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Abstract: Recommendation systems based on convolutional neural network (CNN) have attracted
great attention due to their effectiveness in processing unstructured data such as images or audio.
However, a huge amount of raw data produced by data crawling and digital transformation is
structured, which makes it difficult to utilize the advantages of CNN. This paper introduces a
novel autoencoder, named Half Convolutional Autoencoder, which adopts convolutional layers to
discover the high-order correlation between structured features in the form of Tag Genome, the side
information associated with each movie in the MovieLens 20 M dataset, in order to generate a robust
feature vector. Subsequently, these new movie representations, along with the introduction of users’
characteristics generated via Tag Genome and their past transactions, are applied into well-known
matrix factorization models to resolve the initialization problem and enhance the predicting results.
This method not only outperforms traditional matrix factorization techniques by at least 5.35% in
terms of accuracy but also stabilizes the training process and guarantees faster convergence.

Keywords: autoencoder; collaborative filtering; convolutional neural network; matrix factorization;
recommendation system

1. Introduction

Information explosion has been occurring in the past decades thanks to the Internet.
In social media, digital advertising, and especially e-commerce, this explosion not only
makes people overwhelmed with a variety of choices but also challenges suppliers to
retain their customers and compete with others by offering the most relevant items. As
a result, Recommendation Systems (RSs), which provide automated and personalized
recommendations to users, are critical.

In general, RSs have three main approaches [1]: content-based method, collabora-
tive filtering method and hybrid method. Content-based methods [2,3] suggest items
based on the contents of products and on users’ preferences, which requires a substantial
amount of item profiles and users’ past behaviors. Consequently, the main disadvantage of
content-based models is the lack of available and reliable product properties. In contrast,
Collaborative Filtering (CF) approaches [4,5] do not require product information but rely
on the analogy between users with similar tastes determined by their past transactions.
There are two branches of the CF approach: memory-based (or neighborhood-based) and
model-based. The memory-based branch focuses on computing the correlation between
items or between users. Nevertheless, the existence of sparse rating matrices in practice
significantly degrades the performance of these approaches. This is a common problem
because customers are often not willing to rate items. On the other hand, the model-based
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(or latent factor) branch has shown its effectiveness on extremely sparse interaction ma-
trices. The main idea is to project each user and item into a lower dimension space, then
analyze the user–item interaction by dot product [6–8]. Several studies have shown that
an appropriate initialization setting for matrix factorization can improve the speed and
accuracy of matrix factorization models [9–11].

However, there are usually not enough transaction data to make accurate recommenda-
tions for a new user or item, which raises the cold-start problem in CF techniques. Therefore,
hybrid methods are proposed to tackle this problem by combining both content-based and
CF models [12,13]. Generally, hybrid methods integrate user–item ratings and auxiliary
information to generate unified systems. As in [12], user profiles, movie genres and their
past interactions are integrated into one model to predict dyadic response in a generalized
linear framework. Barragáns et al. [13] proposed a hybrid approach that utilizes Singular
Value Decomposition (SVD) to make television program recommendations to deal with the
limitations of content-based and CF systems. One restriction of these works is the privacy
of user profiles, which limits the shared personal information. In another work [7], after
proving the advantage of SVD++ model, an integrated model between neighborhood-based
and SVD++ is established to gain a better result by generating new representation for a user
from the items rated by that user instead of using an explicit parameterization. A model
named Factorization Machines (FM) combining matrix factorization and Support Vector
Machine also uses both ratings and auxiliary information for predictions [14].

Studies on hybrid approaches for initialization problem in matrix factorization models
have gained some attention recently. Hidasi and Tikk [15] used the similarity between
users and items to initialize feature vectors by taking advantage of available contextual
information. Additionally, Zhao et al. [16] adopted the item’s attributes information to
initialize the item feature matrix in SVD++ model; however, this method just accounted for
only initializing item features and the overall improvement is modest. The common point of
these methods is that features such as movie genres are considered as good representations
of items. Nonetheless, in practice, raw content-based information needs to be preprocessed
and extracted carefully to fit into a specific RS, especially when the contents of products are
texts, images or videos which are hard to exploit semantic and meaningful representations.

While traditional methods have yielded promising results, the performances are still
restricted by theirs linearity. For real-world data structure, deep learning can be a powerful
approach to boost RSs owing to its outstanding capability to explore non-linear correlations
between data features [17,18]. Among a variety of deep learning approaches, CNN provides
an efficient neural network and is considered as an excellent feature extractor [19]. To find
the correlation between user and songs, a music RS [20] was proposed where CNN was
used to extract song’s latent features from the audio data. Additionally, CNN was trained
to transform item description documents into an embedding space, which later can be
incorporated into CF models [21].

In the interest of CNN and its advantages, this paper concentrates on applying 1D-
CNN to enhance the ability to extract information of a classic autoencoder and provide
scrupulous features to RSs. The result is followed by a novel method of integrating content-
based information to matrix factorization models. Our empirical studies are conducted on
the MovieLens 20 M dataset released in October 2016 [22]. Although the dataset includes a
current copy of a movie Tag Genome based on user-contributed information which is often
considered as content-related information, there are no statistics about user profiles. To
deal with the challenges mentioned above, in addition to movies’ auxiliary information, we
incorporate the parameterized user features into the initialization of matrix factorization
techniques. The main contributions of this paper are summarized as follows.

• Designing a CNN-based autoencoder named Half Convolutional Autoencoder (HCAE)
where convolutional layers are used as a feature extractor to generate a lower di-
mensional descriptor for each movie regardless of the arrangement or the semantic
relationships of original features, which helps to increase the accuracy of RSs.
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• Utilizing the content-based information produced by HCAE and available ratings
to parameterize user preferences for resolving the initialization problem of model-
based method, which considerably improves the performance of the traditional matrix
factorization models.

The remaining of the paper is organized as follows. Section 2 presents the formalized
problem and discusses existing solutions. Our previous works and experimental settings are
summarized in Sections 3 and 4, respectively. The proposed models and their performance
are described in Sections 5 and 6 along with the state-of-the-art models for comparison.
Finally, we conclude with a summary of this work in Section 7.

2. Preliminaries

In this paper, u, v denote users and i, j denote items. The rating that user u gives item i
is denoted by rui where higher values indicate stronger preference. Ui is the set of all users
that rate item i, and Uij is the set of all users that rate both items i and j whilst R(u) denotes
the set of all items rated by user u.

Two popular CF techniques and three common autoencoder architectures are briefly
introduced as follows.

2.1. Memory-Based CF

Based on the similarity between users or items, the memory-based CF technique
tries to predict the most appropriate recommendations to users. There are two forms
of memory-based CF: (i) user-oriented (or user-user) CF [23] and (ii) item-oriented (or
item-item) CF [24]. Of the two approaches, the latter is more favored in practice due to its
superior accuracy and better scalability [5]. An item-item CF system (ii-CF) recommends
to a specific user those items which are the most relevant to the items rated or purchased
by her.

At the core of these systems is a similarity measure which indicates the analogy sij
between two items. After computing the similarity degree between items using popular
similarity measures such as Cosine similarity function (Cos) or Pearson Correlation Coeffi-
cients (PCC), the k most similar items of item i rated by user u can be identified. This set of
k items is called k-nearest neighbors (kNN) which is denoted by Sk(i, u). The most simple
formula to estimate r̂ui is a weighted average of the ratings of similar items i ∈ Sk(i, u)
(named kNNBasic model):

r̂kNNBasic
ui =

∑j∈Sk(i,u) sijruj

∑j∈Sk(i,u) sij
(1)

A modification of Equation (1) adjusts the final prediction using baseline estimate,
hence the name kNNBaseline model [25], as follows:

r̂kNNBaseline
ui = bui +

∑j∈Sk(i;u) sij
(
ruj − buj

)
∑j∈Sk(i,u) sij

(2)

Besides Cos and PCC, advanced similarity measures, such as PCCBaseline [25] or
cubedPCC [26], also effectively improve the performance of kNN models.

2.2. Model-Based CF

Among various model-based CF techniques, latent factor models are the most popular
because they can overcome the weakness of neighborhood-based approaches on extremely
sparse data. This type of model aims at uncovering latent features that explain the observed
ratings, as proven in Netflix Prize competition [6].

Let R ∈ Rm×n denote the rating matrix where m is the number of users, n is the number
of items. By applying SVD factorization, both users and items are mapped into a latent
space of dimension k (k � m, n). Here, each user can be characterized by a user–factor
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vector pu ∈ Rk, and each item by an item-factor vector qi ∈ Rk. The prediction is estimated
by taking the following inner product.

r̂ui = qT
i pu (3)

Rating value estimated in Equation (3) raises a bias problem in practice. Among users
with similar interests, some users tend to give higher ratings than others. Among similar
items, some always get lower ratings than others due to irrelevant reasons such as poor
video quality. Therefore, user and item-specific biases, bu ∈ Rm and bi ∈ Rn, respectively,
are introduced. Specifically, the rating user u give to the item i is approximated as

r̂ui = bui + qT
i pu (4)

where bui = µ + bu + bi is the baseline estimate rating of user u for item i, and µ is the mean
of ratings.

Non-negative Matrix Factorization (NMF) is another common model in the study of
RS [27–29]. Different from regular matrix factorization, the objective of NMF is to factorize
a non-negative matrix into matrices with no negative element. This constraint is useful in
many fields such as computer vision, signal processing or RS in general where non-negative
data are explicitly required.

Even though the idea of mapping the interaction matrix into a lower-dimension latent
space provides remarkable accuracy, the latent factors themselves have no explicit meaning.
The predicted ratings, therefore, are unpersuasive and untrustworthy, which declines
user satisfaction of RSs [30]. This problem also makes it challenging for engineers and
researchers to evaluate, diagnose and refine the system in the long term.

2.3. Autoencoder

Among current techniques for dimensionality reduction and information retrieval,
an autoencoder (AE) is widely used not only as a nonlinear decomposition to replace
traditional linear inner product but also as a representation learning mechanism [31]. It
eliminates the information redundancy by mapping data from high feature space to lower
one, generating more precise and efficient data representation.

Figure 1 illustrates the structure of a simple feedforward 1-layer AE. Generally, an AE
is constituted by two main parts:

• An encoder φ : X → C that maps the input features X into the code.
• A decoder ψ : C → X that reconstructs the original features from the code.

The code C itself is the hidden layer output that is usually used to characterize the
input. The objective of AE is to minimize the difference between the input and the output
by reconstructing X from the reduced encoding C as follows:

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2

= arg min
φ,ψ

‖X − (ψ(φ(X ))‖2
(5)

In practice, only the code C is extracted to create a compressed representation of the
input data that preserves the most crucial information for further analysis.

Several modifications on the AE architecture have been introduced recently to improve
the effectiveness of representation learning and dimensionality reduction. To prevent
the autoencoder from learning the identity function, Denoising Autoencoder (DAE) first
corrupts the input by adding noise, then learns to predict the initial data point as the
output [32]. Meanwhile, despite sharing a similar architecture with a vanilla AE, Variational
Autoencoder (VAE) [33] encodes the input into a multivariate latent distribution rather
than a vector.
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There have been several studies successfully applying AE and its variants into RS.
Collaborative Deep Learning (CDL) [34] was proposed for joint learning side information
of items by a Stacked Denoising Autoencoder. Additionally, an AE-based model for
rating prediction is the item-based AutoRec (I-AutoRec) [35] which fills missing ratings
by applying an AE to reconstruct its input containing known ratings. In contrary to CDL,
I-AutoRec directly handles explicit data to make reliable predictions without the side
information. Other variations of AE [36,37] can also optimize the network input, capturing
high-order latent factors from users and items.

Figure 1. Illustration of a vanilla 1-layer AE. The input and output layers have the same number of
neurons while the hidden layer is smaller to serve the idea of mapping original data from a high
dimension space into a lower one.

3. Previous Work

In [38], a number of problems regarding similarity measurement method using the
rating information were noticed. Firstly, the rating matrix in practice is extremely sparse
(for example, 99.47% entries of this matrix in the MovieLens 20 M dataset are missing),
which makes it hard to evaluate the relevance between two items that have many ratings
but only share a few common users. Secondly, calculating the similarity score between
two items is a time-consuming task due to a large number of users (usually in the order
of millions). To address these problems, a novel similarity measure was proposed using
Genome Tags instead of rating information. Specifically, each movie is characterized by
a genome score vector g = {g1, g2, . . . , g1128} which encodes how strong a movie exhibits
particular properties represented by 1128 tags [22], and the similarity score sij between
movies i and j is calculated as follows.

sCosgenome

gi ,gj
=

∑G
k=1 gik × gjk√

∑G
k=1 g2

ik ×
√

∑G
k=1 g2

jk

(6)

or

sPCCgenome

gi ,gj
=

∑G
k=1(gik − ḡi)× (gjk − ḡj)√

∑G
k=1(gik − ḡi)2 ×

√
∑G

k=1(gjk − ḡj)2
(7)

where ḡi and ḡj are the mean genome scores of vectors gi and gj, respectively; and G = 1128
is the length of genome vectors. Experiments conducted on the preprocessed MovieLens
20 M dataset (keeping only movies with Tag Genome) showed that the item-oriented CF
models based on similarity measures Cosgenome and PCCgenome provide accuracy equiva-
lent to the state-of-the-art CF models using rating information whilst performing at least
2 times faster.

In [39], we introduced a natural language processing (NLP)-based cleaning process to
eliminate the redundancy from the original 1128 genome tags to generate a more accurate
description for each movie with 1044 new tags. While this process slightly improved the
accuracy of the systems, the number of new tags is still quite large (7% smaller to original
1128 tags) and other groups of related tags which cannot be combined using NLP become
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hidden. Hence, a 3-layer AE was implemented to compress cleaned tags into a vector of
600 elements in order to discover the latent characteristics inside the genome tags and
regenerate a more powerful representation of each movie. By using new feature vectors
for every movie, kNN-ContentAE model can achieve at least 2.56% lower RMSE when
compared to its counterparts while the prediction time is still reasonable.

Additionally, a novel technique integrating the matrix factorization output as the
baseline estimate of user rating into kNNBaseline model was described as follows.

r̂kNN−Content
ui = r̂ui +

∑j∈Sk(i;u) sij
(
ruj − r̂uj

)
∑j∈Sk(i;u) sij

(8)

where r̂ui and r̂uj are the predicted ratings produced by SVD/SVD++ model while sij is
calculated by kNN-ContentAE model. This created hybrid content-based and CF models,
kNN-ContentAE-SVD and kNN-ContentAE-SVD++, which take the advantages of both local
level interaction of neighborhood-based method and global level characteristics explored
by model-based method to provide more precise recommendations.

4. Experimental Setup
4.1. Dataset

In the literature, the two most popular datasets in recommendation system are the
MovieLens dataset [22] and the Netflix Prize dataset [40]. While the former is continuously
updated and complimented with new auxiliary knowledge for movies, the latter not only
focuses on rating information associated with limited secondary data (only including
movie’s title and year of release, and rating dates), but it has not been revised since
the competition started due to privacy concerns. Therefore, in order to evaluate the
performance of the proposed models, the MovieLens 20 M dataset is chosen as a benchmark
in this work.

Released by GroupLens in 2015, this dataset originally contains 20,000,263 ratings and
is updated in 2016 with the latest 465,564 tag applications across 27,278 movies created
by 138,493 users (all selected users had rated at least 20 movies). The ratings range from
0.5 to 5.0 with a step of 0.5. Tag Genome data encodes how strongly movies exhibit
particular properties represented by tags in the range of 0 to 1 which is computed using
user-contributed content including tags, ratings, and textual reviews [22].

It is necessary to preprocess the original dataset. Any movie which does not have Tag
Genome is discarded from the dataset. Only movies and users containing at least 20 ratings
are kept. Table 1 summarizes the results: eventually, the preprocessed dataset consists
of 19,793,342 ratings (approximately 98.97% sparsity compared to 99.47% sparsity of the
original dataset) given by 138,185 users for 10,239 movies.

Table 1. Summary of the original MovieLens 20 M and the preprocessed dataset.

# Ratings # Users # Movies Sparsity

Original dataset 20,000,263 138,493 27,278 99.47%

Preprocessed dataset 19,793,342 138,185 10,239 98.97%

4.2. Evaluation Scheme

The preprocessed dataset is split into 2 distinct parts: 80% ratings of each movie
are used as the training set, and the 20% remaining as the testing set. To compare the
performance between models, the following widely-used indicators are used:
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• RMSE (Root Mean Squared Error) for rating prediction task: evaluate the errors of the
predicted ratings where smaller values provide more accurate recommendations:

RMSE =

√
∑

u,i∈TESTSET
(r̂ui − rui)

2/|TESTSET| (9)

where |TESTSET| is the size of the testing set, r̂ui denotes the predicted rating of user u
to item i estimated by the model, and the corresponding observed rating in the testing
set is denoted by rui.

• Precision@k (P@k) and Recall@k (R@k) for the ranking (top-k recommendation) task:
Precision@k is defined as a fraction of relevant items among the top k recommended
items, and Recall@k is defined as a fraction of relevant items in the top k recommended
items among all relevant items. Higher P@k and R@k indicate that more relevant items
are recommended to users.

• Time [s] for timing evaluation: the total duration of the model’s learning process on
the training set and predicting all samples in the testing set.

All experiments in this work are conducted on a workstation consisting of an Intel
Xeon Processor E5-2637 v3 3.50 GHz (2 processors) with 32 GB RAM and no GPU.

4.3. Baselines and Experimental Settings

To evaluate the performance of proposed models, the following baseline models
are implemented.

• ii-CF [24]: the similarity score between movies is measured using PCCBaseline with
the number of neighbors is set at 40.

• SVD [6] and SVD++ [7]: both models are trained using 40 hidden factors with 100
iterations and the step size of 0.002.

• NMF: optimization procedure is a regularized SGD based on Euclidean distance error
function [41] with regularization strength of 0.02 and 40 hidden factors.

• kNN-Content [38]: PCCgenome is used as the similarity measure.
• kNN-ContentAE-SVD and kNN-ContentAE-SVD++ [39]: 600-feature vectors for

movies are learned from 1044 NLP-preprocessed genome tags using a 3-layer AE.
• FMgenome [14]: each feature vector is composed of one-hot encoded user and movie

ID, movie genres and genome scores associated with each movie; the model is trained
with degree d = 2 and 50 iterations.

• I-AutoRec [35]: a 3-layer AE is trained using 600 hidden neurons, and the combination
of activation functions is (Identity, Sigmoid).

In our experiments, the optimal hyperparameters for each baseline method above
are carefully selected using 5-fold cross validation to guarantee fair comparisons. For
ii-CF model, the number of neighbors is chosen from {10, 20, 30, 40, 50, 100, 150}, and
the similarity measures implemented are Cos, PCC and PCCBaseline. For SVD, SVD++,
and NMF models, the number hidden factors is chosen from {20, 30, 40, 50, 60, 80, 100}.
These traditional models are reimplemented using Numba compiler (https://github.com/
numba/numba, accessed on 2 November 2021) to optimize their performances [42]. For
I-AutoRec model, the size of the hidden layer is set for n ∈ {200, 400, 600, 800, 1000} units;
and the choices of activation functions f (·), g(·) are experimented with (Identity, Identity),
(Identity, Sigmoid), (Sigmoid, Identity), (Sigmoid, Sigmoid). Finally, the regularization
strength is tuned λ ∈ {0.001, 0.002, 0.01, 0.02, 0.1, 1, 2} for all baselines.

In this paper, we have two main contributions. In the following, a novel autoencoder
named Half Convolutional Autoencoder is first introduced to capture the fundamental
characteristics of each movie from its original Tag Genome. The ability to extract essential
features of an HCAE is empirically proven to outperform that of the classical AE and
its variants via the application in various RSs. Secondly, through the newly generated
representation for each movie, a user’s interest is vectorized by the movies she rated.

https://github.com/numba/numba
https://github.com/numba/numba
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Both the movie and user vectors are then adopted to initialize the latent vectors in matrix
factorization models, which significantly boosts the precision of the systems.

5. Half Convolutional Autoencoder
5.1. Learning New Representation of Structured Data with an HCAE

Experimental results in our previous work [39] demonstrated the capability of an
AE to produce a more compact and powerful representation for movies than the original
genome scores. However, the fully-connected architecture of a traditional AE does not
consider the order of its raw inputs, which takes a risk that the network just tries to learn
the data without extracting any more useful information [19].

Compared to conventional fully connected neural networks, a typical CNN does not
require a large number of neurons for high dimensional inputs, which enables the training
process to be much more efficient with fewer parameters. Additionally, CNNs are widely
recognized as a robust feature extractor that is commonly applied on unstructured data such
as images, videos or audio where elements of a data point spatially and/or temporally
close to each other share similar information, and their positioning can negatively affect
the performance if arranged arbitrarily [43].

Meanwhile, data in common RSs are mostly stored in tabular form such as rating
matrix, user profiles, or movie genres (for example, the MovieLens datasets). This kind of
structured data has generally little or no spatial/temporal knowledge and is considered to
be suitable for fully connected networks. Hence, to our knowledge, there is little effort in
applying a CNN as the feature extractor in RSs despite its effectiveness.

As stated above, this paper focuses on the MovieLens 20 M dataset which introduces
a new type of information associated with each movie named Tag Genome. Investigating
this kind of tabular data provides us some prospective reasons for applying a CNN in order
to generate a more precise representation for each movie against a vanilla AE:

• Firstly, we reorganize Tag Genome data into a table so that each movie is represented
as a row and its genome scores are stored in the columns (as in Table 2). It can be
seen that each row has fully numerical values in the range of [0, 1] which indicate the
strength of the relevance between a movie and its corresponding genome tags (i.e.,
attributes). If each row is assumed to be a discrete-time signal where the attributes’ po-
sitions are treated as “timestamps” and their values as the displacements, each movie
will be characterized by a signal bringing its information. Moreover, the attributes
are generally independent of each other, so this signal resembles a random vibration
illustrated in Figure 2 that we could apply a 1D-CNN to extract its features [44].

• Secondly, if the order of the columns is shuffled simultaneously for all movies, the
physical shapes of the signals will change in a consistent way (i.e., the correlation
between a random pair of signals remains unchanged) and still deliver the knowledge
about the movies. In other words, the above assumption holds true regardless of the
positioning of the movie attributes into the table. Consequently, a 1D-CNN still has
the potential to perform feature extraction on the new signals.

We also tried to apply a 2D-CNN on these “vibration” signals using a proper 1D-to-2D
conversion. A common technique is to reshape the signals into m × n matrices before
feeding them into a 2D-CNN [45,46]. Nonetheless, this technique requires the length of the
input signals to be a non-prime number and often costs a higher computational complexity
than its 1D counterpart. Therefore, we opt to choose a 1D-CNN for our purpose.
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Table 2. Reorganizing original Tag Genome data into a tabular form. Each movie is presented as a
row and its genome scores are stored in the columns.

Tag #1 Tag #2 Tag #3 . . . Tag #1127 Tag #1128

Toy Story (1995) 0.0250 0.0250 0.0578 . . . 0.0778 0.0230
GoldenEye (1995) 0.9998 0.9998 0.0195 . . . 0.0730 0.0183
Titanic (1997) 0.0380 0.0345 0.1190 . . . 0.0693 0.0210
Resident Evil (2002) 0.0403 0.0350 0.0195 . . . 0.9588 0.9598
White Zombie (1932) 0.0188 0.0203 0.0270 . . . 0.9670 0.9840
. . . . . . . . . . . . . . . . . . . . .

Toy Story (1995)

GoldenEye (1995)

Titanic (1997)

Resident Evil (2002)

0 161 322 483 645 806 967 1128

#Genome Id

White Zombie (1932)

Figure 2. Random vibration signals of the 5 movies in MovieLens 20 M dataset resembled by Tag
Genome data.

In this work, a novel autoencoder architecture named Half Convolutional Autoen-
coder is devised to harness the capability of a 1D-CNN in order to explore the essential
characteristics of the movies from the available Tag Genome data. The structure of an
HCAE is illustrated in Figure 3. Specifically, a complete forward-propagation process of
HCAE can be described in the following steps:

1. A feature vector representing a random vibration signal is fed to the input layer of
the HCAE;

2. Each neuron of the 1D-Convolution layer performs a linear convolution between the
signal and corresponding filter to generate the input feature map of the neuron;

3. The input feature map of each neuron is passed through the activation function to
generate the output feature map of the neuron of the convolution neuron;

4. In the 1D-Pooling layer, each neuron’s feature map is created by decimating the
output feature map of the previous neuron of the 1D-Convolution layer to reduce the
dimensions of the final feature maps;

5. In the Flatten layer, the output feature maps are flattened into a single feature vector,
which is forward-propagated through the following fully-connected Compression
layer to encode the feature map into lower dimensional space;

6. The decoder structure remains fully connected like a vanilla AE, where the output
code are forward-propagated through a fully connected decoder to reconstruct the
original feature vector, or the 1D-signal.

Compared to a typical AE, the fundamental difference of the HCAE comes from the
asymmetry of the Half Convolutional encoder and decoder parts, hence its name.
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Figure 3. Architecture of the proposed HCAE: the encoder is based on a 1D-CNN whilst the decoder
remains fully connected.

In more detail, the encoder part of the newly proposed architecture works as follows.
For each filter Fi, the 1D-Convolution layer, along with the 1D-Max Pooling layer, learns
the feature map di = P(g(X ∗ Fi)) from input feature vector X , where g(∗) is the activation
function of the Convolution layer, and P(∗) denotes the Max Pooling transformation. These
feature maps are then transformed to a 1D-vector d via a Flatten layer before eventually
being fed into a Compression layer to generate a compact representation of a movie. Here
the output sizes of the Convolution layer nout with the padding size p and of the Max
Pooling layer n′out are calculated using the following formulas:

nout = (
nin + 2p− f

s
) + 1 (10)

n′out = (
n′in − f ′

s′
) + 1 (11)

where nin, n′in denote the input sizes; f , f ′ are the kernel sizes; and s, s′ are the stride sizes
of the Convolution and Max Pooling layers, respectively.

Although the encoder implements a CNN architecture, the decoder works similarly
to the one of a conventional AE: it tries to reconstruct the original input through a fully
connected layer. In addition to possessing the same objective function as the one of a vanilla
AE, this structure makes the proposed HCAE easily adapt to any shape of the input vector,
which is infeasible if a 1D-Up Sampling layer is deployed at the decoder in the case of a
“full” Convolutional AE. That is due to the fact that the output size of a 1D-Up Sampling
layer is computed as:

nUpSampling_out = nUpSampling_in ∗ fUpSampling (12)

where nUpSampling_in and fUpSampling denote the input size and the factor size of the layer,
respectively. It is implied that Equation (12) imposes certain constraints on the values of
these 3 factors. For instance, nUpSampling_out must be a non-prime; otherwise, nUpSampling_in
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has to be equal to nUpSampling_out and fUpSampling equal to 1, which is almost meaning-
less. It is worth noting that nUpSampling_in matches the length of the Max Pooling layer’s
output, and nUpSampling_out is exactly the original input size of the HCAE. Therefore, this
causes restrictions on the input shape as well as the hyperparameter selection of the
proposed architecture.

5.2. Utilizing HCAE in Recommendation Systems

In our experiments, the number of filters and the kernel size of the Convolution layer
are firstly configured at 4 and 5, respectively. However, we later show that the overall
performance of the HCAE is almost not affected by the values of these settings. The pooling
size and the stride size are set equal to the number of filters so that the output of the Flatten
layer has the same dimension as the HCAE input. Comprehensive experiments show
that the dropout rate of 0.2 between the Compression and the Output layer is effective in
preventing overfitting. The optimization algorithm used in this work is Adam due to little
hyperparameter-tuning requirement, computational efficiency and faster convergence [47].

Activation of the decoder is Sigmoid function which returns the value between 0
and 1 to match the range of the genome scores. To find the optimal activations for the
Convolution and Compression layers, a variety of functions, including Identity, ReLU
and Sigmoid, are examined. Baseline model kNN-Content in Section 4.3 is used to assess
the quality of the compressed genome scores. In more detail, 1128 genome scores of each
movie are fed into the HCAE in order to extract its most fundamental features which are
employed to calculate PCCgenome similarity between movies in kNN-Content model using
Equation (7) with k = 10. Table 3 illustrates the performance of various activations in the
case of compressing Tag Genome to N = 600 features, where only RMSE are shown for
brevity. Experiments with different values of N provide the same results: a combination of
(Identity, ReLU) provides the lowest error rate and is chosen for the Half Convolutional
encoder thereafter.

Table 3. Performance of kNN-Content model with different activation functions of the Convolution
and Compression layers in the HCAE.

Activation Function
RMSE Time [s]

Convolution Layer Compression Layer

Identity Identity 0.7856 295
Identity ReLU 0.7608 297
Identity Sigmoid 0.7638 298

ReLU Identity 0.7854 296
ReLU ReLU 0.7739 297
ReLU Sigmoid 0.7641 300

Sigmoid Identity 0.7976 298
Sigmoid ReLU 0.7932 299
Sigmoid Sigmoid 0.7678 302

To thoroughly evaluate the capability of the HCAE against other AE architectures, both
versions of genome tags, 1128 original and 1044 combined ones using NLP [39], are chosen
as their inputs. Specifically, a vanilla AE and its two popular variants are implemented
as follows:

• AE: a 3-hidden layer AE that uses ReLU activation function at all hidden layers and
Sigmoid activation function at the output layer; the number of units at hidden layers
#1 and #3 is fixed at 900;

• DAE: a 1-hidden layer DAE with noise_ f actor = 0.1 that uses ReLU activation func-
tion at the hidden layer and Sigmoid activation function at the output layer;
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• VAE: a 4-hidden layer VAE is configured as follows: 900-unit hidden layers #1 and
#4 use ReLU activation function; Compression layer constructed from Mean layer
and Var layer use Linear activation function; Sigmoid activation function is used for
output layer.

In our experiments, the proposed HCAE and its counterparts are deployed with
different sizes of Compression layer to find the optimal configuration for each model. All
models are trained until saturation using Adam optimization algorithm and the learning
rate of 0.001. Figure 4 shows that although all AE architectures achieve the highest quality
with the Compression layer of 600 units, they perform differently for two types of inputs:
whilst the classic AE and its two well-known variants do not work well with the original
tags, the proposed architecture operates almost equivalently regardless of whether the
inputs are preprocessed or not. Furthermore, the HCAE proves superior in extracting
essential features over its competitors for both cases. This suggests that the HCAE has the
potential of discovering the hidden relationships under the original genome tags without
the need of analyzing their semantic meanings, which helps to ignore the NLP-based
preprocess. In more general situations, it is expected that the HCAE still demonstrates its
virtue with various kinds of input, not limited to data with meaningful labels. Hence, the
1128 original genome tags are selected for the remaining experiments hereafter.

800 700 600 500 400

Hidden units

0.76

0.77

0.78

0.79

0.80

R
M

S
E

AE

DAE

VAE

HCAE

Original Tag
Genome

NLP-preprocessed
Tag Genome

Figure 4. Error rates of kNN-Content models using HCAE and the variants of AE with respect to the
size of the Compression layer.

During the training process, we try shuffling the order of the genome scores as well
as examining different values of the number of filters (2, 4, 6, 12, 20) and the kernel sizes
(3, 5, 7, 11, 19, 29) for the Convolution layer. Although the outputs of the Flatten and
Compression layers vary constantly through the experiments, empirical results show that
choosing the configuration of 4 filters and the kernel size of 5 provides the most accurate
predictions in the final model but does not have a considerable improvement over other
choices (the error rates fluctuate less than 0.06%). This result helps to confirm our initial
hypothesis that the Half Convolutional encoder could derive latent characteristics from the
input data irrespective of the relationship and the positioning of the movie attributes.

For a more comprehensive evaluation, 600-feature vectors for movies generated from
different types of AE are then applied into a number of baseline models: kNN-Content,
FMgenome, kNN-Content-SVD, and kNN-Content-SVD++. It is noteworthy that in the
cases of AE/DAE/VAE, feature vectors are compressed from the 1044 NLP-preprocessed
genome tags for fair comparison because it provides better movie representation than
using the original tags. In Table 4, the relative improvements of the HCAE-based models
over their counterparts are displayed in the parentheses under the corresponding accuracy
indicators. Here, +/− signs indicate that the indicators of the proposed models are
“greater”/“less” than the ones of their competitors, where the lower the RMSE or the
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higher the Precision/Recall the model gets, the better the performance is. This notation is
also applied in the rest of this paper. Experimental results show that kNN-ContentHCAE

model gains the largest decreases in RMSE compared to kNN-ContentAE model by 1.09%
while also achieving at least 0.55% improvement in Precision/Recall. The other HCAE-
based models also outperform their AE counterparts by at least 0.53% at the expense of
operating time. Similar results can be seen when comparing HCAE- against DAE- and
VAE-based models. A remarkable point here is that DAE performs better than AE and VAE
in extracting fundamental features for movies. A potential reason for the dominance of
DAE is its ability to process “noisy” genome scores calculated from user-contributed tags
which possibly suffer from artificial errors. Even though the proposed HCAE still yield
0.58–0.78% lower RMSE and 0.43–0.73% higher Precision/Recall than DAE in all models.

Table 4. Performance comparison of the baseline models when utilizing 600-element movie feature
vectors generated from AE variants and an HCAE.

Model Auto
Encoder RMSE P@5 P@10 R@5 R@10 Time [s]

kNN-
Content

AE 0.7692 0.8142 0.7906 0.4352 0.5587 289(−1.09%) (+0.68%) (+0.79%) (+0.55%) (+0.68%)

VAE 0.7680 0.8137 0.7914 0.4358 0.5592 316(−0.94%) (+0.74%) (+0.69%) (+0.41%) (+0.59%)

DAE 0.7668 0.8147 0.7925 0.4355 0.5588 291(−0.78%) (+0.62%) (+0.55%) (+0.48%) (+0.66%)

HCAE 0.7608 0.8198 0.7969 0.4376 0.5625 297

FMgenome

AE 0.7702 0.8052 0.7836 0.4300 0.5571 23,412(−0.87%) (+0.62%) (+0.72%) (+0.78%) (+0.71%)

VAE 0.7688 0.8057 0.7841 0.4295 0.5578 23,535(−0.69%) (+0.56%) (+0.66%) (+0.90%) (+0.59%)

DAE 0.7681 0.8063 0.7852 0.4310 0.5587 23,447(−0.60%) (+0.48%) (+0.52%) (+0.55%) (+0.43%)

HCAE 0.7635 0.8102 0.7893 0.4334 0.5611 23,503

kNN-
Content-
SVD

AE 0.7634 0.8162 0.7946 0.4356 0.5575 596(−0.98%) (+0.78%) (+0.76%) (+0.53%) (+0.78%)

VAE 0.7623 0.8166 0.7941 0.4349 0.5580 653(−0.84%) (+0.73%) (+0.82%) (+0.68%) (+0.69%)

DAE 0.7612 0.8177 0.7954 0.4355 0.5594 603(−0.70%) (+0.60%) (+0.66%) (+0.55%) (+0.44%)

HCAE 0.7559 0.8226 0.8007 0.4379 0.5619 612

kNN-
Content-
SVD++

AE 0.7584 0.8186 0.7959 0.4368 0.5609 27,687(−0.90%) (+0.78%) (+0.90%) (+0.66%) (+0.69%)

VAE 0.7569 0.8191 0.7962 0.4363 0.5610 27,761(−0.70%) (+0.72%) (+0.86%) (+0.77%) (+0.67%)

DAE 0.7560 0.8198 0.7972 0.4374 0.5617 27,698(−0.58%) (+0.63%) (+0.73%) (+0.52%) (+0.55%)

HCAE 0.7516 0.8250 0.8031 0.4397 0.5648 27,737

It is worth noting that the operating time of AE/DAE/VAE here does not take into
account the step of NLP preprocessing which is totally eliminated when utilizing the
proposed HCAE. In practice, the preprocessing stage introduced in [39] may cost a great



Future Internet 2022, 14, 20 14 of 19

amount of time if the number of tags increases sharply, which is highly likely to happen
because they are freely generated by users. Therefore, the trade-off is totally acceptable.

6. Novel Initialization Method Using Content-Based Information for Matrix
Factorization Techniques

As introduced in Section 2.2, matrix factorization is a well-known technique for
discovering latent features. Although this technique performs well on extremely sparse
data such as rating matrix, it lacks explainability: latent factors achieved after training
a matrix factorization model are most likely uninterpretable. Furthermore, traditional
matrix factorization methods randomly initialize user and item vectors during the training
process that may lead to slow convergence. Especially, NMF is greatly affected by the
initialization: if the initial values of pu and qi are not good, it is more likely that the training
will be unstable, and even unable to converge [11,48]. Recent years have witnessed a large
number of efforts to eliminate these problems. One of the highly promising approaches is
to initialize the latent vectors with more meaningful values [15,16].

In this paper, a new method of initialization in matrix factorization is proposed: instead
of learning user and item features from randomly valued vectors, we attempt to integrate
both content- and rating-based information into the initial vectors. Currently, one of the
common ways to describe user preferences is using the interactions that a user assigned to
the movies she watched. However, by using this method, rating data and movie attributes
are treated independently, which may cause a huge waste of information. To tackle this
issue, a new way of generally profiling a user that incorporates content-based data of all
the movies she rated is introduced as follows.

Pu =
1

|R(u)| ∑
i∈R(u)

(r̃ui ×Qi) (13)

where r̃ui denotes the rating user u gave to movie i which has been normalized to the range
of [0, 1], and Qi is the feature vector of movie i that reflects its content-related information.
Recall that R(u) denotes the set of all movies rated by user u. In such a manner, a user vector
Pu has the same dimension and range of values as a movie vector Qi. More importantly,
each user is characterized in an explainable way: elements with grearer values indicate that
the user has a greater preference for the respective movie attributes and vice versa.

Finally, both the user and movie latent features of the matrix factorization model
are initialized using the vectors Pu’s and Qi’s described above. During the scope of this
work, the Tag Genome is utilized to demonstrate the content of each movie. In order to
comprehensively evaluate the new method of initialization, different representations of
a movie based on these metadata are experimented: the 1128 original genome tags, the
shortened 1044 ones using NLP [39], and the two 600-element feature vectors generated
using the newly proposed HCAE and the DAE which yield the best results in the previous
section. We refer to the proposed models with -genome suffix to indicate that the user and
movie genome scores are integrated into the learning process where the number of latent
factors k must match the dimension of corresponding feature vectors. In our experiments,
SVD-genome and NMF-genome models are trained with the learning rate of 0.005 and the
regularization strength of 0.02. The randomly initialized counterparts are trained 20 times
using the same hyperparameters to select the most precise models for comparison. For
clarity, we only include RMSE in Table 5.
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Table 5. Performance comparison between randomly initialized matrix factorization models and
their custom initialized counterparts integrating user and movie feature vectors.

Model RMSE Epochs Time [s]

NMF (k = 1128) 0.7993 305 32,115

NMF-genome 0.7797 200 21,220
(1128 original scores) (−2.45%) (−34.43%) (−33.92%)

NMF (k = 1044) 0.7987 290 18,802

NMF-genome 0.7792 165 10,843
(1044 NLP-preprocessed scores) (−2.44%) (−43.10%) (−42.33%)

NMF (k = 600) 0.7984 265 9,937

NMF-genome 0.7718 125 4695
(600 scores of DAE) (−3.33%) (−52.83%) (−52.75%)

NMF-genome 0.7688 97 3729
(600 scores of HCAE) (−3.71%) (−63.40%) (−62.47%)

SVD (k = 1128) 0.7930 230 11,201

SVD-genome 0.7582 55 2713
(1128 original scores) (−4.39%) (−76.09%) (−75.78%)

SVD (k = 1044) 0.7927 150 5895

SVD-genome 0.7547 45 1787
(1044 NLP-preprocessed scores) (−4.79%) (−70.00%) (−69.69%)

SVD (k = 600) 0.7925 140 3018

SVD-genome 0.7536 35 905
(600 scores of DAE) (−4.91%) (−75.00%) (−70.01%)

SVD-genome 0.7472 30 814
(600 scores of HCAE) (−5.72%) (−78.57%) (−73.03%)

As displayed in Table 5, incorporating rating data and movie attributes into the
initialization significantly boosts SVD-genome and NMF-genome models over their original
versions. In detail, the proposed models show an exceptionally faster convergence rate
against the competitors in all experiments: the training time measured by the number of
epochs is reduced to at least 34.43%, especially up to 63.40% and 78.57% with the models
utilizing HCAE-generated feature vectors. At the same time, SVD-genome and NMF-
genome models totally outperform their corresponding counterparts from 2.44% to 5.72%
in RMSE. Once again, it can be seen that initializing latent vectors with 600 scores produced
by an HCAE (highlighted rows) provides the lowest error rate when compared with other
representations, which further proves the superiority of the HCAE against AE variants
stated in the previous section. These remarkable improvements prove that learning the
user and item latent features from appropriate initial vectors could greatly benefit matrix
factorization models: it not only helps the training process to converge faster but also
enhances the accuracy. In real-life applications, the word “appropriate” here implies that we
could take advantage of all accessible knowledge including user preferences and available
metadata, not limited to user-contributed genome tags in the above experiments, in order to
characterize user and item features as precisely as possible. This empirical result suggests
that the more meaningful values of initial latent vectors, the more likely it is to achieve
better matrix factorization-based RSs in terms of precision and computational complexity.

Another advantage of the newly proposed method is that if adopting the original
1128 genome tags or the shortened 1044 ones preprocessed by NLP for initialization, movie
latent vectors generated after training have much better interpretability than the ones from
traditional matrix factorization models. As demonstrated in Figure 5, the most relevant
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tags of Titanic (1997) deduced from the learned movie features are highly reasonable for
both versions of the genome tags. For user latent vectors, there are clear differences before
and after training (user with id = 1 for example). However, it is reasonable to expect that
learned user vectors could provide a better understanding of user preferences and can be
employed for further analysis owing to their significant contribution towards generating
RSs with higher accuracy.

Figure 5. The 20 most relevant tags of the movie Titanic (1997) and the user with id = 1 based on the
original Tag Genome and the feature vectors after training SVD-genome.

The two most accurate models, NMF-genome and SVD-genome utilizing 600 HCAE-
generated scores, are chosen to compare with the baselines listed in Section 4.3. In this
final experiment, the baselines are implemented using different libraries and frameworks
in order to pick up the model with the lowest error rate, not considering the overall
time to finish the training and predicting process. In other words, we only evaluate
the models in terms of accuracy. Therefore, only accuracy indicators are displayed in
Table 6 for fair comparison. Experimental results show that the proposed models greatly
surpass the competitors. Specifically, the highlighted winning model, SVD-genome, has
gained an improvement from approximately 0.59% to 7.13% over the baselines at both
rating prediction and ranking tasks. These results are encouraging, and it is highly likely
that a much lower error rate could be attained if the proposed initialization method is
applied to SVD++ and its current state-of-the-art variants such as timeSVD++ [8] and
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flippedTimeSVD++ [49]. However, due to our limited hardware resources, this experiment
cannot be carried out: using a large number of latent factors causes the training process
to take an enormous amount of time to finish. In real-life applications, this huge trade-off
between accuracy and computational complexity is usually not worth the effort.

Table 6. Performance comparison between the proposed models utilizing 600 HCAE-generated
feature vectors and the baseline models.

Model RMSE P@5 P@10 R@5 R@10

ii-CF 0.8046 0.7967 0.7721 0.4261 0.5541
(−7.13%) (+4.06%) (+4.45%) (+3.79%) (+3.20%)

I-AutoRec 0.7808 0.7778 0.7559 0.3972 0.5228
(−4.30%) (+6.33%) (+6.46%) (+10.32%) (+8.67%)

NMF 0.7981 0.7951 0.7743 0.4296 0.5583
(−6.38%) (+4.25%) (+4.18%) (+3.00%) (+2.46%)

SVD 0.7922 0.8005 0.7786 0.4322 0.5628
(−5.68%) (+3.60%) (+3.65%) (+2.42%) (+1.68%)

SVD++ 0.7894 0.8030 0.7817 0.4339 0.5639
(−5.35%) (+3.30%) (+3.27%) (+2.03%) (+1.48%)

kNN-ContentHCAE-SVD
0.7559 0.8226 0.8007 0.4379 0.5619

(−1.15%) (+0.94%) (+0.92%) (+1.13%) (+1.83%)

kNN-ContentHCAE-SVD++
0.7516 0.8250 0.8031 0.4397 0.5648

(−0.59%) (+0.65%) (+0.62%) (+0.72%) (+1.33%)

NMF-genome 0.7688 0.8174 0.7941 0.4389 0.5689
(−2.81%) (+1.57%) (+1.73%) (+0.90%) (+0.61%)

SVD-genome 0.7472 0.8304 0.8081 0.4429 0.5724

7. Conclusions

In this work, a novel architecture of autoencoder named HCAE is first proposed in
order to discover essential information from the original Tag Genome of each movie. By
integrating a 1D-CNN into the encoder part, an HCAE proves its capability in feature
extraction compared to a vanilla AE and its variants, especially without the need for the
time-consuming data preprocessing stage. Secondly, a new method of profiling users is
introduced using the HCAE-generated movie feature vectors and rating information. The
new representations of users and movies are then utilized as the initial latent vectors during
the training stage of common matrix factorization techniques. In addition to learning
movie feature vectors with better explainability, experimental results demonstrate that the
custom-initialized SVD/NMF models not only converge much faster in the training but also
outperform the randomly initialized counterparts in both rating prediction and ranking
tasks. It is thus expected that matrix factorization-based RSs could be greatly improved via
generating robust user and item profiles from all available information for initialization.

The proposed HCAE has enabled several potential ideas on applying state-of-the-art
feature extractors such as a deep CNN or a transformer-based AE to generate robust hidden
feature vectors. Another potential direction is to adopt convolutional or transformer-based
models not only as an AE, but as an end-to-end recommendation model.

Author Contributions: Conceptualization, T.N.D., N.N.D. and T.G.D.; methodology, M.H.T.; soft-
ware, Q.H.D.; validation, T.N.D., D.M.N. and M.H.T.; formal analysis, T.N.D.; investigation, T.N.D.,
N.N.D. and T.G.D.; resources, T.N.D.; data curation, T.N.D. and N.N.D.; writing—original draft
preparation, N.N.D. and T.G.D.; writing—review and editing, T.N.D. and Q.H.D.; visualization,
T.G.D.; funding acquisition, D.M.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Project of Hanoi University of Science and Technology
under Grant no. T2020-PC-024.



Future Internet 2022, 14, 20 18 of 19

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
2. Lops, P.; De Gemmis, M.; Semeraro, G. Content-based recommender systems: State of the art and trends. In Recommender Systems

Handbook; Springer: Cham, Switzerland, 2011; pp. 73–105.
3. Narducci, F.; Basile, P.; Musto, C.; Lops, P.; Caputo, A.; de Gemmis, M.; Iaquinta, L.; Semeraro, G. Concept-based item

representations for a cross-lingual content-based recommendation process. Inf. Sci. 2016, 374, 15–31. [CrossRef]
4. Su, X.; Khoshgoftaar, T.M. A Survey of Collaborative Filtering Techniques. Available online: https://downloads.hindawi.com/

archive/2009/421425.pdf (accessed on 2 November 2021).
5. Ricci, F.; Rokach, L.; Shapira, B. Recommender systems: Introduction and challenges. In Recommender Systems Handbook; Springer:

Cham, Switzerland 2015; pp. 1–34.
6. Funk, S. Netflix Update: Try This at Home, 2006. Available online: https://sifter.org/simon/journal/20061211.html (accessed on

2 November 2021).
7. Koren, Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceedings of the 14th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008;
pp. 426–434.

8. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 447–456.

9. Wild, S.; Curry, J.; Dougherty, A. Improving non-negative matrix factorizations through structured initialization. Pattern Recognit.
2004, 37, 2217–2232. [CrossRef]

10. Boutsidis, C.; Gallopoulos, E. SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognit. 2008,
41, 1350–1362. [CrossRef]

11. Albright, R.; Cox, J.; Duling, D.; Langville, A.N.; Meyer, C. Algorithms, Initializations, and Convergence for the Nonnegative Ma-
trix Factorization. Available online: https://www.ime.usp.br/~jmstern/wp-content/uploads/2020/04/Albright1.pdf (accessed
on 2 November 2021).

12. Agarwal, D.; Chen, B.C. Regression-based latent factor models. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris France, 28 June–1 July 2009; pp. 19–28.

13. Barragáns-Martínez, A.B.; Costa-Montenegro, E.; Burguillo, J.C.; Rey-López, M.; Mikic-Fonte, F.A.; Peleteiro, A. A hybrid content-
based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition.
Inf. Sci. 2010, 180, 4290–4311. [CrossRef]

14. Rendle, S. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia,
13–17 December 2010; pp. 995–1000.

15. Hidasi, B.; Tikk, D. Initializing Matrix Factorization Methods on Implicit Feedback Databases. J. UCS 2013, 19, 1834–1853.
16. Zhao, J.; Geng, X.; Zhou, J.; Sun, Q.; Xiao, Y.; Zhang, Z.; Fu, Z. Attribute mapping and autoencoder neural network based matrix

factorization initialization for recommendation systems. Knowl. Based Syst. 2019, 166, 132–139. [CrossRef]
17. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International

Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 3–7 April 2017; pp. 173–182.

18. Martins, G.B.; Papa, J.P.; Adeli, H. Deep learning techniques for recommender systems based on collaborative filtering. Expert
Syst. 2020, 37, e12647. [CrossRef]

19. LeCun, Y.; Bengio, Y. Convolutional Networks for Images, Speech, and Time Series. Available online: www.iro.umontreal.ca/
~lisa/pointeurs/handbook-convo.pdf (accessed on 2 November 2021).

20. Abdul, A.; Chen, J.; Liao, H.Y.; Chang, S.H. An emotion-aware personalized music recommendation system using a convolutional
neural networks approach. Appl. Sci. 2018, 8, 1103. [CrossRef]

21. Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional matrix factorization for document context-aware recommendation. In
Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 233–240.

22. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. (TIIS) 2016, 5, 19.
[CrossRef]

http://doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1016/j.ins.2016.09.022
https://downloads.hindawi.com/archive/2009/421425.pdf
https://downloads.hindawi.com/archive/2009/421425.pdf
https://sifter.org/simon/journal/20061211.html
http://dx.doi.org/10.1016/j.patcog.2004.02.013
http://dx.doi.org/10.1016/j.patcog.2007.09.010
https://www.ime.usp.br/~jmstern/wp-content/uploads/2020/04/Albright1.pdf
http://dx.doi.org/10.1016/j.ins.2010.07.024
http://dx.doi.org/10.1016/j.knosys.2018.12.022
http://dx.doi.org/10.1111/exsy.12647
www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf
www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf
http://dx.doi.org/10.3390/app8071103
http://dx.doi.org/10.1145/2827872


Future Internet 2022, 14, 20 19 of 19

23. Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An algorithmic framework for performing collaborative filtering. In Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
1999, Berkeley, CA, USA, 15–19 August 1999.

24. Sarwar, B.M.; Karypis, G.; Konstan, J.A.; Riedl, J. Item-Based Collaborative Filtering Recommendation Algorithms. Available on-
line: https://dl.acm.org/doi/pdf/10.1145/371920.372071?casa_token=r5ThY9p5rlIAAAAA:RWJZHgJl4YQsoHgKGGJvFWuQe8
vU9-deU5lKUxCQaxykLNW1nmAvqcX1l_SVKtwPSJYhTaXV47ujrA (accessed on 2 November 2021).

25. Koren, Y. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data (TKDD) 2010, 4, 1.
[CrossRef]

26. Duong, T.N.; Than, V.D.; Tran, T.H.; Dang, Q.H.; Nguyen, D.M.; Pham, H.M. An Effective Similarity Measure for Neighborhood-
based Collaborative Filtering. In Proceedings of the 2018 5th NAFOSTED Conference on Information and Computer Science
(NICS), Ho Chi Minh City, Vietnam, 23–24 November 2018;pp. 250–254.

27. Zhang, S.; Wang, W.; Ford, J.; Makedon, F. Learning from incomplete ratings using non-negative matrix factorization. In
Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; pp. 549–553.

28. Gemulla, R.; Nijkamp, E.; Haas, P.J.; Sismanis, Y. Large-scale matrix factorization with distributed stochastic gradient descent. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, 21–24 August 2011; pp. 69–77.

29. Bao, Y.; Fang, H.; Zhang, J. Topicmf: Simultaneously exploiting ratings and reviews for recommendation. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2014, Québec City, QC, Canada, 27–31 July 2014.

30. Zhang, Y.; Chen, X. Explainable recommendation: A survey and new perspectives. arXiv 2018, arXiv:1804.11192.
31. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef] [PubMed]
32. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A.; Bottou, L. Stacked Denoising Autoencoders: Learning Useful

Representations in a Deep Network with a Local Denoising Criterion. Available online: https://www.jmlr.org/papers/volume1
1/vincent10a/vincent10a.pdf?source=post_page (accessed on 2 November 2021).

33. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
34. Wang, H.; Wang, N.; Yeung, D.Y. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM

SIGKDD International Conference on knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp.
1235–1244.

35. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web, Florence, Italy, 8–22 May 2015; pp. 111–112.

36. Jhamb, Y.; Ebesu, T.; Fang, Y. Attentive contextual denoising autoencoder for recommendation. In Proceedings of the 2018 ACM
SIGIR International Conference on Theory of Information Retrieval, Tianjin, China, 14–17 September 2018; pp. 27–34.

37. Wang, R.; Jiang, Y.; Lou, J. TDR: Two-stage deep recommendation model based on mSDA and DNN. Expert Syst. Appl. 2020,
145, 113116. [CrossRef]

38. Duong, T.N.; Than, V.D.; Vuong, T.A.; Tran, T.H.; Dang, Q.H.; Nguyen, D.M.; Pham, H.M. A Novel Hybrid Recommendation
System Integrating Content-Based and Rating Information. In Proceedings of the International Conference on Network-Based
Information Systems 2019, Oita, Japan, 5–7 September 2019; pp. 325–337.

39. Duong, T.N.; Vuong, T.A.; Nguyen, D.M.; Dang, Q.H. Utilizing an Autoencoder-Generated Item Representation in Hybrid
Recommendation System. IEEE Access 2020, 8, 75094–75104. [CrossRef]

40. Bennett, J.; Lanning, S. The netflix prize. In Proceedings of the KDD Cup and Workshop, New York, NY, USA, 12 August 2007;
Volume 2007, p. 35.

41. Takahashi, N.; Katayama, J.; Takeuchi, J. A generalized sufficient condition for global convergence of modified multiplicative
updates for NMF. In Proceedings of the 2014 International Symposium on Nonlinear Theory and Its Applications, Luzern,
Switzerland, 14–18 September 2014; pp. 44–47.

42. Lam, S.K.; Pitrou, A.; Seibert, S. Numba: A llvm-based python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, Austin, TX, USA, 15 November 2015; pp. 1–6.

43. Ivan, C. Convolutional Neural Networks on Randomized Data. In Proceedings of the CVPR Workshops, Long Beach, CA, USA,
16–20 June 2019; pp. 1–8.

44. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

45. Zhang, W.; Peng, G.; Li, C. Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration
signals as input. In Proceedings of the MATEC Web of Conferences, EDP Sciences, Sibiu, Romania, 7–9 June 2017; Volume 95,
p. 13001.

46. Hoang, D.T.; Kang, H.J. Convolutional neural network based bearing fault diagnosis. In Proceedings of the International
Conference on Intelligent Computing, Madurai, India, 15–16 June 2017; pp. 105–111.

47. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
48. Wild, S.; Wild, W.S.; Curry, J.; Dougherty, A.; Betterton, M. Seeding Non-Negative Matrix Factorizations with the Spherical

K-Means Clustering. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 2003.
49. Rendle, S. Scaling factorization machines to relational data. Proc. VLDB Endow. 2013, 6, 337–348. [CrossRef]

https://dl.acm.org/doi/pdf/10.1145/371920.372071?casa_token=r5ThY9p5rlIAAAAA:RWJZHgJl4YQsoHgKGGJvFWuQe8vU9-deU5lKUxCQaxykLNW1nmAvqcX1l_SVKtwPSJYhTaXV47ujrA
https://dl.acm.org/doi/pdf/10.1145/371920.372071?casa_token=r5ThY9p5rlIAAAAA:RWJZHgJl4YQsoHgKGGJvFWuQe8vU9-deU5lKUxCQaxykLNW1nmAvqcX1l_SVKtwPSJYhTaXV47ujrA
http://dx.doi.org/10.1145/1644873.1644874
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf?source=post_page
https://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf?source=post_page
http://dx.doi.org/10.1016/j.eswa.2019.113116
http://dx.doi.org/10.1109/ACCESS.2020.2989408
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.14778/2535573.2488340

	Introduction
	Preliminaries
	Memory-Based CF
	Model-Based CF
	Autoencoder

	Previous Work
	Experimental Setup
	Dataset
	Evaluation Scheme
	Baselines and Experimental Settings

	Half Convolutional Autoencoder
	Learning New Representation of Structured Data with an HCAE
	Utilizing HCAE in Recommendation Systems

	Novel Initialization Method Using Content-Based Information for Matrix Factorization Techniques
	Conclusions
	References

