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Abstract: The Internet architecture has been undergoing a significant refactoring, where the past
preeminence of transit providers has been replaced by content providers, which have a ubiquitous
presence throughout the world, seeking to improve the user experience, bringing content closer to its
final recipients. This restructuring is materialized in the emergence of Massive Scale Data Centers
(MSDC) worldwide, which allows the implementation of the Cloud Computing concept. MSDC
usually deploy Fat-Tree topologies, with constant bisection bandwidth among servers and multi-
path routing. To take full advantage of such characteristics, specific routing protocols are needed.
Multi-path routing also calls for revision of transport protocols and forwarding policies, also affected
by specific MSDC applications’ traffic characteristics. Experimenting over these infrastructures
is prohibitively expensive, and therefore, scalable and realistic experimentation environments are
needed to research and test solutions for MSDC. In this paper, we review several environments, both
single-host and distributed, which permit analyzing the pros and cons of different solutions.

Keywords: data center; routing; experimentation environments

1. Introduction

The historical client-server Internet model, based on a hierarchical network of net-
works with strong Tier-1 and Tier-2 Transit Providers, has been experiencing a gradual
transition to a content-driven network [1]. Over the Top (OTT), Cloud, and Content Deliv-
ery Network (CDN) providers have promoted the deployment of ubiquitous massive scale
data centers (MSDC), which may host hundreds of thousands of physical servers, which in
turn may deploy huge amounts of virtual machines (VMs) and containers, widely used for
developing cloud-based applications and services. The basic functionality of the MSDC
includes computing, storing, and replicating data, using message exchange among servers
over the supporting communication infrastructure.

Conveying packets in these infrastructures demands a vast communication scale
and bandwidth much higher than the historical Internet WAN traffic. Consequently, it is
necessary to design and develop specific data center routing, transport, and forwarding
solutions to meet such communication requirements. Data center traffic is usually classified
as East–West and North–South. East–West traffic refers to traffic among servers, while
North–South traffic refers to traffic between applications running in the data center and
Internet users. It is worth noting that East–West traffic represents as high as 85% of overall
traffic [2].

Therefore, looking for constant bisection bandwidth (i.e., the same capacity available
for any-to-any communication among servers) fueled the resurgence of non-blocking Clos
networks [3]. These networks are built up from multiple stages of switches, where each
switch in a stage is connected to all the switches in the next stage, which provides extensive
path diversity. A fat-tree data center topology is a particular case of a Clos network, where
high bisection bandwidth is achieved by interconnecting commodity switches; fat-trees are
briefly presented in Section 2.1, please refer to [4–6] for further information.
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Fat-tree topologies provide extensive path diversity, where the combined link band-
width is potentially much higher than the traditional shortest path. To take advantage of
such path diversity, Equal Cost Multi-Path (ECMP) solutions are implemented [7]. Nev-
ertheless, ECMP is not possible under pure switched (e.g., Layer 2) Spanning-Tree-based
networks, and therefore, routed (e.g., Layer 3) solutions must be in place.

Different routing protocols for fat-tree topologies have been proposed, including BGP
in the data center [8], Openfabric (IS-IS with flooding reduction) [9], and a couple of routing
protocols under active development by the IETF, namely, Routing in Fat Trees (RIFT) [10,11]
and Link State Vector Routing (LSVR) [12]. These protocols seek to combine the valuable
features from both link-state and distance-vector algorithms, together with the knowledge
of the underlying topology.

Introducing new features, debugging protocol implementations, or testing different
topologies and scenarios demands testing and development environments. For obvious
reasons, it would be impracticable to experiment over existing data center facilities; more-
over, researchers cannot access real infrastructures with the necessary scale to experiment
with the protocols mentioned above. Therefore, other approaches are needed; namely,
(i) model-based verification and (ii) emulation or simulation-based testing.

In this regard, and adopting the emulation approach, our contribution is threefold.
Firstly, in Section 3, we analyze different experimental environments suitable for dense
fat-tree topologies. Then, in Section 4, we provide specific configuration setups for experi-
menting with fat-trees over these environments, introducing the problem of convergence
detection, which is important to correctly stop experiments and compute performance
metrics such as message complexity. Finally, in Section 5, we perform a suite of experi-
ments over the environments mentioned above and provide a comprehensive analysis that
may help researchers and practitioners to choose the experimental setup which satisfies
their needs.

It is worth mentioning that the tools developed in this work are freely available for the
community, allowing reproducibility and further improvement. It should also be taken into
account that, although this work is focused on dense fat-tree type topologies, emulation
environments can be used in multiple use cases, including typical WAN network scenarios,
among others. However, the case undertaken can be considered a lower bound for node
scalability since, due to the type of topologies emulated, not only the number of nodes is
important, but fundamentally the number of interfaces that must be emulated.

Observe that routing with ECMP support over the dense fat-tree fabric (i.e., routing
infrastructure) is only the first step for traffic control in the data center. Once the routing
is in place, both forwarding (at the switch level) and transport (at the application level)
shall be analyzed to fulfill the traffic demands, which are very diverse among different
applications. We briefly analyze these aspects and discuss some possible paths for future
work in Section 6.

2. Routing in the Data Center

To have adequate routing and forwarding, it is imperative to fully exploit the topolog-
ical characteristics of fat trees. Some basic requirements should be satisfied: forwarding
loops avoidance, rapid failure detection, efficient network utilization (e.g., spanning-tree
solutions are not acceptable), routing scalability (in addition to physical scalability). Based
on this, a layer two fabric will not scale, and therefore, layer three (e.g., routing) solutions
should be adopted.

Another important requirement is virtual machines and container migration between
different servers keeping their IP addresses unchanged. This imposes that a transparent
layer-two fabric must connect the data center, implemented as an overlay over the layer-
three environment [5].

In principle, being the data center a single administrative domain, the candidates to
fulfill the routing role are popular link-state IGPs. However, as they have been designed for
arbitrary topologies, the flood of link-state advertisements may suffer from scalability issues.
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Therefore, the possible solutions should entail reducing the message flooding, exploiting
the topology knowledge, or using other routing algorithms. In this regard, the following
routing protocols will be considered in this work: BGP with a specific configuration
for the data center, link-state algorithms with flooding reduction, and ongoing Internet
Engineering Task Force (IETF) efforts, namely Routing in Fat Trees (RIFT) and Link State
Vector Routing (LSVR), which are leveraging link-state and distance-vector advantages to
design specific routing algorithms for data centers.

In this paper, we only considered distributed control plane solutions, i.e., routing pro-
tocols. Consequently, logically centralized Software-Defined Networking (SDN) solutions
will not be analyzed.

2.1. Fat-Tree Topology

A tree-based topology is one of the most representative topology classes for Data
Center Networks (DCNs), including basic tree, fat-tree, and 5-stage Clos. A fat-tree data
center topology is a particular case of a Clos network [3] where high bisection bandwidth is
achieved by interconnecting commodity switches. The fat-tree topology idea was initially
proposed for supercomputing [13] and adapted for data center networks [4,5].

Fat-tree networks are topologically partially ordered graphs and “level” denotes the
set of nodes at the same height in such a network. In Figure 1, a fat tree with three levels is
depicted. The top-level is called Top of Fabric (ToF) or Core and comprises Core switches.
The immediately lower level (aggregation level) is composed of Spine switches. Finally,
at level zero (edge level), there are Leaf switches. Let us introduce the concept of Point of
Delivery (PoD). A PoD is a subset of a fat-tree network typically containing only Leaf and
Spine nodes that are fully interconnected. A node in a PoD communicates with nodes in
other PoDs via the ToF.

The fat-tree topology consists of k PoDs, numbered left to right from Pod-0 to Pod-(k-1),
with three layers of switches: leaf switches, spine switches, and core switches. Thus, in a k
PoD fat-tree topology, there are k switches (each with k ports) in each PoD arranged in two
layers of k/2 switches, one layer for leaf switches and the other for spine switches. Each leaf
switch is connected to k/2 spine switches. There are (k/2)2 core switches, each of which
connects to k PoDs. With this topology description, the k factor can be used to calculate
the number of nodes in each level of the fabric. Table 1 adopted from [5] summarizes the
topological information for a fat tree in terms of the k factor.

Table 1. Fat-Tree topology summary [5].

Number of Pods k

Core Switches (k/2)2

Spine Switches k2/2
Leaf Switches k2/2
Total Switches 5k2/4
Number of Links k3/2

Note that there are two types of fat trees: single-plane and multi-plane. In a multi-
plane topology (the fat-tree type described above), each ToF node connects to k PoDs.
Contrarily, each ToF node connects to every spine node in a single-plane fat tree. With this
configuration, even if all ToFs but one are down, the connectivity between leaves is guaran-
teed. However, it presents a significant drawback: the number of ports needed for each
ToF increase significantly, which might be unfeasible if k is too large. In this paper, we will
always refer to multi-plane fat-tree topologies, following the notation introduced above
and describing the fat-tree in terms of the k factor.

Observe that there are other terminologies for describing fat trees, for example, the one
used in the RIFT (Routing In Fat Trees) protocol draft [10]. That terminology specifies
three parameters: KLEAF, describing the number of ports pointing north or south for the
leaf nodes, and KTOP, which describes the same for the spine nodes. Finally, they denote
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by R the redundancy factor, i.e., the number of links from a ToF to a PoD. Following this
notation, the topology shown in Figure 1 can be described as KLEAF = 2, KTOP = 2, R = 1.

Deploying a topology with these properties has certain benefits for the data center.
First, all switches are of the same type with the same number of ports, minimizing down-
time periods and reducing operating costs (OPEX). Moreover, there are multiple paths
between any pair of hosts. In particular, in a k fat-tree topology, there are k/2 paths between
two Leaf switches within a pod (intra-pod), and there are k paths between any two Leaf
switches that are across pods (inter-pod). This multi-path solution inspires to explore the
Equal-cost multi-path routing (ECMP) routing strategy, which allows dividing the fabric
traffic load more efficiently.

Figure 1. A fat-tree topology with k = 4: four-port switches arranged in four PoDs with four switches each.

2.2. Link-State Routing

Link-state routing protocols, such as OSPF [14] and IS-IS [15], have been for many
years, and continue to be, the state-of-the-art Interior Gateway Protocols (IGPs) for Internet
Service Provider (ISP) backbones. Nevertheless, a link-state routing network protocol
cannot easily scale beyond a thousand routers, mainly due to the Link State Advertise-
ments (LSAs) flooding, even though they are hierarchical protocols by design [16]. Nowa-
days, data centers can easily accommodate tenths of thousands of servers, which means a
few thousand switches/routers. For example, for fifty thousand servers, more than four
thousand switches are needed (see the formula in [5]); more efficient Clos network realiza-
tions [17] claim to demand around 2400 switches for a hundred thousand bare metal servers.
In the last several years, the industry and the research community have been working on
efficient ways to reduce flooding in this type of protocols; for example, Openfabric is an
IS-IS Optimal Distributed Flooding for Dense Topologies [9].

2.3. BGP in the Data Center

Among other reasons, the choice of BGP [18] as a routing protocol for data centers
is motivated by (i) the presence of robust implementations, (ii) reduced control plane
flooding, (iii) native support for many protocols, such as IPv4 and IPv6, Multiprotocol
Label Switching (MPLS), and VPNs, and (iv) multi-path support. BGP was designed for
single-path inter-domain routing, and, therefore, it must be specifically configured for multi-
path data center routing. Indeed, the dense connectivity of the data center network is vastly
different from the relatively sparse connectivity among administrative domains on the
Internet. In inter-domain routing, stability is preferred over rapid notification of changes.
Therefore, BGP speakers typically hold off sending notifications about changes for a while.
Instead, operators want routing updates to be as fast as possible in a data center network.
In addition, due to its default behavior as a path-vector protocol, any single link failure
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can result in a large number of BGP messages passing between all the nodes, a situation
that should be avoided in data centers. Finally, by default, BGP speakers build a single best
path when a prefix is learned from many different ASes (because they typically represent a
separate administrative domain), while in data centers, multiple paths selection is needed.
BGP configuration needs to be specifically tailored for the data center. Firstly, eBGP is
preferred over iBGP since it is simpler to understand and configure, especially for multi-
path support. Secondly, Autonomous System numbering in the data center is different
from the traditional one. Only private ASN is used and, to potentially support more than
1024 nodes, the 4-byte ASN address space [19] is preferred. However, even though the most
straightforward approach to ASN assignment is that every router is assigned a different one,
this approach leads to the path hunting problem, which is a variation of the count-to-infinity
problem suffered by distance vector protocols [20]. To avoid this problem, the practical
guideline for ASN assignment in a fat-tree topology is the following: (1) Each Leaf node is
assigned a distinct ASN; (2) Spines in the same PoD have the same ASN that is different
for each PoD; (3) All ToFs share the same ASN. However, the drawback of this assignment
model is that route aggregation is not possible because it can lead to black-holing. Thirdly,
some additional tweaks are needed; that is, the only attribute to consider in the decision
process is the AS_PATH, and, in order to support Equal Cost Multi-Path (ECMP), a group
of routes for a given destination is considered equal if the AS_PATH length is the same,
relaxing the criterion that the ASNs in the AS_PATH should match exactly. Refer to [8,21]
for an in-depth description.

2.4. RIFT: Routing in Fat Trees

A basic reasoning behind the development of specific routing protocols for the data
center is that the awareness of the underlying fat-tree topology may be used as an advan-
tage to reduce control messages flooding. In this regard, given the North–South, East–West
orientation, RIFT floods flat link-state information northbound only so that each level
obtains the full topology of its South levels. However, link-state information is, with some
exceptions, never flooded East–West or back South again. This characteristic defines RIFT
as an anisotropic protocol (i.e., the information is not evenly distributed but summarized
along the N–S gradient), where the nodes do not receive the same information from multi-
ple directions simultaneously. Indeed, since there is an understanding of the topological
dimension, reachability information is not received “freely” on any link. Therefore, un-
der normal conditions, RIFT does not need to tie-break the same reachability information
using some kind of distance metric, which leads ultimately to hop-by-hop forwarding to
shortest paths only. Moreover, its computation principles (south forwarding direction is
always preferred) lead to valley-free forwarding behavior, hence loop-free, allowing nodes
to use all feasible paths (i.e., multi-path forwarding), using all the available bandwidth.
Consequently, each fabric level obtains the full topology of its South levels and has one
default route to the higher level. This allows a highly desirable aggregation of routes
but can lead to the black-hole of traffic or even to partial network partitioning in case of
misconfiguration or while failures are being resolved. RIFT addresses these problems by
implementing an automatic disaggregation of prefixes in case of link and node failures.
This mechanism is based on positive non-transitive disaggregation and negative transitive
disaggregation. The former is used by a node that detects that its default IP prefix covers
one or more prefixes that are reachable through it but not through one or more other nodes
at the same level. Thus, it has to advertise those prefixes southbound to prevent traffic
black-holing explicitly. It is non-transitive because the effects of this type of disaggregation
are always contained in a single level of the fabric. The latter is used by a ToF node when
it discovers that it cannot reach a fallen Leaf in a multi-plane topology. Thus, it has to
disaggregate all the prefixes of such Leaf, sending them southbound. This type of disag-
gregation is transitive because if a node receives a negative disaggregation for a specific
prefix from its parents, it has to propagate such disaggregation southbound to reach the
Leaf. This is necessary since Leaves connected to multiple planes may have to choose the
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correct plane to prevent traffic black-holing. For details on RIFT mechanism and concepts,
such as South Reflection, Flood Repeater, Bandwidth Adjusted Distance, and Thrift packet
encoding, please refer to [10].

2.5. LSVR: Link State Vector Routing

LSVR aims to overcome the limits of BGP. Indeed, the usage of eBGP avoids using
Route Reflectors, requiring a heavy and error-prone manual configuration of peerings;
to this end, different peer discovery alternatives have been proposed under the LSVR
working group. Moreover, the hop-by-hop nature of the eBGP decision process imposes
delays to overall convergence and prevents omniscient views of the fabric. In this regard,
LSVR proposes replacing the rule-based BGP decision process with a Shortest Path First
algorithm and advocates for using the BGP-LS [22] extensions for communication with
external controllers. At the time of this writing, ongoing LSVR implementations are still
unavailable, so LSVR will not be tested. For further information, see [12].

2.6. Switching Overlay

In addition to the infrastructure routing use case, migrating Virtual Machines (VM)
between different servers keeping their IP addresses unchanged (i.e., maintaining their
attachment to a given L3 subnet) is a major requirement from the application point of view,
which is completely unaware of the underlying connectivity. It implies that the data center
is connected by a transparent layer two fabric, which eventually implements L2 VLANs.
Therefore, this requirement demands implementing layer two emulation over layer three
environment, using solutions such as VXLAN [23] or Ethernet Virtual Private Networks
(EVPN) [24].

3. Experimentation Environments

The networking community has been progressively adopting the NetDevOps model,
which implies incorporating the concepts of continuous development and integration from
the software industry into the network management lifecycle, and, in particular, of massive-
scale data center communication networks (DCNs). In fact, various industrial players
have developed emulation environments to experiment with new technologies before
incorporating them into operation, including Nokia [25], Cisco [26], Nvidia/Cumulus [27],
among others. In addition, some of these environments have been presented to the research
community, such as Microsoft CrystalNet [28] and Huawei NetGraph [29], but, unfortu-
nately, they are proprietary software, and therefore their results can not be reproduced.

In any case, there are numerous initiatives in line with the development and continu-
ous integration model strongly guided by programming interfaces (also called network to
code), which respond to the need to test the new capabilities and improvements incorpo-
rated into network devices in controlled environments.

At this point, it is important to clarify the differences between network virtualization,
emulation, and simulation. While Network Virtualization consists of using a virtual device
in a production network as a replacement for a physical device, Network Emulation consists
of emulating a production device with a virtual equivalent for testing or training, running
the same software images as the production device. On the other hand, Network Simulation
seeks to mimic the production device functionality implemented in a completely different
environment, e.g., a discrete event simulator. It is also important to point out that, even
though emulation runs the same image as production software, the underlying resources
are inherently less powerful; for instance, while control plane software (such as routing
and signaling protocols) usually runs in general-purpose CPUs, data plane forwarding is
implemented in specialized ASICs, which can not be emulated. Therefore, while emulation
is a very appealing technique for control plane testing and debugging, the data plane
emulation results can only be taken into account as an approximation to the behavior of
the production network, but it is not possible to use them to measure performance.
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In addition to emulation and simulation, network-control-plane debugging may be
performed using model-based verification [30]. Even though these methods may theoreti-
cally explore every possible execution path, they cannot consider the impact of software
errors since they perform static configuration analysis and assume correct, error-free im-
plementations. According to [31], software errors have a non-negligible impact on data
center failures, accounting for 12% of failures in Facebook data centers. On the other
hand, in emulation-based testing, network devices run unmodified network firmware,
and therefore they are exposed to real-life software errors.

Popular network simulators such as ns-3 [32] or OMNeT++ [33], which have strong
networking frameworks, are frequently used by network operators, developers, and re-
searchers seeking to evaluate, test, and replicate their protocol proposals, service deploy-
ments, and architectures. Nevertheless, the capabilities of simulations are not enough to
cover some requirements imposed by the actors, such as the deployment of heterogeneous
network elements, the inclusion of emerging technologies, or users’ behavior. Simulation
is also considered a weak method for testing new proposals because it does not incorpo-
rate real-world network stacks (e.g., Free Range Routing [34]) and does not support the
execution of unmodified applications. Moreover, they fail to provide results close to the
real behavior of current networks, which are more non-deterministic and complex [35,36].

Consequently, emulation platforms are often considered to outperform the limitations
of network simulation. Emulation aims to improve experimentation fidelity by enabling the
reuse of real-world protocols and applications within a virtual network. There are a large
variety of networks emulators, each one with its technologies, advantages, and drawbacks.

Despite the advantages described for emulators over simulators, it is important to
remark the major drawback of emulators: the increased complexity of emulated systems
limits their scalability. This manifests in the support restriction for large network sizes and
link speeds in real-time.

The election of an experimentation environment depends on multiple factors and may
be different for network operators, researchers, and other actors. This decision may involve
network simulators, emulators, and other networking tools. The following subsections
introduce the networking tools that compose the emulation environments described in this
work. We present both single-host and distributed emulation environments, traffic analysis
tools, and the routing protocols suite used in our assessment.

3.1. Kathará

Kathará [37,38] is a network emulation system that accurately reproduces the behavior
of a real system. It leverages upon Docker containers [39] to implement devices, allowing
Kathará to run on mainstream Operating Systems such as Windows, Linux, and macOS.
Moreover, using containers to emulate devices represents a lightweight alternative to
standard virtualization solutions, which usually introduce costly overhead.

With Docker containers, the management of different filesystem images is simplified,
allowing devices to use different images in the same network scenario.

This flexibility enables the network nodes to have different behaviors. For example,
a node with the standard routing protocols provided by well-known network routing suites
such as Quagga [40] or its industry-level branch Free Range Routing (FRR) [34,41] may be
accommodated, just by selecting the appropriate Docker image. Moreover, a node can be
provided with a custom Docker image with all the routing protocols and network tools
required. In addition, Kathará offers a set of pre-built images that can be used to run several
services such as standard routing protocols, control-plane programmable network nodes,
data-plane programmable switches, among others, which can be accessed at [42].

The orchestration of emulations on Kathará is completely based on configurations.
It integrates tools that automatize these configurations but does not offer any built-in
programmability for this task.
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3.2. Megalos

Kathará supports different virtualization managers, particularly when using Ku-
bernetes [43] as virtualization technology is called Megalos [44], which inherits all the
advantages of using containers and Docker images.

As well as Kathará, Megalos supports the implementation of virtual network scenarios
consisting of virtual devices, which in this context are named by the authors as Virtual
Network Functions (VNFs), where each VNF may have several L2 interfaces assigned to
virtual LANs. By exploiting Virtual Extensible LAN (VXLAN) and EVPN BGP, Megalos
guarantees the segregation of each virtual LAN traffic from the traffic of other LANs and
Internet traffic. In addition, this key characteristic permits distributing VNFs (i.e., devices)
in a cluster of servers, where the L2 overlay permits separating emulation traffic from the
cluster traffic. The emulation distribution into multiple nodes permits Megalos to emulate
large-scale network infrastructures where a significant quantity of VNFs and virtual LANs
are required.

Cooperation with the developers of both Kathará and Megalos has recently produced
Sibyl [45], a software framework based on these tools, tailored to perform a large number
of experiments on several virtual fat-tree configurations. Sibyl implements a methodology
specifically devised for testing routing protocols in fat-tree networks, including VFTGen [46],
a tool to generate fat-tree topologies, RT Calculator, a tool to detect protocol convergence,
and utilities for collecting control plane data and processing results. These tools, which
have been used as inspiration for the methodology developed for the rest of the emulation
environments, will be further referred to in the rest of the paper.

3.3. Mininet

Mininet [47,48] is a network emulation orchestration system. It runs a collection
of end-hosts, switches, routers, and links on a single Linux kernel. It uses lightweight
virtualization, which permits to emulate network infrastructure in a single host, running the
same kernel, system, and user code. Mininet is open source, easy to deploy, and provides a
programmable interface to define and build network configurations.

The Linux container mechanism used by Mininet allows groups of processes to have
independent namespaces for system resources (e.g., network interfaces and file systems)
running on the same kernel. For each virtual host, Mininet creates a container attached to a
network namespace. Each network namespace holds a virtual network-interface connected
to a software switch via virtual Ethernet links.

Mininet presents performance bounds in commodity servers that satisfy the demands
of the general network tests. It achieves high aggregated bandwidths and low median
round trip times even in demanding scenarios where more than a thousand hosts are
included in the emulated topologies [35].

Another important feature of Mininet is its programmability. In this regard, Mininet
integrates on its core a Python API. Hence, Python is used for orchestration, but emulation
is performed by compiled C code. The API is well documented, easy to use, and because it
is integrated with the Mininet core, everything can be built with it.

Mininet also integrates several SDN elements. For example, in [49], they combine
Mininet and the ONOS [50] controller to present a scalability analysis. Due to the above
characteristics, Mininet has become one of the reference emulation tools.

3.4. CORE: Common Open Research Emulator

The Common Open Research Emulator [51] is a real-time network emulator. It emu-
lates routers, PCs, and other hosts and simulates the network links between them. With this
tool, the emulated networks can be connected in real-time to physical networks and routers.
This type of functionality is not common in the available emulators and it allows us to
increase the size of physical test networks. CORE also can distribute the emulation on one
or more Linux machines and provides an environment for running real applications and
protocols, taking advantage of tools provided by the Linux operating system.



Future Internet 2022, 14, 29 9 of 22

The architecture consists of a GUI for drawing topologies, a services layer that instanti-
ates lightweight virtual machines, and an API for tying them together. Topologies can also
be scripted using the Python language. It has enabled CORE to be extended to work with
FreeBSD jails, Linux OpenVZ containers, and Linux network namespace containers. In [52],
these different platforms are compared in terms of virtualization features and performance.

Recently, CORE incorporated a Python API like Mininet. Writing Python scripts
offers a rich programming environment with complete control over all aspects of the
emulation. In general, a CORE Python script does not connect to the CORE daemon; in fact,
the core-daemon is just another Python script that uses the CORE Python modules and
exchanges messages with the GUI. This API provides many functionalities, but it is poorly
documented, and therefore, using the API requires a complex learning curve.

3.5. GNS3

GNS3 [53] is an open-source software to emulate, configure, test, and troubleshoot
virtual and real networks. It allows running small and complex topologies on a single
commodity host. GNS3 supports both emulated and simulated devices. For having a
full emulation, an image must be provided (e.g., Cisco IOS), and GNS3 will emulate the
hardware for the selected device. On the other hand, it can simulate the features and
functionalities of a set of devices (e.g., layer 2 switch).

GNS3 consists of two software components: the GNS3-all-in-one software (GUI) and
the GNS3 virtual machine (VM). The former is the client part, and it can run over the main
Operating Systems. This component allows for creating topologies, but the devices created
need to be hosted and run by a server process. GNS3 permits to allocate the server part
(i) locally on the same PC, (ii) locally in a Virtual Machine (VM), or (iii) remotely in a VM.

Initially, GNS3 could only emulate Cisco devices using a software called Dynamips,
but, nowadays, it supports many devices from multiple network vendors, including Cisco
virtual switches, Brocade vRouters, Cumulus Linux switches, Docker instances, multiple
Linux appliances, and many others.

As a graphical network emulation, orchestration is done entirely in the provided GUI.
This feature highlights usability but, on the other hand, prevents programmability.

3.6. Traffic Analysis Tools

Traffic analyzers (also known as packet sniffers) are specific software tools that inter-
cept and log network traffic traversing a network link using packet capturing. The captured
packets can then be analyzed by decoding their raw data and visualized via displaying
various fields to interpret the content, using, for example, the Wireshark [54] graphical tool
or the well-known command-line packet analyzer Tcpdump [55]. On their default behavior,
these tools use the pcap library to capture traffic from the first available network interface
and display a summary line on the standard output for each received packet.

Wireshark functionalities are also available in a command-line tool called TShark [56].
As well as Wireshark, TShark is a network protocol analyzer. It allows for capturing packet
data from a live network or read packets from a previously saved capture file. TShark works
very similar to Tcpdump, being the main difference in the variety of options supported
on its default behavior. One of the most notable advantages of TShark over Tcpdump is
the possibility of using Wireshark dissectors for live filtering. The dissection of a packet
is composed of as many dissectors as protocols involved, e.g., an HTTP packet captured
in a classical residential network may involve one dissector per layer: Ethernet, IP, TCP,
and HTTP. Each dissector decodes its part of the protocol and then hands off decoding to
subsequent dissectors for an encapsulated protocol. Every dissection starts with the Frame
dissector, which dissects the details of the capture file itself (e.g., timestamps). After that,
the process goes on like the HTTP packet dissection example.

Dissectors can either be built-in into Wireshark or written as a self-registering plugin
(a shared library or DLL). This functionality is key for the customization of the packet
dissections, allowing, for example, the incorporation of dissectors for protocols under
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development. Moreover, Tshark and all its functionalities can be used with Python through
a wrapper called Pyshark [57].

A comprehensive guide on practical usage of Wireshark and Tcpdump, including a
discussion of traffic formats and other tools, can be found in [58,59].

3.7. Free Range Routing Protocol Suite

The Free Range Routing (FRR) protocol suite is a fork of the Quagga project that
provides IP routing services. Thus, its role in a networking stack is to exchange routing
information with other routers, make routing and policy decisions, and inform other layers
of these decisions. In the most common scenario, FRR installs routing rules into the OS
kernel, allowing the kernel networking stack to make the corresponding forwarding rules.
FRR supports the full range of L3 configuration: dynamic routing, static routes, addresses,
router advertisements, among other capabilities.

In terms of the routing protocols considered in this paper, FRR supports BGP (includ-
ing specific configuration for the data center), OSPF, Openfabric, and ISIS.

4. Experimentation Methodology

An exhaustive set of experiments has been undertaken using the aforementioned
experimentation environments and tools. This section presents the general experimentation
methodology, which includes (i) tool installation, (ii) topology generation, (iii) selection
and configuration of the routing protocols daemons, and (iv) setting up a framework
to collect and analyze results, considering the stop criteria, i.e., algorithms to determine
the convergence of routing protocols. Particularities for each environment are presented
as well.

In all the environments, we deployed the data center routing protocols presented in
Section 2, namely, BGP, ISIS, Openfabric, and RIFT. We did not run experiments with LSVR
due to the lack of available open-source implementations.

4.1. Topology

As presented in Section 2.1, the experiments were performed over fat-tree topologies
varying the k factor. The factor k = 4 was chosen to validate the emulation environments.
Afterward, the k factor was gradually increased to test performance and scalability. Figure 1
shows the basic topology fully labeled with the terminology introduced before. Note that
the figure omits the leaves-ToR links; for a k factor of 4, two ports per leaf are available for
connecting ToR switches.

4.2. Use Cases and Metrics

Exhaustive testing of routing protocols for fat-trees should comprise the following use
cases: (i) Bootstrap, (ii) Normal Operation, (iii) Node Failure, (iv) Node Recovery, (v) Link
Failure, and (vi) Link Recovery.

For each use case, the typical operations include (i) starting the emulation, (ii) cap-
turing exchanged control plane messages, (iii) waiting for convergence, (iv) stopping
the emulation, and (v) analyzing the captures. A sound metric for comparing different
routing protocols is the amount of control plane traffic exchanged until convergence (i.e.,
the “protocol churn”). Note that measuring convergence time is not a valid metric in an
emulated environment since each execution depends not only on the emulation but also
on background processes (e.g., operating system, hypervisor), which may alter the total
elapsed time.

In the rest of the paper, we will only consider the Bootstrap process since our aim in
this work is to compare environments, not a thorough assessment of routing protocols.

Moreover, we will also consider the “layer 2 overlay” use case to show one possible
application of GNS3, a GUI-based environment.
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4.3. Single Host Emulation

Single host emulation environments are considered first since it is the typical scenario
when an experimentation campaign starts.

4.3.1. Mininet

The first step to build an experimentation framework with Mininet is to set up an
environment with the required tools and routing protocols. Since Mininet is developed for
Linux, the open-source Internet routing protocol suite FRR was chosen. FRR implements
BGP (with the needed configuration knobs for the data center), Openfabric, and IS-IS. In or-
der to run the RIFT protocol, the open-source implementation rift-python [60] was installed.

Once the environment is ready, the experiment must be designed. To this end, we
coded a topology generator based on an open-source project [61], using the Mininet Python
API [62]. Altogether, this allows for generating a fat-tree topology with the k factor as the
input parameter.

With this tool in place, we can emulate a fat-tree topology with a selected k and
(manually) configure the necessary routing protocol on each node. Of course, the manual
configuration does not scale properly with the k factor. Consequently, a configuration layer
was added to the fat-tree generator, which achieves the configuration for the chosen routing
protocol and initiates the protocol daemons on each topology node, enabling to experiment
over a fat-tree topology in Mininet, running a data center aware routing protocol.

As part of the experiments, control plane traffic is collected for further analysis,
as detailed in Section 4.6.

4.3.2. Kathará

The setup needed to run the experiments over Kathará is minimal since (i) it supports
the leading operating systems and (ii) there are specific tools available to generate the
configuration. Since the emulated nodes on Kathará are docker containers, it is possible to
export FRR and rift-python simply by building a container that incorporates these tools.

The fat-tree generation and the protocols’ configuration are accomplished using the
VFTGen tool. An extra edition was added to the configuration files to customize the emu-
lated nodes’ behavior at startup. Finally, to collect results, an extra layer of configuration
was built. To this end, a custom docker image was built used for all the fabric nodes.
As explained in Section 4.6, this tailored docker image adds to the basic image the tools
needed to perform packet capture.

4.3.3. Core

Core provides a graphical interface ready to design and configure the fat tree. Building
an experiment using this feature consists of three simple steps (i) to draw the topology,
i.e., deploy routers, link them together and connect servers, (ii) select the required services,
and (iii) start the emulation. The basic services to activate in the routers are the routing
protocol and the forwarding functionality. Core allows for configuring routing protocols
from FRR or Quagga and provides default automatic generation of settings for protocols
such as OSPF. Of course, if FRR is required, the suite must be installed on the host. Figure 2
shows a fat-tree build in the Core GUI. Experimenting with this visual mode has some
drawbacks, especially considering fat trees. In Figure 2, we observe that a minimal increase
in the k factor will produce an unreadable result.

The Core Python API [63] can be used to scale the experiment and automate the
configuration of the routing protocols. With this approach, the methodology is similar to
that explained for Mininet, i.e., the topology and the configurations for experimentation
follow a Python code. This code generates a fat-tree topology based on a given k, generates
all the configurations for the routing protocol daemons (BGP, ISIS, Openfabric, or RIFT),
and orchestrates the emulation, i.e., lunches all the processes, collects information or runs
use cases, and eventually, stops the experiment.
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Figure 2. A fat-tree with k = 4 build in Core.

4.4. Distributed Emulation

To outperform the emulation of a single host, we can distribute it into multiple hosts.
Multiple factors can limit emulating large topologies in one host for different environments.
For example, in Mininet, the host resources are limited when running multiple services
on each node. Secondly, in Kathará, the limitation could also be given for the number of
Docker containers per host.

After having a complete experiment built on top of Kathará, we can distribute the
emulation across multiple nodes using Megalos since they share the same code base.
However, they differ “only” in the virtualization manager (Kubernetes for Megalos).

Nevertheless, with the addition of Kubernetes to the environment, the orchestration
of the experiment becomes more complex. First, Kubernetes imposes a configuration
overhead. Indeed, setting up a Kubernetes cluster from scratch could be challenging
depending on the cluster network layout. Furthermore, due to some design decisions
and compatibility issues, there are a few differences between Kathará and Megalos when
deploying a network scenario with Kubernetes. For example, when a routing daemon such
as FRR is used, the eth0 network interface must be disabled inside the routing daemon
because Kubernetes use each device eth0 interface for cluster management (check its
deployment status, heartbeats, etc.). Second, some networking problems related to the
distribution of the emulation and the creation of virtual interfaces appear. These problems
are not clearly determined, and their nature lies in unexpected behaviors of Megalos (e.g.,
bugs). Kathará officially supports Kubernetes as a virtualization backend system as version
3.0.0, the one used in this research.

On the other hand, there are at least two options to distribute a Mininet emulation:
Maxinet [64] and Distrinet [65]. Maxinet creates different Mininet instances in each physical
node of the cluster and connects the vSwitches between different physical hosts with GRE
tunnels. On the other hand, Distrinet, instead of using cgroups and network namespaces
like Mininet, uses LXC containers and implements virtual links using VXLAN tunnels.
Either environment could be used, but an extra configuration layer would be needed.

Finally, it is possible to distribute the emulation with Core. While the configuration
steps to enable this feature are clear using the GUI, at the time of this writing, there is no
documentation available on how to accomplish the distribution using a Python script.

4.5. A GUI-Based Emulation: GNS3

As a graphical network simulator, the topology must be built using the graphical
interface. GNS3 provides by default some basic nodes, e.g., Virtual PC (VPC), Ethernet hub,
Ethernet switch. To use layer three nodes, i.e., a router, an appliance must be provided.
In this case, an appliance that provides an FRR router was installed. Figure 3 shows a
basic fat tree built on GNS3. Unlike Mininet or Kathará, the configurations here cannot be
automated in node startups. An option to configure the nodes with a routing protocol is to
generate the configurations with an external script and inject it into each node. After that,
GNS3 allows for saving the state of all the nodes, meaning that future experiments can start
from a fat tree with full layer three connectivity. Although the FRR suite of protocols was
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selected (among other things because it supports BGP for the data center configuration),
other appliances may be used, e.g., Cisco routers, Juniper routers, or OpenWrt [66] devices.

Finally, GNS3 enables tshark by default to collect results, allowing for sniffing every
link in the fabric. The GNS3 interface provides an input field for that option if live filtering
is needed.

Figure 3. A fat-tree build with GNS3.

4.6. Analysis

The analysis methodology follows the flow shown in Figure 4. The first step is to
configure the environments as described in the above sections. These configurations
indicate to the simulated nodes the use of tshark, the interfaces to sniff in, and the filters to
be applied during the capture of packets.

After preparing the environment to collect results, the emulation can start. While the
emulation is running, the analysis process has some tasks to take care of. The main task,
of course, is to capture packets and save them in a pcap format. This task can be carried
out in two ways: simply capturing all the traffic on every interface, or cleverly collecting
the packets needed for the post-processing stage, which is called live filtering.

Live filtering is a crucial step in light of the scale that experiments may reach. Remem-
ber that there may be thousands of network nodes in a massive-scale data center, which
translates into tens of thousands of interfaces to capture traffic (e.g., in a topology with
1280 nodes there are 40,960 interfaces). Without proper live filtering, every single capture
can achieve a significant size. This adds two main drawbacks: (i) an additional storage
requirement for the environments and (ii) an increase in the time required to carry out the
post-processing step. The live filtering process faces these drawbacks using the dissectors
provided by tshark for BGP, ISIS, and Openfabric. For the RIFT protocol, the dissector
presented in [67] is used.

Finally, the post-processing is driven by a program that takes as input all the capture
files (pcaps) and the information about the emulation and produces miscellaneous statistical
output such as control packets per interface or the total number of BGP update packets.
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Figure 4. Analysis flow.

4.7. Stop Criteria

Regardless of the environment, or the particular use case of interest, experimenting
with routing protocols exhibits a peculiar challenge: determining when a protocol has
converged. Tackling this problem is crucial to have accurate stop criteria for a set of use
cases, e.g., checking the expected behavior of protocols at bootstrap or determining when a
protocol has recovered from a failure.

This task can be undertaken in multiple ways, some dependent on the control messages
of each protocol and others independent of the protocol. Of course, there is an intuitive
way to solve the problem: wait long enough to be sure of protocol convergence. This might
not be a problem for non-dense topologies or even fat trees with few nodes. However,
if emulation of massive-scale data centers (eventually in a distributed environment) is to be
performed, it is difficult to determine how long is enough.

Three ways to solve this problem have been explored: (i) pre-computing the routing
tables of each node, (ii) feeding a stopping flag, and (iii) moving a sliding window. Due
to the nature of an emulation, where a centralized program is responsible for starting and
finishing the experiment, all these solutions are aware of a centralized entity. This entity,
from now on the controller, comprises the knowledge of the entire topology, and it can send
and receive messages from every emulated node.

4.7.1. Pre-Computed Tables

The first method to determine routing convergence is implemented by Algorithm 1,
inspired by the Sibyl RT Calculator, part of the Sibyl framework available at [45].

This algorithm is presented from the controller side, i.e., the computations are cen-
tralized in the controller, which can interact with the nodes of the topology, e.g., request-
ing information.

Hence, the algorithm is quite simple: first, the controller, as an omniscient entity,
pre-computes the forwarding tables of all the nodes of the topology (e.g., using an ECMP-
aware Dijkstra algorithm) and secondly, requests the actual forwarding table to each node,
comparing these tables with the expected ones. Notice that, with a decentralized approach,
each node can compare the expected and actual tables and notify the controller only when
they are equal.

A hybrid variation of this strategy may be implemented, where the controller pre-
calculates the tables, notifies the nodes, and then waits for an “end message” of each node.
Of course, when the controller is aware that every node has reached the expected table,
the emulation must be finished under any approach.
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Algorithm 1 Convergence with pre-computed tables (centralized approach).

Require: k: factor; T: Topology
Result: True

for i = 1; i = 5k2/4 do
xi ← f (T, i, k) . f could be Dijkstra

end for
yi ← getTable(i)
while yi 6= xi do

yi ← getTable(i)
end while

Building a representative network graph is necessary to implement this stop criterion.
It can be used to run a centralized multi-path routing algorithm (such as an ECMP-aware
Dijkstra) to obtain every node’s expected forwarding tables. Python was chosen as the
common programming language for all the environments, which allows the network to
be abstracted from a graph using the NetworkX library [68]. This library also includes a
function that calculates all the shortest paths between any source-destination pair. On the
other hand, to get the actual forwarding tables, the emulation orchestrator must use the
Python API provided by each emulator to query each node. Eventually, when all the
pre-computed tables are equal to the actual tables, the orchestrator detects the routing
protocol convergence and stops the emulation.

4.7.2. Stop Flag

This stop criterion depends on each specific routing protocol instead of the former.
The main idea is to feed a flag that every control packet received (related to the proto-
col convergence).

Algorithm 2 abstracts the dependency of a protocol in a function called receivedControl-
Packet. This function must return the boolean True only when the node receives a control
packet related to the convergence. These control packets vary depending on the protocol
used as follows:

• BGP: the function must consider only UPDATES messages.
• RIFT: only TIE messages must be observed.
• Openfabric: the Link State PDU (LSP) are the messages considered here.

Note that the algorithm has a local view, i.e., the sequence followed by each topology
node. It also has a pre-defined threshold, representing the maximum time willing to wait
for another control packet. If no control packet arrives during this time, the node considers
itself stabilized and notifies the controller. Observe that the effectiveness and efficiency of
the heuristic depend on the value selected for the threshold.

Algorithm 2 Convergence feeding a stop flag.

Require: t: threshold;
f lag← True
while flag do

sleep(t)
f lag← receivedControlPacket()

end while
notifyEnd()

4.7.3. Sliding Window

The sliding window concept here represents the idea of looping through a set of
control packets with a fixed step size. Determining when a protocol has converged using
sliding windows inherits some ideas from Algorithm 2.
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First, it is also protocol-dependent, as shown by the usage of the function countRelevant
in Algorithm 3. This function has the same considerations mentioned in Section 4.7.2
for the function receivedControlPacket, i.e., its behavior depends on the routing protocol
being considered.

Second, the same threshold concept is used. In this case, it is the average of the control
packets (related with convergence) over all the control packets received. Consequently, we
set the minimum number of convergence-related control packets required in each window
sample to determine convergence by defining this threshold.

Finally, with this approach, a node notifies the controller after its average number of
control packets reaches the configured threshold.

Algorithm 3 Convergence with sliding window.

Require: s: window size; t: threshold;
while average > t do

x ← countRelevant(receiveControlPacket(s))
average← x/s

end while
notifyEnd()

5. Experimental Results

This section presents a thorough evaluation of the experimentation environments. Two
main aspects were considered: validation, meaning that the environment correctly imple-
ments the fat-tree routing protocols, and scale, looking for the limits of each environment
over the same underlying hardware.

Furthermore, the applicability of each environment is discussed, while a use case that
goes beyond routing infrastructure is also presented: implementing a Layer 2 switching
overlay over the routed fabric, needed for Virtual Machine migration, which is one of the
most important use cases in data center management.

5.1. Validation

A complete fat-tree emulation program was developed for Mininet and Core. This
program is capable of (i) generating any fat-tree with layer 3 configuration using the
APIs provided by the emulators, (ii) generating the configuration files for the protocol
daemons of BGP, ISIS, Openfabric, and rift-python, (iii) orchestrating the experiment,
i.e., start the emulation and all the routing daemons needed, run test-cases, and finally
stop the experiment (available at [69]). We use the Sybil framework mentioned above for
Kathará and its distributed mode Megalos, also referred to in the repository, putting all the
experimentation options together.

The base topology for the experimentation is a k = 4 fat-tree, depicted in Figure 1.
A common use case for all the environments was selected: the bootstrap case. This case
aims to verify the expected behavior of the protocols at bootstrap, which permits verifying
the correct convergence of the routing protocols configured in the fat tree. After the
convergence of the protocols, there is full layer three multi-path connectivity between every
pair of servers. This use case lays down a strong basis to build other use cases, e.g., a failure
use case.

The single host emulations were run on a server with 30 CPUs and 126 GB of RAM.
The bootstrap case was successfully performed over all the environments in the selected
topology, validating the convergence of BGP, ISIS, Openfabric, and rift-python.

5.2. Scale

The scalability of the environments was tested using BGP, due to its industry-level
implementation and scalability, which outperforms the rest of the routing protocols that
were already analyzed under the Sybil framework. The single host emulations using
Mininet, Kathará, and Core were tested over the infrastructure mentioned above. On the
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other hand, the distributed emulations were tested with Megalos using a cluster composed
of 14 virtual machines with 4 CPUs and 16 GB de RAM each. Figure 5 shows the maximum
k reached with each environment. Furthermore, Table 2 summarizes the results, adding the
number of nodes and interfaces emulated with each environment.

The first observation is that distributed emulation outperforms a single host one in
terms of scalability. This is shown by the fact that Megalos successfully emulates more
than a thousand nodes and forty thousand virtual interfaces. This result is expected since
Megalos benefits from horizontal scalability, but there is a trade-off of scale vs. cost (i.e.,
the number of servers needed), which shall be considered. In contrast, on the single host
side, Mininet scaled up to sixty hundred nodes and thirteen thousand virtual interfaces.

Considering only single host environments, Mininet outperforms Core and Kathará,
emulating more than three times as many nodes and six times as many virtual interfaces.
A feasible explanation for this performance gap of Core and Kathará is the density of the
fat-tree topologies. Increasing the k factor rapidly increases the number of virtual interfaces
and virtual links, exhausting host resources and preventing connectivity with the emulation
process. On the other hand, increasing the k factor to 22 in Mininet leads to a 100% CPU
use due to the topology density and the number of BGP and zebra daemons created.

Table 2. Scale results using BGP.

Environment Maximum K Nodes Interfaces

Mininet 22 605 13,310
Core 12 180 2160
Kathará 12 180 2160
Megalos 32 1280 40,960

Figure 5. Performance of environments as a function of k.

5.3. Applicability

Each environment may be useful for different applications. On the one hand, the inte-
grated set of tools for Kathará and Megalos (the aforementioned Sybil framework) permits
deploying experiments promptly. Notably, in the case of Megalos, it allows benefiting
of horizontal scalability over a Kubernetes cluster. On the other hand, Mininet is the
right choice for single-host scalability, while Core provides a programmable emulation
environment with GUI support. Finally, GNS3 is a suitable environment for teaching or
demonstrating complex small-scale networking scenarios.

Table 3 shows the virtualization method used, the protocol suite deployed, and the
recommended use for each environment.
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Table 3. Validation test over all the environments.

Environment Virtualization Method Protocol Suite Recommended Use
Mininet Linux namespaces FRR, rift-python Scale on a single host

Kathará Docker containers FRR, rift-python Fast configuration and
deployment

Megalos Kubernetes and Docker FRR, rift-python Scale and distribute emulation

Core Linux network
namespaces containers FRR, rift-python Programmable emulation with

GUI support

GNS3 Qemu, VirtualBox FRR
Teaching, exposing
technologies with
visual support

5.4. A Showcase: Switching Overlay in GNS3

Previous sections show that using GNS3 to emulate a fat-tree data center topology
may not be the best option. Instead, we use programmable and scalable emulators such as
Mininet or Kathará. Nonetheless, GNS3 may be very helpful to demonstrate small uses
cases for teaching or training purposes.

In this sense, the reference fat tree was built in GNS3 using FRR routers. For simplicity,
OSPF was used to provide multi-path layer 3 connectivity among all the nodes in the fabric.
After that, VXLAN and EVPN were configured to have a transparent layer 2 (an important
requirement presented in Section 2.6). Using this setup, the migrations of VMs among
PODs in the fabric were successfully performed, keeping their IP addresses unchanged.
This experiment is fully reproducible and available at [69].

6. Discussion and Conclusions

Experimental environments are necessary for developing and testing new networking
protocols and services, and this is particularly true in the case of big, dense fat-tree topolo-
gies. Several experimental environments have been reviewed, developing specific utilities
and configurations for this use case. The performed experiments followed two dimensions:
(i) different routing protocols have been deployed and (ii) topology scalability as a function
parameter k has been tested, as defined in Section 2.1.

Regarding routing protocols, all the tested implementations, namely BGP, IS-IS with
flooding reduction, and RIFT-python, correctly implement ECMP routing. However, they
differ in terms of scalability, BGP being the preeminent one, a result we obtained in our
previous work over the Sybil framework [45].

Considering topology scalability, Mininet is the most scalable single-host emulation
environment, with a maximum k = 22, while Megalos (being a distributed emulation
environment) permits to scale the topology further up to k = 32. In this regard, there is
room for further experimentation with distributed versions of Mininet. At the time of this
writing, the needed tools for experiment automation were not implemented.

It is worth mentioning that the network, being a dynamic and “live” entity, is con-
stantly exchanging routing messages. Nevertheless, there are often “calm” periods where
the network has reached a stable state, usually noted as routing convergence. In this work,
we designed heuristics to determine this stable state, as described in Section 4.7. These
heuristics permit stopping experiments automatically, making it possible for experiments to
last no longer than necessary, and correctly determining measurement marks for different
metrics, such as routing updates count.

Overall, a suite of environments useful for different experimentation needs has been
presented. These environments may accommodate to the available hardware, either a
single host or a cluster. The review includes a comprehensive use case over GNS3, which is
very useful for showing advanced capabilities at a small scale, ideal for teaching or training
network operators.
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As mentioned in the Introduction, once multi-path routing is in place, both forwarding
and transport shall be considered in light of the statistical properties of the applications’
traffic. In this regard, there are specific data center applications, such as Map-Reduce, which
produce the incast traffic pattern, among many other peculiarities. The existence of multiple
data paths imposes difficulties for the classical TCP transport protocol and determines that
nodes must implement particular forwarding policies. There is an important opportunity
for research and experimentation considering these characteristics, and the presented
environments permit exploring this research gap in a realistic and scalable fashion because,
in addition to the control plane explored in this paper, they fully implement data plane
capabilities in network nodes, but taken into account that performance measurements on
the emulated environment are not comparable with real-world scenarios; to this end, a wise
combination of emulation, simulation, and data science principles shall be explored.
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