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Abstract: Cache side channel attacks, as a type of cryptanalysis, seriously threaten the security of
the cryptosystem. These attacks continuously monitor the memory addresses associated with the
victim’s secret information, which cause frequent memory access on these addresses. This paper
proposes CacheHawkeye, which uses the frequent memory access characteristic of the attacker to
detect attacks. CacheHawkeye monitors memory events by CPU hardware performance counters. We
proved the effectiveness of CacheHawkeye on Flush+Reload and Flush+Flush attacks. In addition, we
evaluated the accuracy of CacheHawkeye under different system loads. Experiments demonstrate that
CacheHawkeye not only has good accuracy but can also adapt to various system loads.

Keywords: cryptanalysis; side channel; Flush+Reload; cache side channel; Flush+Flush; side
channel detection

1. Introduction

The security of a cryptosystem can be compromised via cryptanalysis. Cache side
channel cryptanalysis is a type of cryptanalysis. Cache was implemented into current CPUs
to alleviate the speed disparity between the CPU and memory. L1 cache, L2 cache, and L3
cache are the three levels that it is divided into. All cores share the largest L3 cache. Even if
the operating system provides strong process isolation, an attacker can utilize a shared L3
cache as a side channel to steal the victim’s confidential information [1–3]. Time-driven
attacks and trace-driven attacks are two types of cache side channel attacks. Trace-driven
attacks include Flush+Reload [2] and Flush+Flush [3]. These two attacks take advantage of
shared memory technology and leverage the L3 cache as a side channel for data leakage.

Recently, researchers have proposed many countermeasures to mitigate cache side
channel attacks. Wang et al. [4] designed a dynamic cache partition strategy to protect
the L3 cache. Zhou et al. [5] proposed a method for preventing attackers and victims
from sharing memory by dynamically managing physical memory pages between security
domains. Oliverio et al. [6] changed shared page from copy-on-write to copy-on-access
to prohibit attackers and victims from sharing memory. These countermeasures require
major modifications to hardware and operating system. These approaches cannot be
applied to current computer systems because modifications on the hardware cannot be
deployed to existing systems immediately and modifications on the operating system incur
a performance overhead that is hard to ignore.

Therefore, there is an urgent need for a detection technology that does not modify
software and hardware. The detection techniques for these attacks are full of challenges.
First of all, cache side channel attack does not have any malicious behaviors, it is difficult
for traditional malware detection methods to detect these attacks. Secondly, existing
detection methods monitor cache hits and cache misses of programs to detect cache side
channel attacks. However, cache hits and misses are susceptible to interference from other
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workloads, which ultimately affect the detection accuracy. Finally, because Flush+Flush
has a low cache hit rate, it is difficult for many detection methods to detect this attack.

This article focuses on cache side channel attacks that exploiting shared memory. To
detect such attacks, we design CacheHawkeye. Our approach is based on the assumption
that cache side channel attacks frequently access specific memory addresses, so we detect
these attacks through frequent memory access. CacheHawkeye monitors memory events by
using CPU hardware performance counters(HPCs). To the best of our knowledge, this is
the first time memory events have been used to detect cache side channel attacks. These
attacks infer the victim’s privacy by continuously monitoring specific memory addresses,
which generate frequent memory access on the specific memory addresses. CacheHawkeye
detects these attacks based on these memory addresses and corresponding data symbols.
According to our experiments, CacheHawkeye not only provides good accuracy, but also
adapts to different system loads.

2. Background and Related Work
2.1. Cache Side Channel Attacks

Flush+Reload and Flush+Flush are two types of cache side channel attacks. They both
take the last-level cache as a covert channel for information leakage. Flush+Reload and
Flush+Flush rely on the operating system’s or hypervisor’s shared memory technology,
whereas Prime+Probe [7–9] does not. Flush+Reload and Flush+Flush pose a great threat to
information security, so we study the detection method of these two attacks. In the scenario
of these attacks, there is a victim and an attacker. Typically, the victim is a cryptographic
program. The attacker’s goal is to steal the victim’s secret key.

When the victim is running, it accesses some memory addresses. We call these memory
addresses associated with the secret key sensitive memory addresses. The attacker monitors
these memory addresses for a long time and collects the victim’s sensitive memory access
sequences. These memory access sequences can be used by the attacker to deduce secret
key bits. Flush+Reload, for example, constantly monitors the RSA cryptosystem’s memory
access sequences and can retrieve 96.7% of the secret key bits in a round of attack.

We explain in detail how to steal RSA and AES keys. Square and Multiply modular
exponentiation of RSA in GnuPG 1.4.13 and T-table implementation of AES in OpenSSL
0.9.8 are vulnerable to cache side channel attacks. The following experiments are carried
out with these two versions. The attacker monitors the cache to get the victim’s memory
access sequences. The memory access sequences of a cryptographic program depend on
the value of the key bit. The attacker steals the secret key by monitoring the memory access
sequences of some sensitive functions’ addresses. For example, in the Square-and-Multiply
implementation of RSA, the Square-Reduce memory access sequence represents the key bit
is 0 and Square-Reduce-Mul-Reduce represents the key bit is 1. The AES algorithm uses the
T-tables to compute the ciphertext based on the secret key k and the plaintext p. During the
first round, table accesses are made to entries Tj[pi ⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16.
Cache attack is possible to derive values for pi ⊕ ki and thus, possible key-byte values ki in
case pi is known.

Trace-driven attacks manipulate traces of the victim’s cache access. Trace-driven
attacks include Flush+Reload and Flush+Flush. In these attacks, the attacker repeatedly
checks and analyzes the status of cache lines used by the victim [10]. The process of trace-
driven attacks is depicted in Figure 1. Each monitoring round, the attacker manipulates
cache lines and measures the accessing time. At most a bit of secret key can be recovered
in each monitoring round. At least a few thousand monitoring rounds are required for a
successful attack. Because the attacker does not know when the victim begins executing in
the real world, monitoring time will be longer. The attacker monitors cache by manipulating
cache lines, which causes frequently access to specific memory addresses.
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Figure 1. Process of trace-driven attacks.

2.2. Related Work

Cache side channel detection technology could be divided into two main categories:
signature-based detection [11–16] and anomaly-based detection [17–19]. Some detection
techniques [20–22] use a combination of signature and anomaly-based detection techniques.

Some researchers propose several signature-based detection methods [11–16]. For
example, Demme et al. [11] use L1 hits event in HPCs to detect malware and cache side
channel attacks. Allaf et al. [12] propose another signature-based detection technique to
detect Prime+Probe and Flush+Reload attacks when using machine learning (ML) models
and HPCs and running an AES cryptosystem. The hardware events they use are core cycles,
reference cycles and core instructions. NIGHTs-WATCH [13] can detect access-driven cache
side channel attacks. It consists of various machine learning models that make use of LLC
misses and CPU cycles in HPCs. This method trains the model under some preset system
loads, and we are not sure whether it still performs well under some unknown system
loads. Mushtaq et al. [14] use linear and non-linear ML classifiers to detect variants of
Prime+Probe attacks running under the AES cryptosystem. HexPADS [15] uses the values
of cache miss rates and page faults to detect Flush+Reload and cache template attacks [16].

The literature [17–19] proposes several anomaly-based detection methods. For exam-
ple, CacheShield [17] is an anomaly-based detection mechanism on legacy software (victim
application) that involves monitoring L3 cache misses by HPCs. Bazm et al. [18] detect
cross-VM cache side channel attacks through using hardware fine-grained information
provided by Intel Cache Monitoring Technology (CMT) and HPCs following the Gaussian
anomaly detection method. SpyDetector [19] can detect Flush+Reload, Flush+Flush and
Prime+Probe attacks running on RSA, AES and ECDSA cryptosystems through monitoring
L3 cache and L1 data cache by HPCs.

Some detection techniques [20–22] use the combination of signature and anomaly-
based detection techniques. Chiappetta et al. [20] propose a machine learning based
detection mechanism for Flush+Reload attack on AES and ECDSA cryptosystem. They
monitor L3 access to detect attacks. CloudRadar [22] is a signature and anomaly-based
detection system. Attacks are detected in two steps. The first step is to detect cryptographic
applications by branch instructions and dynamic time warping. The second step is to define
a criterion for identifying between benign and malignant programs. CloudRadar believes
an attack has occurred when the detected value surpasses this criterion. Alam et al. [21]
present a multi-layer detection approach based on machine learning. This approach col-
lects microarchitecture events(e.g. branch misses, LLC accesses and LLC misses) when
attacks occur. Alam et al. train some machine learning models based on these events to
detect attacks.

The above work uses microarchitecture events as feature vectors for detection. Because
the component capacity of the microarchitecture is very small, it is very susceptible to
interference from the system load. This paper, unlike the previous work, detects cache side
channel attacks by memory events. The memory capacity is very large, so the interference
of the system load can be ignored. We will prove this point through experiments in
Section 4.3. Moreover, our approach does not require pre-trained models, which makes it
more adaptable to unknown system loads and hardware environments.
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2.3. Hardware Performance Counters

Hardware performance counters(HPCs) are a set of special registers built into x86 (e.g.,
Intel and AMD) and ARM processors. They use event selectors to track certain hardware
events and update counters as they happen. Most modern processors provide performance
monitoring units that enable applications to control these counters.

HPCs were originally designed for software debugging and system performance opti-
mization. Later, researchers used these counters to detect security vulnerabilities [11,23,24].
These counters can display the execution characteristics of the program, which can further
reflect the security status of the program. Microarchitecture events (e.g., cache loads and cache
misses) can be monitored by hardware performance counters.

Perf tool of Linux system provides an interface for controlling HPCs. Only privileged
users can use HPCs in the Linux system. The perf mem record command is used to monitor
an unknown application, while the perf mem report command is used to display the result.
The end result is a ten-column table. We are most interested in the data symbol column
and the overhead column. The overhead column indicates the percentage of the sample
collected in a specific function (or memory address) to the total sample. The data symbol
column displays the address of the memory location that the row was targeting.

3. CacheHawkeye Design
3.1. Overview of CacheHawkeye

We designed a system named CacheHawkeye to detect cache side channel attacks. It
detects cache side channel attacks through frequent memory access on specific addresses.
The memory events monitored by the perf tool automatically associate these sensitive
memory addresses with data symbols. CacheHawkeye detects attacks based on these data
symbols. The structure of CacheHawkeye is shown in Figure 2. CacheHawkeye consists
of three modules: monitor, cache attack library, and detector. In the cloud scenario, the
hypervisor is responsible for the implementation of CacheHawkeye.

Figure 2. CacheHawkeye architecture.

The monitor controls the execution of unknown programs and reads the results of
HPCs. We use the perf tool to monitor unknown programs. Only privileged users can
enable the monitor. The monitoring command is perf mem record -U./programName. -U
parameter is used to monitor events in user mode, which can avoid interference from
memory activity in kernel mode. programName is a binary file compiled by an unknown
program. When the execution is finished, the monitor runs the perf mem report command to
read memory events and record the results. To the best of our knowledge, this is the first
time memory events have been used to detect cache side channel attacks.
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Considering some programs that run permanently or have a long-running time, we
assign a maximum running time in advance. If the execution time of the unknown program
exceeds the maximum running time, the monitor stops the program. In this case, memory
events can still be obtained.

The cache attack library gathers existing known attacks. As a proof of concept, we
chose the data segment and code segment from the shared library, as shown in Table 1.
The data segment takes the AES of the libcrypto library as an example. T-Tables of AES are
vulnerable to cache side channel attacks, we store T-Tables’s name into the cache attack
library, as listed in the second row of Table 1. There is a cache side channel vulnerability
of RSA in GnuPG. We store the name of function corresponding to sensitive memory
addresses in the third row of Table 1. CacheHawkeye stores these names in an array. Only
the attack library needs to be improved when a new attack is revealed.

The detector preprocesses memory event data from the monitor, analyzes it by the
detection algorithm, and then makes a decision. The details of the detector will be described
in Section 3.2.

Table 1. Cache attack library.

Cryptosystem Sensitive Memory Address

AES Te0 Te1 Te2 Te3 Te4
RSA mpih_sqr_n_basecase mpihelp_divrem mpihelp_mul_karatsuba_case

3.2. Detector Design

The monitor reads the memory events and stores results in a file named Perf.data.
Detector analyzes the file and makes a judgment on the unknown program. The detector’s
detection mechanism is depicted in Figure 3. The perf.data file is initially preprocessed by
the detector. The perf.data file contains information about memory loads and memory stores.
The result of memory loads and memory stores is a table with N rows and 10 columns.
Monitoring frequency determines the values of N. In general, the greater the frequency,
the more samples are generated, and N is larger. In the preprocessing phase, the detector
extracts all rows of the data symbol column of the two types of memory events to generate
a sequence.

Figure 3. Detector execution flow.

For each data symbol in the monitored result sequence, the detector looks for the
corresponding symbol name in the cache attack library. If a symbol in the sequence matches
the cache attack library, it indicates that the program is a side channel attack program. If
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none of the data symbols in the sequence are in the cache attack library, the program is
considered benign.

3.3. Improve the Detection Accuracy

In most attack scenarios, the attacker usually runs for a long time because he does
not know when the victim executes. Because the longer the execution time, the more
complete the sample results. For a long-running attack program, CacheHawkeye can easily
judge the program as a malicious program. We believe that the detection accuracy of
CacheHawkeye is positively related to the running time of the attacker. Considering the ideal
attack scenario, in which both the attacker and the victim carry out and complete at the
same time. Because the attacker’s execution time is so short, CacheHawkeye has a hard time
detecting this case correctly.

In order to identify these programs, we need to make some improvements to CacheHawk-
eye. When monitoring the unknown program, CacheHawkeye chooses a frequency parameter
and assigns a large value to this parameter to collect more complete samples. Frequency
adopts an odd value to avoid lockstep sampling. The time spent sampling may rise as the
sampling frequency increases, We will compare different sampling frequencies and choose
the best one in Section 4.2.

4. Evaluation

We used an MSI laptop with an Intel(R) Core(TM) i7-6700HQ hyper-threading quad-
core processor in this phase of the experiment. The frequency of the processor is 2.60 GHz.
The size of the last level cache is 6 MB. The operating system is Ubuntu 18.04LTS. The perf
tool version is 5.4.114. We evaluated the performance of CacheHawkeye in this section.

4.1. Detect Flush+Reload and Flush+Flush Attacks

In this subsection, we evaluated the performance of CacheHawkeye on Flush+Reload
and Flush+Flush attacks. Flush+Reload attack program monitored target addresses
10,000 times and Flush+Flush attack monitored target addresses 5600 times. As a con-
trol experiment, we also evaluated the behavior of CacheHawkeye on legit AES and RSA
encryption and decryption programs. These legit programs also use shared libraries and
may access sensitive functions (memory addresses) stored in the cache attack library, so we
evaluated the performance of CacheHawkeye on these programs. We will analyze the per-
formance of CacheHawkeye under various system loads in Section 4.3, and we temporarily
overlook the interference of system load in this subsection.

The results of CacheHawkeye detected Flush+Reload attacking RSA are listed in Table 2.
For the sake of brevity, we only list the data in user mode. The results of mem-loads are
listed in columns 1 and 2, while the results of mem-stores are listed in columns 3 and 4.
The data symbol columns of mem-loads and mem-stores both contain monitored functions
(such as mpihelp_mul_karatsuba_case and mpihelp_divrem). Some data symbols appear
repeatedly in the same column because the other parameters of this row are different. These
functions are frequently accessed and account for 10% to 12.99% overhead. Because these
function names are stored in the cache attack library, CacheHawkeye determines that this
program is malicious.

Table 3 shows the results of CacheHawkeye detecting Flush+Flush attacking AES. We
list a few lines which we care about. For the results of mem-loads, the data symbol in the
first column does not contain any monitored addresses in the cache attack library. For the
results of mem-stores, the data symbols in the third column are contained in the cache
attack library. As a result, CacheHawkeye considers this program to be vicious.

Let us explain the above results. In Flush+Reload, Flush is memory storage procedure
in which the cache line is evicted to memory, and Reload is a memory loading procedure
in which the memory block is placed into cache. As a result, Mem-stores and mem-loads
contain the names of the sensitive functions. Different from Flush+Reload, Flush+Flush
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only includes the Flush process, so the sensitive memory addresses are only found in
mem-stores.

Table 2. Results of Flush+Reload attacking RSA.

Mem-Loads Mem-Stores
Data Symbol Overhead (%) Data Symbol Overhead (%)

mpihelp_mul_karatsuba_case 12.99 0x00007fffef0e6938 20.00
mpihelp_mul_karatsuba_case 12.93 mpihelp_mul_karatsuba_case 10.00
mpihelp_mul_karatsuba_case 12.55

mpihelp_divrem 11.48
mpihelp_divrem 11.35

Table 3. Results of Flush+Flush attacking AES.

Mem-Loads Mem-Stores
Data Symbol Overhead (%) Data Symbol Overhead (%)

0x00007fbf41991acc 6.06 Te2+0x0 1.05
0x000056511b858641 1.56 Te2+0x3c0 1.05
0x00007fbf41d97f0a 1.45 Te0+0x3c0 1.05

We ran tests to evaluate the performance of CacheHawkeye on legit cryptographic pro-
grams that use shared libraries and monitored functions or memory addresses. We tested
four programs: AES encryption, AES decryption, RSA encryption, and RSA decryption.

Table 4 lists all results of a legit AES encryption program. The data symbol column
does not contain any sensitive functions or memory addresses, So CacheHawkeye believes
that this program is legit. The results of the legit AES decryption program are similar to
Table 4 and also do not contain any sensitive functions or memory addresses. These results
are not presented for the sake of brevity.

It is worth noting that we divide the detection of the legit RSA decryption program
into two tables. Table 5 shows the memory load results, and Table 6 shows the memory
store results. There are no sensitive function names in Table 5. However, this does not mean
that the legit RSA decryption program does not access these addresses, but because the
access is not frequent enough, they are not caught by CacheHawkeye. There are some sensi-
tive function addresses(such as mpih_sqr_n_basecase and mpihelp_divrem) in the symbol
column of Table 5, this indicates that the legit RSA program has accessed these target ad-
dresses(functions). But there are no sensitive function addresses in the data symbol column.
These demonstrate that the symbol column represents the legit program’s memory access,
whereas the data symbol represents the cache side channel attack’s malicious memory
access. The perf tool automatically puts the sensitive function name of the attack program in
the data symbol column and puts the sensitive function name which the legit program also
accesses in the symbol column. We conjecture that the reason behind it may be the memory
access (by clflush instruction and movl instruction) of the attack program is somewhat
different from the memory access of the legit program. CacheHawkeye only pays attention
to the data symbol column, so it does not misjudge the legit cryptographic program.

For legit RSA encryption programs, the results of the data symbol column still do not
contain any sensitive functions or memory addresses. These results are not presented for
the sake of brevity. Therefore, CacheHawkeye can distinguish between benign cryptographic
programs and side channel attack programs.
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Table 4. Legit AES encryption program detection results.

Mem-Loads Mem-Stores
Data Symbol Overhead (%) Data Symbol Overhead (%)

0xffff8afe01fd5d18 100.00 0xfffffe000006fde8 25.00
0xffff8afdf1ab1a80 12.50
0xffff8afcef77674c 12.50
0xffffb8f545bf7cc0 12.50
0xffffb8f545bf7d08 12.50
0xfffffe000006fe28 12.50
0xffffb8f545bf7c18 12.50

Table 5. Legit RSA decryption program detection results of Mem-loads.

Symbol Data Symbol Overhead (%)

vma_interval_tree_insert 0xffff8afd591d93f0 19.83
copy_page 0xffff8afd710e3da0 16.99

filemap_fault 0xffffde478cd0f048 15.43
filemap_map_pages 0xffffde478ef1ba88 15.43
filemap_map_pages 0xffffde478f2f75c8 14.97

Table 6. Legit RSA decryption program detection results of Mem-stores.

Symbol Data Symbol Overhead (%)

des_setkey.part.0 0x00007fffbc126589 6.25
mpih_sqr_n_basecase 0x00007f6b27fac7b8 6.25
mpihelp_addmul_1 0x00005638ece97148 6.25

mpihelp_divrem 0x00007fffbc1268e8 6.25
mpihelp_mul 0x00007f6b27fac628 6.25

4.2. Sampling Frequency Configuration

In this subsection, we evaluated the performance of CacheHawkeye at different frequen-
cies and determine an appropriate sampling frequency. We tested CacheHawkeye to detect
4 representative attack programs and 4 legit cryptographic programs which may access
sensitive addresses. we chose programs that are extremely difficult to detect when config-
uring the frequency, this can make the configured frequency more universally adaptable.
For CacheHawkeye, the shorter the execution time of the attack program, the fewer sensitive
memory address accesses, and the more difficult it is to detect. We chose 4 programs with
very short execution time to configure the sampling frequency. As shown in Table 7, the
execution time of these programs is only 7–12 ms. Real-world attacks must be much longer
than these times because the attacker cannot synchronize with the victim. Therefore, the
frequency configured according to these attack programs far meets the requirements of
detecting real-world attacks.

We monitored 4 representative attack programs and 4 legit cryptographic programs
with sampling frequencies of 2999, 5999, 8999, 11,999 and 14,999. Each attack program
is executed 1000 times at each frequency. 4000 attacking samples are generated per fre-
quency. CacheHawkeye also tests legit AES encryption/decryption programs and RSA
encryption/decryption programs under different frequencies. Each legit program is ex-
ecuted 1000 times at each frequency. We use accuracy to evaluate the performance of
CacheHawkeye at different frequencies and then determine the appropriate sampling fre-
quency configuration. Accuracy refers to the percentage of samples that are judged correctly
in the total samples. The formula for accuracy is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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In Equation (1), True Positive(TP) represents that the malignant program is correctly
recognized, True Negative(TN) represents that the benign program is correctly recognized,
False Positive(FP) represents that the benign program is recognized as a malignant pro-
gram, and False Negative(FN) represents that the malignant program is recognized as a
benign program.

Table 7. Execution time of attack programs.

Attacks
F+F F+R

AES RSA AES RSA

Execution(ms) 10.6 7 12 10.4

The accuracy of malicious and legit programs at different sampling frequencies is
shown in Figure 4. The accuracy of the CacheHawkeye is only 82.7% when the sampling
frequency is 2999. CacheHawkeye’s accuracy improves as the sampling frequency rises. The
accuracy rate reaches 100% when the sampling frequency reaches 14,999.

We hypothesized that a greater sample frequency would lengthen the sampling time,
so we measured it at various frequencies. We define sampling time as the time it takes to
collect memory events and store them as a file. Figure 5 shows the average sample time
of four malicious programs at various frequencies. We can see that when the frequency
increases, the sample time does not change significantly. We only need to consider the
accuracy when configuring the frequency. As a result, CacheHawkeye’s sample frequency
configuration is 14,999.

Figure 4. Accuracy of CacheHawkeye.

Figure 5. Sampling time at different frequencies.
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4.3. Performance under Different System Loads

In this subsection, we evaluated CacheHawkeye under different system loads. We used
unixbench and sysbench to generate system load. We used the default configuration of
unixbench. The configuration settings of sysbench are listed in Table 8. During the execution
of sysbench, we randomly picked one of the five routines. The system loads are divided
into three categories: no-load, average-load, and full-load. No-load means that there is no
system load when CacheHawkeye is running. The average-load has two workloads, one
runs sysbench, the other runs unixbench. The full-load has four workloads, two of which run
sysbench, and the other two run unixbench.

Table 8. Configuration settings of sysbench.

Test Setting

cpu cpu-max-prime = 2000

threads num-threads = 500 thread-yields = 100
thread-locks = 4

fileio num-threads = 16 file-total-size = 2G
file-test-mode = rndrw

memory memory-block-size = 8k
memory-total-size = 1G

mutex num-threads = 100 mutex-num = 1000
mutex-locks = 100,000 –mutex-loops = 10,000

We tested CacheHawkeye to detect 4 representative attack programs and 4 legit cryp-
tographic programs which may access sensitive addresses under different system loads.
Each program is executed 1000 times. 4000 benign samples and 4000 malignant samples
are generated under each system load. The experimental results are listed in Table 9. We
discovered that CacheHawkeye is 100% accurate under no-load and full-load, and 99.99%
accurate under average-load. Because CacheHawkeye has not been pre-trained under dif-
ferent system loads, it can be expected that CacheHawkeye still performs excellently under
unknown system loads. As a result, it can be inferred that the performance of CacheHawkeye
performance is unaffected by system load. Because the memory capacity is substantially
more than the capacity of the microarchitecture components (such as the branch instruction
buffer and cache), memory events are very little affected by system loads.

Table 9. Detection results under different load conditions.

No Load Average Load Full Load
Positive Negative Positive Negative Positive Negative

True 4000 4000 3999 4000 4000 4000
False 0 0 1 0 0 0

Table 10 summarizes some limitations of the above work. CacheRadar and Alam et al.’s
methods cannot detect Flush+Flush attacks. These two strategies, however, do not take
system loads into account. We believe that these strategies are extremely sensitive to
system loads because hardware events such as cache hits and misses are highly susceptible
to interference from system loads. NIGHTs-WATCH has a good performance in known
system loads and can detect Flush+Flush attacks. However, system loads still bring an
accuracy loss of 4.97% [13] and this pre-trained model may perform poorly under unknown
system load. Microarchitecture events are used as feature vectors for detection in all of the
approaches listed above. Our approach detects cache side channel attacks using memory
events. Compared with the above methods, our method has a very strong ability to adapt
to the system loads and close to 100% accuracy.
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Table 10. Related work.

Method Flush+Flush System Load Hardware Events

CacheRadar No Sensitive Branches, Cache Hits

Alam et al. No Sensitive Branch Misses, LLC
Accesses/Misses

NIGHTs-WATCH Yes Less Sensitive LLC Misses, CPU
Cycles

CacheHawkeye Yes Neglect Memory Events

5. Discussion

CacheHawkeye has a shortcoming. When CacheHawkeye monitors the attacking program,
the secret key is leaked when the victim is running. In order to overcome this shortcoming,
we have two suggestions for using CacheHawkeye. The first suggestion is that the user
should not execute the cryptographic program when CacheHawkeye is detecting unknown
programs. If the user must execute a cryptographic program during the detection, the
second suggestion is that the user can use Flush+Prefetch [25] approach to protect the key
in real-time.

6. Conclusions

This paper designs and implements a system called CacheHawkeye to detect cache side
channel attack programs. CacheHawkeye digs deeper into the semantics of cache side channel
attacks and detects these attacks by memory events. Our evaluation shows the detection
accuracy of CacheHawkeye is close to 100%. The detection accuracy of CacheHawkeye is
hardly affected by any system loads. CacheHawkeye is a lightweight program that can be
immediately deployed on existing software and hardware platforms.
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