
����������
�������

Citation: Kouahla, Z.; Benrazek, A.E.;

Ferrag, M.A.; Farou, B.; Seridi, H.;

Kurulay, M.; Anjum, A.; Asheralieva

A. A Survey on Big IoT Data

Indexing: Potential Solutions, Recent

Advancements, and Open Issues.

Future Internet 2022, 14, 19.

https://doi.org/10.3390/fi14010019

Academic Editor: Xiumin Wang

Received: 25 November 2021

Accepted: 27 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

A Survey on Big IoT Data Indexing: Potential Solutions, Recent
Advancements, and Open Issues

Zineddine Kouahla 1 , Ala-Eddine Benrazek 1 , Mohamed Amine Ferrag 1,* , Brahim Farou 1 , Hamid Seridi 1,
Muhammet Kurulay 2, Adeel Anjum 3 and Alia Asheralieva 3

1 Labstic Laboratory, Department of Computer Science, Guelma University, Guelma 24000, Algeria;
kouahla.zineddine@univ-guelma.dz (Z.K.); benrazek.alaeddine@univ-guelma.dz (A.-E.B.);
farou.brahim@univ-guelma.dz (B.F.); seridi.hamid@univ-guelma.dz (H.S.)

2 Department of Mathematics Engineering, University of Yildiz Technical, Istanbul 34349, Turkey;
mkurulay@yildiz.edu.tr

3 Department of Computer Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China; adeelanjum2001@hotmail.com (A.A.); asheralievaa@sustech.edu.cn (A.A.)

* Correspondence: ferrag.mohamedamine@univ-guelma.dz

Abstract: The past decade has been characterized by the growing volumes of data due to the
widespread use of the Internet of Things (IoT) applications, which introduced many challenges
for efficient data storage and management. Thus, the efficient indexing and searching of large
data collections is a very topical and urgent issue. Such solutions can provide users with valuable
information about IoT data. However, efficient retrieval and management of such information in
terms of index size and search time require optimization of indexing schemes which is rather difficult
to implement. The purpose of this paper is to examine and review existing indexing techniques for
large-scale data. A taxonomy of indexing techniques is proposed to enable researchers to understand
and select the techniques that will serve as a basis for designing a new indexing scheme. The real-
world applications of the existing indexing techniques in different areas, such as health, business,
scientific experiments, and social networks, are presented. Open problems and research challenges,
e.g., privacy and large-scale data mining, are also discussed.

Keywords: big data; internet of things; indexing; information retrieval; query

1. Introduction

Widespread utilization of Internet of Things (IoT) systems and applications has re-
sulted in the massive data expansion promising greater benefits for businesses and individ-
uals, but also introducing significant challenges for big data analytics. Such an expansion
also plays an important role in the dynamics of large data. In particular, large data can
be classified according to their volume, variety and velocity (“3V’s” for short). These
categories were first introduced by Gartner, Inc. to highlight some elements of the chal-
lenges associated with large volume data [1–5]. Afterwards, veracity and value have been
incorporated as two additional categories (“5V’s”) [6,7]. Others have also expanded this
big data category to 6V’s and 7V’s [8]. The capacity to process and use large amounts of
IoT data, e.g., smart-city, smart-grid, e-health, Internet of Vehicles (IoV), Internet of Video
Things (IoVT), agriculture, etc., is a key factor in the success of a project [9–11]. The process
of indexing large amounts of IoT data comprises many phases where a range of IoT data is
analyzed to highlight changes.

Throughout the last decade, privacy violations have increased dramatically. Although
private data is emerging as an extremely important resource for business development,
the activities of collecting, processing and personal trading data are leading to increasing
privacy disclosure risks, and numerous privacy disclosure incidents [12,13].

The use of data indexing and IoT in large datasets is extremely resource-intensive,
and IoT may be an exceptional alternative. The process of merging technologies increases

Future Internet 2022, 14, 19. https://doi.org/10.3390/fi14010019 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14010019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-8788-2717
https://orcid.org/0000-0003-2182-6664
https://orcid.org/0000-0002-0632-3172
https://orcid.org/0000-0002-1609-6006
https://doi.org/10.3390/fi14010019
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14010019?type=check_update&version=1

Future Internet 2022, 14, 19 2 of 43

the possibilities of deploying IoT in more effective domains that attempt to extend the
ideas of social interconnectedness to IoT; consider the most common ones, namely, the
Social Internet of Things (SIoT) [14,15], the Multiple IoT Environment (MIE) [15,16], and
the Multiple Internets of Things (MIoT) [15,17,18]. Figure 1 represents the process of
discovering and searching large IoT indexing data from different IoT devices under a three-
tier fog computing architecture. Implementing large-scale IoT data integration solutions in
a fog computing architecture [19–21] can help overcome data and indexing issues.

Figure 1. Discoverable and searchable of Big IoT Data indexing from different IoT devices under
three-tier fog computing architecture.

In addition, it can also contribute to improving collaboration and communication
between different objects in a smart city. Hence, the management and indexing of large-
scale data has been the subject of several large-scale data reviews. In this study, the authors
focus, however, on large IoT data in the context of indexing a massive amount of data.

2. Motivation

The methods used to process IoT data must be efficient. However, the increase in data
size with the appearance of new types of data (time series, fingerprints, DNA sequences,
documents, etc.) has changed the problem.

Due to the diversity of IoT research, solutions developed in one application envi-
ronment may not be compatible with others. For this reason, various survey papers are
presented on IoT and big data for multiple applications see Table 1. A number of inves-
tigative papers related to different aspects of data IoT are published to date, covering
various definitions of IoT, core technologies, architecture, and different applications IOT,
for example [22–25].

Future Internet 2022, 14, 19 3 of 43

Table 1. Comparison of past surveys.

Survey Year Architecture Data Type Dimension Complexity Application Data Structure Objectives

S. Pattar et al. [26] 2018 Yes Yes Partial Partial No Partial • Present a review of leading research methods for IoT and classify them according to their design principle
and research approaches such as IoT data.

Mohammadi et al. [27] 2018 Yes Yes No No Yes No
• Identify the characteristics of the IoT data
• Focus on the challenges of research for a successful fusion of Deep Learning and IoT applications.
• Review current methods of advanced DL and their applicability in the field of IoT, both for large datasets and

for continuous analysis.

Saha et al. [28] 2018 No No No No Yes No
• Propose a taxonomy of Big Data technologies in IoT fields.
• Suggest large-scale data technologies applicable in the field of IoT.
• Discuss the advantages and disadvantages of large-scale data technologies in IoT.

Shabnam et al. [29] 2018 Yes Yes No No Yes No • Combine the systematic mapping and literature review
• Propose a taxonomy of three categories : Architecture and platform, framework and application.

R. Ettiyan et al. [30] 2020 Yes No No No Yes Yes • Examine a various kind of applications including the Healthcare Management System experimented and
implemented via IoT in recent years.

Eceiza et al. [31] 2021 Yes Partial Partiel No No Partial • Present a review of fuzzy techniques and proposals, and their applications to embedded IoT devices. Fur-
thermore, propose future research directions, highlighting the gaps identified in the analysis.

Wei et al. [32] 2021 Yes No No No Yes No
• Presents a comprehensive review of the application of ML techniques for the analysis of important IOT data

in the healthcare sector.
• Discuss the benefits and challenges of existing techniques.

Baofeng et al. [33] 2021 Yes No No No Yes No • Examine the benefits, applications of critical infrastructure technologies - NIB -, typical use cases and IdE-
based development trends.

A.Shah et al. [34] 2021 Yes No No No Yes No
• Investigate CME and network splitting for the provision of 5G service-orienteduse.
• Discusses recent progress in the implementation of E2E network slicing, its core technologies, solutions, and

current standardization efforts

S.Amin et al. [35] 2021 Yes No No No Yes No

• Analyze the existing and evolving edge computing architectures and techniques for smart healthcare and
recognize the demands and challenges of different application scenarios.

• Examine edge intelligence that targets health data classification with the tracking and identification of vital
signs using state-of-the-art deep learning techniques.

• Presents a comprehensive analysis of the use of cutting-edge artificial intelligence-based classification and
prediction techniques employed for edge intelligence.

Chegini et al. [36] 2021 Yes No No No Yes No • Examine, studie and analyze automatic functions.
• Demonstrate the automatic functions through these searches according to each challenge.

Our survey / Yes Yes Yes Yes Yes Yes

• Identify and evaluate the main data indexing techniques in the IoT system.
• Classify the indexing techniques used in large data.
• Design a taxonomy and analyze the indexing techniques according to the indexing needs of large data.
• Provide a structural comparison based on the construction and search algorithms related to these techniques
• Explore the opportunities and challenges for each of the reviewed methods and IoT environments.
• Review the emerging areas that would intrinsically benefit from Big data indexing and IoT.

Future Internet 2022, 14, 19 4 of 43

The study of [22] reviews the state of art of different data mining techniques used in
large and small-scale IoT applications. It provides the general context and reviews several
related applications and technologies. However, it lacks the comparative study between
the structures used and their efficiencies.

Other work [27,37] has studied the convergence of data mining with IoT. The study
by [38] examined the power of large IoT data analysis in IoT applications. Along with the
discussion on data analysis, method and techniques of IoT, they also presented a cloud
oriented data architecture.

Most of this research is focused on technology, knowledge extraction or analysis. Some
also have applications, but are specific to a particular application. This study presents
a systematic and detailed review, oriented towards indexing structures, of various data
construction and extraction algorithms that are well-used in an IoT environment. We have
focused this work towards the main contributions of our research work are the following:

• Identify and evaluate the main data indexing techniques in the IoT system.
• Classify the indexing techniques used in large data.
• Provide a structural comparison based on the construction and search algorithms

related to these techniques.
• Design a taxonomy and analyze the indexing techniques according to the indexing

needs of large data.
• Explore the opportunities and challenges for each of the reviewed methods and

IoT environments.
• Review the emerging areas that would intrinsically benefit from Big data indexing

and IoT.

The amount of information about IoT has multiplied considerably in recent years.
Therefore, having an efficient search system is currently one of the main challenges
for researchers.

In particular, based on the prior work in [39], an overview of the high requirements
of massive IoT data indexing is presented and a new taxonomy of indexing techniques is
proposed. In addition, a comprehensive review of existing research on indexing techniques
is presented for a better understanding of the differences between the Big IoT data indexing
techniques. A thorough comparison of the existing research on indexing techniques is also
provided according to the datasets used, types, advantages, disadvantages and challenges.
The paper presents a comparative analysis of multidimensional indexing approaches and
metric access methods. Finally, an enumeration of existing research challenges and potential
opportunities for future research directions in the area of data indexing for large-scale IoT
projects is presented.

2.1. Methodology for Selecting the Research Papers

The identification of literature for analysis in this paper was based on a keyword
search, namely, “Indexing and searching”, “Big IoT data indexing”, “Indexing technique”,
and “indexing framework”. Searching for these keywords in academic databases such as
SCOPUS, Web of Science, and ACM Digital Library, an initial set of relevant sources were
located. The search process produced a significant number of results. Although a systematic
collection of literature has been performed, recent research has shown that relevant primary
sources can be missed during searches and that multiple researchers working on the same
methodology may collect differing bodies of articles. However, only proposed indexing and
searching techniques for IoT applications were collected. Secondly, each collected source
was evaluated against the following criteria: (1) reputation, (2) relevance, (3) originality,
(4) date of publication, and (5) most influential papers in the field. The higher the overall
score, the higher the source was ranked on our list. Using this ranking system allowed the
prioritization of sources. The final pool of papers consists of the most important papers in
the field of IoT data that focus on indexing and searching of large data collections as their
objective. Our search started on 1 January 2019 and continued until the submission date of
this paper.

Future Internet 2022, 14, 19 5 of 43

2.2. Survey Organization

This survey article is organized around several sections, as shown in Figure 2. It
consists of eight main sections:

• Section 1

– We present the reasons of the emergence of Big IoT Data and why indexing
techniques are required.

– We illustrate the process of discovering and searching large IoT indexing data from
different modern IoT paradigms using a three-tier fog computing architecture.

– We also provide a summary of existing literature surveys and what are the main
gaps compared to our review.

– We highlight the different contribution of the proposed survey and they are
organized in the manuscript

• Section 2

– We present and describe the indexing requirements.
– We explain the advantages of metric space and what is actually added to the

indexing techniques with regard to the multidimensional space.
– We highlight the critical importance of similarity queries in IoT applications

involving large volumes of data and complex objects.

• Section 3

– We first present our proposed taxonomy of existing indexing techniques in
the literature

– We provide a detailed description of the majority of the indexing technique under
the proposed taxonomy.

– We provide a comparative performance study of recent indexing techniques and
their ability to solve Big IoT Data indexing problems

– We summarize our analytical and comparative study for each indexing technique
type in the Tables 1–15

• Section 4

– We recall and study in depth several important techniques of multidimensional
space

– We provide the main challenges for each indexing structure and its
potential solutions

• Section 5

– We recall and study in depth several important techniques of metric space
– We provide the main challenges for each indexing structure and its potential

solutions solutions

• Section 6

– We identify different directions for future research, which we believe are relevant
to our work

– We briefly define each search direction and how indexing techniques can benefit
from it

• Section 7

– We provide a brief summary of our study and we highlight the most important
issues that need to be addressed as soon as possible.

• Section 8

– We recall the main objective of our survey.
– We provide a quick overview of the work provided by our manuscript

Future Internet 2022, 14, 19 6 of 43

1 2 3 4 5

INTRODUCTION
Section I

(1) We present the reasons of the
emergence of Big IoT Data and
why indexing techniques are
required.
(2) We illustrate the process of
discovering and searching large
IoT indexing data from different
modern IoT paradigms using a
three-tier fog computing
architecture.
(3) We also provide a summary of
existing literature surveys and
what are the main gaps compared
to our review.
(4) We highlihgt the defferent
contribution of the proposed
survey and they are organized in
the manuscipt

BIG DATA INDEXING
REQUIREMENTS

Section II

(1) We present and describe the
indexing requirements.

(2) We explain the advantages of
metric space and what is
actually added to the indexing
techniques with regard to the
multidimensional space.

(3) We highlight the critical
importance of similarity queries
in IoT applications involving
large volumes of data and
complex objects.

EXISTING INDEXING
TECHNIQUES

Section III

(1) We first present our proposed
taxonomy of existing indexing
techniques in the literature
(2) We provide a detailed description
of the majority of the indexing
technique under the proposed
taxonomy.

(3) We provide a comparative
performance study of recent
indexing techniques and their ability
to solve Big IoT Data indexing
problems
(4) We summarize our analytical and
comparative study for each indexing
technique type in the tables (1-15)

A COMPARATIVE
ANALYSIS OF

MULTIDIMENSIONAL
INDEXING METHODS

Section IV

(1) We recall and study in
depth several important
techniques of multi-
dimensional space
(2) We provide the main
challenges for each indexing
structure and its potential
solutions

A COMPARATIVE
ANALYSIS OF METRIC

ACCESS METHODS
Section V

(1) We recall and study in
depth several important
techniques of metric space

(2) We provide the main
challenges for each indexing
structure and its potential
solutions

6

OPEN RESEARCH
CHALLENGES

Section VI

(1) We identify different
directions for future
research, which we believe
are relevant to our work
(2) We briefly define each
search direction and how
indexing techniques can
benefit from it

7 8

SUMMARY
Section VII

(1) We provide a brief summary
of our study and we highlight the
most important issues that need
to be addressed as soon as
possible.

CONCLUSION
Section VIII

(1) We recall the main
objective of our survey
(2) We provide a quick
overview of the work
provided by our manuscript

Figure 2. Organization of the survey.

To help readers navigate this paper, Figure 3 provides a detailed structure of
the survey.

Detailed structure of
the manuscript

I. INTRODUCTIONA. MOTIVATION

III. EXISTING
INDEXING

TECHNIQUES

B. METRIC INDEXING
TECHNIQUES

A. MULTI-DIMENSIONAL
INDEXING

TECHNIQUES

II. BIG DATA
INDEXING

REQUIREMENTS

IV. A COMPARATIVE
ANALYSIS OF

MULTIDIMENSIONAL
INDEXING METHODS

1) Hashing-based
technique

Data Independent
Hashing

Data Dependent Hashing

Unsupervised Hashing

Supervised Hashing

Semi-supervised Hashing

Deep hashing 2) Tree-based techniqueNo partitioning of space
(partitioning data)

Partitioning of Space
3) Bitmap-based

technique

1) No partitioning of space
(partitioning data) 2) Partitioning of Space

Hyper-plan partitioningHyper-sphere (or Ball)
partitioning

V. A COMPARATIVE
ANALYSIS OF METRIC

ACCESS
METHODS

VI. OPEN
RESEARCH

CHALLENGES

A. IOT DATA AGGREGATION
FOR 5G DATA INDEXING

B. BLOCKCHAIN DATA
INDEXING

C. SECURITY AND PRIVACY
FOR 5G DATA INDEXING

D. IOT DATA REPRESENTATION
IN THE EDGE
COMPUTING

VI. SUMMARY

VIII. CONCLUSION

Figure 3. Detailed structure of the survey.

Future Internet 2022, 14, 19 7 of 43

3. Big IoT Data

Big Data results from the significant growth and data accumulation of Internet opera-
tions and online applications such as social networks and video streaming [40,41]. However,
in the context of IoT, different end-devices such as Personal Computers (PCs), smartphones,
Global Positioning System (GPS) devices, sensors, and Radio Frequency Identification
(RFID) devices, monitoring devices, etc. used in different applications such as healthcare,
manufacturing, industry, smart homes, smart cities, etc. collect a large amount of data
continuously, making IoT one of the main sources of Big data. Besides, it is also important
to mention that crowd-sourcing and crowd-sensing mechanisms and tools play a more
important role in Big IoT Data collection nowadays [42,43].

The merging of Big data and IoT data (or Big IoT data) created new features in addition
to the Big data features discussed in [44–48]. These additional data characteristics provoke
the implementation of new data management techniques that consider the characteristics
of Big IoT Data, presented in Figure 4. In other words, efficient Big IoT Data indexing and
searching in large data collections is, therefore, a critical issue that requires choosing the
appropriate structure.

Big IoT Data

Big Data

Volume

Velocity

Value Variability

Veracity

Visualiza-
tion

Variety

Distribution

Spatio-
temporality

Dynamics

Periodicity Markovian

Internet of Things

Figure 4. Big IoT data’s characteristics.

4. Big Data Indexing Requirements

Some recent studies on indexing techniques have highlighted how to optimize the
search performance in large datasets with greater efficiency. This section discusses and
describes some of the indexing needs that are more challenging than traditional data. Then,
each indexing technique is analyzed based on these constraints to determine its applicability
on a large scale.

The challenges of designing the indexing techniques are related to the need for gener-
alization of multidimensional spaces to metric spaces and the additional constraints on the
set of feasible solutions. The constraints in Figure 5 may include the constraints on data
independence, scalability, or efficiency [49]

Contraints

Efficiecy

Data
independence

Dynamicity

Scalability

Figure 5. Big Data indexing requirements.

Future Internet 2022, 14, 19 8 of 43

In general, the objects which require indexing are more complex than mere
vectors [50–54]. This shifts the focus of indexing from multidimensional spaces to metric
spaces. Formally, a metric space is defined for quantifying similarities or different elements
through a given distance in such a way that smaller distances may correspond to more
similar elements. Metric spaces are therefore a very general concept and can be applied
to vectors as well as objects such as strings and graphs that can not easily be represented
as vectors [55]. Several similarity measures exist for various types of objects, such as
Minkowski distances. Manhattan and Euclidean distances are best known and can be used
for any form of vector data, such as color histograms in multimedia databases.

Similarity queries are a very important operation in IoT applications involving large
data volumes and complex objects. They focus on finding objects in a dataset similar to a
query object, based on a similarity measure. In metric space, the similarity query refers to the
selection of objects in a dataset O that are at a certain distance d(·, ·) from a given point oq.

The main factor that affects the efficiency of the indexing algorithm when the dimen-
sion is increased is the dimensionality-curse problem [56,57]. The approaches available in
the literature have proven to be unreliable, making it difficult to index, manage and analyze
large volumes of data. This is due to the inherent deficiencies of spatial partitioning and
also to the factor of overlap between regions. This question therefore remains open for
future research.

5. Existing Indexing Techniques

Section 2 outlines requirements based on the need to index and retrieve increasingly
numerous and complex data [58]. Thus, small data collections that include simple objects
can be easily processed. However, managing large databases, like most databases used today,
requires more sophisticated techniques, especially when they contain complex data types. The
objects to be indexed are sometimes more complex than simple vectors (homogeneous—e.g.,
vector spaces; or heterogeneous—e.g., tuplets in a relational database) [59–62].

Several indexing techniques have been introduced to address the problems of indexing
large data. This paper provides a comparative performance study of recent indexing
techniques and their ability to solve large data indexing problems. In addition, these
techniques are examined according to a proposed taxonomy (see Figure 6).

Indexing Techniques

Indexing structures in a
Multidimensional Space

Indexing structures in a Metric
Space

Hashing-based
techniques Tree-based techniques Bitmap-based techniques Tree-based techniques

Figure 6. Global taxonomy of indexing techniques.

Figure 6 describes the classification of indexing techniques according to space. Index-
ing techniques can be classified into two main categories: (i) multidimensional space and
(ii) metric space.

5.1. Multidimensional Indexing Techniques

A multidimensional space is defined when the elements of the set are considered as
vectors (i.e., the data has a given number of dimensions), homogeneous or heterogeneous,
whose components are totally ordered. Thus, indexing techniques in multidimensional
spaces can be classified into three main types according to the type of structure used: (1)

Future Internet 2022, 14, 19 9 of 43

hashing-based technique, (2) tree-based technique, and (3) bitmap-based technique. In the
following, we review the three types of multidimensional indexing techniques.

5.1.1. Hashing-Based Technique

This is a more popular technique in the field of multidimensional data indexing due
to its ability to transform a data item into a low-dimensional representation (short code
composed of a few bits) [63]. Hashing-based indexing structures are more efficient in
terms of time and storage space [64] and can detect duplicate data in a large dataset [65].
There are many methods based on the hashing technique applied to several real applica-
tions, such as computer vision, information retrieval and analysis (e.g., images, videos,
documents) [66]. According to Figure 7, hash-based indexing structures can be classified
into two main streams: data independent hashing and data dependent hashing (or learning-
based hashing).

Data Independent Hashing: Among the data independent hashing methods, the
Locality-Sensitive Hashing (LSH) developed by Gionis et al. [67] is the most popular in the
literature. It allows retrieving the sufficient set of Approximate Nearest Neighbors (ANNs)
in high dimensional space. One of the main criteria of the LSH techniques family is the
hash function which returns with high probabilities, the same bit for close data points in the
original space [68]. Since LSH’s proposal, several variants have been proposed to improve
the SLH method as : MultiProbe LSH [69,70], BayesLSH [71], Boosted LSH [72], Super-
bit LSH [73], Non-metric LSH [74], Kernelized LSH (KLSH) [75] and Asymmetric LSH
(ALSH) [76]. However, LSH-based techniques suffer from problems of increasing storage
costs and search time due to the long binary codes and high hash functions required
when the recovery precision is improved [68]. In general, data-independent hash methods
are well suited for small data, but they are not sufficient to handle large data. Table 2
shows a summary of the advantages and disadvantages of the above methods, as well as
their challenges.

Data Dependent Hashing: In the hash stream depending on the data, several methods
have been proposed to overcome the problems and limitations of data independent hash
methods. These methods are classified into three categories according to the degree of su-
pervision, namely: (i) unsupervised hashing, (ii) supervised hashing, (iii) semi-supervised
hashing, and (iiii) deep hashing.

Hashing-based Techniques

Data Independent Hashing Data Dependent Hashing
(or Learning-based Hashing)

Locality-Sensitive Hashing (LSH)
([18], 1999)

Supervised Hashing Semi-supervised HashingUnsupervised Hashing

MultiProbe LSH ([20], 2007)
 ([21], 2008)

BayesLSH ([22], 2012)

Boosted LSH ([23], 2005)

Super-bit LSH ([24], 2012)

Non-metric LSH ([25], 2010)

Kernelized LSH (KLSH) ([26], 2009)

Asymmetric LSH (ALSH) ([27], 2014)

Spectral Hashing (SH) ([29], 2009)

Spherical Hashing ([34], 2012) ([33],
2017)

Shared Hashing ([35], 2014)

Multiple Hashing ([33], 2017)

Graph Hashing (GH) ([30], 2015)
([31], 2014) ([32], 2017)

Manifold Hashing ([36], 2013)
([37], 2014)

Online Dynamic Multi-view Hashing
(DMVH or ODMVH) ([38], 2017)

Robust Discrete Spectral Hashing
(RDSH) ([40], 2015)

Distributed Indexing based on
Sparse-Hashing (DISH) ([41], 2019)

Kernel Based Supervised Hashing
(KSH) ([47], 2012)

Minimal Loss Hashing (MLH) ([50],
2011)

Fast Supervised Discrete Hashing
(FSDH) ([51], 2014)

COlumn Sampling based DIscrete
Supervised Hashing (COSDISH)

([52], 2016)

Linear Discriminant Analysis Hash
(LDAHash) ([48], 2011)

Supervised Discrete Hashing (SDH)
([49], 2015)

Semi-supervised Discriminant
Hashing (SDH) ([56], 2011)

Semi-supervised Hashing (SSH)
([53], 2012) ([54], 2010)

Bootstrap-NSPLH ([57], 2012)

Semi-supervised multi-view discrete
hashing (SSMDH) ([60], 2017)

Label-regularized Max-margin
Partition (LAMP) ([55], 2010)

Semi-supervised Topology-
Preserving Hashing (STPH) ([58],

2013) ([59], 2014)

Deep hashing

Bit-Scalable Deep Hashing (DRSDH)
([67], 2015)

Convolutional Neural Networks for
Text Hashing (CNNTH) ([65], 2015)

 Asymmetric Deep Supervised
Hashing (ADSH) ([68], 2017)

Hashing with Mutual
Information ([71], 2019)

Hash coding with Deep Neural
Networks (HDNN) ([66], 2015)

Hashing as Tie-Aware Learning to
Rank ([69], 2018)

Fast Supervised Hashing (FSH)
([42], 2017)

Figure 7. Taxonomy of hashing-based indexing techniques.

Future Internet 2022, 14, 19 10 of 43

Table 2. Summary of advantage and disadvantage of data independent hashing techniques.

Proposition Ref Advantages Disadvantages and Challenges

LHS [67]
• Returns with high probabilities the same bit
for nearby data points in the original space by
storing similar data in the same bucket

• High storage cost
• High search time
• Not sufficient to processes high dimen-
sional data.

Unsuitable to process large data

MultiProbe LSH [69,70]
• Reduce the number of hash table, there-
fore, reduce space and time compared to LSH
method

• Insufficient number of neighborhood
candidates to respond to KNN’s requests

Kernelized LSH [75]

• Search for approximate similarity in sub-
linear time • High memory consumption

• No data distribution or data entry assump-
tions are required

• The search for the nearest neighbor is
very difficult for high dimensional data

BayesLSH [71] • High quality of search results • Less effective performance

Super-bit LSH [73]
• Significant error reduction
• More effective for approximate nearest
neighbor recovery

• Requires long hash codes and more
hash tables
• High cost of space and time

Asymmetric LSH [76] • Simple and easy • Efficient for maximum in-
ner product research • Does not support exact search

Unsupervised Hashing: For higher precision in the design of compact hash codes,
unsupervised hashing methods aim to integrate data properties such as distributions
and multiple structures [77]. Reference methods include spectral hashing [78], graph
hashing [79–81], multiple hashing [82], spherical hashing [82,83], shared hashing [84],
manifold hashing [85,86], etc.

Recently, a novel unsupervised online hashing method for online image retrieval was
proposed by Liang et al. [87], called Online Dynamic Multi-View Hashing (ODMVH or
DMVH) capable of adaptively increasing hash codes according to dynamic changes in the
image. These hashing techniques also use multi-view features to achieve more efficient
hashing performance. DMVH has limited performance because it is an unsupervised
method and has not exploited any discriminative semantic information [88].

Yang et al. [89] developed a novel unsupervised hashing approach, named Robust
Discrete Spectral Hashing (RDSH) to facilitate large-scale semantic indexing of image data.
RDSH can simultaneously learn discrete binary codes and robust hash functions in a unified
model. Due to the difficulty of the latter, the authors included the offline process for the
learning binary codes as well as the coding functions and the online procedure for indexing
images with semantic annotations. Initially, the real value representation is learned from
the original space of the entities using methods such as Spectral Hashing (SH). Then,
the real representation is transformed into binary codes through binarization based on
learning. Several experiments have been performed on various real-world image datasets
to demonstrate its effectiveness in large-scale semantic indexing approaches. Compared to
locality-sensitive hashing, the spectral hashing generates a very compact hash code, but it
is not appropriate for a large and dynamic database. A new Distributed Indexing method
based on Sparse-Hashing (DISH) in cloud computing was developed by André et al. [90]
to address the difficulties associated with distributing an index of high-dimensional feature
vectors to multiple index nodes and search for large-scale distributed images. DISH allows
documents and queries to be distributed in a balanced and redundant way between nodes.
Table 3 provides a comparison of the technique discussed above.

Supervised hashing: Supervised hashing methods are based on machine learning
techniques such as decision tree [91] and neural networks [92]. These methods aim to
generate intelligent indexes that can predict the unknown behavior of the data [93,94]. The
supervised hashing methods allow to treat semantic similarities as well as the search for
medical images on a large scale [77,95]. Many representative methods have used some
form of supervision to design more efficient the hash functions: Kernel Based Supervised
Hashing (KSH) [96], Linear Discriminant Analysis Hash (LDAHash) [97], Supervised
Discrete Hashing (SDH) [98], Minimal Loss Hashing (MLH) [99], Fast Supervised Hashing
(FSH) [91] and Fast Supervised Discrete Hashing (FSDH) [100].

Future Internet 2022, 14, 19 11 of 43

Table 3. Summary of advantage and disadvantage of unsupervised hashing techniques.

Proposition Ref Advantages Disadvantages

Spectral Hashing [78]
• Does not require any labeled data
• Solve a difficult non-linear optimization
problem with a global optimum

• The assumption of a uniform distribu-
tion of data is usually not applicable in
most cases of real-world data
• Cannot directly applied in the kernel
space
• Does not work very well for high-
dimensional data

• Less efficient than a
(semi-) supervised hashing
technique

Spherical Hashing [82,83] • Ensuring high accuracy and a highly
scalable search for the nearest neighbor

• Not sufficient for high-dimensional
data
• Limited performance.
• Requires an expensive learning process
to learn the hash functions

• Unsuitable to process
large data

Robust Discrete Spectral
Hashing [89]

• Robust hash functions
• Very compact hash code compared to
LSH

• Not appropriate for a large and dy-
namic database

Graph Hashing [79,80] • Suitable for large-scale applications
• high search precision

• Inefficient in the search of nearest neigh-
bors
• High learning costs

Online Dynamic Multi-
view Hashing [87] • More efficient hashing performance • Limited performance

Distributed Indexing based
on Sparse-Hashing [90] • Distribution of requests in a balanced

way • High cost time

Liu et al. [96] proposed a supervised hash method with kernels (KSH) in the Hamming
space, where the hash codes obtained for similar data are similar hash codes (minimizes
similar pairs) and for different data, the hash codes obtained are different hash codes
(maximizes dissimilar pairs). Kang et al. [101] proposed a discrete supervised hashing
method, called Column Sampling based on Discrete Supervised Hashing (COSDISH).
COSDISH operates in an iterative way, and in each iteration, several columns are first
sampled from the semantic similarity matrix and then the hashing code is decomposed
into two parts and alternately optimize them in a discrete way. Compared to FSH [91],
which cannot use all training points due to time complexity, COSDISH is capable to use all
training data points. Table 4 compares several supervised hashing techniques.

Table 4. Summary of advantage and disadvantage of supervised hashing techniques.

Proposition Ref Advantages Disadvantages

Minimal Loss Hashing [99]
• Efficient and adapts well to long
code lengths • Training speed very slow • Difficulty of finding the label-

ing of all data in the database• Higher search precision Difficult to optimize

Linear Discriminant Anal-
ysis Hash [97]

• Effective compact hashing • Slower because of the extraction of SIFT
descriptors• Less memory consumption and cal-

culation cost • Much slower in terms of time
and effort compared to unsuper-
vised techniquesKernel Based Supervised

Hashing [96] • Efficient hash functions • Not sufficient for high-dimensional de-
scriptors• Higher retrieval accuracy

Fast Supervised Hashing [91]
• Suboptimal Not use all training points due to the com-

plexity • Unsatisfactory performance
• Fast ANN search Unsatisfactory performance in real-world

applications

Fast Supervised Discrete
Hashing [100]

• Highly efficient • Require a significant degree of effort in
large-scale applications• Very fast and high precision

• Insufficient for high-
dimensional data

• Low storage cost

Supervised Discrete
Hashing [98] • Effective binary code learning • Expensive training time

• Insufficient precision rate

Column sampling based dis-
crete supervised hashing [101] • Capable to use all training data

points • Inefficient binary codes

Semi-Supervised hashing: Due to complexities of the exhaustive search of data la-
bels in the database, semi-supervised hashing methods can use hash functions capable
of training on two types of data, whether labeled or unlabeled data (partially labeled).
In other words, semi-supervised hashing is a combination of unsupervised and super-
vised hashing [95]. The goal of the semi-supervised hashing method is to minimize the

Future Internet 2022, 14, 19 12 of 43

empirical error of labelled datasets and improve the binary encoding performance. Semi-
supervised hashing methods are able to handle semantic similarity and dissimilarity
between data [102] based on non-weighted distance and simple linear mapping. Represen-
tative methods include the Semi-Supervised Hashing (SSH) [102,103], which is considered
one of the most popular methods, along with Label-regularized Max-margin Partition
(LAMP) [104], Semi-supervised Discriminant Hashing (SDH) [105], Bootstrap Sequential
Projection Learning for Semi-supervised Nonlinear Hashing (Bootstrap-NSPLH) [106] and
Semi-supervised Topology-Preserving Hashing (STPH) [107,108]. Lately, Zhang and Zheng
in [109] presented a new semi-supervised hashing named Semi-Supervised Multi-view
Discrete Hashing (SSMDH). SSMDH minimizes the loss jointly when using relaxation on
learning hashing codes on multi-view data. SSMDH reduces the loss of regression on a
portion of the labeled samples, which increases the discrimination ability of the learned
hash codes. Table 5 compares several semi-supervised hashing techniques.

Table 5. Summary of advantage and disadvantage of semi-supervised hashing techniques.

Proposition Ref Advantages Disadvantages

Semi-supervised Hashing [102,103] • Empirical Error Minimization

• Not suitable for high dimensional data
• Much slower in terms of time
and effort compared to unsuper-
vised techniques

• Variance and independence of bi-
nary codes maximized

Label-regularized
Max-margin Partition [104] • High-quality hash functions

Semi-supervised
Discriminant Hashing [105] • Good separation between data la-

beled in different classes

Bootstrap-NSPLH [106]

• Balanced partitioning of data
points • Expensive training time

• Impractical for high-dimensional
data

• Higher performance • Require storage space and a large
amount of computation

Semi-supervised
multi-view discrete
hashing

[109]

• Minimizes the loss jointly on multi-
view features when using relaxation
on learning hashing codes • Not suitable for high dimensional data
• Increases the discrimination ability
of the learned hash codes

Deep Hashing Methods: Several studies have used deep learning techniques such as
in the image classification [110,111] and object detection [112,113] methods. In addition,
some hashing methods available in the literature have focused on the adaptation of deep
learning techniques and in particular Deep Artificial neural Networks (DANS) to take
advantage of deep learning, such as Convolutional Neural Networks for Text Hashing
(CNNTH) [114], Simultaneous Feature Learning and Hash Coding with Deep Neural Net-
works [115], Bit-Scalable Deep Hashing With Regularized Similarity Learning for Image
Retrieval and Person Re-Identification (DRSDH) [116], Asymmetric Deep Supervised Hash-
ing (ADSH) [117] and hashing as tie-aware learning to rank [118]. Due to the automatic
learning ability of the deep learning methods, deep hashing methods have shown better
performance than traditional hashing methods [119]. Hash methods that adapt to in-depth
learning can be based on unsupervised or supervised learning, but most of these methods
are supervised, with supervised information given with triplet labels [120]. Jiang and
Li [117] proposed Asymmetric Deep Supervised Hashing (ADSH) for large-scale nearest
neighbor search. ADSH learns a deep hash function only for query points, while the
hash codes for database points are directly learned to reduce the training time complex-
ity. Table 6 below shows a comparison of some key advantages and drawbacks of deep
hashing techniques.

Future Internet 2022, 14, 19 13 of 43

Table 6. Summary of advantage and disadvantage of deep hashing techniques.

Proposition Ref Advantages Disadvantages

Convolutional Neural Net-
works for Text Hashing [114] • Better performance than traditional

hashing methods

• Unsuitable for all real-world domain
databases

• Performance decreases as
the dimensionality of the
data increases

• Not sufficient to processes high dimensional
data

Hash coding with Deep
Neural Net

[115] • Better performance • Demand pairwise similarity labels
• Good search precision rate • Need a more complex configuration

Bit-Scalable Deep Hashing [116] • Better performance than traditional
hashing methods

• Required labeled data and considerable hu-
man efforts

Asymmetric Deep Su-
pervised Hashing [117] • Reduce the complexity of training time • Learns the hash function only for query

points
• High search precision rate • Higher complexity

Between unsupervised hashing and (semi-)supervised hashing, the most significant
difference is the availability of label information for learning hash functions [121]. Com-
pared to unsupervised hash methods, supervised methods are much slower in terms of
time and effort due to the overload of the training process and due to the absence of
label information. Thus, the unsupervised methods have a potential value for practical
applications as they do not require any labeled information [122,123]. On the other hand,
supervised techniques take into account the advantage of explicit semantic labels of the
data, which provides a higher efficiency than unsupervised hashing techniques [64].

In general, to achieve satisfactory performance with data independent methods, many
hash tables or long hash codes are required, which often makes them less effective in
practice than data dependent methods. For data dependent, hashing methods (unsuper-
vised, supervised and semi-supervised hashing) are needed to new solutions to address
the problem of optimization to learn hash functions and hash codes.

5.1.2. Tree-Based Technique

Multidimensional data has a number of dimensions. In metric spaces, this notion
disappears, not only does it disappear because the object is only considered as a whole
and not as a set of components, but also because some objects are naturally without any
perceptible dimension. This is the case of a sequence of characters, a set of elements of any
description, a graph, etc.

This section presents some tree indexing techniques. Reference books or syntheses on
the subject have been proposed by several other authors. In addition, some authors have
considered multidimensional indexing techniques as unsupervised classification methods.
It is important to note that in a classification, the classes are not of the same cardinal
and that, in a hierarchical classification, not all leaf classes are located at the same depth.
Indexing techniques can be classified according to two main approaches:

No Partitioning of Space (Partitioning Data): The primary idea of data partitioning
consists of creating data packets or clusters, also called “inclusion forms”. In the litera-
ture, there three data-partitioning methods: those whose Minimum Bounding Regions
(MBR) are hyper-cubes, those whose MBRs are hyper-spheres and those whose MBRs
are hyper-plane [124]. The main representative techniques of this approach include the
B-tree [125] (and its and its variants: B+-tree [126], B*-tree, T-tree [127], UB-tree [128],
BUB-tree [129], etc.), R-tree [130], the X-tree [131] and the SR-tree [132].

R-tree is a hierarchical data structures based on B+-tree, where it is used to index
spatio-temporal data of n-dimensions. R-tree generates several small minimum bounding
rectangles (MBR) [130] to reduce dead spaces. R-tree is a balanced [133] and dynamic
structure [130] that is very efficient for range requests [134]. The disadvantages of the R-tree
structure reside in the increase in space, time and complexity of the calculations because of
overlapping multiple MBR regions [135]. Because of the overlapping, R-tree is inefficient
for point location queries which can lead to a degradation of the performance of the search
process [136]. Several extensions have been proposed based on the R-tree structure to

Future Internet 2022, 14, 19 14 of 43

address the weaknesses of this structure mentioned above. Among these extensions, it can
be noted: R+-tree [137], R∗-tree [138], Hilbert R-tree [139] and SS-tree [140].

X-tree (eXtended node-tree) [131] is an R-tree based structure developed to prevent
overlap between MBRs through the new proposed node type. These nodes are extended
nodes of variable size called Super-nodes (eXtended node). Due to this type of node,
X-tree supports the indexing of large data with less overlap and less performance reduction
compared to the R-tree structure. X-tree is a hybrid index that consists of a hierarchical
part (tree) and a linear part (list). X-tree is a variable structure where size and complexity
is difficult to calculate because of their sensitivity to size, distribution of data [141]. In
addition, X-tree consumes a lot of memory space for storage and its performance is limited
with the data dimension.

R-tree nodes and its variants reduce the number of partitions that occur in the construc-
tion of the R-tree and increase the spatial utilization of the R-tree to solve the problem of
overlapping, which influences the construction performance and requests efficiency. Yang
et al. [142] proposed a new lazy splitting strategy to optimize the R-tree generation process.
Bloom Filter Matrix (BFM) is a multidimensional data indexing structure developed by
Wang et al. [143] to solve the problem of decreasing index performance for high-dimension
data. BFM uses a multidimensional matrix based on the Cartesian product of bloom filters
where each filter represents an attribute of the original data. Although the BFM structure
demonstrates a multi-attribute data indexing speed and search accuracy, it suffers from a
very high space consumption [144], which makes it inadequate for IoT applications where
data is massive. For an efficient R-tree index, Wang et al. [145] proposed a new retrieval
method, called the Dynamic Clustering Center (DCC) method, which allows choosing the
optimal cluster center according to the distance indicator R during the construction of the
R-tree spatial index. This technique aims to make R-tree structure more compact, reduce
multipath searches and improve search efficiency.

The requirement to classify data flow records such as web traffic flow monitoring,
spam detection and intrusion detection is addressed in [146]. A new E-tree indexing
structure with a time complexity less than O(logn) was proposed by Zhang et al. to
organize all base classifiers in an ensemble for fast prediction. E-tree used a balanced height
structure like an R-tree to reduce the expected prediction time from linear complexity to
sublinear complexity. On the other hand, E-tree is automatically updated by the repeated
aggregation of new classifiers and the elimination of those that are relevant or obsolete.
It therefore adapts well to discover new trends and patterns and undifferentiated data
flows [146,147]. E-tree requires a high storage space and maintenance [148] despite the
results of the analysis showing the effectiveness of this approach. ER+-tree is a new
multidimensional data indexing.

The structure on the cloud-computing infrastructure was proposed by Balasubra-
manian in [149]. This structure is a hybrid tree structure that combines the benefits of
E-tree [146] and R+-tree [137]. The main objective of this structure is to reduce com-
putation time and improve the quality of the similarity search in a cloud-computing
environment [149]. The idea of combining these two structures is to create a more efficient
structure in terms of balancing and similarity research. The E-tree structure is used to
partition the data flow to reduce overload, while the R+-tree structure is used to reduce
search time and improve the quality of the similarity search through its Minimum Boundary
Rectangle (MBR).

In [150], Jin and Song introduced a tree indexing structure based on R*Q-tree. This
approach improves query performance and reduces indexing costs. It is based on the
k-means clustering algorithm to reorganize nodes between neighboring nodes in the tree.
In addition, a new indexing method (SUSHI) was proposed by Günnemann et al. [151].
This method is based on subspace clustering for indexing high dimensional objects, where
the construction of the index tree is done in a recursive way. The nodes of each level
represent the groups resulting from the subspace clustering method. Wang et al. [152]
presented a new method based on searching for the nearest neighborhood to accelerate the

Future Internet 2022, 14, 19 15 of 43

matching of corresponding faces for large-scale facial recognition systems. This method
uses the k-means algorithm for clustering data and the Kd-tree structure for cluster storage.
However, this technique presents, in addition to all the advantages, a problem linked to
the complexity of the closing forms, which leads to an increase in the costs of insertion
and search operations. Table 7 analyzes multidimensional indexing techniques based on
data partitioning, taking into account dataset type, data dimension, indexing nature, and
complexity as comparison metrics and Table 8 shows the advantages and disadvantages of
these techniques, as well as their challenges.

Table 7. Analysis of multidimensional indexing techniques based on data partitioning.

Proposition Ref Dataset Type Data Dimension Indexing Nature Complexity (BigO)

Inser-
tion/Deletion Search

B-tree [125]

Temporal One-dimensional

Dynamic

O(n log(n)) O(n log(n))

B+-tree [126] O(n log(n))) O(n log(n))

B*-tree [127] O(n log(n)) O(n log(n))

T-tree [127] O(2n log(n)) O(n log(n))

UB-tree [128]
Spatio temporal data

Multi-dimensional

O(n log(n)) O(n log(n)))

PaIndex [153] O(n log(n)) O(n log(n))

MLB+-tree [154] Seismic data O(n log(n)) O(n log(n))

SR-tree [132] Image feature vectors O(n log3(n)) O(n log3(n))

E-tree [146] Spatial <O(n log(n)) Not estimated

ER+-tree [149] OpinRank Review Not estimated Not estimated

SUSHI [151] Color histogram and Synthetic
data O(n2 log(n)) Not estimated

R-tree [130] O(dn log(n)) O(n log(n))

R+-tree [137]
Geographical and
Multi-media

O(n log(n)) O(n log(n))

R*-tree [138]
O(n log(n))+
Re-insertion com-
plexity

O(n log(n))

Hilbert R-tree [139] Spatial O(log(n) +
M log(n)) O(n log(n))

SS-tree [140] Multi-media data
O(n log(n)) +
Re-insertion com-
plexity

O(n log(n))

BFM & R-tree [143] Not mentioned Not estimated Not estimated

DCC & R-tree [145] Medical data O(nkt) O(n log(n))

X-tree [131] Spatial data and Synthetic data Not estimated Not estimated

aX-tree [155] Spatial data Not estimated Not estimated

X+-tree [156] Spatial data Not estimated Not estimated

R*Q-tree [150] Special data O((kndt)(n log(n))) Not estimated

BB-tree [157] Synthetic data, Sensor data and
Genomic Not estimated

O(h log(k) +
bmaxm) for exact-
match queries

Partitioning of Space: In this category, indexing techniques are based on space partition-
ing into sub-spaces (or cells) where each sub-space contains a subset of data. Unlike indexing
techniques based on data partitioning, this type of partitioning eliminates region intersections.
Many existing approaches are proposed in the literature. Reference techniques include for
example: Kd-tree [158], Quadtree [159,160], Pyramid [161] and VA-file [162].

Future Internet 2022, 14, 19 16 of 43

Table 8. Summary of advantage and disadvantage of multidimensional indexing techniques based
on data partitioning.

Proposition Ref Advantages Disadvantages

B-tree [125]
• Simple structure • Consumes a lot of computing resources

• Support only one-dimensional
data

• Balanced in insertion and deletion • Requires large storage space
• Efficient for k-nn and range search • Costly maintenance

B+-tree [126]
• Storage at leaf nodes • High complexity • Requires a considerable

amount of computing resources• Storage cost reduced compared to B-tree • Wasted storage space
• Non-optimal node splitting

B*-tree [127] • Reduction of node splitting • High complexity • Limited performance• Less storage space compared to B-tree and
B+-tree

T-tree [127]
• Balanced structure • Requires a considerable amount of space

• Degradation on large scale• More efficient memory management, search
and update performance than B+-tree

• Inefficient search
• The problem of balance is still unresolved

UB-tree [128] • Efficient processing of multidimensional re-
quests

• Unsatisfactory for queries covering dead
spaces

• Degradation on large scale
PaIndex [153]

• Effective and efficient update and query per-
formance • Not suitable for large data
• Structure supports parallel insertions and
queries

MLB+-tree [154] • Higher performance on multi-dimensional
range queries

• High complexity
• Sub-optimal partitioning
• Irregular and unpredictable structure

SR-tree [132]
• Simple construction • Complexity of shapes

• Refinement : (intersection S ^R) • Costly insertion and search algorithm• Reduced overlap rate

E-tree [146] • Reduce time from linear to sublinear com-
plexity • High storage space

ER+-tree [149]
• Reduce computation time • Costly maintenance
• High quality of search results • K-nn research is not evaluated
• More efficient structure • Degradation on large scale

R-tree [130]

• Creation of filter cells REM • Overlap of REMs

• Degradation of the perfor-
mance on large scale

• MBR allows you to refine your search • Not effective for point queries
• Balanced hierarchical breakdown • Require high space and time as well as com-

putational complexities• Constraint of minimum coverage

R+-tree [137] • Reduced overlap rate
• Redundancy of objects in nodes
• Clipping technique not optimized
• More complex construction and mainte-
nance

R*-tree [138]
• More efficient variant than the R-tree • Complexity of the re-insertion algorithm

and the split of nodes• Reduced overlap rate
• Efficient use of space

Hilbert R-tree [139] • Good performance results for both searches
and updates Performance deteriorates for larger data

SS-tree [140] • Outperforming the R-tree • High overlap in high-dimension space• Calculate the nearest and approximately
nearest neighbors efficiently

BFM & R-tree [143] • Solve the problem of decreasing index per-
formance for high-dimensional data • High space consumption

DCC & R-tree [145] • Enhance R-tree’s search efficiency • Require high space and computational complexities• Reduce multipath searches

X-tree [131]
• Overlap control (overlap-free) • Complexity of the max limit

• Cannot function properly in
higher-dimensional data

• No degeneration of the index • Consumes a lot of memory space

• Reduced overlap rate • Performance is limited with the data dimen-
sion

aX-tree [155]
• Reduce the amount of empty space • Supports only static data
• Reduced overlap rate • Require more calculation• Fast loading and better partitioning of space

X+-tree [156] • Reduces the complexity of linear scanning of
super nodes compared to X-tree

• Suffers from data redundancy and replica-
tion problems

R*Q-tree [150] • Improve space utilization • High complexity
• Reduce node overlap and the number of
splits

• Not suitable for the situation of frequent up-
dates

BB-tree [157] • Quasi-balanced structure • Not support the k-nn search
• Better performance compared to R*-tree, Kd-
tree, PH-tree, and VA-file

Future Internet 2022, 14, 19 17 of 43

Kd-tree (K-dimensional tree) is a binary tree structure for indexing multidimensional
data based on partitioning space to k dimension using hyper-planes [158]. The main disad-
vantage of the Kd-tree is that it is unbalanced because the hyper-plane of space division do
not divide the planes in a better position. The latter creates overlaps between neighboring
regions, which increases the cost of I/O operations [163,164]. The performance of the Kd-
tree structure to meet range requests or Knn requests is limited by data dimensions, where,
as the size of the data increases, most tree data is traversed [165,166]. Several extensions
have been proposed to address the challenges of the Kd-tree structure, the best known
are: Adaptive Kd-tree [167], KdB-tree [168] and SKd-tree [169]. Similar to the Kd-tree,
the Quad-tree [159] is the simplest multidimensional index structure, which is mainly
used to partition a two-dimensional space by recursively dividing it into quadrants, and it
includes several parts index space (each node has four leaf nodes). The Quad-tree is also
not balanced because it does not choose the best division of space (horizontal or vertical) as
Kd-tree. In addition, Quad-tree does not take into account the spatial distribution of data
during the space partitioning phase [170].

Pyramid tree is also a multidimensional data indexing structure. Pyramid tree is based
on the partitioning of the data space into 2D pyramids, each of them is cut in a parallel
slice at the base of the pyramid forming the data ranges [161,171–173]. Pyramid tree suffers
from the degradation of its performance with the increase in the size of the data because
the number of pyramids is insufficient to discriminate the points of high dimension. In
addition, Pyramid-tree creates non-discriminatory indices because the data that is located
in the same pyramid slice has the same index value [174,175].

Recently, Zäschke et al. [176] proposed the structure PATRICIA-Hypercube-tree (PH-
tree) based on the binary representation of data objects as a bit string [177] and the Quadtree
structure [159], which uses hypercube for space partitioning in all dimensions at each node
in the tree [178]. This partitioning allows to navigate more efficiently to the sub-node and
stored entries more efficient compared to the binary trees [176]. Other improvements have
been proposed to improve the efficiency of the PH-tree structure [179–181]. In [181], Favre
Bully added new additional functions for data pre-processing and in [179], Bogdan Aurel
proposed a new distributed architecture of the PH tree for parallel processing and cluster
computing. However, consistency issues and the support of ACID properties (atomicity,
consistency, isolation and durability) of transactions are not investigated [182].Furthermore,
Costa et al. [183] proposed the ND-tree structure (Norm Diagonal Tree) to create a mul-
tidimensional indexing structure for high-dimensional data. It is based on a new data
dimension reduction technique that uses the dual metric system, and the Euclidean stan-
dard and distance to support high-dimensional data (>100 dimensions) such as multimedia
data. This technique reduces data dimension in two dimensions (2D) where they are
indexed in the Quadtree tree which is considered a better dynamic indexing structure for
two-dimensional data. In this approach, the reduction method applied to indexed data
inevitably causes a loss of information on the original data, which reduces the precision of
the search.

In the field of vehicle Internet (IoV), traffic management applications require efficient
processing of requests with consideration of the massive trajectory data collected by the
vehicles movement tracking process. For this purpose, Zhang et al. [153] proposed an online
index system for vehicle trajectory data called PaIndex. The structure of the proposed index
is based on multi-level partitioning of the space. At first the space is partitioned into regular
grid cells in which the spatial domain of longitude and latitude is uniformly divided, then
each cell’s data is indexed in a hierarchical structure as B+-tree. This partitioning allows
to parallelize the insertion operations and the search requests to reduce the time and cost.
Seismic data processing applications use the requests of the multidimensional range and to
accelerate the processing of these types of request, Wang et al. [154] proposed an extension
of the B+-tree called MLB+-tree index (Multi-level B+-tree). MLB+-tree is organized in
several levels where each level contains several independent B+-tree trees that allow the
insertion and request to be performed in parallel after the top level. B+-tree faces problems

Future Internet 2022, 14, 19 18 of 43

of complexity, loss of space and consumption of many computational resources in massive
data due to sub-optimal partitioning of nodes.

Jo et al. [184,185] proposed the Quadrant based Minimum Bounding Rectangle
(QbMBR)-tree structure for processing large scale spatial data in HBase systems for an
efficient processing, to reduce storage space and false positives in spatial query processing.
The structure proposed in this work, partitions the space recursively into quadrants and
for each quadrant, an MBR is created to provide secondary indexes that are stored in the
HBase table. The recursive partitioning is terminated until the number of objects in MBRs
is less than the partition threshold. Skip-octree is a new multidimensional data index in
a cloud environment proposed by Dong et al. [186]. Skip-octree is based on two-level
architecture that adapts the skip-list to accelerate the search process and octree structure is
used in each server to store and index multidimensional data in a hierarchical way. A new
indexing technique was proposed by Malhotra et al. [187] called SkipNet-Octree based on
the combination of two structures SkipNet [188] and compressed Octree [186] to index and
process queries on multidimensional data in Cloud Computing. SkipNet-Octree is a two-
layer structure where the top layer represents a global index created through the SkipNet
structure that contains metadata for local index nodes and the Octree index technique used
to create a local index [187]. The experiments carried out show that the SkipNet-Octree
technique works better than traditional Skiplist and Octree for complex queries.

A new hybrid multidimensional data indexing structure was presented in [189]. The
structure is based on the concepts of grid, pyramid, and height to partition space and
design the key to effectively access data. In this structure, the space is partitioned into
grids, and each subspace (grid cell) is identified by pyramids and heights [189,190]. The
main objective of this hybrid structure is to create a structure that supports floating-point
numbers and reduces the number of I/Os to ensure high system throughput and more
efficient execution of range requests [189].

Recently, Samson et al. [155] proposed a new static spatial data indexing structure called
aX-tree (Packing X-tree) to avoid performance degradation for high-dimensional databases
encountered by the X-tree [131] structure and their variances (X+-tree [156], VA-File [162] etc.).
aX-tree uses the Bulk-Loading technique to reduce the amount of empty space, fast loading
and better partitioning of space based on MBR. With this technique, aX-tree has overcome the
over expansion of the super-node where it became a structure characterized by: (i) minimum
tree height (ii) high directory node quality (iii) minimum overlap and iv) reduced area the
MBR and most importantly, maximized space efficiency [155].

Sprenger et al. in [157,191] introduced BB-tree. It is a new multidimensional index
structure that combines the Kd-tree [158] and X-tree [131] structures. BB-tree is a quasi-
balanced tree, supports complete- and partial-match range queries, exact-match queries,
and dynamic updates. The authors created this structure based on recursive partitioning of
the space into k partitions as for Kd-tree. BB-tree is based on the structure of elastic bubble
buckets in the leaf nodes of the tree like the X-tree. These buckets store data (subset) to
balance the structure. The leaf nodes (or regular BB) has a limited capacity (b−max). The
latter is transformed into super-nodes (super BB) similar to the structure of X-tree in case
of saturation; the data from these nodes is scanned linearly. According to the results of
the experiments [86], BB-tree shows a better efficiency for range queries compared to R∗-
tree [138], Kd-tree, PH-tree [176] and VA-file [162] but Knn similarity search queries are not
taken into account in this structure. Tables 9 and 10 present, respectively, an analytical and
comparative study of multidimensional indexing techniques based on space partitioning.

Future Internet 2022, 14, 19 19 of 43

Table 9. Analysis of multidimensional indexing techniques based on space partitioning.

Proposition Ref Dataset Type Data Dimension Indexing Nature
Complexity (Estimation)

Insertion and Dele-
tion Search

Kd-tree [158] Geo-graphical

Multidimensio-nal Dynamic

O(dnlog(n)) O(n log(n))

Adaptive Kd-tree [167] Files O(dn log(n)) O(n log(n))

KdB-tree [168] Floating point numbers O(n log(n)) O(n(k−1
k))

SKd-tree [169] Spatial Not estimated Not estimated

Quad-tree [159,160] Spatial O((d + 1)n log(n)) O(n log(n))

PH-tree [176] Synthetic O(n log(n)) O(n log(n))

ND-tree [183] Synthetic Not estimated Not estimated

QbMBR-tree [184,185] Synthetic, spatial Not estimated Not estimated

VA-file [162] Synthetic data and images Not estimated Not estimated

Octree [186] Spatial O((d + 1)n log(n)) O(n log8(n))

Pyramid [161] Synthetic data Not estimated Not estimated

Table 10. Summary of advantage and disadvantage of multidimensional indexing techniques based
on space partitioning.

Proposition Ref Advantages Disadvantages

Kd-tree [158]
• Balanced hierarchical split • Costly and arbitrary

• Degradation on
large scale

• Simple implementation • Low use of allocated space

• Performance limited by data dimension

Adaptive Kd-tree [167] • Lower-cost k-nn research • Not appropriate for frequent insertion and deletion• Storage at leaf nodes

KdB-tree [168]
• Height-balanced structure • Supports only point data

• Efficient search for point queries • Cannot guarantee minimum storage utilization
• Insufficient research performance

SKd-tree [169] • Suitable for non-zero size spatial objects • Slow performance even in high dimensional spaces• Ensures good storage

Quad-tree [159,160] • Efficient storage and retrieval

• Not balanced structure
• Does not consider the spatial distribution of the data
during the partitioning phase
• Not suitable for higher-dimensional data

PH-tree [176] • Faster and more efficient in terms of space
efficiency, query and update performance

• Supports point and range query only
• High memory consumption

ND-tree [183] • Support high-dimensional data • Loss of information on the original data
• Search performance limited by data dimensions

QbMBR-tree [184,185]
• Reduce the false positives in spatial query

• Overlap of MBRs• Reduces the storage space
• Reduce query execution times

VA-file [162] • Simple implementation • Large dimension heavy coding
• Sequential search improved • Degradation on large scale

Octree [186] • Better spatial management and k-nn search • Support only 3-dimensional data

Pyramid [161] • Degradation on large scale • Poor request processing k-nn
• Linear increase of cells • Degradation on large scale

5.1.3. Bitmap-Based Technique

Bitmap index (also known as BitArray or vector-based index) is an efficient indexing
structure for search and retrieval of large databases and data warehouses (DW) with less
complexity and is very efficient when attributes have a low number of distinct values. This
technique is used by several popular commercial systems such as Oracle [192,193] and
SybaseIQ [194,195]. Bitmap index technique is based on the representation of the existence
or absence of a specific property by a sequence of bits where each bit (0/1) represents
the value of an attribute for a given tuple such that the bit sequence has a 1 in position i
if the ith data element meets the property, and 0 otherwise [196,197]. Bitmap index uses
logical operations, such as AND, OR, NOT and XOR to respond and accelerate responses
to complex queries [198].

Future Internet 2022, 14, 19 20 of 43

Traditional bitmaps are suffering from a problem of space over-consumption, espe-
cially for highly cardinal data. To address this challenge and for faster retrieval, compressed
bitmap indexes are recommended. As a consequence, many efficient bitmap compression
algorithms have been developed, including: BBC (Byte-aligned Bitmap Compression) [192],
WAH (Word-Aligned Hybrid) [198,199], PLWAH (Position ListWAH) [200], EWAH (Enhanced
Word-Aligned Hybrid) [201], CONCISE (Compressed N Composable Integer Set) [202], VALWAH
(Variable-Aligned Length WAH) [203], SECOMPAX (Scope-Extended COMPressed Adaptive in-
deX) [204], SBH (Super Byte-aligned Hybrid) [205], Roaring [206], SPLWAH (PLWAH algorithm
for sorted data) [207], BAH (Byte Aligned Hybrid compression coding) [208], cSHB (Compressed
Spatial Hierarchical Bitmap) [209] and CODIS (COmpressing DIrty Snippet) [210]. Through
these compression algorithms with logical operations, the execution time is reduced com-
pared to the basic bitmap index without compression, which is an essential property of
bitmap indexing [211].

Recently, Chenxing et al. [208] proposed a new compression algorithm more similar to
WAH algorithm named BAH (Byte Aligned Hybrid compression coding) whose objective
is to improve the performance in terms of space and the efficiency of the requests. BAH
uses simple rules for raw bitmap encoding compared to other WAH variants that use a
more complicated code book. BAH uses SIMD operations to accelerate the efficiency of
the AND operation on multiple compressed bitmaps. Another compression algorithm has
been proposed based on the WAH algorithm called CODIS which is proposed by Wenxun
et al. [210]. The basic idea of CODIS is the reduction of space through the representation of
the bit string in the bitmap index with fewer bits, without influencing the efficiency of the
index. The results obtained during the experimentation demonstrate that this technique is
more efficient than the other algorithms in the literature, including WAH [199], COMPAX
(COMPressed Adaptive indeX) [212] and PLWAH [207].

Bitmap index method is a very efficient technique for answering complex queries for
read-only systems and for data that is not frequently updated as a data warehouse, but it is
less efficient in other cases (i.e., for data that is frequently updated). This problem is caused
by the compression process where the latter is used to reduce the storage space (as we said
before), but at each update operation, it is necessary to decode and encode the bitmap, and
this operation is very expensive [213]. Manos et al. [213] proposed a new bitmap index
named UpBit (Updatable Bitmap) to overcome this problem. This index offers efficient
updates without affecting read performance. The UpBit index adds an additional update
vector for each bitmap vector in which update processes will be performed on the update
vector where the latter stores updates corresponding to its value bitmap only. Bitmap
minimizes the cost of decoding as well as improves navigation through the use of closing
pointers on bit vectors. Chigullapally et al. [214] proposed an extension of this structure,
where the authors parallelized the merging of bit vectors to improve the performance of
the UpBit index.

5.2. Metric Indexing Techniques

Formally, a metric space (O, d) is a set of points O (where, O 6= ∅) to which we
associate a notion of distance d(O × O) → R+ between the elements that meets the
following properties:

• Non-negativity : ∀(x, y) ∈ O2, d(x, y) ≥ 0;
• Identity : ∀x ∈ O, d(x, x) = 0;
• Symmetry : ∀(x, y) ∈ O2, d(x, y) = d(y, x);
• Triangle inequality : ∀(x, y, z) ∈ O3, d(x, y) + d(y, z) ≤ d(x, z).

Partitioning of Space: In the literature, two partitioning techniques have been devel-
oped: the first technique is based on hyper-sphere (or ball) partitioning as in: VP-tree [215],
mVP-tree [216] and MM-tree [217], etc. while the second technique is based on hyper-plane
partitioning as in: GH-tree [218], GNAT-tree [55] and EGNAT-tree [219], etc.

Future Internet 2022, 14, 19 21 of 43

Hyper-sphere (or Ball) partitioning: VP-tree [215] is a hierarchical indexing structure
such as Kd-tree, developed to improve the search for similarity in a metric space. VP-
tree is a technique based on the partitioning of the space through the balls according to
distance. VP-tree uses the median distance between the vantage point (choose randomly)
and the points of the space to partition the space in two balanced disjoint sub-spaces. The
disadvantage of the VP-tree is the highest cost in terms of calculated distance as well as
time, especially as the data space has a large dimension where the number of branches
searched for is high [220]. The mVP-tree is proposed to address the problem of reduced
performance in the search for similarity of the VP tree in high-dimensional metric spaces.
mVP-tree (multiple Vantage Points tree) [216] is an extension of the VP-tree idea that uses
several vantage points instead of one. The major advantage of mVP-tree over VP-tree is
that it also uses pre-computed distances (at the construction step) to improve search speed
and reduce the number of distance calculations as well as the time required to execute
queries. The experiments presented in [215] show that mVP-tree improves the VP-tree
slightly better but not in all cases, while a greater improvement is achieved when several
pivots per node are used [61].

Cheng et al. [221] proposed the DMVP-tree structure to accelerate the recovery process
of similarity images in the airport’s video surveillance system. This approach is an improve-
ment of the metric indexing structure MVP-Tree [216] using the horizontal distribution of
MVP-Tree structure in several machines to overcome massive high-dimensional spatial
indexing problems. The DMVP-tree structure partitions the space horizontally where the
upper area is called “main space” and the lower areas are called “secondary spaces”. The
main space is indexed in MVP-Tree that stored in the master machine and the secondary
space is partitioned in a static way on the slave machines.

MM-tree [217] is another indexing structure for metric space that also uses the prin-
ciple of recursive partitioning of space through balls in two non-overlapping regions.
MM-tree is an unbalanced structure due to the different size of sub-spaces (or regions), due
to the external region of the balls. To solve this problem, MM-tree applies an additional a
semi-balanced algorithm that allows to re-organize the objects of the leaf nodes. According
to the experiences presented by [222], MM-tree does not support high-dimensional data.
Several structures have been proposed based on the MM-tree structure. All these struc-
tures are developed to address the challenges of the MM-tree structure (Onion-tree [222],
IM-tree [223] and XM-tree, the extended Metric tree [224]).

Onion-tree [222] is an MM-tree improvement proposed to overcome the challenges or
limitations of the MM-tree structure. The Onion-tree is very fast to respond the similarity
search requests thanks to the increase in the number of partitions of the space compared to
the MM-tree, but the problem with this structure remains in the very slow building because
of the re-insertion of objects. IM-tree [223] is a proposed structure to address the problem of
index degeneration posed by the fourth region of MM-tree and onion-tree. IM-tree selects
the two most distant points as pivots and splits the fourth region in two using a plane. For
massive data, the external region of the balls of the IM-tree becomes very large, which can
then lead to the degeneration of the index.

XM-tree [224] is an extension of the IM-tree [223] structure that is based on the suc-
cessive division of space with spheres. XM-tree is proposed to address the problem of
degeneration of the index mentioned above by focusing on minimizing the size of the outer
regions of the balls. To achieve this goal, XM-tree creates extended regions inspired by the
X-tree [131]. The extended regions make the Knn search very fast thanks to the elimination
of some objects that are not necessary to calculate the relative distances of a query object.

With the same principle of IM-tree, the NOBH-tree (Non-Overlaping Balls and Hyper-
planes tree) [225] partitions the metric space through the hyper-planes and hyper-spheres to
organize the data into non-overlapping regions as well as to reduce the number of distance
calculations required to answer the questions. The NOBH tree recursively divides the space
into several regions using the pivots (p1, p2), and separates the data such that the distance
evaluation of an element Xi at p1 and p2 can only contain the region Xi. These regions

Future Internet 2022, 14, 19 22 of 43

are divided using a metric hyper-plane and two spheres, where the radius of the sphere
r corresponds to the distance between p1 and p2. The main drawback of this technique
is the complexity of the enclosing forms. This increases the cost of insertion and search
operations [224].

Ball∗-tree [226] is a binary tree more balanced where each node defines a D-dimensional
hyper-sphere, or a ball, that contains a subset of the points to be searched. Ball∗-tree is an
improvement of the original structure of Ball-tree [227,228] proposed by Dolatshah et al.
in [226]. Ball∗-tree addresses the problem of data distribution and the unbalanced structure
of Ball-tree by taking into account the data distribution when determining the splitting
hyper-plane. In Ball∗-tree the splitting hyper-plane is perpendicular to the first principal
component using principal component analysis (PCA). Using this splitting technique al-
lows to create a more balanced and efficient tree structure unlike the Ball-tree where the
splitting hyper-plane is determined by the line that connects the two furthest points which
creates unbalanced sub-partitions.

A new indexing structure for indexing IoT data called BCCF-tree (Binary Container-
based Binary Tree in Cloud-Fog Computing) was introduced by Benrazek et al. [229]. BCCF-
tree uses the k-means algorithm to partition the space into subspace without overlapping.
This structure is adapted to the cloud-fog computing architecture. The aim is to improve
the quality of the discovery and recovery process of large IoT data by sharing the system
load among the elements of the cloud-fog computing architecture. According to the
results presented in this work, the BCCF-tree shows a good performance in terms of
similarity search. However, the results also show that the construction of this structure
is very expensive in terms of complexity, where it reached O((n · log n).2(t · n)) [230,231].
Tables 11 and 12 present, respectively, an analytical and comparative review of metric
indexing techniques based on ball partitioning.

Table 11. Analysis of metric indexing techniques based on ball partitioning.

Proposition Ref Dataset Type Data Dimension Indexing Nature
Complexity (Estimation)

Insertion and Deletion Search

VP-tree [215] Images Dynamic

Multidimensional

O(n log2(n)) O(n2 log(n))

mVP-tree [216] Images Static O(n logm(n)) O(mn log(n))

MM-tree [217] Image and Geographic co-
ordinates

Dynamic

O(n2 log4(n)) O(n2 log(n))

Onion-tree [222] Image, Time-series and Ge-
ographic coordinates O(n2 log(n)) O(n2 log(n))

IM-tree [223] Image O(n log(n)) O(cmax log(n))

XM-tree [224] Geographic coordinates
and Image O(nmx log(n)) O(cmax log(n))

Ball-tree [227,228] Not mentioned O(n log(n)) O(d log(n))

Ball*-tree [226] Synthetic and Point data O(n log(n)) O(n
d log(n))

NOBH-tree [225] Image and Synthetic O(n logm(n)) O(n log(n))

BCCF-tree [229]
Synthetic, Geographic co-
ordinates and wearable ac-
tion recognition database

O((n log n) · 2(tn)) O(1
2

√
n log2(k) +

(log(n)/(1
2

√
n))k)

Future Internet 2022, 14, 19 23 of 43

Table 12. Summary of advantage and disadvantage of metric indexing techniques based on ball
partitioning.

Proposition Ref Advantages Disadvantages

VP-tree [215] • Simple implementation • Highest distance and time

• Degradation on large scale

• Research costs increase in large dimensions

mVP-tree [216] • Reduces research costs • Static structure
• Little affected on a large e scale • Support only range research

MM-tree [217] • Best space partitioning • Degeneration of the index (fourth region)• Non-overlapping regions

Onion-tree [222] • Better partitioning of space • «Reinsertion» objects (semi-balancing)

IM-tree [223] • Efficient compared to MM-tree and Slim-tree • Index degeneration in massive data

XM-tree [224] • Minimize the size of the search regions • Requires high memory space

• The problem of overlap
not effectively addressed

• Fast k-nn search

Ball-tree [227] • Efficient brute force search in large dimensions • Unbalanced structure
• Longer build times

Ball*-tree [226] • More balanced and efficient structure compared
to Ball-tree

• Performance decreases as the dimensional-
ity of the data increases

NOBH-tree [225] • Non-overlapping division of the data space • High cost of insertion and research

BCCF-tree [229]
• Non-overlapping division of the data space

• Expensive construction• Fast k-nn search
• Balanced data partitioning

Hyper-plane partitioning: The first indexing structures that are based on the partition
of space through hyper-planes are the oldest structure BS-tree (Bisector tree) [232] and the
structure GH-tree (Generalized Hyper-plane tree) [218] which is similar to BS-tree. GH-
tree is a binary indexing structure that divides the space recursively into two sub-spaces
through the hyper-plane which is defined by the two representative points or pivots (the
two farthest points as in [233–235]) the rest of the points are partitioned according to the
distance between these pivots. The drawbacks of this structure reside in the search process
where at each node two distance operations are performed which increases the cost of the
search, as well as the selected pivots does not guarantee the best partition of space, which
makes the problem of index degeneration possible. GNAT-tree (Geometric Near-neighbor
Access Tree) [55] is a static indexing structure. GNAT-tree is a generalization of the GH-tree
which uses m pivots in each internal node instead of two (i.e., GNAT-tree is an m-ary tree).
Regarding EGNAT-tree [219], it is the dynamic structure of GNAT-tree.

Recently, GHB-tree (Generalised Hyper-plane Bucketed) [236] is proposed as an im-
provement of the GH-tree structure. The objective of the GHB-tree structure is created
a balanced indexing structure with less construction cost through the new type of node
that they called a bucket. These types of nodes found at the leaf level which has a limited
capacity to store a subset of the most similar data to improve the search process. The
CD-Tree, cited in [237], is a type of index based on hyper-plane partitioning. This indexing
approach has proven effective for a limited number of dimensions but remains ineffective
for large dimensions. The recursive partitioning of space into two regions is the principle
of this technique. Two pivots are chosen each time, and each one is associated with the
closest objects. However, the problem with this technique is that the geometrical shapes of
the regions pose many problems in the search algorithm.

A new metric indexing structure called SPB (Space filling curve and Pivot based B+-
tree) tree was proposed by Chen et al. [238,239]. The method was proposed to improve
the efficiency of similarity search, support large number of complex objects and reduce
the cost in terms of storage, construction and search (i.e., reduces CPU and I/O cost). To
achieve these objectives, SPB-tree uses geometric information not available in metric space
through the mapping of objects in a metric space to data points in a vector space using
well-chosen pivots. The B+-tree with MBB (Minimum Bounding Boxes) is used to index the
one-dimensional data generated by the function of dimensionality reduction Space-Filling
Curve (SFC) applied to the data points of the vector space. Although the structure is very

Future Internet 2022, 14, 19 24 of 43

simple, but the construction steps such as space transformations and pre-treatment can be
made parallelism is very difficult [240].

Compared between the two partitioning strategies (hyper-sphere and hyper-plane), it
can be observed that the problem of node overlap is a problem that has not been effectively
addressed by the techniques based on partitioning by hyper-sphere, but this problem does
not exist in hyper-plane techniques (such as: GH-tree and GNAT). On the other, structures
based on hyper plane partitioning are more difficult to maintain their balance because of
the uncontrolled insertion positions of new elements [219]. A comparative and analytical
study of metric indexing techniques based on hyper-plane partitioning is presented in
Tables 13 and 14, respectively.

Table 13. Analysis of metric indexing techniques based on hyper-plane partitioning.

Proposition Ref Dataset Type Data Dimension Indexing Nature
Complexity (Estimation)

Insertion and Deletion Search

BS-tree [232] Point data

Multidimensional

Static

O(n log2(n)) not estimated

GH-tree [218] Not mentioned O(n log2(n)) O(n log(n))

GNAT-tree [55] Image, text, Vectors O(nm logm(n)) O(n
m log(n))

EGNAT-tree [219] Words and coordinate space

Dynamic

O(nm logm(n)) O(n
nd log(n))

GHB-tree [236] Geographic coordinates and Image O(n log(n)) O(2k log2(k))

CD-tree [237] Image O(n log(n)) O(n log(n))

SPB-tree [238,239] Words, Colors, DNA, Signature and
Synthetic O(nlx + nm logm(n)) not estimated

Table 14. Summary of advantage and disadvantage of metric indexing techniques based on hyper-
plane partitioning.

Proposition Ref Advantages Disadvantages

BS-tree [232] • Fast k-nn search and orthogonal queries • Requiring linear space • Degradation on large scale

GH-tree [218] • Simple partitioning Reduced overlap rate
• Complicated form to manipulate
• Degeneration of the index
• High cost search

GNAT-tree [55] • Non-overlapping • Static and complicated structure • More difficult to maintain
index balance• Improve the search • High computational costs

EGNAT-tree [219] • Non-overlapping • Degradation on large scale
• Requires less CPU time than the GNAT-tree • More difficult to maintain index balance

GHB-tree [236] • Balanced structure

CD-tree [237] • Efficient re-construction time
• Ineffective in large dimensions

• Degradation on large scale• Ineffective search

SPB-tree [238]

• Simple structure

• Difficult to parallelize it• Reduce the cost in terms of storage, construction
and search

• More difficult to maintain
index balance

• Effective similarity search

No Partitioning of Space (Partitioning Data): This category does not require space
partitioning. Among the families that use this type of partitioning (partitioning data), we
find essentially the M-tree family. M-tree [241] is a metric tree structure height-balanced
allowing incremental updates based on the grouping of dynamic data into balls (or hyper-
spheres). M-tree stores some data in internal or inner nodes for routing purposes and
the remainder is stored in the leaf nodes. M-tree suffers from the problem of overlapping
sub-spaces, which increases the number of distance calculations to answer a query [224,242].
Several recent structures share the same principles of the M-tree and Slim-tree [243] is one
of them. Slim-tree improves the structure of the M-tree with a new splitting technique
based on the minimum spanning tree (MST). Slim-tree also reduces the cost of construction
in addition to this, it introduces a post-processing method which reduces overlap and,
consequently, the cost of research. The major disadvantage of this algorithm is the ability

Future Internet 2022, 14, 19 25 of 43

to generate nodes with few objects and/or empty nodes, which significantly reduces the
performance of the index, especially in large spaces [244–246].

The work of Murgante et al. [247] aims to avoid unsatisfactory node partitioning
and reduce regional overlap in the M-tree structure [241,248]. The authors proposed
a new metric indexing structure called MX-tree based on the original M-tree structure.
MX-tree implements the concept of super-nodes inspired by the [131] structure of the
X-tree. This structure avoids the unsatisfactory division of nodes, thus reducing the cost
of computation and extends it completely to metric space where temporal complexity is
reduced to O(n2) without setting any parameter. As for the M tree, the temporal complexity
reaches O(n3). The authors also add another strategy to the MX-tree structure to improve
the management of free memory space that is represented in the indexing of tree leaf
objects in an internal index [249] through the vantage-point tree (VP-tree) [215]. Due to the
symmetry of the metric axioms of metric space, metric indexing techniques such as M-tree
and their variances cannot answer to the approximate requests of sub-sequences or subsets.
Bachmann [250] propose an improvement on the M-tree structure called SuperM-tree to
create a metric indexing structure capable of responding to the approximate requests of
sub-sequences or subsets such as searching for a similar partial sequence of a gene, a
similar scene in a film, or a similar object in an image. The author introduces a new metric
measurement subset space “Metric Subset Space (M; d; v)” to create this structure. It ignores
the symmetry of metric axioms and adds a new relationship on object size (for more details
on the demonstration of this new space, see article [250]).

The efficiency of the search in M-tree is reduced when the volume is high, thus,
Pivoting M-tree (PM-tree) is proposed [251,252] to resolve this problem. PM-tree is a
hybrid structure, which combines the “local-pivoting strategies” of M-tree [241] with the
“global-pivoting strategies” of LAESA [253]. Recently, Razent et al. [254] presented a new
construction algorithm for the two indexing structures M-tree and PM-tree. The objective
is to enhance the performance of Knn requests. The construction algorithm is based on
storing data once in the tree (M-tree or PM-tree) through the deletion of promoted elements
that are stored in the upper level of the leaf nodes during their partitioning. To achieve this
idea, the authors use the aggregate nearest query to find the most efficient local pivots that
will be promoted during the partitioning of internal nodes. According to the report of the
experiments carried out in [254], this algorithm reduces node occupancy, reduces overlap
between nodes and increases significantly the performance of search operations in terms of
speed compared to the construction algorithm of the M-tree and PM-tree structure.

Navarro et al. [255] proposed the DSC (Dynamic Set of Clusters) structure, a new
dynamic metric index structure that reduces memory consumption. DSC is a combination
of two new structures proposed in [255]. The first structure is a hierarchical structure called
DSAT (Dynamic Spatial Approximation Tree). This structure uses timestamps that indicate
the moment when elements were inserted to avoid the reconstruction of the structure after
updates as well as in the pruning process of similarity queries [256]. The second structure
is a variant of the List of Clusters (LCs) structure called Dynamic List of Clusters (DLCs).
DLC is a secondary memory-based structure in which it reduces memory consumption
compared to the original LC [257] where the M-tree structure is used as a partitioning
technique. DSC is a structure divided into two parts. A part stored in the main memory
as DSAT structure and the second part stored in the disk which represents by the DLC
structure [255].

Through the MapReduce framework, Chanet et al. [258] proposed two partitioning
techniques for joins of metric similarity to balance the load [259]. The first method focuses
on the selection of centroids and clustering data in a one-dimensional space through
the Space-Filing-Curve (SFC) technique. This technique allows to partition the data in
equal size thanks to the high quality of the selected centroids. The second partitioning
method based on the Kd-tree structure [158,260], which divides the data after the pivot
mapping [258].

Future Internet 2022, 14, 19 26 of 43

Because of missing data generated by different application areas, indexing structures
are distorted where the latter produces a bias in the response to the query. To solve this
problem, Brinis et al. [261] proposed the Hollow-tree structure, which enables missing
data to be managed without distracting from its structure. Hollow-tree is a metric access
method that uses the CFMLI (Complete First and Missing Last Insert) technique to provide
a strategy for building metric indices. This strategy consists of indexing all complete data in
the first steps to create a coherent structure then insert the elements with the missing values
(with NULLS) at the nodes of the sheets. All this is achieved by the ObAD (Observed
Attribute Distance) technique, which makes it possible to compare elements with missing
values based on distance functions.

Yang et al. in [262] proposed an Asynchronous Metric Distributed System (AMDS) for
metric spaces to process metric similarity requests efficiently in a distributed environment.
In the proposed system, the authors adapt the technique of pivot mapping, which enables to
divide the data uniformly into non-joint fragments and provide load balancing. To reduce
computation costs in the process of similarity research, the Minimum Bounding Box (MBB)
technique is used. The AMDS system supports large-scale similarity requests in metric
spaces simultaneously through synchronous processing based on publication/subscription
communication mode. Tables 15 and 16 analyze and compare metric indexing techniques
based on data partitioning.

Table 15. Analysis of metric indexing techniques based on data partitioning.

Proposition Ref Dataset Type Data Dimension Indexing Nature
Complexity (Estimation)

Insertion and Deletion Search

M-tree [241] Synthetic data

Multidimensional Dynamic

O(mn logm(n)) O(mn log(n))

Slim-tree [243] Spatial, Face vectors and Text O(n2 log(n)) O(n2 log(n))

Slim*-tree [263] Image and Spatial O(n2 log(n)) O(n2
d log(n))

MX-tree [247] Image, Text O(n2 log(n)) + n2) O(n2 log(n))

SuperM-tree [250] Synthetic data not estimated not estimated

PM-tree [251,252] Synthetic data O(n(m + l) logm(n)) O(n2 log(n))

DSC [255] Vectors, Text and Colors not estimated not estimated

SFC & Kd-tree [258] Synthetic, Text, DNA and Color O(n log(n)) O(kn log(n))

Hollow-tree [261] Synthetic not estimated not estimated

Table 16. Summary of advantage and disadvantage of metric indexing techniques based on data
partitioning.

Proposition Ref Advantages Disadvantages

M-tree [241]
• Balanced height structure • Problem of overlaps

• Degradation on large scale

• Reduction of distance calculations
• High cost search
• No adapted to highly grouped data

Slim-tree [243] • Efficient compared to M-tree • The overall computational complexity• Reduced overlap rate

Slim*-tree [263] • Reduces the cost of calculation during reconstructing • Reinserting objects is largely costly• Avoids the unsatisfactory division

MX-tree [247] • Reduces the cost of calculation during reconstructing • High cost search• Avoids the unsatisfactory division

SuperM-tree [250] • Capable of responding to approximate re-
quests for subsequences or subsets

• Expensive construction
• Evaluates only for research 1-nn

PM-tree [251] • More efficient similarity search compared to
M-tree

• Not support the k-nn search
• Expensive construction compared to M-tree

DSC [255] • Reduces memory consumption • High amount of distance calculations

SFC & Kd-tree [258]
• High quality of the selected centroids

• Not support the k-nn search• Effective partitioning
• Better query performance

Hollow-tree [261] • Capable of managing missing data • Lower accuracy in small data

Future Internet 2022, 14, 19 27 of 43

At the end of this section, Table 17 presents the indexing techniques and related
applications discussed earlier.

Table 17. Application area of the indexing structures.

Indexing Structure Application

LSH • Pattern matching
• Recommendation retrieval
• Text processing
• Natural language processing
• Reducing the dimensionality of data
• Image/Video retrieval
• Content similarity deployment and discovery

Kernelized LSH • Content-based retrieval
• Speaker search
• Image classification

Robust Discrete Spectral Hashin • Image semantic indexing
• Image retrieval

Spectral Hashing • Image retrieval
• Detection of region-duplication forgery in digital images
• Fast approximate nearest neighbor
• Classification

Kernel Based Supervised Hashing • Person re-identification
• Similarity search
• Image retrieval

Label-regularized Max-margin Partition • Classification for large-scale datasets

Bit-Scalable Deep Hashin • Similarity learning for image retrieval and person re-identification

Asymmetric Deep Supervised Hashing • Image retrieval

M-tree • Similarity search in multimedia Dataset
• Accelerator for database query
• Recommendation System
• Indexing the music data
• Classification

Slim-tree • Video indexing and similarity search

SFC & Kd-tree • Data cleaning and data mining

Hollow-tree • Store and retrieve large volumes of complex data

AMDS • Multimedia retrieval
• Computational biology
• Location-based services

VP-tree • Pattern recognition and image processing
• Image indexing and retrieval
• Storing neuronal morphology data
• Similarity search on cloud computing
• Malware detection
• Clustering

mVP-tree • Images retrieval in airport video monitoring systems

MM-tree • Image retrieval

XM-tree • Web Information Retrieval

Ball-tree • Face sketch recognition
• Classification in high dimensions
• Clustering and matching for object class recognition

BCCF-tree • Image indexing and retrieval for person re-identification
• Indexing IoT sensor data

GH-tree • Image Search by Content

GNAT-tree • Indexing and similarity search of face-images data

SPB-tree • Multimedia retrieval
• Pattern recognition
• Computational biology

X-tree • Image coding
• Classification

Kd-tree • Search and synchronization of sensor nodes

R-tree • Classification
• Spatial indexing for the IoT data management
• Images search and retriever
• Geographical search

Hilbert R-tree • Visualization of 3D massive data

Future Internet 2022, 14, 19 28 of 43

6. A comparative Analysis of Multidimensional Indexing Methods

This section presents several algorithms that were initially proposed for spatial index-
ing structures. The similarity research applications usually use vectors to describe the data;
vectors can be obtained by extracting (domain-specific) features. Using multi-dimensional
indexing structures, these feature vectors are indexed, and since they apply a form of spatial
indexing, a search tree can be defined to perform similarity (or proximity) queries on all
vectors. This section provides an overview of the different methods of multidimensional
access developed over the last two decades and compares their performance. The variety
of data structures and their experimental performance give a fairly accurate idea of their
advantages and disadvantages. However, the performance of a particular data structure
depends on many factors such as the hardware used, operating system settings, buffer
sizes, page sizes and datasets. Furthermore, performance is usually measured in terms of
the number of disk accesses, search time, etc.

However, several researchers have argued that no single method of access has been
found to be far superior to all others [62,263–266]. While one experimental result declares a
structure to be the final winner, a different experimental result may be the same or inferior.
The reason why these comparisons are so difficult is the number of different criteria used to
define it as optimal. A summary of the interesting and missing elements of each proposal is
presented at the end of the literature review. It includes a synthesis of all the properties of
indexing techniques based on the non-division of multidimensional space. It also provides
an overview of the use of encompassing geometric forms that allow for a more refined
filtering of regions in the search phase.

In the first part, an approach based on the non-partitioning of space was presented.
The well-known R-tree technique begins the application of the principle of interlocking
shapes with the creation of hierarchically interlocking hyper-rectangles. Unfortunately,
this method suffers from the problem of the curse of the dimension: inefficiency in large
dimensions. In the same context, the R∗-tree is based on the principle of the reinsertion
of objects to minimize the recovery rate between forms. Thus, the R∗-tree proposes to
reinsert the saturated page (node) into the same level of the tree before splitting it. In most
cases, this reintegration allows to avoid splitting and it ensures a continuous reorganization
of the tree. Then, the -tree technique was introduced by creating super knots (refusing
to create a hierarchy with too many overlaps and adopting a local strategy of extensive
storage). It manages collections much better. However, unfortunately, if the size increases,
this technique loses its value. Another approach, the SR-tree, is based on the intersection
shape between rectangles and spheres. The problem with this technique is the complexity
of the encompassing forms, which increases the cost of insertion operations and searches.

Furthermore, another type of approach was introduced, based on the partitioning
of multidimensional space, such as the kD-tree. The principle of spatial partitioning
eliminates the problem of overlapping shapes. In this type of strategy, a problem exists
when a demand point is near the boundary between two regions. Therefore, it is necessary
to visit all neighbouring regions. On the other hand, the procedure for splitting a saturated
page does not depend on the spatial distribution of the data.

For more details, recall Figure 8 which presents a taxonomy, Tables 7–10 and 17
which provide an in-depth analysis, summarize the advantages and disadvantages, and
application areas of multidimensional indexing techniques.

Future Internet 2022, 14, 19 29 of 43

Tree-based Techniques

No partitioning of space
(partitioning data) Partitioning of Space

R-tree ([81],
1984)

X-tree ([82],
1996)

SR-tree ([83],
1997)

Hilbert R-tree
([90], 1993)

SS-tree ([91],
1996)

R*-tree ([89],
1990)

R+-tree ([88],
1987)

BFM & R-
tree([94], 2013)

DCC & R-tree
([95], 2017)

ER+-tree ([100],
2019)

E-tree ([97],
2014)

R*Q-tree ([101],
2011)

Quad-tree ([105],
1974)

Pyramid ([107],
1998)

VA-file ([108],
1998)

KdB-tree ([114],
1981)

Adaptive Kd-tree
([113], 1976)

Kd-tree ([104],
1975)

SKd-tree ([115],
1987)

ND-tree ([129],
2017)

PaIndex ([130],
2017)

QbMBR-tree
([132], 2018)

Skip-Octree
([134], 2015)

Octree ([134])

SkipNet-Octree
([135], 2018)

aX-tree ([139],
2018)

SUSHI ([102],
2011)

PH-tree ([122],
2014)

BB-tree ([141],
2019)

B-tree ([76],
1991)

MLB+-tree ([131],
2018)

B+-tree ([77],
1993)

BUB+-tree ([80],
2002)

UB-tree ([79],
1997)

T-tree ([78],
1985)

X+-tree ([140],
2012)

Indexing structures in a Multidimensional
Space

Figure 8. Taxonomy of tree-based indexing techniques.

7. A Comparative Analysis of Metric Access Methods

This section presents an overview of the advantages and disadvantages of metric
access methods. Based on both approaches, partitioning and non-partitioning, a short
taxonomy can be introduced [222,267,268] divided in two categories.

The first category does not use space partitioning, therefore, the family of the M-
tree [53] generates a balanced incremental index. However, it suffers from the problem of
overlap. An optimized version was proposed in [269]; this approach is the slim tree, which
is based on the reorganization of the index to reduce overlap. Its disadvantage is the need
to reinsert objects, which is costly.

As for the second category, it is based on the partitioning of space and two sub-
approaches are provided: the first uses ball partitioning, such as VP tree [2], MVP tree [263],
etc.; the other approach uses hyper plane partitioning, such as GH tree [219], GNAT [246],
etc. The VP tree is based on sharing using balls. The MVP tree is a generalization of the
VP tree. The nodes of the MVP tree are divided into quantiles. The CD tree [237] is a type
of index based on hyperplane partitioning. It has proven its effectiveness for a limited
number of dimensions.

Recently, a new technique has emerged MM tree [270,271], that also utilizes the
partitioning by balls. An extension of this technique has been extended: the onion tree [3].
The objective is to separate the last region to generate successive enlargements, however,
the problem is not fully resolved.

For more details, recall Figure 9 which presents a taxonomy, Tables 11–17 which pro-
vide an in-depth analysis, summarize the advantages and disadvantages, and application
areas of metric indexing techniques.

Future Internet 2022, 14, 19 30 of 43

Tree-based Techniques

No partitioning of space
(partitioning data) Partitioning of Space

M-tree ([6], 1997)

Hyper-plan partitioningBall partitioning

Indexing structures in a Metric Space

Slim-tree ([192],
2000)

PM-tree ([202],
2004)

MX-tree ([198],
2013)

SuperM-tree
([201], 2019)

DSC ([206], 2016)

SFC & Kd-tree
([209], 2016)

Hollow-tree
([212], 2019)

AMDS ([213],
2019)

VP-tree ([166],
1993)

mVP-tree ([167],
1997)

DmVP-tree
([174], 2015)

MM-tree ([168],
2007)

Onion-tree
([175], 2011)

IM-tree ([176],
2012)

XM-tree ([177],
2019)

Ball-tree ([180],
1989)

Ball*-tree ([179],
2015)

NOBH-tree
([178], 2014)

BS-tree ([183],
1983)

GH-tree ([169],
1991)

GNAT-tree ([170],
1995)

EGNAT-tree
([171], 2009)

GHB-tree ([187],
2018)

CD-tree ([7],
2017)

SPB-tree ([188],
2015)

Indexing structures in a Multidimensional Space

Tree-based Techniques

No partitioning of space
(partitioning data)

X-tree ([82],
1996)

BCCF-tree ([182],
2020)

Figure 9. Taxonomy of tree-based indexing techniques in metric space.

8. Open Research Challenges

This review presented an overview of current indexing techniques and examined their
advantages and disadvantages with respect to the large-scale perspectives of IOT data.
In particular, the relevance of current indexing techniques for resolving deformities and
responding to requirements was studied in detail. However, current indexing techniques
still face some challenges. Therefore, in addition to the issues discussed above, several
open problems are summarized in the following. At the end of the section, we summarize
the most important future research directions for such challenges in Table 18.

Table 18. Summaries of open challenges and future directions.

Open Research Challenges Future Research Directions

IoT Data Aggregation for 5G Data Indexing • Reduced bandwidth • Energy-balanced solution for cluster-based solution
• Increased energy consumption • Development of future/5G networks

• Network congestion • Data networking solution based on emerging tech-
nologies (NFV, SDN, etc.)

• Network saturation

Blockchain Data Indexing • Centralized data storage • Towards user-friendly Blockchain Data Indexing
• Degradation of memory usage and block validation
in IoT networks

Security and Privacy for 5G Data Indexing • No effective and confidential indexing of 5G data • Design an indexation protocol for achieving privacy-
preserving priority classification on 5G Data
• Enhance trust management for 5G networks via data
indexing
• Secure the indexing approaches in 5G data indexing

Distributed Indexing for large-scale data • The need for robustness, reliability, scalability, trans-
ferability and self-adaptation

• Distribute and balance system load across emerging
IoT paradigms

• Reduce network bandwidth usage, overall cost and
efficiency • Towards multi-level indexing

IoT Data Representation in the
Edge computing

• The different representations of IoT data and their
damage in the processing and analysis of indexing
structures

• Standard or unified architecture to provide connectiv-
ity to IoT devices, especially in the case of large-scale
indexing

Indexing Software Processes • Secure data during transmission • Store encrypted data
• Analytical queries on encrypted Spatio-temporal data

Future Internet 2022, 14, 19 31 of 43

8.1. IoT Data Collection and Aggregation for 5G Data Indexing

Good quality data may increase the efficiency of data indexing. Therefore, data aggre-
gation and corresponding incentives to increase data quality should be established. In the
literature, several studies concentrate on data aggregation. In [272], Chen et al. introduce
the first distributed aggregation technique for duty-cycle wireless sensor networks, and
Zhuo et al. [273] describe a tripartite architecture for Mobile Crowdsensing (MCS) with fast
data aggregation. Haiming et al. in [274] introduce a novel MCS system architecture that
integrates a data aggregation and perturbation mechanism, and in [275], the authors sug-
gest a payment mechanism that dramatically enhances the data quality in the MCS system.
However, data aggregation issues, on the other hand, get more difficult as the number of
data sources grows, necessitating more storage and computing capacity [276]. In addition,
the expansion of the amount of digital data can result in reduced bandwidth, increased
power consumption, and/or congestion imposed on the network, ultimately leading to
network saturation due to a large amount of data being transmitted simultaneously over
the network [49,277].

There are some new approaches such as cluster-based data aggregation algorithm for
WSNs, but it’s still ineffective because of their weak points like the problem of unbalanced
energy dissipation [278]. With the development of future/5G networks and other emerging
technologies such as Network Function Virtualization (NFV), the question that could be
asked is, are these emerging technologies capable of developing improved and more energy-
efficient approaches and improving the efficiency of data aggregation on IoT networks?

8.2. Blockchain Data Indexing

As cited in [279], blockchain technology can be applied effectively in almost all areas
of IoT. Copies of the blockchain network ledger must be synchronized between all IoT
entities, which could seriously affect memory usage and the effects of block validation,
especially with the use of IoT networks. Consequently, the indexing of data in the block
chain that supports decentralized storage becomes a difficult issue. In addition, indexing
management has a significant role to play in improving the capabilities and efficiency of
block chains for IoT. Therefore, the indexing of block chain data should be as user-friendly
as possible.

8.3. Security and Privacy for 5G Data Indexing

Several factors such as the hardware used, operating system settings, buffer sizes,
page sizes, and datasets affect the performance of a particular data structure in indexing
5G data. Therefore, since the real identity of the data could potentially be disclosed in 5G
data indexing, critical security questions can be identified as follows:

• How to achieve efficient and privacy-preserving 5G data indexing?
• How to design an indexation protocol for achieving privacy-preserving priority classi-

fication on 5G Data?
• How to enhance trust management for 5G networks via data indexing in the era of

big data?
• How to secure the multidimensional approaches in 5G data indexing (e.g., Pyramid,

VA-file, kD-tree, X-tree, SR-tree, R∗-tree, and R-tree)?

8.4. Distributed Indexing for Large-Scale data

With the rapid development of IoT sensors, the requirements for robustness, relia-
bility, scalability, transferability, and self-adaptation are higher. With the new computing
paradigms that have emerged in the IoT arena (Cloud, Fog, Edge, Mist computing), dis-
tributed indexing systems offer a promising solution to solve the problem of search and
discovery in Big IoT data. The latter consists of distributing the system load over the
different layers of the system (from the sensor to the data center) through the different
emerging paradigms. For the latter solution, several issues must be taken into account to
create an efficient indexing structure:

Future Internet 2022, 14, 19 32 of 43

• Is it possible to implement the structure at multiple levels?
• How to partition the indexing system load between these levels?
• To reduce the use of network bandwidth, overall cost, and efficiency, how to select the

partition and the steps to be performed?

8.5. IoT Data Representation in the Edge Computing

It is important to note that the representation of the data in the IoT is different and
that it can be stored in different formats [280]. The characteristics of the data in the edge
computing of data collected from various IoT resources could cause serious damage when
processing and analyzing the different IoT data models and structures. Therefore, the
principal question that could arise is how to propose a standard or unified architecture to
provide connectivity to IoT devices, especially in the case of large-scale indexing.

8.6. Indexing Software Processes

With IoT, big data comes private data, such as user locations and business data. This
data must be encrypted on IoT devices before being sent to servers for storage and indexing.
Although the data can be secured during transmission, it is usually stored after decryption.
This is because every system assumes that only non-malicious users access the system and
obtain the IoT data. However, many systems are currently attacked in a way that their
private data is accessible. To date, it is best to:

1. Store encrypted data without decryption to maintain security.
2. To perform queries on encrypted data.

No IoT data analytics system supports queries on encrypted data. We can use an-
alytical queries on encrypted data using existing techniques [281]. Nevertheless, these
techniques are not optimal for Spatio-temporal data. The spread of IoT devices and appli-
cations has caused the emergence of secure IoT data analysis systems, but they have not
yet been studied. There are also research opportunities for analytical queries on encrypted
Spatio-temporal data.

9. Summary

The literature discussed in Section 5 presents an overview of the development of the
indexing techniques proposed over the two decades. These techniques have been varied
according to the nature of the data, the space and the nature of the structure as shown in the
proposed taxonomy presented in Figures 6–9. The Tables 2–6, 8, 10, 12, 14 and 16 show that
most of the structures studied have strong and weak sides.

The Tables 2–6, show that data independent hash methods are suffering from the
high cost of space and time, making them effective for small data with low-dimensions
and inefficient for large data with high-dimensions. For satisfactory results with data
independent methods, many hash tables or long hash codes are required, which also makes
them less effective in practice. Concerning data dependent hash techniques, supervised
and semi-supervised hash methods take into account labeling information for training
purposes, making them more effective than unsupervised hash methods because of the
advantage of explicit semantic information in the data. On the other hand, they are
much slower in terms of time/effort due to the higher cost of the training process, unlike
unsupervised hash methods, which do not require any labelled data. Our study shows
that unsupervised, supervised and semi-supervised hashes need new solutions to solve
the problem of optimization to learn hash functions and hash codes mainly when data
dimensionality increases. Due to the advantage of the higher power of the representation
of the characteristics of the deep network, the deep hash achieves better performance than
other hash methods. However, the non-optimal minimization of the quantization error is a
major drawback that needs to redress [282,283].

The Bitmap index, in general, is intended for the optimization of search and retrieval
of data with low variant, low cardinality and small distinct values (Family, Human, True,

Future Internet 2022, 14, 19 33 of 43

False, etc.) and not for complex data where no particular property related to the nature of
the data can be exploited.

The advantages and disadvantages/challenges of data indexing techniques in mul-
tidimensional and metric space are summarized in Tables 8, 10, 12, 14 and 16, where all
approaches are discussed in Section 5. During the analysis of these indexing techniques,
many factors influenced their operational and performance and proved their feasibility in
certain applications.

One of the most important of these factors is the degree of data overlap. When
distances tend to be very close to each other, objects become almost indistinguishable
and cannot be clearly partitioned, which leads to a lot of overlap. A high degree of
overlap leads to insufficient research output in terms of time, resources and quality because
of the complete analysis of all data. This is confirmed by several researches, among
them [229]. A review of all the techniques, showing that the technique that addressed
the problem of partition overlap suffered from the overhead problem which influences
real-time applications and especially on big data and vice versa.

The second major factor is the hardware. Despite all the advantages offered by the
new high-performance computing such as cloud computing, fog computing and other
emergence computations, there is not much work in the literature which adapts them.
Knowing that It can provide many research opportunities to improve and develop more
efficient indexing techniques (hashing, bitmap or tree). Which can take full advantage of
the Graphics Processing Unit (GPU), Tensor Processing Unit (TPU) and Central Processing
Unit (CPU) [64]. However, this does not mean that improving the performance of indexing
structures depends only on increasing storage space and computing power.

At the end of this analysis, it can be concluded that the universal indexing technique
that can manage arbitrary datasets has not yet been found and the realisation of this one
which satisfies all the constraints and requirements of Big Data indexing mentioned in
Section 4 is quasi-impossible.

10. Conclusions

A comprehensive review of the literature was presented in this paper, focusing on
the indexing of large IoT data. In addition, an overview of the high requirements for
data indexing was presented. The literature on indexing techniques for IoT data was also
reviewed, analyzed, compared and classified in depth.

The authors also presented a comparative study of multidimensional indexing meth-
ods and a comparative study of metric access methods. Thus, several challenging areas of
research can serve as a basis for possible future research directions for the indexing of large
IoT data. We hope that this survey will be useful for researchers interested in indexing
large IoT data.

Author Contributions: Conceptualization, Z.K., A.-E.B., M.A.F., B.F. and H.S.; methodology, Z.K.,
A.-E.B., M.A.F., B.F. and H.S.; software, Z.K., A.-E.B., M.A.F., B.F., and H.S.; validation, Z.K., A.-
E.B., M.A.F., B.F., and H.S.; formal analysis, Z.K., A.-E.B., M.A.F., B.F., and H.S.; investigation, Z.K.,
A.-E.B., M.A.F., B.F., and H.S.; resources, Z.K., A.-E.B., M.A.F., B.F., and H.S.; data curation, Z.K.,
A.-E.B., M.A.F., B.F. and H.S.; writing—original draft preparation, Z.K., A.-E.B., M.A.F., B.F., and H.S.;
writing—review and editing, Z.K., A.-E.B., M.A.F., B.F., H.S., M.K., A.A. (Adeel Anjum), and A.A.
(Alia Asheralieva) ; visualization, Z.K., A.-E.B., M.A.F., and B.F.; supervision, Z.A., M.A.F., B.F., H.S.,
M.K., A.A. (Adeel Anjum), and A.A. (Alia Asheralieva). All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: All authors declare no conflict of interest.

Future Internet 2022, 14, 19 34 of 43

References
1. Eltabakh, M.Y. Data Organization and Curation in Big Data. In Handbook of Big Data Technologies; Springer: Cham, Switzer-

land, 2017.
2. Zierenberg, M.; Schmitt, I. Optimizing the Distance Computation Order of Multi-Feature Similarity Search Indexing. In Proceed-

ings of the Similarity Search and Applications—8th International Conference, SISAP 2015, Glasgow, UK, 12–14 October 2015.
3. Gonzaga, A.S.; Cordeiro, R.L.F. The similarity-aware relational division database operator. In Proceedings of the Symposium on

Applied Computing; ACM: New York, NY, USA, 2017; pp. 913–914.
4. Gonzaga, A.S.; Cordeiro, R.L.F. A New Division Operator to Handle Complex Objects in Very Large Relational Datasets. In

Proceedings of the 20th International Conference on Extending Database Technology (EDBT), Venice, Italy, 21–24 March 2017; pp.
474–477.

5. Karima, B.; Ouarda, Z. Hybrid Metaheuristic for Optimization Job-Shop Scheduling Problem. Int. J. Informatics Appl. Math. 2018,
1, 1–9.

6. Demchenko, Y.; Grosso, P.; De Laat, C.; Membrey, P. Addressing big data issues in scientific data infrastructure. In Proceedings
of the 2013 International conference on collaboration technologies and systems (CTS), San Diego, CA, USA, 20–24 May 2013;
pp. 48–55.

7. Chen, C.P.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 2014,
275, 314–347.

8. Seddon, J.J.; Currie, W.L. A model for unpacking big data analytics in high-frequency trading. J. Bus. Res. 2017, 70, 300–307.
9. Friha, O.; Ferrag, M.A.; Shu, L.; Nafa, M. A Robust Security Framework based on Blockchain and SDN for Fog Computing

enabled Agricultural Internet of Things. In Proceedings of the 2020 International Conference on Internet of Things and Intelligent
Applications (ITIA), Zhenjiang, China, 27–29 November 2020; pp. 1–5.

10. Yang, X.; Shu, L.; Chen, J.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A Survey on Smart Agriculture: Development Modes,
Technologies, and Security and Privacy Challenges. IEEE/CAA J. Autom. Sin. 2020, 8, 273–302.

11. Ferrag, M.A.; Ahmim, A. Security Solutions and Applied Cryptography in Smart Grid Communications; IGI Global: Pennsylvania, PA,
USA, 2016.

12. Wagner, I.; Eckhoff, D. Technical Privacy Metrics: A Systematic Survey. ACM Comput. Surv. 2018, 51 1–38.
13. Fei Bua, N.W.B.J.H.L. “Privacy by Design” implementation: Information system engineers’ perspective. Int. J. Inf. Manag. 2020,

53, 102124.
14. Atzori, L.; Iera, A.; Morabito, G. Siot: Giving a social structure to the internet of things. IEEE Commun. Lett. 2011, 15, 1193–1195.
15. Cauteruccio, F.; Cinelli, L.; Fortino, G.; Savaglio, C.; Terracina, G.; Ursino, D.; Virgili, L. An approach to compute the scope of a

social object in a Multi-IoT scenario. Pervasive Mob. Comput. 2020, 67, 101223.
16. Baldassarre, G.; Giudice, P.L.; Musarella, L.; Ursino, D. A paradigm for the cooperation of objects belonging to different IoTs. In

Proceedings of the 22nd International Database Engineering & Applications Symposium, Villa San Giovanni, Italy, 18–20 June
2018; pp. 157–164.

17. Ursino, D.; Virgili, L. Humanizing IoT: defining the profile and the reliability of a thing in a multi-IoT scenario. In Toward Social
Internet of Things (SIoT): Enabling Technologies, Architectures and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp.
51–76.

18. Baldassarre, G.; Giudice, P.L.; Musarella, L.; Ursino, D. The MIoT paradigm: Main features and an “ad hoc” crawler. Future Gener.
Comput. Syst. 2019, 92, 29–42.

19. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrag, M.A.; Choudhury, N.; Kumar, V. Security and privacy in fog computing:
Challenges. IEEE Access 2017, 5, 19293–19304.

20. Xie, J.; Qian, C.; Guo, D.; Wang, M.; Shi, S.; Chen, H. Efficient indexing mechanism for unstructured data sharing systems in
edge computing. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29
April–2 May 2019; pp. 820–828.

21. Wang, C.; Xie, M.; Bhowmick, S.S.; Choi, B.; Xiao, X.; Zhou, S. An indexing framework for efficient visual exploratory subgraph
search in graph databases. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao,
China, 8–11 April 2019; pp. 1666–1669.

22. Sunhare, P.; Chowdhary, R.R.; Chattopadhyay, M.K. Internet of things and data mining: An application oriented survey. J. King
Saud Univ. Comput. Inf. Sci. 2020. doi:https://doi.org/10.1016/j.jksuci.2020.07.002.

23. Busany, N.; van der Aa, H.; Senderovich, A.; Gal, A.; Weidlich, M. Interval-Based Queries over Lossy IoT Event Streams. ACM
Trans. Data Sci. 2020, 1, 1–27. doi:10.1145/3385191.

24. lv, z.; Kumar Singh, A. Big Data Analysis of Internet of Things System. ACM Trans. Internet Technol. 2021, 21, 1–15.
doi:10.1145/3389250.

25. Schmeißer, S.; Schiele, G. CoSense: The Collaborative Sensing Middleware for the Internet-of-Things. ACM/IMS Trans. Data Sci.
2021, 1, 1–21. doi:10.1145/3395233.

26. Pattar, S.; Buyya, R.; Venugopal, K.R.; Iyengar, S.S.; Patnaik, L.M. Searching for the IoT Resources: Fundamentals,
Requirements, Comprehensive Review, and Future Directions. IEEE Commun. Surv. Tutor. 2018, 20, 2101–2132.
doi:10.1109/COMST.2018.2825231.

https://doi.org/https://doi.org/10.1016/j.jksuci.2020.07.002
https://doi.org/10.1145/3385191
https://doi.org/10.1145/3389250
https://doi.org/10.1145/3395233
https://doi.org/10.1109/COMST.2018.2825231

Future Internet 2022, 14, 19 35 of 43

27. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey.
Commun. Surv. Tuts. 2018, 20, 2923–2960. doi:10.1109/COMST.2018.2844341.

28. Saha, A.K.; Kumar, A.; Tyagi, V.; Das, S. Big Data and Internet of Things: A Survey. In Proceedings of the 2018 International
Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13
October 2018; pp. 150–156. doi:10.1109/ICACCCN.2018.8748630.

29. Shadroo, S.; Rahmani, A.M. Systematic survey of big data and data mining in internet of things. Comput. Netw. 2018, 139, 19–47.
doi:https://doi.org/10.1016/j.comnet.2018.04.001.

30. Ettiyan, R.; Geetha, V. A Survey of Health Care Monitoring System for Maternity Women Using Internet-of-Things. In Proceedings
of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Coimbatore, India, 3–5 December 2020; pp.
1290–1296. doi:10.1109/ICISS49785.2020.9315950.

31. Eceiza, M.; Flores, J.L.; Iturbe, M. Fuzzing the Internet of Things: A Review on the Techniques and Challenges for Efficient
Vulnerability Discovery in Embedded Systems. IEEE Internet Things J. 2021, 8, 10390–10411. doi:10.1109/JIOT.2021.3056179.

32. Li, W. A Comprehensive Survey on Machine Learning-Based Big Data Analytics for IoT-Enabled Smart Healthcare System. Mob.
Netw. Appl. 2021, 26, 234–252. doi:10.1007/s11036-020-01700-6.

33. Ji, B.; Wang, Y.; Song, K.; Li, C.; Wen, H.; Menon, V.G.; Mumtaz, S. A Survey of Computational Intelligence for 6G: Key
Technologies, Applications and Trends. IEEE Trans. Ind. Informatics 2021, 17, 7145–7154. doi:10.1109/TII.2021.3052531.

34. Shah, S.D.A.; Gregory, M.A.; Li, S. Cloud-Native Network Slicing Using Software Defined Networking Based Multi-Access Edge
Computing: A Survey. IEEE Access 2021, 9, 10903–10924. doi:10.1109/ACCESS.2021.3050155.

35. Amin, S.U.; Hossain, M.S. Edge Intelligence and Internet of Things in Healthcare: A Survey. IEEE Access 2021, 9, 45–59.
doi:10.1109/ACCESS.2020.3045115.

36. Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and
Taxonomy. IoT 2021, 2, 92–118. doi:10.3390/iot2010006.

37. Nahar, S.; Zhong, T.; Monday, H.N.; Mills, M.O.; Nneji, G.U.; Abubakar, H.S. A Survey on Data Stream Mining Towards
the Internet of Things Application. In Proceedings of the 4th Technology Innovation Management and Engineering Science
International Conference (TIMES-iCON), Bangkok, Thailand, 11–13 December 2019.

38. Marjani, M. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261.
39. Ferrag, M.A.; Kouahla, Z.; Seridi, H.; Kurulay, M. Big IoT Data Indexing: Architecture, Techniques and Open Research Challenges.

In Proceedings of the 2019 International Conference on Networking and Advanced Systems (ICNAS), Annaba, Algeria, 26–27
June 2019; pp. 1–6.

40. Plageras, A.P.; Psannis, K.E.; Stergiou, C.; Wang, H.; Gupta, B.B. Efficient IoT-based sensor BIG Data collection–processing and
analysis in smart buildings. Future Gener. Comput. Syst. 2018, 82, 349–357.

41. Luong, N.C.; Hoang, D.T.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Data collection and wireless communication in Internet of
Things (IoT) using economic analysis and pricing models: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 2546–2590.

42. Lu, Y.; Misra, A.; Wu, H. Smartphone sensing meets transport data: A collaborative framework for transportation service
analytics. IEEE Trans. Mob. Comput. 2017, 17, 945–960.

43. Huang, D.Y.; Apthorpe, N.; Li, F.; Acar, G.; Feamster, N. IoT Inspector: Crowdsourcing Labeled Network Traffic from Smart
Home Devices at Scale. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–21.

44. Dinh, L.T.N.; Karmakar, G.; Kamruzzaman, J. A survey on context awareness in big data analytics for business applications.
Knowl. Inf. Syst. 2020, 62, 3387–3415.

45. Abbasi, A.; Sarker, S.; Chiang, R.H. Big data research in information systems: Toward an inclusive research agenda. J. Assoc. Inf.
Syst. 2016, 17, 3.

46. Canbay, Y.; Sağıroğlu, S. Big data anonymization with spark. In Proceedings of the 2017 International Conference on Computer
Science and Engineering (UBMK), Antalya, Turkey, 5–8 October 2017; pp. 833–838.

47. Omollo, R.; Alago, S. Data modeling techniques used for big data in enterprise networks. Int. J. Adv. Technol. Eng. Explor. 2020,
7, 79–92.

48. Niculescu, V. On the Impact of High Performance Computing in Big Data Analytics for Medicine. Appl. Med. Informatics 2020,
42, 9–18.

49. Benrazek, A.E.; Farou, B.; Kurulay, M. Efficient Camera Clustering Method Based on Overlapping FoVs for WMSNs. Int. J.
Informatics Appl. Math. 2019, 1, 10–23.

50. Bolettieri, P.; Falchi, F.; Lucchese, C.; Mass, Y.; Perego, R.; Rabitti, F.; Shmueli-Scheuer, M. Searching 100M Images by Content
Similarity. In Proceedings of the 5th Italian Research Conference on Digital Library Systems (IRCD), Modena, Italy, 26–27 January
2009; pp. 88–99.

51. Batko, M.; Novak, D.; Falchi, F.; Zezula, P. On scalability of the similarity search in the world of peers. In Proceedings of the 1st
International Conference on Scalable Information Systems (InfoScale); ACM Press: Hong Kong, China, 2006; pp. 20–31.

52. Smeulders, A.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. Content based image retrieval at the end of the early years. IEEE Trans.
Pattern Anal. Mach. Intell. 2000, 22, 1349–1380.

53. Bozkaya, T.; Özsoyoglu, M. Indexing large metric spaces for similarity search queries. ACM Trans. Database Syst. 1999, 24, 361–404.
54. Baral, C.; Gonzalez, G.; Son, T. Conceptual Modeling and Querying in Multimedia Databases. Multimed. Tools Appl. 1998,

7, 37–66.

https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.1109/ICACCCN.2018.8748630
https://doi.org/https://doi.org/10.1016/j.comnet.2018.04.001
https://doi.org/10.1109/ICISS49785.2020.9315950
https://doi.org/10.1109/JIOT.2021.3056179
https://doi.org/10.1007/s11036-020-01700-6
https://doi.org/10.1109/TII.2021.3052531
https://doi.org/10.1109/ACCESS.2021.3050155
https://doi.org/10.1109/ACCESS.2020.3045115
https://doi.org/10.3390/iot2010006

Future Internet 2022, 14, 19 36 of 43

55. Brin, S. Near neighbor search in large metric spaces. In Proceedings of the 21th International Conference on Very Large Data
Bases (VLDB 1995), Zurich, Switzerland, 11–15 September 1995.

56. Indyk, P.; Motwani, R. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing, Dallas, TX, USA, 24–26 May 1998; pp. 604–613.

57. Har-Peled, S.; Indyk, P.; Motwani, R. Approximate nearest neighbor: Towards removing the curse of dimensionality. Theory
Comput. 2012, 8, 321–350.

58. Zineddine, K.; Ferrag, M.A.; Anjum, A. Indexing multimedia data with an extension of binary tree–Image search by content. Int.
J. Informatics Appl. Math. 2021, 1, 54–63.

59. Özsu, M.T.; Valudriez, P. Principles of Distributed Database Systems; Prentice-Hall: Hoboken, NJ, USA, 1991; 562p.
60. Navarro, G. Searching in metric spaces by spatial approximation. VLDB J. 2002, 11, 28–46.
61. Chavez, E.; Navarro, G.; Marroquin, J.L.; Baeza-Yates, R. Searching in Metric Spaces. ACM Comput. Surv. 2001, 33, 273–321.
62. Pagh, R.; Silvestri, F.; Sivertsen, J.; Skala, M. Approximate Furthest Neighbor in High Dimensions. In Proceedings of the Similarity

Search and Applications–8th International Conference, SISAP 2015, Glasgow, UK, 12–14 October 2015.
63. Wang, J.; Shen, H.T.; Song, J.; Ji, J. Hashing for similarity search: A survey. arXiv 2014, arXiv:1408.2927.
64. Desai, M.; Mehta, R.G.; Rana, D.P. A Survey on Techniques for Indexing and Hashing in Big Data. In Proceedings of the 2018 4th

International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018;
pp. 1–6.

65. Nashipudimath, M.M.; Shinde, S.K. Indexing in Big Data. In Computing, Communication and Signal Processing; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 133–142.

66. Shang, L.; Yang, L.; Wang, F.; Chan, K.P.; Hua, X.S. Real-time large scale near-duplicate web video retrieval. In Proceedings of the
18th ACM International Conference on Multimedia, Virtual, 25–29 October 2010; pp. 531–540.

67. Gionis, A.; Indyk, P.; Motwani, R. Similarity search in high dimensions via hashing. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB), Scotland, UK, 7–10 September 1999; Volume 99, pp. 518–529.

68. Wang, J.; Liu, W.; Kumar, S.; Chang, S.F. Learning to hash for indexing big data—A survey. Proc. IEEE 2015, 104, 34–57.
69. Lv, Q.; Josephson, W.; Wang, Z.; Charikar, M.; Li, K. Multi-probe LSH: Efficient indexing for high-dimensional similarity search. In

Proceedings of the 33rd international conference on Very large data bases. VLDB Endowment, Vienna, Austria, 23–27 September
2007; pp. 950–961.

70. Dong, W.; Wang, Z.; Josephson, W.; Charikar, M.; Li, K. Modeling LSH for performance tuning. In Proceedings of the 17th ACM
conference on Information and knowledge management, Napa Valley, CA, USA, 26–30 October 2008; pp. 669–678.

71. Satuluri, V.; Parthasarathy, S. Bayesian locality sensitive hashing for fast similarity search. Proc. Vldb Endow. 2012, 5, 430–441.
72. Shakhnarovich, G. Learning Task-Specific Similarity. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA ,

USA, 005.
73. Ji, J.; Li, J.; Yan, S.; Zhang, B.; Tian, Q. Super-bit locality-sensitive hashing. In Advances in Neural Information Processing Systems;

Springer: Berlin/Heidelberg, Germany, 2012; pp. 108–116.
74. Mu, Y.; Yan, S. Non-metric locality-sensitive hashing. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial

Intelligence, Atlanta, GE, USA, 11–15 July 2010.
75. Kulis, B.; Grauman, K. Kernelized locality-sensitive hashing for scalable image search. In Proceedings of the 2009 IEEE 12th

International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; Volume 9, pp. 2130–2137.
76. Shrivastava, A.; Li, P. Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). In Advances in Neural

Information Processing Systems; Spinger: Berlin/Heidelberg, Germany, 2014; pp. 2321–2329.
77. Li, Z.; Zhang, X.; Müller, H.; Zhang, S. Large-scale retrieval for medical image analytics: A comprehensive review. Med. Image

Anal. 2018, 43, 66–84.
78. Weiss, Y.; Torralba, A.; Fergus, R. Spectral hashing. In Advances in Neural Information Processing Systems; Spinger:

Berlin/Heidelberg, Germany, 2009; pp. 1753–1760.
79. Jiang, Q.Y.; Li, W.J. Scalable graph hashing with feature transformation. In Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.
80. Liu, W.; Mu, C.; Kumar, S.; Chang, S.F. Discrete graph hashing. In Advances in Neural Information Processing Systems; Spinger:

Berlin/Heidelberg, Germany, 2014; pp. 3419–3427.
81. Shi, X.; Xing, F.; Xu, K.; Sapkota, M.; Yang, L. Asymmetric discrete graph hashing. In Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
82. Tian, L.; Fan, C.; Ming, Y. Learning spherical hashing based binary codes for face recognition. Multimed. Tools Appl. 2017,

76, 13271–13299.
83. Heo, J.P.; Lee, Y.; He, J.; Chang, S.F.; Yoon, S.E. Spherical hashing. In Proceedings of the 2012 IEEE Conference on Computer

Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 2957–2964.
84. Liu, X.; Mu, Y.; Zhang, D.; Lang, B.; Li, X. Large-scale unsupervised hashing with shared structure learning. IEEE Trans. Cybern.

2014, 45, 1811–1822.
85. Shen, F.; Shen, C.; Shi, Q.; Van Den Hengel, A.; Tang, Z. Inductive hashing on manifolds. In Proceedings of the IEEE conference

on computer vision and pattern recognition, Portland, OR, USA, 23–28 June 2013; pp. 1562–1569.

Future Internet 2022, 14, 19 37 of 43

86. Irie, G.; Li, Z.; Wu, X.M.; Chang, S.F. Locally linear hashing for extracting non-linear manifolds. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2115–2122.

87. Xie, L.; Shen, J.; Han, J.; Zhu, L.; Shao, L. Dynamic multi-view hashing for online image retrieval. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 19–25 August 2017; Volume 437, pp.
3133–3139.

88. Lu, X.; Zhu, L.; Cheng, Z.; Li, J.; Nie, X.; Zhang, H. Flexible Online Multi-modal Hashing for Large-scale Multimedia Retrieval. In
Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1129–1137.

89. Yang, Y.; Shen, F.; Shen, H.T.; Li, H.; Li, X. Robust discrete spectral hashing for large-scale image semantic indexing. IEEE Trans.
Big Data 2015, 1, 162–171.

90. Mourão, A.; Magalhães, J. Towards Cloud Distributed Image Indexing by Sparse Hashing. In Proceedings of the 2019 on
International Conference on Multimedia Retrieval, Ottawa, ON, Canada, 10–13 June 2019; pp. 288–296.

91. Lin, G.; Shen, C.; Shi, Q.; Van den Hengel, A.; Suter, D. Fast supervised hashing with decision trees for high-dimensional data. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp.
1963–1970.

92. Xia, R.; Pan, Y.; Lai, H.; Liu, C.; Yan, S. Supervised hashing for image retrieval via image representation learning. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, QC, Canada, 27–31 July 2014.

93. Kraska, T.; Beutel, A.; Chi, E.H.; Dean, J.; Polyzotis, N. The case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 489–504.

94. Beutel, A.; Kraska, T.; Chi, E.; Dean, J.; Polyzotis, N. A Machine Learning Approach to Databases Indexes. In Proceedings of the
ML Systems Workshop at NIPS 2017, Long Beach, CA, USA, 8 December 2017

95. Patel, F.S.; Kasat, D. Hashing based indexing techniques for content based image retrieval: A survey. In Proceedings of the 2017
International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 February 2017;
pp. 279–283.

96. Liu, W.; Wang, J.; Ji, R.; Jiang, Y.G.; Chang, S.F. Supervised hashing with kernels. In Proceedings of the 2012 IEEE Conference on
Computer Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 2074–2081.

97. Strecha, C.; Bronstein, A.; Bronstein, M.; Fua, P. LDAHash: Improved matching with smaller descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 34, 66–78.

98. Shen, F.; Shen, C.; Liu, W.; Tao Shen, H. Supervised discrete hashing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 37–45.

99. Norouzi, M.; Blei, D.M. Minimal loss hashing for compact binary codes. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 353–360.

100. Gui, J.; Liu, T.; Sun, Z.; Tao, D.; Tan, T. Fast supervised discrete hashing. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 490–496.
101. Kang, W.C.; Li, W.J.; Zhou, Z.H. Column sampling based discrete supervised hashing. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
102. Wang, J.; Kumar, S.; Chang, S.F. Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 2012,

34, 2393–2406.
103. Wang, J.; Kumar, S.; Chang, S.F. Sequential projection learning for hashing with compact codes. In Proceedings of the 27th

International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
104. Mu, Y.; Shen, J.; Yan, S. Weakly-supervised hashing in kernel space. In Proceedings of the 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3344–3351.
105. Kim, S.; Choi, S. Semi-supervised discriminant hashing. In Proceedings of the 2011 IEEE 11th International Conference on Data

Mining, Vancouver, BC, Canada, 11 December 2011; pp. 1122–1127.
106. Wu, C.; Zhu, J.; Cai, D.; Chen, C.; Bu, J. Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE

Trans. Knowl. Data Eng. 2012, 25, 1380–1393.
107. Zhang, L.; Zhang, Y.; Tang, J.; Gu, X.; Li, J.; Tian, Q. Topology preserving hashing for similarity search. In Proceedings of the 21st

ACM International Conference on Multimedia, Barcelona, Spain, 21–25 October 2013; pp. 123–132.
108. Zhang, L.; Zhang, Y.; Gu, X.; Tang, J.; Tian, Q. Scalable similarity search with topology preserving hashing. IEEE Trans. Image

Process. 2014, 23, 3025–3039.
109. Zhang, C.; Zheng, W.S. Semi-supervised multi-view discrete hashing for fast image search. IEEE Trans. Image Process. 2017,

26, 2604–2617.
110. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens.

2015, 2015. https://doi.org/10.1155/2015/258619.
111. Lakshmanaprabu, S.; Mohanty, S.N.; Shankar, K.; Arunkumar, N.; Ramirez, G. Optimal deep learning model for classification of

lung cancer on CT images. Future Gener. Comput. Syst. 2019, 92, 374–382.
112. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.

arXiv 2018, arXiv:1809.02165.
113. Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced deep-learning techniques for salient and category-specific object

detection: a survey. IEEE Signal Process. Mag. 2018, 35, 84–100.

Future Internet 2022, 14, 19 38 of 43

114. Xu, J.; Wang, P.; Tian, G.; Xu, B.; Zhao, J.; Wang, F.; Hao, H. Convolutional neural networks for text hashing. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

115. Lai, H.; Pan, Y.; Liu, Y.; Yan, S. Simultaneous feature learning and hash coding with deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 July 2015; pp. 3270–3278.

116. Zhang, R.; Lin, L.; Zhang, R.; Zuo, W.; Zhang, L. Bit-scalable deep hashing with regularized similarity learning for image retrieval
and person re-identification. IEEE Trans. Image Process. 2015, 24, 4766–4779.

117. Jiang, Q.Y.; Li, W.J. Asymmetric Deep Supervised Hashing. arXiv 2017, arXiv:1707.08325, [arXiv:cs.LG/1707.08325].
118. He, K.; Cakir, F.; Adel Bargal, S.; Sclaroff, S. Hashing as tie-aware learning to rank. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4023–4032.
119. Li, W.J.; Wang, S.; Kang, W.C. Feature learning based deep supervised hashing with pairwise labels. arXiv 2015, arXiv:1511.03855.
120. Cakir, F.; He, K.; Bargal, S.A.; Sclaroff, S. Hashing with mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2019 41,

2424–2437.
121. Wang, S.; Li, C.; Shen, H. Equivalent Continuous Formulation of General Hashing Problem. IEEE Trans. Cybern. 2019, 1–11.

doi:10.1109/TCYB.2019.2894020.
122. Chi, L.; Zhu, X. Hashing techniques: A survey and taxonomy. ACM Comput. Surv. 2017, 50, 11.
123. Li, P.; Zhu, X.; Zhang, X.; Ren, P.; Wang, L. Hash Code Reconstruction for Fast Similarity Search. IEEE Signal Process. Lett. 2019,

26, 695–699.
124. Weber, R.; Blott, S. An Approximation Based Data Structure for Similarity Search; Technical Report; Eidgenössische Technische

Hochschule Zürich: Zurich, Swiss, 1997.
125. Srinivasan, V.; Carey, M.J. Performance of B-tree concurrency control algorithms. In Proceedings of the 1991 ACM SIGMOD

International Conference on management of Data, Denver, CO, USA, 29–31 May 1991; pp. 416–425.
126. Srinivasan, V.; Carey, M.J. Performance of B+ tree concurrency control algorithms. VLDB J. 1993, 2, 361–406.
127. Lehman, T.J.; Carey, M.J. A Study of Index Structures for Main Memory Database Management Systems; Technical Report; University

of Wisconsin-Madison Department of Computer Sciences: Madison, WI, USA, 1985.
128. Bayer, R. The universal B-tree for multidimensional indexing: General concepts. In Proceedings of the International Conference

on Worldwide Computing and Its Applications, Tsukuba, Japan, 10–11 March 1997; pp. 198–209.
129. Fenk, R. The BUB-tree. In Proceedings of the VLDB’02, Proceedings of 28th International Conference on Very Large Data Bases,

Hong Kong, China, 20–23 August 2002.
130. Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching; ACM: New York, NY, USA, 1984.
131. Berchtold, S.; Keim, D.A.; Kriegel, H.P. The X-tree: An Index Structure for High-Dimensional Data. In Proceedings of the 22th

International Conference on Very Large Data Bases; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1996; pp. 28–39.
132. Katayama, N.; Satoh, S. The SR-tree: An index structure for high-dimensional nearest neighbor queries. ACM Sigmod Rec. 1997,

26, 369–380.
133. Abbasifard, M.R.; Ghahremani, B.; Naderi, H. A survey on nearest neighbor search methods. Int. J. Comput. Appl. 2014, 95.
134. Watve, A.; Pramanik, S.; Shahid, S.; Meiners, C.R.; Liu, A.X. Topological transformation approaches to database query processing.

IEEE Trans. Knowl. Data Eng. 2014, 27, 1438–1451.
135. Katayama, N.; Satoh, S.I. The SR-tree: an index structure for highdimensional nearest neighbor queries. In Proceedings of the

1997 ACM SIGMOD International Conference on Management of Data, Tucson, AZ, USA, 13–15 May 1997.
136. Manolopoulos, Y.; Nanopoulos, A.; Papadopoulos, A.N.; Theodoridis, Y. R-Trees: Theory and Applications; Springer Science &

Business Media: Berlin, Germany, 2010.
137. Sellis, T.; Roussopoulos, N.; Faloutsos, C. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects; Technical Report; Springer:

Berlin, Germany, 1987.
138. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and rectangles.

ACM Sigmod Rec. 1990, 19, 322–331.
139. Kamel, I.; Faloutsos, C. Hilbert R-tree: An improved R-Tree Using Fractals; Technical Report; Springer: Berlin, Germany, 1993.
140. White, D.A.; Jain, R. Similarity indexing with the SS-tree. In Proceedings of the Twelfth International Conference on Data

Engineering, New Orleans, LA, USA, 26 February–1 March 1996; pp. 516–523.
141. Böhm, C.; Berchtold, S.; Keim, D.A. Searching in high-dimensional spaces: Index structures for improving the performance of

multimedia databases. ACM Comput. Surv. 2001, 33, 322–373.
142. Yang, Y.; Bai, P.; Ge, N.; Gao, Z.; Qiu, X. LAZY R-tree: The R-tree with lazy splitting algorithm. J. Inf. Sci. 2019, 46, 243–257.
143. Wang, Z.; Luo, T.; Xu, G.; Wang, X. A new indexing technique for supporting by-attribute membership query of multidimensional

data. In Proceedings of the International Conference on Web-Age Information Management, Beidaihe, China, 14–16 June 2013;
pp. 266–277.

144. Wang, Y.; Yun, X.; Wang, X.; Wang, S.; Wu, Y. LBFM: Multi-Dimensional Membership Index for Block-Level Data Skipping. In
Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Orlando, FL, USA, 29 May–2 June 2017;
pp. 343–351.

145. Wang, X.; Meng, W.; Zhang, M. A novel information retrieval method based on R-tree index for smart hospital information
system. Int. J. Adv. Comput. Res. 2019, 9, 133–145.

http://xxx.lanl.gov/abs/1707.08325
https://doi.org/10.1109/TCYB.2019.2894020

Future Internet 2022, 14, 19 39 of 43

146. Zhang, P.; Zhou, C.; Wang, P.; Gao, B.J.; Zhu, X.; Guo, L. E-tree: An efficient indexing structure for ensemble models on data
streams. IEEE Trans. Knowl. Data Eng. 2014, 27, 461–474.

147. Tabassum, N.; Ahmed, T. A theoretical study on classifier ensemble methods and its applications. In Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016;
pp. 374–378.

148. Nalavade, J.E.; Murugan, T.S. HRNeuro-fuzzy: Adapting neuro-fuzzy classifier for recurring concept drift of evolving data
streams using rough set theory and holoentropy. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 498–509.

149. Balasubramanian, B.; Durai, K.; Sathyanarayanan, J.; Muthukumarasamy, S. Tree Based Fast Similarity Query Search Indexing on
Outsourced Cloud Data Streams. Int. Arab J. Inf. Technol. 2019, 16, 871–878.

150. Jin, P.; Song, Q. A novel index structure r* q-tree based on lazy splitting and clustering. In Proceedings of the 2011 IEEE
International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; pp. 405–407.

151. Günnemann, S.; Kremer, H.; Lenhard, D.; Seidl, T. Subspace clustering for indexing high dimensional data: a main memory
index based on local reductions and individual multi-representations. In Proceedings of the 14th International Conference on
Extending Database Technology, Edinburgh, UK, 29 March–1 April 2011; pp. 237–248.

152. Wang, Y.; Lin, Y.; Yang, J. KD-tree based clustering algorithm for fast face recognition on large-scale data. In Proceedings of the
Seventh International Conference on Digital Image Processing (ICDIP 2015), Angeles, CA, USA, 9–10 April 2015; p. 96311I.

153. Zhang, S.; Liu, X.; Zhang, M.; Wo, T. PaIndex: An online index system for vehicle trajectory data exploiting parallelism. In
Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November
2017; pp. 696–703.

154. Wang, Y.; Zhao, C.; Wang, Z.; Du, J.; Liu, C.; Yan, H.; Wen, J.; Hou, H.; Zhou, K. MLB+-tree: A Multi-level B+-tree Index for
Multidimensional Range Query on Seismic Data. In Proceedings of the 2018 5th International Conference on Systems and
Informatics (ICSAI), Nanjing, China, 10–12 November 2018; pp. 1176–1181.

155. Samson, G.; Joan, L.; Usman, M.M.; Showole, A.A.; Hadeel, H.J. Large Spatial Database Indexing with aX-tree. Int. J. Sci. Res.
Comput. Sci. Eng. Inf. Technol. 2018, 3, 759–773.

156. Doja, M.; Jain, S.; Alam, M.A. SAS: Implementation of scaled association rules on spatial multidimensional quantitative dataset.
Int. J. Adv. Comput. Sci. Appl. 2012, 3, 130–135.

157. Sprenger, S.; Schäfer, P.; Leser, U. BB-Tree: A Main-Memory Index Structure for Multidimensional Range Queries. In Proceedings
of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1566–1569.

158. Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517.
159. Finkel, R.A.; Bentley, J.L. Quad trees a data structure for retrieval on composite keys. Acta Inform. 1974, 4, 1–9.
160. Samet, H. The quadtree and related hierarchical data structures. ACM Comput. Surv. 1984, 16, 187–260.
161. Berchtold, S.; Böhm, C.; Kriegal, H.P. The pyramid-technique: Towards breaking the curse of dimensionality. ACM Sigmod Rec.

1998, 27, 142–153.
162. Weber, R.; Schek, H.J.; Blott, S. A quantitative analysis and performance study for similarity-search methods in high-dimensional

spaces. In Proceedings of the 24rd International Conference on Very Large Data Bases (VLDB), New York, NY, USA, 24–27 August
1998; Volume 98, pp. 194–205.

163. Ahn, H.K.; Mamoulis, N.; Wong, H.M. A Survey on Multidimensional Access Methods. Available online: https://www.
researchgate.net/publication/2383731_A_Survey_on_Multidimensional_Access_Methods (accessed on 15 November 2021).

164. Bentley, J.L. Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 1979, 333–340.
165. Berg, M.d.; Cheong, O.; Kreveld, M.v.; Overmars, M. Computational Geometry: Algorithms and Applications, 3rd ed.; Springer-Verlag

TELOS: Santa Clara, CA, USA, 2008.
166. Otair, D. Approximate k-nearest neighbour based spatial clustering using kd tree. arXiv 2013, arXiv:1303.1951.
167. Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An algorithm for finding best matches in logarithmic time. ACM Trans. Math. Softw.

1976, 3, 209–226.
168. Robinson, J.T. The KDB-tree: A search structure for large multidimensional dynamic indexes. In Proceedings of the 1981 ACM

SIGMOD International Conference on Management of Data, Ann Arbor, MI, USA, 29 April–1 May 1981, pp. 10–18.
169. Ooi, B.C. Spatial kd-tree: A data structure for geographic database. Datenbanksysteme in Büro, Technik und Wissenschaft; Springer:

Berlin, Germany, 1987; pp. 247–258.
170. Visheratin, A.A.; Mukhina, K.D.; Visheratina, A.K.; Nasonov, D.; Boukhanovsky, A.V. Multiscale event detection using convolu-

tional quadtrees and adaptive geogrids. In Proceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events
and News, Seattle, WA, USA, 6 November 2018; p. 1.

171. Böhm, C.; Berchtold, S.; Kriegel, H.P.; Michel, U. Multidimensional index structures in relational databases. J. Intell. Inf. Syst.
2000, 15, 51–70.

172. Yu, D.; Zhang, A. ClusterTree: Integration of Cluster Representation and Nearest Neighbor Search for Large Datasets with High
Dimensionality. In Proceedings of the 2000 IEEE International Conference on Multimedia and Expo (ICME2000), New York, NY,
USA, 30 July–2 August 2000; Volume 15, pp. 1316–1337.

173. Pillai, K.G.; Sturlaugson, L.; Banda, J.M.; Angryk, R.A. Extending high-dimensional indexing techniques pyramid and iminmax
(θ): Lessons learned. In British National Conference on Databases; Springer: Berlin, Germany, 2013; pp. 253–267.

https://www.researchgate.net/publication/2383731_A_Survey_on_Multidimensional_Access_Methods
https://www.researchgate.net/publication/2383731_A_Survey_on_Multidimensional_Access_Methods

Future Internet 2022, 14, 19 40 of 43

174. Zhang, R.; Ooi, B.C.; Tan, K.L. Making the pyramid technique robust to query types and workloads. I In Proceedings of the 20th
International Conference on Data Engineering, Boston, MA, USA, 2 April 2004; pp. 313–324.

175. An, J.; Chen, Y.P.P.; Xu, Q.; Zhou, X. A new indexing method for high dimensional dataset. In International Conference on Database
Systems for Advanced Applications; Springer: Berlin, Germany, 2005; pp. 385–397.

176. Zäschke, T.; Zimmerli, C.; Norrie, M.C. The PH-tree: A space-efficient storage structure and multi-dimensional index. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014;
pp. 397–408.

177. Germann, U.; Joanis, E.; Larkin, S. Tightly packed tries: How to fit large models into memory, and make them load fast, too.
In Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language
Processing, Boulder, CO, USA, 5 June 2009; pp. 31–39.

178. Mahmood, A.R.; Punni, S.; Aref, W.G. Spatio-temporal access methods: A survey (2010–2017). GeoInformatica 2019, 23, 1–36.
179. Vancea, B.A. Cluster-Computing and Parallelization for the Multi-Dimensional PH-Index. Master’s Thesis, ETH Zurich, Zürich,

Switzerland, 2015.
180. Zäschke, T. The PH-Tree Revisited. Available online: https://www.researchgate.net/publication/283305212_The_PH-Tree_

Revisited (accessed on 15 November 2021) .
181. Adrien, F.B. Data Preprocessing and Other Improvements for the Multi-Dimensional PH-Index. Master’s Thesis, ETH Zurich,

Zürich, Switzerland, 2014.
182. Lejsek, H. NV-tree: A Scalable Disk-Based high-Dimensional Index. Ph.D. Dissertation, Reykjavík University, Reykjavík, Iceland,

May 2015.
183. Costa, F. ND-Tree: Multidimensional Indexing Structure; Novas Edições Acadêmicas: Chisinau, Moldova, 2017.
184. Jo, B.; Jung, S. Quadrant-Based Minimum Bounding Rectangle-Tree Indexing Method for Similarity Queries over Big Spatial Data

in HBase. Sensors 2018, 18, 3032.
185. Jang, H.J.; Kim, B.; Jung, S.Y. k-nearest reliable neighbor search in crowdsourced LBSs. Int. J. Commun. Syst. 2021, 34, e4097.
186. Dong, Y.; He, J.; Yao, S.; Zhou, W. The skip-octree: A dynamic cloud storage index framework for multidimensional big data

systems. Int. J. Web Eng. Technol. 2015, 10, 393–407.
187. Malhotra, S.; Doja, M.N.; Alam, B.; Alam, M. Skipnet-Octree Based Indexing Technique for Cloud Database Management System.

Int. J. Inf. Technol. Web Eng. 2018, 13, 1–13.
188. Harvey, N.J.; Dunagan, J.; Jones, M.; Saroiu, S.; Theimer, M.; Wolman, A. Skipnet: A scalable overlay network with practical

locality properties. In Proceedings of USITS’03: 4th USENIX Symposium on Internet Technologies and Systems, Seattle, WA,
USA, 26–28 March 2003.

189. Tang, X.; Han, B.; Chen, H. A hybrid index for multi-dimensional query in HBase. In Proceedings of the 2016 4th International
Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, China, 17–19 August 2016; pp. 332–336.

190. Feng, C.; Li, C.D.; Li, R. Indexing techniques of distributed ordered tables: A survey and analysis. J. Comput. Sci. Technol. 2018,
33, 169–189.

191. Sprenger, S.; Schäfer, P.; Leser, U. BB-Tree: A practical and efficient main-memory index structure for multidimensional workloads.
In Proceedings of the 22nd International Conference on Extending Database Technology (EDBT), Lisbon, Portugal, 26–29 March
2019; pp. 169–180.

192. Antoshenkov, G. Byte-aligned bitmap compression. In Proceedings of the DCC’95 Data Compression Conference, Snowbird, UA,
USA, 28–30 March 1995; p. 476.

193. Antoshenkov, G.; Ziauddin, M. Query processing and optimization in Oracle Rdb. VLDB J. 1996, 5, 229–237.
194. O’Neil, P.; Quass, D. Improved query performance with variant indexes. ACM Sigmod Rec. 1997, 26, 38–49.
195. MacNicol, R.; French, B. Sybase IQ multiplex-designed for analytics. In Proceedings of the Thirtieth international conference on

Very large data bases-Volume 30. VLDB Endowment, Toronto, ON, Canada, 2–4 April 2004; pp. 1227–1230.
196. Chan, C.Y.; Ioannidis, Y.E. Bitmap index design and evaluation. ACM Sigmod Rec. 1998, 27, 355–366.
197. Wu, Y.; Chen, Z.; Wen, Y.; Zheng, W.; Cao, J. Combat: A new bitmap index coding algorithm for big data. Tsinghua Sci. Technol.

2016, 21, 136–145.
198. Wu, K.; Otoo, E.J.; Shoshani, A. Compressing bitmap indexes for faster search operations. In Proceedings of the 14th International

Conference on Scientific and Statistical Database Management, Scotland, UK, 24–26 July 2002; pp. 99–108.
199. Wu, K.; Otoo, E.J.; Shoshani, A. Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 2006, 31, 1–38.
200. Deliège, F.; Pedersen, T.B. Position list word aligned hybrid: optimizing space and performance for compressed bitmaps. In

Proceedings of the 13th international conference on Extending Database Technology, Lausanne, Switzerland, 22–26 March 2010;
pp. 228–239.

201. Lemire, D.; Kaser, O.; Aouiche, K. Sorting improves word-aligned bitmap indexes. Data Knowl. Eng. 2010, 69, 3–28.
202. Colantonio, A.; Di Pietro, R. Concise: Compressed ‘n’composable integer set. Inf. Process. Lett. 2010, 110, 644–650.
203. Guzun, G.; Canahuate, G.; Chiu, D.; Sawin, J. A tunable compression framework for bitmap indices. In Proceedings of the 2014

IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014; pp. 484–495.
204. Wen, Y.; Chen, Z.; Ma, G.; Cao, J.; Zheng, W.; Peng, G.; Li, S.; Huang, W.L. SECOMPAX: A bitmap index compression algorithm.

In Proceedings of the 2014 23rd International Conference on Computer Communication and Networks (ICCCN), Shanghai, China,
4–7 August 2014; pp. 1–7.

 https://www.researchgate.net/publication/283305212_The_PH-Tree_Revisited
 https://www.researchgate.net/publication/283305212_The_PH-Tree_Revisited

Future Internet 2022, 14, 19 41 of 43

205. Kim, S.; Lee, J.; Satti, S.R.; Moon, B. SBH: Super byte-aligned hybrid bitmap compression. Inf. Syst. 2016, 62, 155–168.
206. Chambi, S.; Lemire, D.; Kaser, O.; Godin, R. Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 2016, 46, 709–719.
207. Chang, J.; Chen, Z.; Zheng, W.; Cao, J.; Wen, Y.; Peng, G.; Huang, W.L. SPLWAH: A bitmap index compression scheme for

searching in archival internet traffic. In Proceedings of the 2015 IEEE International Conference on Communications (ICC),
London, UK, 8–12 June 2015; pp. 7089–7094.

208. Li, C.; Chen, Z.; Zheng, W.; Wu, Y.; Cao, J. BAH: A bitmap index compression algorithm for fast data retrieval. In Proceedings of
the 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab Emirates, 7–10 November 2016; pp.
697–705.

209. Nagarkar, P.; Candan, K.S.; Bhat, A. Compressed spatial hierarchical bitmap (cSHB) indexes for efficiently processing spatial
range query workloads. Proc. Vldb Endow. 2015, 8, 1382–1393.

210. Zheng, W.; Liu, Y.; Chen, Z.; Cao, J. CODIS: A New Compression Scheme for Bitmap Indexes. In Proceedings of the Symposium on
Architectures for Networking and Communications Systems; IEEE Press: Piscataway, NJ, USA, 2017; pp. 103–104.

211. Keawpibal, N.; Preechaveerakul, L.; Vanichayobon, S. HyBiX: A novel encoding bitmap index for space-and time-efficient query
processing. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 1504–1522.

212. Fusco, F.; Stoecklin, M.P.; Vlachos, M. Net-fli: On-the-fly compression, archiving and indexing of streaming network traffic. Proc.
VLDB Endow. 2010, 3, 1382–1393.

213. Athanassoulis, M.; Yan, Z.; Idreos, S. Upbit: Scalable in-memory updatable bitmap indexing. In Proceedings of the 2016
International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1319–1332.

214. Sriharsha, C.; Kumar, P.; Jindal, A. Upbit with Parallelized Merge. In Proceedings of the 2019 9th International Conference on
Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; pp. 625–629.

215. Yianilos, P.N. Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces. Available online:
http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf (accessed on 15 November 2021).

216. Bozkaya, T.; Ozsoyoglu, M. Distance-based indexing for high-dimensional metric spaces. ACM Sigmod Rec. 1997, 26, 357–368.
217. Pola, I.R.V.; Traina, C., Jr.; Traina, A.J.M. The MM-Tree: A Memory-Based Metric Tree Without Overlap Between Nodes. In

Proceedings of the East European Conference on Advances in Databases and Information Systems (ADBIS), Varna, Bulgaria, 29
September–3 October 2007; Volume 4690, pp. 157–171.

218. Uhlmann, J.K. Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 1991, 40, 175–179.
219. Paredes, R.U.; Navarro, G. EGNAT: A Fully Dynamic Metric Access Method for Secondary Memory. In Proceedings of

the 2009 Second International Workshop on Similarity Search and Applications, Prague, Czech Republic, 28–30 August 2009.
doi:10.1109/SISAP.2009.20.

220. Zhou, X.; Wang, G.; Yu, J.X.; Yu, G. M+-tree: A new dynamical multidimensional index for metric spaces. In Proceedings of the 14th
Australasian Database Conference-Volume 17, Adelaide, Australia, 1 February 2003; Australian Computer Society, Inc.: Darlinghurst,
Australia, 2003; pp. 161–168.

221. Cheng, H.; Yang, W.; Tang, R.; Mao, J.; Luo, Q.; Li, C.; Wang, A. Distributed indexes design to accelerate similarity based images
retrieval in airport video monitoring systems. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 1908–1912.

222. Carélo, C.C.M.; Pola, I.R.V.; Ciferri, R.R.; Traina, A.J.M.; Traina, C., Jr.; de Aguiar Ciferri, C.D. Slicing the metric space to provide
quick indexing of complex data in the main memory. Inf. Syst 2011, 36, 79–98.

223. Kouahla, Z.; Martinez, J. A new intersection tree for content-based image retrieval. In Proceedings of the 2012 10th International
Workshop on Content-Based Multimedia Indexing (CBMI), Annecy, France, 27–29 June 2012; pp. 1–6.

224. Kouahla, Z.; Anjum, A.; Akram, S.; Saba, T.; Martinez, J. XM-tree: Data driven computational model by using metric extended
nodes with non-overlapping in high-dimensional metric spaces. Comput. Math. Organ. Theory 2019, 25, 196–223.

225. Pola, I.R.V.; Traina Jr, C.; Traina, A.J.M. The NOBH-tree: Improving in-memory metric access methods by using metric hyperplanes
with non-overlapping nodes. Data Knowl. Eng. 2014, 94, 65–88.

226. Dolatshah, M.; Hadian, A.; Minaei-Bidgoli, B. Ball*-tree: Efficient spatial indexing for constrained nearest-neighbor search in
metric spaces. arXiv 2015, arXiv:1511.00628.

227. Omohundro, S.M. Five Balltree Construction Algorithms; International Computer Science Institute Berkeley: Berkeley, CA, USA,
1989.

228. Liu, T.; Moore, A.W.; Gray, A. New algorithms for efficient high-dimensional nonparametric classification. J. Mach. Learn. Res.
2006, 7, 1135–1158.

229. Benrazek, A.E.; Kouahla, Z.; Farou, B.; Ferrag, M.A.; Seridi, H.; Kurulay, M. An efficient indexing for Internet of Things massive
data based on cloud-fog computing. Trans. Emerg. Telecommun. Technol. 2020. doi:10.1002/ett.3868.

230. Kemouguette, I.; Kouahla, Z.; Benrazek, A.E.; Farou, B.; Seridi, H. Cost-Effective Space Partitioning Approach for IoT Data
Indexing and Retrieval. In Proceedings of the 2021 International Conference on Networking and Advanced Systems (ICNAS),
Annaba, AL, USA, 26–27 June 2021; pp. 1–6.

231. Khettabi, K.; Kouahla, Z.; Farou, B.; Seridi, H. QCCF-tree: A New Efficient IoT Big Data Indexing Method at the Fog-Cloud
Computing Level. In Proceedings of the 2021 IEEE International Smart Cities Conference (ISC2), Online, 7–10 September 2021;
pp. 1–7.

http://algorithmics.lsi.upc.edu/docs/practicas/p311-yianilos.pdf
https://doi.org/10.1109/SISAP.2009.20
https://doi.org/10.1002/ett.3868

Future Internet 2022, 14, 19 42 of 43

232. Kalantari, I.; McDonald, G. A data structure and an algorithm for the nearest point problem. IEEE Trans. Softw. Eng. 1983,
631–634.

233. Faloutsos, C.; Lin, K.I. FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and Multimedia Datasets;
ACM: New York, NY, USA, 1995.

234. McNames, J. A nearest trajectory strategy for time series prediction. In Proceedings of the International Workshop on Advanced
Black-Box Techniques for Nonlinear Modeling, Leuven, Belgium, 8–10 July 1998; pp. 112–128.

235. Merkwirth, C.; Parlitz, U.; Lauterborn, W. Fast nearest-neighbor searching for nonlinear signal processing. Phys. Rev. E 2000,
62, 2089.

236. Kouahla, Z.; Anjum, A. A Parallel Implementation of GHB Tree. In IFIP International Conference on Computational Intelligence and
Its Applications; Springer: Berlin, Germany, 2018, pp. 47–55.

237. Wan, Y.; Liu, X. CD-Tree: A clustering-based dynamic indexing and retrieval approach. Intell. Data Anal. 2017, 21, 243–261.
238. Chen, L.; Gao, Y.; Li, X.; Jensen, C.S.; Chen, G. Efficient metric indexing for similarity search. In Proceedings of the 2015 IEEE 31st

International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 591–602.
239. Chen, L.; Gao, Y.; Li, X.; Jensen, C.S.; Chen, G. Efficient Metric Indexing for Similarity Search and Similarity Joins. IEEE Trans.

Knowl. Data Eng. 2015, 29, 556–571.
240. Perdacher, M.; Plant, C.; Böhm, C. Cache-oblivious high-performance similarity join. In Proceedings of the 2019 International

Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 87–104.
241. Ciaccia, P.; Patella, M.; Zezula, P. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. In Proceedings of the

23rd VLDB Conference, Athens, Greece, 25–29 August 1997; pp. 426–435.
242. Zhou, X.; Wang, G.; Zhou, X.; Yu, G. BM+-tree: A hyperplane-based index method for high-dimensional metric spaces. In

International Conference on Database Systems for Advanced Applications; Springer: Berlin, Germany, 2005; pp. 398–409.
243. Traina, C.; Traina, A.; Seeger, B.; Faloutsos, C. Slim-trees: High performance metric trees minimizing overlap between nodes. In

International Conference on Extending Database Technology; Springer: Berlin, Germany, 2000; pp. 51–65.
244. Traina, C.; Traina, A.; Faloutsos, C.; Seeger, B. Fast indexing and visualization of metric data sets using slim-trees. IEEE Trans.

Knowl. Data Eng. 2002, 14, 244–260.
245. Skopal, T.; Pokornỳ, J.; Krátkỳ, M.; Snášel, V. Revisiting M-tree building principles. In East European Conference on Advances in

Databases and Information Systems; Springer: Berlin, Germany, 2003, pp. 148–162.
246. Zezula, P.; Amato, G.; Dohnal, V.; Batko, M. Similarity Search: The Metric Space Approach; Springer Science & Business Media:

Berlin, Germany, 2006.
247. Jin, S.; Kim, O.; Feng, W. MX-tree: A Double Hierarchical Metric Index with Overlap Reduction. In International Conference on

Computational Science and Its Applications; Springer: Berlin, Germany, 2013, pp. 574–589.
248. Ciaccia, P.; Patella, M.; Rabitti, F.; Zezula, P. Indexing metric spaces with m-tree. In Proceedings of the Convegno Nazionale

Sistemi Evolluti per Basi di Dati (SEBD), Verona, Italy, 25–27 June 1997; Volume 97, pp. 67–86.
249. Rachkovskij, D. Distance-based index structures for fast similarity search. Cybern. Syst. Anal. 2017, 53, 636–658.
250. Bachmann, J.P. The SuperM-Tree: Indexing metric spaces with sized objects. arXiv 2019, arXiv:1901.11453.
251. Skopal, T.; Pokornỳ, J.; Snasel, V. PM-Tree: Pivoting Metric Tree for Similarity Search in Multimedia Databases. Avail-

able online: https://www.researchgate.net/publication/221651625_PM-tree_Pivoting_Metric_Tree_for_Similarity_Search_in_
Multimedia_Databases (accessed on 15 November 2021).

252. Skopal, T. Pivoting M-tree: A Metric Access Method for Efficient Similarity Search. In Proceedings of the 2004 Annual
International Workshop on DAtabases, TExts, Specifications and Objects (DATESO), Desna, Czech Republic, 14–16 April 2004;
Volume 4, pp. 27–37.

253. Micó, M.L.; Oncina, J.; Vidal, E. A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA)
with linear preprocessing time and memory requirements. Pattern Recognit. Lett. 1994, 15, 9–17.

254. Razente, H.; Barioni, M.C.N. Storing Data Once in M-tree and PM-tree. In International Conference on Similarity Search and
Applications; Springer: Berlin, Germany, 2019; pp. 18–31.

255. Navarro, G.; Reyes, N. New dynamic metric indices for secondary memory. Inf. Syst. 2016, 59, 48–78.
256. Oliveira, P.H.; Traina Jr, C.; Kaster, D.S. CLAP, ACIR and SCOOP: Novel techniques for improving the performance of dynamic

Metric Access Methods. Inf. Syst. 2017, 72, 117–135.
257. Hanyf, Y.; Silkan, H. A queries-based structure for similarity searching in static and dynamic metric spaces. J. King Saud Univ.

Comput. Inf. Sci. 2018, 32, doi:10.1016/j.jksuci.2018.05.004.
258. Chen, G.; Yang, K.; Chen, L.; Gao, Y.; Zheng, B.; Chen, C. Metric similarity joins using MapReduce. IEEE Trans. Knowl. Data Eng.

2016, 29, 656–669.
259. Barhoush, M.M.; AlSobeh, A.M.; Al Rawashdeh, A. A Survey on Parallel Join Algorithms Using MapReduce on Hadoop. In

Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT),
Amman, Jordan, 9–11 April 2019; pp. 381–388.

260. Wu, J.; Zhang, Y.; Wang, J.; Lin, C.; Fu, Y.; Xing, C. Improving Distributed Similarity Join in Metric Space with Error-bounded
Sampling. arXiv 2019, arXiv:1905.05981.

261. Brinis, S.; Traina, C.; Traina, A.J. Hollow-tree: A metric access method for data with missing values. J. Intell. Inf. Syst. 2019, 53,
481–508.

https://www.researchgate.net/publication/221651625_PM-tree_Pivoting_Metric_Tree_for_Similarity_Search_in_Multimedia_Databases
https://www.researchgate.net/publication/221651625_PM-tree_Pivoting_Metric_Tree_for_Similarity_Search_in_Multimedia_Databases

Future Internet 2022, 14, 19 43 of 43

262. Yang, K.; Ding, X.; Zhang, Y.; Chen, L.; Zheng, B.; Gao, Y. Distributed Similarity Queries in Metric Spaces. Data Sci. Eng. 2019,
4, 93–108.

263. Pola, I.R.; Traina, A.J.; Traina, C.; Kaster, D.S. Improving metric access methods with bucket files. In International Conference on
Similarity Search and Applications; Springer: Berlin, Germany, 2015, pp. 65–76.

264. Berchtold, S.; Böhm, C.; Jagadish, H.V.; Kriegel, H.P.; Sander, J. Independent quantization: An index compression technique for
high-dimensional data spaces. In Proceegings of the 16th International Conference on Data Engineering, San Diego, CA, USA, 28
February–3 March 2000; pp. 577–588.

265. Bok, K.S.; Song, S.I.; Yoo, J.S. Efficient k-Nearest Neighbor Searches for Parallel Multidimensional Index Structures. Database Syst.
Adv. Appl. 2006, 3882, 870–879.

266. Beyer, K.; Goldstein, J.; Ramakrishnan, R.; Shaft, U. When Is “Nearest Neighbor” Meaningful? In Proceedings of the International
Conference on Database Theory (ICDT), Jerusalem, Israel, 10–12 January 1999; Beeri, C., Buneman, P., Eds.; Springer: Berlin, Germany,
1999; pp. 217–235.

267. Fu, A.W.; Chan, P.M.-s.; Cheung, Y.-l.; Moon, Y.S. Dynamic vp-tree indexing for n-nearest neighbor search given pair-wise
distances. VLDB J. 2002, 9, 154–173.

268. Agius, H.W.; Angelides, M.C. Spatial Color Indexing Using Rotation, Translation, and Scale Invariant Anglograms. Multimed.
Tools Appl. 2001, 15, 5–37.

269. Almeida, J.; Valle, E.; Torres, R.D.S.; Leite, N.J. DAHC-tree: An Effective Index for Approximate Search in High-Dimensional
Metric Spaces. J. Inf. Data Manag. 2010, 1, 375–390.

270. Chen, L.; Gao, Y.; Li, X.; Jensen, C.S.; Chen, G. Efficient Metric Indexing for Similarity Search and Similarity Joins. In Proceedings
of the IEEE Transactions on Knowledge and Data Engineering, Sydney, Australia, 4–6 June 2017; pp. 556 – 571.

271. Gimenes, G.; Cordeiro, R.L.; Rodrigues, J.F., Jr. ORFEL: Efficient detection of defamation or illegitimate promotion in online
recommendation. Inf. Sci. 2017, 379, 274–287.

272. Chen, Q.; Gao, H.; Cheng, S.; Li, J.; Cai, Z. Distributed non-structure based data aggregation for duty-cycle wireless sensor
networks. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GE, USA, 1–4
May 2017; pp. 1–9.

273. Zhuo, G.; Jia, Q.; Guo, L.; Li, M.; Li, P. Privacy-preserving verifiable data aggregation and analysis for cloud-assisted mobile
crowdsourcing. In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

274. Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Incentive mechanism for privacy-aware data aggregation in mobile crowd sensing systems.
IEEE/ACM Trans. Netw. 2018, 26, 2019–2032.

275. Jin, H.; He, B.; Su, L.; Nahrstedt, K.; Wang, X. Data-driven pricing for sensing effort elicitation in mobile crowd sensing systems.
IEEE/ACM Trans. Netw. 2019, 27, 2208–2221.

276. Shah, S.A.; Seker, D.Z.; Hameed, S.; Draheim, D. The rising role of big data analytics and IoT in disaster management: recent
advances, taxonomy and prospects. IEEE Access 2019, 7, 54595–54614.

277. Benrazek, A.E.; Farou, B.; Seridi, H.; Kouahla, Z.; Kurulay, M. Ascending hierarchical classification for camera clustering based
on FoV overlaps for WMSN. IET Wirel. Sens. Syst. 2019, 9, 382–388.

278. Yuea, J.; Zhang, W.; Xiao, W.; Tang, D.; Tang, J. Energy efficient and balanced cluster-based data aggregation algorithm for
wireless sensor networks. Procedia Eng. 2012, 29, 2009–2015.

279. Ferrag, M.A.; Derdour, M.; Mukherjee, M.; Derhab, A.; Maglaras, L.; Janicke, H. Blockchain Technologies for the Internet of
Things: Research Issues and Challenges. IEEE Internet Things J. 2019, 6, 2188–2204. doi:10.1109/JIOT.2018.2882794.

280. Fathy, Y.; Barnaghi, P.; Tafazolli, R. Large-scale indexing, discovery, and ranking for the internet of things (IoT). ACM Comput.
Surv. 2018, 51, 29.

281. Bursell, M. Trust in Computer Systems and the Cloud; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2021; p. 352.
282. Wu, L.; Ling, H.; Li, P.; Chen, J.; Fang, Y.; Zhou, F. Deep supervised hashing based on stable distribution. IEEE Access 2019,

7, 36489–36499.
283. Zhang, J.; Peng, Y. SSDH: Semi-supervised deep hashing for large scale image retrieval. IEEE Trans. Circuits Syst. Video Technol.

2017, 29, 212–225.

https://doi.org/10.1109/JIOT.2018.2882794

	Introduction
	Motivation
	Methodology for Selecting the Research Papers
	Survey Organization

	Big IoT Data
	Big Data Indexing Requirements
	Existing Indexing Techniques
	Multidimensional Indexing Techniques
	Hashing-Based Technique
	Tree-Based Technique
	Bitmap-Based Technique

	Metric Indexing Techniques

	A comparative Analysis of Multidimensional Indexing Methods
	A Comparative Analysis of Metric Access Methods
	Open Research Challenges
	IoT Data Collection and Aggregation for 5G Data Indexing
	Blockchain Data Indexing
	Security and Privacy for 5G Data Indexing
	Distributed Indexing for Large-Scale data
	IoT Data Representation in the Edge Computing
	Indexing Software Processes

	Summary
	Conclusions
	References

