inherent nature of unsupervised learning, which checks for any
pattern not seen before (theoretically infinite), as opposed to supervised learning, which
looks for a pattern already seen before (finite only).

In some cases, there is a change of the shadows of the background (Figure 9). Limited
number of training examples make network to ignore these features. We assume that the
absence of some non-prominent feature (similar to the rather mild change of gradient of the
background) in normal data makes the network not to be sensitive to small variations and,
hence, ignore such manifestations. We also could assume that for unsupervised learning
based on small number of samples, only the “big” features (high gradient image features,
such as edges, corners, etc.) are considered, and not the texture of the image. One of the
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potential ways to overcome this problem is to increase the number of training cases to force
the network to learn more about normal texture patterns, as shown in [39]. For a large
number of normal cases (that is not usually a problem for mass production line, especially
for six sigma processes in manufacturing) the variability of normal cases will be caught
much better, and it is the way for better defect detection accuracy, especially for texture
defects. A small number of normal cases for texture type of defect detection would result
in a high number of false decisions.

Figure 9. Missing (left) and present (right) washers (marked by arrows). Non-uniformed background
looks like ghost images (marked by circles).

A usual requirement for process of learning is not to come to overfitted model. The
learning should result in useful pattern extraction from data, rather than in “memorizing”.
It ensures a better prediction performance for unseen before data. If the image has a pre-
defined design (e.g., technical image), the situation might be somehow different. Along
with data pattern extraction, to make model remembering the design patterns could make
possible to train the network to detect non-textural underlying relevant structures with a
limited number of training samples.

The usage of transfer learning allows for escaping a massive training with a huge
data volume and creates a “library” of possible patterns, which could be used to extract
important features from a small dataset. The defect detection power of the model highly
depends on training set representative power (i.e., how typical and comprehensive the
training samples for the analyzed class of objects).

Analysis of Results and Future Work

One of the open questions in deep learning is ‘how to choose a necessary amount of
information for network training’. The current approach “the more the better” does not
set any limit on how many samples are necessary to make network to learn the semantic
of the domain area. In our work, we got an initial result on the accuracy of the neural
network defect detection for different scales of numbers of samples for training. The current
limitation of our approach is the following: our investigation is based on a limited number
of datasets (solders and PCBs), and the datasets have to have small variability of data,
intrinsic for technical images.

We proposed an approach based on transfer learning (to reduce the amount of training
by usage of a pre-trained network) and employed fine-tuning, based on RotNet, to analyze
for what number of samples this fine-tuning is beneficial. We found that for a very small
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dataset and complex patterns of salient data features, the fine-tuned stage of learning
does not help with extraction of robust knowledge patterns from the training data. For
an extremely small data set, the more beneficial approach is to use the feature extractor,
provided by a transfer learning model without fine-tuning. If the number of normal
samples is not a problem, the fine-tuning results will outperform the results received by
transfer learning approach as a larger volume of training data could make the model more
successful in the extraction of the implicit patterns. In case the training data does not
provide comprehensive information for the network, the connections built in the network
might be different from the expected by a human expert, as the model would “see” different
features, unexpected by human with a relevant domain knowledge.

The presented method allows us to conduct AOI, even before the actual manufacturing
starts without collecting a big dataset of normal and defective samples. Our analysis
requires only a small number of normal samples, and we found that the defect detection
can be performed well on a smooth background; however, in cases where the defect
manifests as a change of texture, the detection can be less accurate.

With the current accuracy, the approach is not industry-ready, but could be potentially
used for OCC analysis of different type of technical images, which should possess the same
structure, design, or composition. It would allow for checking the agreement with design
and detect violation of expected structure, without specifying, in advance, the possible
classes of defects and their specific features to be analyzed. The method would improve
the robustness of the AOI process to detect rare and previously unseen defects.

The architecture proposed also opens a possibility of a “one sample defect training”
when a new type of defect could be introduced by a unique defect sample only. The
signature of this sample will become a center of a new cluster for a specific type of defect.
It will facilitate defect clustering into different classes.

For two different datasets (solders and bare PCBs), the performance of the approach
could be considered as quite promising. However, for texture defects in PCBs, the perfor-
mance was poor, since the training set did not contain enough variety of “normal” texture
samples; therefore, any “normal” sample is detected as “defective” if the pattern was not
included in the training. With the increase of normal cases (that is not usually a problem
for mass production line), the variability of normal cases will be caught much better and is
the way for better defect detection accuracy. In future, it would be interesting to analyze:

• How to detect whether the sample is representative or not adding much to training;
• How to form a representative set of samples;
• Whether the traditional computer vision techniques could be combined with machine

learning to improve the accuracy.

The additional analysis of the method robustness and applicability to different defect
detection will be a topic of future work.

7. Conclusions

For defect detection analysis, a method based on transfer learning and training, utiliz-
ing a small number of defect-free samples, was proposed. It allows us to detect and locate
patterns that were previously unseen in the training samples. We also analyzed and dis-
cussed the correspondence between the number of training samples and the performance
of the model, as well as investigated under which circumstances the fine-tuning does not
add to the accuracy, so the feature extractor, based on the non-adjusted pre-trained model,
would show better results. To the best of our knowledge, currently there are no works
available on defect detection based on the transfer learning approach and unsupervised
learning using a small number of samples.

The proposed method is an initial attempt to conduct the detection of unclassified in
advance detects. It is mainly an example of an open innovation approach [40] to use a deep
learning technology to address a DMAIC challenge in AOI.
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