
����������
�������

Citation: Dang, S.; Han, R. An

In-Network Cooperative Storage

Schema Based on Neighbor

Offloading in a Programmable Data

Plane. Future Internet 2022, 14, 18.

https://doi.org/10.3390/fi14010018

Academic Editors: José

Carlos Lopez-Ardao,

Miguel Rodríguez Pérez and

Sergio Herrería Alonso

Received: 13 December 2021

Accepted: 28 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An In-Network Cooperative Storage Schema Based on
Neighbor Offloading in a Programmable Data Plane
Shoujiang Dang 1,2,* and Rui Han 1,2

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; hanr@dsp.ac.cn

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

* Correspondence: dangsj@dsp.ac.cn; Tel.: +86-19801254996

Abstract: In scientific domains such as high-energy particle physics and genomics, the quantity of
high-speed data traffic generated may far exceed the storage throughput and be unable to be in time
stored in the current node. Cooperating and utilizing multiple storage nodes on the forwarding path
provides an opportunity for high-speed data storage. This paper proposes the use of flow entries to
dynamically split traffic among selected neighbor nodes to sequentially amortize excess traffic. We
propose a neighbor selection mechanism based on the Local Name Mapping and Resolution System,
in which the node weights are computed by combing the link bandwidth and node storage capability,
and determining whether to split traffic by comparing normalized weight values with thresholds. To
dynamically offload traffic among multiple targets, the cooperative storage strategy implemented in a
programmable data plane is presented using the relative weights and ID suffix matching. Evaluation
shows that our proposed schema is more efficient compared with end-to-end transmission and ECMP
in terms of bandwidth usage and transfer time, and is beneficial in big science.

Keywords: in-network storage; load balancing; locally cooperative storage; an IP-compatible ID
based protocol

1. Introduction

In many scientific disciplines, a huge amount of data is being generated. In the X-ray
Free Electron Laser device (XFEL), the average data rate has reached more than 2 GB/s,
the peak rate has reached 100 GB/s, and the data storage capacity has exceeded 100 PB [1].
Significant challenges exist in the collection and storage of data by large scientific facilities.
The ever-increasing data generation speed and the sheer quantity of data require effective
tools to collect and filter the data, save the data through high-speed networks, and prevent
the loss of valuable data. Due to the storage capability limitations of existing computer
systems, it is too late to completely record and save rapidly generated data [2]. However,
there may be an opportunity for more nodes to participate in storage via high-speed
networks. In addition, a large amount of data not only needs to be stored properly, but also
needs to be able to be efficiently accessed. Due to the increase in the quantity of data, it is
becoming increasingly difficult to read and move data. To deal with these challenges, a
common approach is to build a data center on site, connect the experimental station with
an optical fiber network/InfiniBand, and equip the data center with high-speed storage
and computing equipment (CPU, GPU) for scientific computing. However, a bottleneck
remains in network throughput and storage capacity in these solutions, because they still
use end-to-end transmission, and provide limited improvements using the shortest routing
path or multiple paths in the transport layer. Furthermore, distributing the large quantity
of raw data and making this data available to scientists around the world in a scalable
manner are additional typical challenges.

Future Internet 2022, 14, 18. https://doi.org/10.3390/fi14010018 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1030-2534
https://doi.org/10.3390/fi14010018
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14010018?type=check_update&version=3

Future Internet 2022, 14, 18 2 of 19

Recently, Named Data Networking (NDN) [3,4] and big science communities have
combined cache and forwarding strategies, and used the cache capability to accelerate the
distribution and management for big science experimental data [5–9]. In [5], the author
proposes the federating of distributed catalog systems that store and manage NDN names
to increase the speed of discovery of desired data. The work of [6] presented a preliminary
study addressing opportunities and challenges to enable NDN-based intelligent data
retrieval in networks for high-energy physics (HEP). However, these studies focused on the
management of a huge quantity of scientific data and data retrieval, and rarely involved
the persistent storage of collected data in networks.

As a result of the development of networking and storage, the forwarding rate of the
interface commonly exceeds the storage bandwidth in a single network node. However,
other switches in the network can have high speeds and large persistent storage capabilities.
To better handle high-speed data injection, multiple switches can cooperate to store heavy
data storage traffic. Using the network as a means of storage, the data can be stored
along the path, which facilitates edge processing and avoids sending data to the cloud
for reading, processing, and analysis, thus saving network bandwidth and increasing the
responsiveness of the applications. However, no research has been conducted on directly
using the network as a form of permanent storage, which would allow producers to simply
offload their data to the network and let the network manage the storage and access to data.

This paper proposes the realization of data storage in the forwarding process, and to
cooperatively offload the data beyond the local storage capacity to neighbor storage nodes.
The main contributions of our work are as follows:

(1) To address high-speed data storage, we proposed an in-network storage service node
structure to support cooperative storage in neighbor nodes, and designed an identifier
(ID)-based cooperative storage protocol.

(2) To support locally cooperative storage and the discovery of more in-network storage
service nodes, we proposed a neighbor selection mechanism based on the Local
Name Mapping and Resolution System, in which the node weights are computed by
combining the link bandwidth and node storage capability, and determining whether
to split traffic by comparing normalized weight values with thresholds.

(3) To dynamically split the traffic among multiple targets, the cooperative storage strat-
egy implemented in a programmable data plane is presented using the relative weights
and ID suffix matching. Evaluation shows that our proposed schema is more efficient
compared with end-to-end transmission and ECMP [10] in term of bandwidth usage
and transfer time.

The remainder of the paper is organized as follows. In Section 2, we review the
related work in distributed storage, edge storage, current scientific data management
systems, and NDN-based big science. The overall system design and supported protocol
are introduced in Section 3. Section 4 presents our core cooperative storage mechanism.
Then, the experimental results and analysis are shown in Section 5. Finally, conclusions of
this paper are presented in Section 6.

2. Background

Numerous studies have been conducted on distributed storage in academia and
industry, but most of storage systems are constructed at the application layer. As a result
of the recent development of the programmable network technology, solutions have been
developed that use in-network computing to offload part of the storage function into
the network [11]. In this section, we present a comprehensive review of the current
relevant literature.

2.1. Distributed Storage

Existing data storage services, such as HDFS [12], GFS [13], and CEPH [14], are mostly
clustering systems in data centers. Due to monitoring of the load status of each storage
node, data requests are routed to storage nodes by centralized scheduling to support load

Future Internet 2022, 14, 18 3 of 19

balancing. When load balancing is performed, generally only the storage space of the node
is considered, and the network link usage between the requester and the node is ignored.
In a CDN network, contents are spread based on requests and the popularity of contents.
It dispatches requests to the nearest content replica via central scheduling, and resolves
download bottlenecks through caching, and is not suitable for real-time data injecting. The
cloud storage system is a core cloud-based service offered by most cloud providers, such
as Google, Amazon, and Microsoft. However, cloud storage system is located far from
users, resulting in a high response delay for applications. Moreover, a massive amount
of data generated by IoT devices places significant pressure on the core network for its
transmission to remote clouds. For this purpose, providing storage as close to users as
possible or at the edge of the network is beneficial.

2.2. Storage at the Edge

The existing literature tackles the problem of edge data storage with strategies for the
optimal placement of data storage, aiming to maximize the QoS offered by the edge [15,16].
In [17], the authors explored the advantages and challenges of edge data storage to reduce
the pressure on the core network from the massive data generated by IoT devices when
transferring these data to cloud storage. In [18], the authors developed and assessed a
preliminary design for the management of popular data at the edge. The Reverse-CDN
proposed an architectural design vision to combine both Fog Computing and Information
Centric Networking (ICN) to process IoT data locally at the edge [19]. Decentralized
content-addressed storage systems, such as IPFS [20], are essentially the product of an
end-to-end communication mechanism where retrieval of data needs to first establish
a connection.

2.3. Current Scientific Data Management Systems

Scientific communities have designed and developed various customized data man-
agement software packages to satisfy their needs. The climate community has developed
ESGF [21] to manage CMIP5 [22] data. Similarly, the HEP community uses Xrootd [23] for
its data access and storage [8]. These applications are all based on IP networking protocols,
inherit the defects caused by the end-to-end communication principle of the existing IP
network, and cannot provide an appropriate network service model to efficiently facilitate
data discovery and retrieval.

2.4. NDN Based Big Science

In [7], the authors studied federated distributed catalog systems that store and manage
NDN names to support climate data discovery in multiple domains using Named Data
Networking. The authors in [8] use a VIP forwarding and caching mechanism [24] and
designed an NDN-based Large Hadron Collider (LHC) network. This work shows that
NDN with VIP forwarding and caching can achieve a large reduction in the average delay
per chunk compared to a no-caching case in the simulated LHC network [8]. The work of [9]
uses NDN-based primitives to present a design of the deadline-based data transfer protocol
for reserved bandwidth data transfers. However, these studies focused on the metadata
management of huge scientific data or complex scientific workflow, rarely involved the
collected data persistence storage.

Combined with the existing work above, we propose the use of in-network storage to
support high-speed scientific data collection, retrieval, and sharing via ICN architecture.
We designed the structure of an in-network storage service node, and cooperatively store
the data based on an ID protocol.

3. Proposed System Architecture
3.1. System Architecture

To better implement a new network architecture or network protocol on the existing
network infrastructure, and reduce deployment or upgrade costs, the system architecture

Future Internet 2022, 14, 18 4 of 19

is usually required to be compatible with the existing network infrastructure [25]. To be
compatible with the existing network infrastructure, the proposed in-network storage
solution is based on name resolution ICN where ID is resolved into an address for routing.
Under the architecture of routing and forwarding in ICN based on control and user plane
separation, the ID/IP integrated ICN reconstruction module has the capability of asking
the Global Name Mapping and Resolution System (GNMRS) or Local Name Mapping and
Resolution System (LNMRS) for resolving an ID to address(es) [26]. The ID/IP integrated
ICN reconstruction module can also process the address(es) in the packet according to the
rules and regulations generated by the local computing module. The rules and regulations
may include deleting some addresses from the address field, or changing the destination
address [27]. Then, a new ID/IP integrated ICN packet is reconstructed and finally for-
warded by the IP forwarding module [27]. The focus of the current study is extending the
local computing module to cooperatively support storing data chunk traffic in neighbors.

The designed in-network storage process is as follows:

• An intermediate node with storage service capability, which has been deployed in the
network, registers a mapping of a specific identifier indicating a storage service and its
Network Address (NA) (selecting any one of the interface IP addresses as the node’s
NA) with the LNMRS (step1). As shown in Figure 1, there are two local resolution
areas marked with a dashed circle.

• Pull-based communications offer several advantages over push-based communica-
tions, such as built-in multicast delivery, receiver-oriented congestion control, and
native support for client mobility [28]. To support proactive in-network storage, the
producer initiates the sending of a “request for pull” message to a storage service node
instance, which, in turn, triggers a pull request to be sent back to the producer by the
instance. When the producer requests the in-network storage services, the producer
first resolves the specific storage service identifier from the LNMRS to obtain the IP
address list of storage service nodes (step2), which contains nearby nodes, such as R1
and R2. Then, the closest node (R1) is selected as the target according to latency, and
the target (R1) is messaged to ask for the storage service (step3). The message includes
the IDs of written data.

• After receiving the “request for pull” messages, the selected node parses the IDs from
the messages and requests data chunks based on the IDs from the producer (step4).

• Then, the producer starts to send chunk data to the storage service node based on an
ID-based protocol described in detail below (step5).

• Then, the extended cooperative storage schema begins to play a role. Based on
the obtained information, the decision state of the current storage service node and
the corresponding neighbor information are calculated. After the storage service
node receives the data chunk, the storage service node first closes the context of the
corresponding ID request, and decides to forward the data chunk to local storage or its
neighbor storage node. If the storage service node decides to store in a neighbor node
(R2), it selects the neighbor, modifies the destination address field in the packet, and
then forwards the chunk data based on the destination address (step6). Otherwise, if
the storage service node decides to store locally, it directly forwards the chunk data
packets to the local storage module for chunk data storage.

• The selected neighbor node receives the chunk data and stores it locally. After chunk
data is stored in the storage service node, the mapping of the ID of the data chunk and
the NA of the storage service node is registered to LNMRS for further retrieval (step7).

• If there are no available neighbor nodes and the current node has no capability to deal
with the data chunk packets, it will forward the packets to the least loaded neighbor
and subtract 1 from the TTL field, which indicates the longest storage node path it can
forward along. It is currently considered that the chunk data can only be offloaded
once; thereafter, there is a need to wait for the data to be stored locally or forwarded to
a unified flood discharge area in the cloud. The storage service nodes are assumed to
have been deployed ahead of time, which is outside the scope of this paper.

Future Internet 2022, 14, 18 5 of 19

• Similar processes can be executed in another local resolution area. It is assumed
that traffic offloading is not possible between different resolution domains. Every
storage service node can execute the offload process mentioned above in its own local
resolution area, so that the entire network iteratively achieves load balancing.

• Then, the consumer queries the GNMRS or LNMRS for the data chunk ID, obtains the
NA of R2, and obtains chunk data from R2.

Figure 1. The overview of the chunk storage process.

3.2. An ID-Based Cooperative Storage Protocol

An identifier is a series of digits, characters, and symbols or any other form of data
used to identify subscribers, users, network elements, functions, network entities providing
services/applications, or other entities [29]. Entities are named using a persistent name,
which does not change with mobility. This name may also be used by the network to locate,
replicate, cache, and access the data. Due to the use of non-semantic identifiers as data
names, other attributes of data, including signatures, life cycles, and preferences, can be
maintained by the application, and the relationship between the attributes and the ID can
also be maintained at the application layer.

In ICN, the data is a first-class citizen. To facilitate data transmission, caching, and
storage, the data must be named by an identifier. Many methods can be used to assign the
name to a data chunk [29], such as the hierarchically human-readable naming method, the
self-certifying flat naming method, the attribute-based naming method, and the hybrid
method of the multiple naming mechanism. In this paper, the name is composed by the
hash value of the URI and the hash value of the data chunk. To process IDs more efficiently
in the network, identifier-related fields are added into the packet header when the packet
formats are designed. By also referring to the ID length in MobilityFirst [30], we choose the
same length as that of the MobilityFirst GUID, which has a length of 20 bytes. The concept
of an end-to-end connection does not apply in ICN, which has multisource routing, so our
proposed transport protocol is connectionless [26]. In addition, due to some defects of IPv4,
our proposal is designed to expand the next header field based on the IPv6 protocol. We
name the proposed schema the identifier protocol (IDP), where a set of rules and regulations
that specifies how the locators of a data packet are manipulated based on the ID in the
network layer under the ID/locator separation of ICN.

Figure 2 shows the IDP protocol layer layout, which is based on the current TCP/IP
protocol (IPv6), including mainly the network layer and transport layer. In the network
layer, an ID header acts as the last header using the extension header defined in IPv6 [31].
The ID header contains the Next Header field, the Source ID type field, the Destination

Future Internet 2022, 14, 18 6 of 19

ID type, the Source ID field, and the Destination ID field. Because the intermediate router,
who cannot recognize the ID header, will ignore the unsupported extension headers, the
use of an extension header in IPv6 to host the ID is compatible with existing TCP/IP
architectures [25].

Figure 2. IDP protocol layer layout.

The “Next Header” field of the ID header is used to specify which transport protocol
the packet will be passed to for processing. It can include our proposed transport protocol
SEADP (Data Protocol in SEANet [32]), and can also point to an existing transport layer,
such as TCP or UDP. We select 0 × 99 as our transport protocol value from the unsigned
range 144–252 in the IANA registry ipv6-parameters [25].

Because various entities in the network can be labelled an identifier (including data
and services), it may be necessary to classify IDs. We designed two fields to respectively
identify the source ID type and the destination ID type.

For in-network data storage service, there are at least two types of packets, namely
storage service request packet and data chunk request/response packet. We mainly com-
bine source device ID and storage service ID, and source device ID and data chunk ID, to
deal with in-network data storage service. The main ID combination relationship is shown
in Figure 3. First, the producer requests the storage service through the producer’s device
ID as the source ID, the storage service ID as the destination ID, and the data chunk ID
contained in the transport layer header. The storage service node requests the data chunk
through the storage service node’s device ID as the source ID and the data chunk ID as the
destination ID. Then, the producer sends the data packet with the producer’s device ID
as the source ID, the storage service ID as the destination ID, and the data chunk ID and
data contained in the payload. If the storage service node offloads the packets, the packets’
destination IP is modified and the ID fields are unchanged, and are then forwarded.

Figure 3. ID combination relationship in an in-network storage service scenario.

All IPv6-compliant hosts should be able to dynamically determine the packet length to
be transmitted, for example, by using the path MTU discovery process. Briefly, when a host
sends a very large IPv6 packet, the router does not segment the packet if it cannot forward
such a large packet, but returns an error message to the sending host. This message tells the
host that all future packets sent to the destination address will be segmented. It is far more
efficient for hosts to send packets of the right size in the first place than for routers along

Future Internet 2022, 14, 18 7 of 19

the way to dynamically fragment each packet. Because IPv6 is an end-to-end transmission
protocol and the concept of an end-to-end connection does not apply in ICN, our proposed
transport protocol is connectionless. There is no handshake throughout the transmission,
thus reducing the latency associated with establishing the connection [25]. Considering the
optimal chunk size for efficient transmission in ICN and the large overhead that a small
data chunk imposes on transmission and caching [33], the data chunk size is set to several
MBs in our proposal. The designated data chunk size is larger than that of the path MTU,
so the data chunk needs to be segmented. The segmentation information, including data
chunk ID and the segment number, remains in the data chunk transport layer header. In
addition, a new field, “preference”, was designed, and is mapped from application-related
requirements, including storage QoS, specific storing positions, caching strategies, security
strategies, multipath transmission, and one-to-many transmission based on multicasting.
The intermediate node may execute the corresponding action according to the “preference”
field. Our proposed transport protocol SEADP header mainly contains “type”, “data chunk
ID”, “sequence”, and “preference” fields. The “type” field currently contains the data
request packet and the data chunk response packet. The “data chunk ID” field represents
the identifier of the data to be transmitted and stored. The “sequence” field of the packet
indicates the segment number of the data chunk segmented by data source.

3.3. In-Network Storage Service Node Structure

According to the ID-based protocol described in Section 3.2, the intermediate router’s
in-network storage function is enhanced to take advantage of the power of the ID to
support in-network storage. We designed its structure based on a programmable data
plane. Figure 4 shows the inner structure of the enhanced network node. This can be an
instance of a local computing model in ICN based on control and user plane separation.
Currently the node structure is assumed to be deployed on every network node. The
deployment is outside the scope of our paper and will be studied in other articles.

Figure 4. The extended network intermediate node structure.

The network intermediate nodes first need to ensure line-speed forwarding. In order
not to affect the forwarding performance of the network intermediate nodes, the relevant
status information collection, calculation, and maintenance are placed in the network
storage processing element using local computing capacity. In addition, the calculated
state value and decision result are inserted into the forwarding processing pipeline for
ID-based protocol processing through the programming interface. The structure includes:
the Identifying and Parsing packet, Decision making, Post-processing action, and Status
information collection/state maintenance.

• The “Identifying and Parsing packet” module needs to correctly identify our ID-based
transport layer packet, parse packet fields, and obtain the storage service ID/data
chunk ID, sequence, and preference;

Future Internet 2022, 14, 18 8 of 19

• The “Decision making” module executes one of the “post-processing actions” ac-
cording to the state sets. If the state is set to “forwarding to neighbor node”, the
“Decision making” module executes the “Forwarding to neighbor” action; otherwise,
the “Storing locally” action is invoked;

• The “Post-processing actions” module currently contains “Storing locally” and “For-
warding to neighbor”. The “Forwarding to neighbor” action will change the destina-
tion IP of the data chunk packet to a new destination according to the rules from the
computation result of the “Status information collection/state maintenance” module
and then forward it. The “Storing locally” action will ACK the received packet, and
then request the next segment and reassemble the data chunk from segments for
storage in the local file system;

• The core module is “Status information collection/state maintenance”. This module
periodically collects neighbor status information and local status information, and
parses packet information, then computes the state threshold and maps forwarding
rules based on the ID. These results are set to shared memory that the forwarding
pipeline can access according to the programmable interface. The time interval should
be set at least as high as the maximum average RTT in the network [34].

4. In-Network Cooperative Storage Mechanism
4.1. Neighbor Selection Mechanism

LNMRS is usually deployed at the edge of the network and close to the forwarding
devices, and maintains local ID–locator pairs. As a result, LNMRS may be more efficient
or provide on-site service for users. LNMRS is also a hierarchical service system with a
distributed architecture, which can synchronize part of the mapping of the ID and NA to
GNMRS to be accessed globally [35].

The in-network storage service node registers the mapping storage service ID and its
NA to LNMRS on startup. Considering the locality of the storage and a fast response, the
neighbor nodes should be selected from nearby nodes. In addition, LNMRS is a suitable
choice to select candidate neighbors by resolving the service ID.

In the case of the storage, congestion occurs where the transmission bandwidth is
limited or storage IO is insufficient. Only considering link bandwidth or node storage capa-
bility is not enough, especially in high throughput traffic scenarios. Thus, we combine the
two pieces of information as the criteria for node selection. The load information exchange
packet contains the current input interface’s total available input and output bandwidth
(interface_total_bandwidth), and the current node’s available writing throughput (wIO)
and message identification. When the neighbor node receives a load information exchange
packet, it will respond with an ACK. Based on the received ACK time, we estimate the
latency (RTT). RTT is computed as an exponentially weighted moving average (EWMA) of
RTT in Equation (1). rtti is the time from the transmission of the i-th packet until receipt of
the ACK of the i-th packet. RTTi is estimated as the average round trip time after the i-th
packet. We assume RTT0 = 0 and α = 0.125 (which is a typical value in TCP [36]).

RTT(k)i = (1− α) ∗ RTT(k)i−1 + α ∗ rtt(k)i (1)

The neighbor node’s weight is computed based on the neighbor’s interface_total_band
width and available writing throughput in Equation (2).

neighborweight(k) =

(β ∗ bandwidth(k) ∗ RTT(k) + (1− β) ∗ w(k)IO ∗ RTT(k))/2
(2)

The weight of the node itself is computed in Equation (3) based on the node’s available
writing throughput and the average RTT of all neighbor nodes.

self_weight = (wIO ∗ averag_RTT)/2 (3)

Future Internet 2022, 14, 18 9 of 19

Because the chunk data needs to be shifted from nodes with heavy load to those with
less load, determining when to shift the load is important. We define a normalized value γ
in Equation (4).

γ =

sel f _weight(i)−min(weight(k),k∈neighbors_list|i)
max(weight(k),k∈neighbor|i)−min(weight(k),k∈neighbors_list|i)

(4)

If γ is smaller than the defined threshold, the chunk data should be offloaded to its
neighbors; otherwise, the traffic is not offloaded to its neighbors and it is better to store the
chunk itself. We defined the threshold as 0.5 in simulation. When the threshold is set to 0,
it means it has no cooperative storage mechanism and is just like a common node.

As shown in Algorithm 1, when the node is in the cooperative state, it sorts the
neighbors’ weight and selects a certain number of nodes (N) that exceed the current node’s
weight value as its final offloaded targets. Then, the traffic is split by the data chunk ID to
these selected targets according to their weights.

Algorithm 1 Neighbor selection algorithm.

Input:
rtt = {rtt(1)i, rtt(2)i, . . . rtt(k)i}, current rtt of each neighbor interface;
bandwidth = {bandwidth(1)i, bandwidth(2)i, . . . bandwidth(k)i}, current bandwidth of each
neighbor interface;
wIO = {wIO(1)i, wIO(2)i, . . . wIO(k)i,}, current writing throughput of each neighbor;
Output: state, target_list
1: Initialize RTT0 = 0, α = 0.875, β = 0.1
2: While k < K do
3: calculate RTT(k)← Equation (1)
4: calculate neighbor_weight(k)← Equation (2)
5: EndWhile

6: calculate averag_RTT = 1
K ∗

K
∑
1

RTT(k)

7: calculate self_weight← Equation (3)
8: calculate normalized value γ← Equation (4)
9: if γ < threshold, then
10: state← “cooperative”
11: sortedlist← sort (neighbor_list|i) by weight desc
12: sublist← subsist (0, number_threshold-1) from sortedlist
13: target_list← sublist
14: else
15: state← “local_storage”
16: EndIf
17: Return state, target_list

4.2. Cooperative Storage Strategy

Many load-balancing strategies have been proposed in academia and industry, such as
the round robin strategy, random strategy, hash strategy, or weight-based strategy [37], and
traffic splitting in programmable switches [38–41]. The round robin strategy distributes
traffic equally among the instances by forwarding traffic to each instance in turn. The
random strategy will select a random instance to forward traffic. The hash strategy will
compute the hash value x of a field, such as the source IP or destination IP, compute index
y as × mod K (the count of instances), then obtain the corresponding target based on y
in K targets. Traffic splitting in programmable switches mainly focuses on the weight
approximation using flow table entries, but is still subject to flow-based traffic and does
not consider how to obtain the weight. The strategies above do not consider the weight of

Future Internet 2022, 14, 18 10 of 19

targets and will cause load unbalancing if flow-based splitting is used. We consider the
weight-based strategy and compute the relative weight in Equation (5).

relativeWeight(n) = weight(n)
/

∑N
1 weight(n) (5)

According to the relative weight ratio of K nodes, we calculate the number of nodes
corresponding to the constraint of storage space having a length under M (each index
occupies 2 bytes) in Equation (6).

Count(n) = f loor(relativeWeight(n) ∗ M /2) (6)

Then, two linear storage spaces are constructed separately for storing the index of
targets and targets’ IPs. Linear Storage Space 1 is used to store the index of the neighbors’
IP, which is stored in Linear Storage Space 2. The flow entries will match the L bits of the
ID’s suffix; then, the actions are executed to determine whether it is in the cooperative state.
If this is the case, the corresponding index x is searched for in Linear Storage Space 1 based
on the value of the L bits of the ID’s suffix; the target IP in Linear Storage Space 2 is obtained
with the value of index x as the index in Linear Storage Space 2; and the “Forwarding to
neighbor” action is executed. Figure 5 shows a simple example.

Figure 5. The load balancing strategy procedure.

However, the ping-pong loops problem may exist. When a producer P1 begins to store
chunks, the corresponding in-network storage service node A enters the load balancing
state, and may offload a portion of the chunks to its neighbor B according the load balancing
rules. Immediately afterwards, the in-network storage service B receives the data storage
from another producer P2. Assuming that A is also a neighbor of B, B also enters the
cooperative state after calculating the normalized value of its weight. A portion of the
chunks may be offloaded to A according the offloading rules in B. After A receives these
chunks, they may be offloaded to B according to A’s offloading rules, and a loop occurs.
To avoid ping-pong loop problems, the input port avoidance mechanism is adopted. The
input port avoidance mechanism is used to exclude the input port of the packet and to
prevent forwarding to the input port where the packet comes. It is currently considered that
the chunk data can only be offloaded once, before waiting to be stored locally or forwarded
to a unified flood discharge area in the cloud. The detailed algorithm is described in
Algorithm 2.

Future Internet 2022, 14, 18 11 of 19

Algorithm 2 Cooperative storage algorithm.

Input:
weight = {weight(1), weight(2), . . . , weight(n)}, node weight of selected targets;
Output:
1: Initialize
2: While n < N do
3: calculate relativeWeight(n)← Equation (5)
4: calculate Count(n)← Equation (6)
5: EndWhile
6: fill up linear storage space 1
7: fill up linear storage space 2
8: calculate index1=hash(ID) % N
9: get index2 = linear_storage_space_1(index1)
10: get destination = linear_storage_space2(index2)
11: get Out_port from destination
12: if packet.In_port == Out_port, then
13: Local Storage
14: else
15: Forward to neighbor
16: Return

5. Evaluation

The rationality and performance of the algorithm were verified and evaluated us-
ing an actual deployed prototype system in a simulation environment for a large-scale
scientific facility.

5.1. Network Environment Setup

The network topology is a simple FatTree topology, as shown in Figure 6. All the
switches, except a common layer 3 Huawei router between R1 and R3, are our own
programmable switches implemented based on a Protocol Oblivious Forwarding (POF)
switch [42]. The controller is implemented based on an ONOS controller. We imple-
mented the whole routing process based on the POF protocol and corresponding instruc-
tion sets. These applications can support hybrid routing with the current IP infrastructure
through OSPF.

Figure 6. Network topology in the evaluation.

The key components are GNMRS and, in particular, LNMRS. We implemented LN-
MRS, which can maintain name and NA mapping for resolving the ID to addresses locally,

Future Internet 2022, 14, 18 12 of 19

and synchronize a portion of the mappings of the ID and NA to GNMRS to be accessed
globally.

In the network topology, our in-network storage modules are deployed in every POF
switch, which are connected with 10 Gbps optical fiber. In addition, there is a common
layer-3 IP router in the path from R1 to R3. This can simulate the hybrid network environ-
ment, and is also used for traffic control, because our new protocol is implemented based
on the raw socket in a Linux environment and the network throughput in the Linux server
can only achieve 4 Gbps on average. Two servers, namely the producer and the consumer,
are connected to the network using 10 Gbps optical fiber. All POF switches are configured
for in-network storage with a size of 10 TB.

5.2. Performance Results

We mainly focus on the throughput and transfer time influenced by the load balancing
schema in the ID-based data chunk transmission.

5.2.1. Evaluation of the Selection Mechanism

To evaluate our neighbor selection mechanism, we use the left part of the topology
to compare our proposal with the ECMP mechanism under a constructed flow. We use
three servers to simulate two 4 Gbps data flows and one 2 Gbps data flow. We limit the
bandwidth between R4 and R5, and the bandwidth between R4 and R6, to 4 Gbps. In
addition, the bandwidth between R4 and the core is limited to 2 Gbps. According to the
ECMP mechanism, the paths R4→ R5, and R4→ R6 are equal cost paths.

First, server one writes 4 Gbps data flows to R4 for 30 s. After 10 s, server two writes
4 Gbps data flows to R4 for 30 s. Then, server three writes 2 Gbps data flows to R4 for
30 s. We compared our proposed neighbor selection mechanism with ECMP and compared
statistics for the throughput of the two mechanisms. Figure 7 shows the throughput of our
selection mechanism and ECMP. The data flow generated by our mechanism is basically
consistent with the expected data flow. However, the ECMP mechanism cannot achieve
the expected data flow and has a long flow completion time. Our peak data traffic reached
10.43 Gbps and ECMP’s peak data traffic was only 7.51 Gbps. In addition, during the
period of 20 to 30 s of the whole experiment, the ECMP mechanism could not use more
paths to offload the excess traffic. The network started to become congested, resulting in
a drop in throughput. According to the ECMP mechanism, two paths can only be used
for storing data and the peak throughput absorbed by R4 is about 8 Gbps. Our neighbor
selection mechanism can discover three paths and split the data traffic, thereby improving
the flow completion time.

Figure 7. Results of the selection mechanism.

Future Internet 2022, 14, 18 13 of 19

5.2.2. Comparison with End-to-End Transmission

Bbcp [43] is a point-to-point network file copy application, which is capable of transfer-
ring files approaching line speeds in a wide area network (WAN). We tested this under our
simulated network environment and found that it can almost occupy the whole bandwidth
when the link is idle. However, it can use the single shortest path and has no awareness of
multipath. Our in-network storage can discover multiple neighbors to offload its traffic
based on the LNRMS. If there is congestion in the shortest path, the efficiency of Bbcp is
degraded. However, our in-network storage is barely influenced because of its selection of
multiple neighbors and the traffic splitting mechanism.

To evaluate the end-to-end transmission and in-network storage, we carried out four
experiments, including an end-to-end remote file transfer test and an in-network storage
test under no constraint on the bandwidth, and an end-to-end remote file transfer test and
an in-network storage test under a network bandwidth constraint. We used the right-hand
part of the topology in Figure 6. The bandwidth from the producer to the consumer was
10 Gbps in the physical link and the network throughput of our current transport layer
protocol stack implemented in the raw socket only reached 4 Gbps on average. Therefore,
to ensure a fair evaluation between the end-to-end transmission and in-network storage,
we limited the bandwidth of the link between R1 and R3 to 4 Gbps.

First, we constrained the bandwidth between R1 and R3 to 4 Gbps. In Figure 8a, the
transmission bandwidth of Bbcp is shown between the producer and the consumer along
the path of producer→ R1→ R3→ consumer under the constraint of 4 Gbps controlled
by the common router in the path of R1 to R3. It shows that the average bandwidth of
Bbcp is 4.53 Gbps and Bbcp almost uses all the available bandwidth. From Figure 8b, the
average transmission bandwidth of our proposed algorithm is 4.6 Gbps when our proposed
algorithm is not in a cooperative state, and it only stores the data in R1. The bandwidth
utilization of our algorithm is almost the same as that of Bbcp. The file transfer time is
compared in Table 1.

Figure 8. Results of comparison with end-to-end transmission.

Future Internet 2022, 14, 18 14 of 19

Table 1. Comparison of transfer time between Bbcp and our mechanism.

Experiments Time(s)

Bbcp (under 4 Gbps) 19
Ours (under 4 Gbps) 18.5
Bbcp (under 2 Gbps) 33.5
Ours (under 2 Gbps) 17.5

Then, the bandwidth between R1 and R3 was limited to 2 Gbps. In Figure 8c, the
average transmission bandwidth of Bbcp is only 2.56 Gbps because it can only use the single
path of producer→ R1→ R3→ consumer. It can also be seen in Figure 8d that the average
transmission bandwidth of our proposed algorithm is 4.82 Gbps, which is barely influenced
by the constraint, because the proposed algorithm can use R2 to cooperatively store its
data and the bandwidth from R1 to R2 is 10 Gbps [44]. In all our tests, we transferred the
same file having a size of 10 GB. In addition, the transfer time of Bbcp was also lengthened
due to bandwidth rate degradation. The transfer time of our proposed algorithm showed
almost no increase although there was a slight truncation of the traffic.

From the comparison, we can see that our proposed algorithm is useful in improving
the bandwidth usage, especially in multiple path environments.

5.2.3. Influence of Cooperative Storage Schema

Traffic is spilt based on the flow or flowlet in common load-balancing strategies. The
flow-based load balancing strategies must distinguish between elephant and mice flows,
because these two flows have an obvious influence on the load-balancing strategies. If the
traffic is split based on an elephant flow, it may overload the target while the other servers
are underloaded. Conversely, if the traffic is a mice flow, it may be not beneficial to split
it over multiple servers due to the cost of packet reordering. Our proposed cooperative
storage schema is based on the splitting of the data chunk by the application, which can
be stored in a disordered state between data chunks and in different locations. The only
requirement is that the packets in a chunk are delivered in order. This can be realized using
an in-network cache to temporarily hold complete chunks in hop-by-hop transmission [45],
or by utilizing the suffix of the ID to match flow entries to maintain the consistency of the
packet forwarding path. We used the second method to implement our schema considering
the latency of the hop-by-hop transmission.

To verify our cooperative storage strategy, we evaluated our algorithm and the ECMP
algorithm under equal weights and under changed weights. We varied the weights by
changing the network bandwidth between R1 and R3.

We undertook the experiments using two split ratios under our network environment
with no bandwidth constraint. First, we used R1 to split data chunks equally to R3 and R2,
and gathered statistics of bandwidth usage and transfer time. Figure 9a shows 4.77 Gbps on
average was achieved where there is no cooperative storage strategy. Second, we limited the
bandwidth of the path from R1 to R3 to 1 Gbps, and the split ratio of PATH2 to PATH1 was
changed to 3:1. From Figure 9c, we can see that we obtained total bandwidth of 4.69 Gbps,
which is comparable to the bandwidth of 4.77 Gbps in Figure 9a. Furthermore, the transfer
time in the two cases is nearly the same from Table 2. Our cooperative storage strategy has
no influence on transmission bandwidth because of the chunk ID-based transmission.

Future Internet 2022, 14, 18 15 of 19

Figure 9. Results of the influence of the load balancing schema.

Table 2. Comparison of the transfer time between ECMP and our mechanism.

Experiments Time(s)

ECMP (no constraint) 18
ECMP (1:3 split ratio) 28.5
Ours (no constraint) 18.3
Ours (1:3 split ratio) 17.6

Then, we limited the bandwidth of PATH1 to 1 Gbps and undertook the experiments
to load balance the traffic between PATH1 and PATH2. The actual transmission bandwidth
was reduced to 3.0 Gbps, compared with 4.77 Gbps under no constraint in Figure 9b.
The incorrect split ratio causes congestion on PATH1, degrades the transmission speed
of PATH1, can resulting in a decrease in the total bandwidth. The transfer time of ECMP
under the split ratio of 1:3 was increased to 28.5 s, compared to the transfer time of 17.6 s
of our schema in a split ratio of 1:3. The congestion and fluctuation of traffic in PATH1
result in heavy partial packet transmission, and the transfer time is even more significantly
affected from Table 2. Thus, our weight-based schema is more efficient than the schema
without an awareness of the multipath state.

5.2.4. The Accuracy of Traffic Split Ratio

Given a limited rule capacity at the switch, we need to make a tradeoff between
the accuracy of the traffic split ratio and the number of flow entries. We measured the
throughput under different lengths of the ID’s suffix (M) under an expected split ratio
of 4:1. We adjusted the bandwidth ratio between PATH1 and PATH2 to 1:4 through the
three-layer router.

When the length of the matched ID’s suffix is 2, we built four flow entries for every
interface. The mask of the corresponding field is 0 × 11, and the IDs are split in the ratio of
3:1. If the length of the matched ID’s suffix is 3, the IDs are split in the ratio of 3:1, and the
IDs are split in the ratio of 4.3:1 when the length of the matched ID’s suffix is 4. As shown
in Figure 10, the measured traffic ratio (4.4:1) is the most accurate when the length of the
ID’s suffix is 4. However, the number of flow entries is also the greatest. If the split ratio
needs to be updated frequently, the cost of maintaining the accuracy of the traffic split ratio
and the resulting traffic fluctuation cannot be neglected.

Future Internet 2022, 14, 18 16 of 19

Figure 10. Results of the influence of the number of flow entries.

5.2.5. Comparison with Common File Systems

We compared our in-network cooperative storage system with IPFS and CEPH, which
are common distributed storage systems. We wrote different files having sizes of 1, 5 and
10 GB to these file systems under different cluster sizes (including three and five nodes).
Our experiments show that the average throughput of the three-node CEPH cluster is about
8 Gbps. When the number of CEPH cluster nodes increases to five, the average throughput
is about 9.15 Gbps for a single client. The average throughput of the five-node CEPH cluster
drops to about 8.05 Gbps when two clients write simultaneously. It is shown that CEPH
achieved a relatively high performance through load-balancing strategies. However, this
is still implemented in the application layer based on the current IP infrastructure. CEPH
has inherent flaws, such as application layer protocol processing and scheduling overhead.
IPFS is another popular distributed storage system based on DHT. It takes about 2 min to
upload a 10 GB file for the first time, but the time for subsequent uploads is reduced by
half. The average upload rate is about 1.5 Gbps in IPFS.

We used five servers to write simultaneously to R4, and the bandwidth of PATH4 was
limited to 2 Gbps. The traffic of the R4 output interface is shown in Figure 11. Four servers
can write at an average of 4 Gbps, whereas one server can write at only 1.6 Gbps. The peak
throughput reaches 16.3 Gbps when five servers write simultaneously, and the average
throughput is about 9.3 Gbps. Through experiments, it is shown that our storage system
co-designed with the network is more suitable for real-time data writing. By comparison,
IPFS is more suitable for file sharing, and CEPH is a cluster system, which is limited by
its scale.

Figure 11. Throughput when five servers write simultaneously.

Future Internet 2022, 14, 18 17 of 19

6. Conclusions

This paper proposes an in-network cooperative storage schema based on neighbor
offloading, in which the ID-based traffic is sequentially dynamically offloaded to neighbors
and multiple neighbor nodes are utilized to detour the congestion path. First, we proposed
an in-network storage service node structure to support cooperative storage in neighbor
nodes, and designed an ID-based cooperative storage protocol. Then, a neighbor selection
mechanism based on LNRMS was introduced in which the node weights are computed by
combining the link bandwidth and node storage capability, and determining whether to
split the traffic by comparing normalized weight values with a threshold. In addition, a
cooperative storage strategy in a programmable data plane is presented using the relative
weights and ID suffix matching to approximate the traffic split ratio. Finally, the experi-
mental results show that our proposed schema is more efficient compared with end-to-end
transmission and ECMP in terms of transfer bandwidth and transfer time. In the future, we
will study the influence of fluctuation caused by dynamic updating due to load changes
in traffic splitting under different traffic characteristics, and consider recording historical
neighbor forwarding information in the versions.

Author Contributions: Conceptualization, S.D., and R.H.; methodology, S.D., and R.H.; software,
S.D.; writing—original draft preparation, S.D.; writing—review and editing, R.H.; supervision, R.H.;
project administration, R.H.; funding acquisition, R.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by Strategic Leadership Project of Chinese Academy of Sciences:
SEANET Technology Standardization Research System Development (Project No. XDC02070100).

Data Availability Statement: Not Applicable, the study does not report any data.

Acknowledgments: We would like to express our gratitude to J.W. and R.H. for their meaningful
support for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ping, H. An Overview of SHINE Data System. Available online: https://indico.ihep.ac.cn/event/13035/contribution/4/

material/slides/0.pdf (accessed on 10 December 2021).
2. Chen, G. Challenges of big data in science researches. Chin. Sci. Bull. 2015, 60, 439–444. (In Chinese) [CrossRef]
3. Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named content. In Proceedings

of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009;
pp. 1–12.

4. Zhang, L.; Alexander, A.; Jeffrey, B.; Jacobson, V.; Claffy, K.; Crowley, P.J.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data
networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]

5. Fan, C.; Shannigrahi, S.; DiBenedetto, S.; Olschanowsky, C.M.; Papadopoulos, C.; Newman, H.B. Managing scientific data with
named data networking. In Proceedings of the Fifth International Workshop on Network-Aware Data Management, Austin, TX,
USA, 15 November 2015; pp. 1–7.

6. Dabin, K.; Inchan, H.; Vartika, S.; Young-Bae, K.; Huhnkuk, L. Implementation of a front-end and back-end NDN system
for climate modeling application. In Proceedings of the 2015 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju, Korea, 28–30 October 2015; pp. 554–559.

7. Catherine, O.; Susmit, S.; Christos, P. Supporting climate research using named data networking. In Proceedings of the IEEE 20th
International Workshop on Local & Metropolitan Area Networks (LANMAN), Reno, NV, USA, 21–23 May 2014; pp. 1–6.

8. Huhnkuk, L.; Alexander, N.; Dabin, K.; Young-Bae, K.; Susmit, S.; Christos, P. NDN Construction for Big Science: Lessons Learned
from Establishing a Testbed. IEEE Netw. 2018, 32, 124–136.

9. Susmit, S.; Chengyu, F.; Christos, P. Named Data Networking Strategies for Improving Large Scientific Data Transfers. In
Proceedings of the IEEE International Conference on Communications Workshops, Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6.

10. Christian, E. Analysis of an Equal-Cost Multi-Path Algorithm. Available online: https://datatracker.ietf.org/doc/html/rfc2992
(accessed on 10 December 2021).

11. Liu, M.; Luo, L.; Nelson, J.; Ceze, L.; Krishnamurthy, A.; Atreya., K. IncBricks: Toward In-Network Computation with an
In-Network Cache. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, Xi’an, China, 8–12 April 2017; Volume 52, pp. 795–809.

https://indico.ihep.ac.cn/event/13035/contribution/4/material/slides/0.pdf
https://indico.ihep.ac.cn/event/13035/contribution/4/material/slides/0.pdf
http://doi.org/10.1360/N972014-00855
http://doi.org/10.1145/2656877.2656887
https://datatracker.ietf.org/doc/html/rfc2992

Future Internet 2022, 14, 18 18 of 19

12. Stathis, M.; Bianca, S. The Evolution of the Hadoop Distributed File System. In Proceedings of the 2018 32nd International
Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow, Poland, 16–18 May 2018;
pp. 67–74.

13. Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google File System. SIGOPS Oper. Syst. Rev. 2003, 37, 29–43. [CrossRef]
14. Weil, S.A.; Brandt, S.A.; Miller, E.L.; Long, D.D.E.; Maltzahn, C. Ceph: A Scalable, High-Performance Distributed File System. In

Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seattle, DC, USA, 6–8 November 2006;
pp. 307–320.

15. Onur, A.; Truong, K.P. On uncoordinated service placement in edge-clouds. In Proceedings of the 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong, 11–14 December 2017; pp. 41–48.

16. Tao, O.; Zhi, Z.; Xu, C. Follow me at the edge: Mobilityaware dynamic service placement for mobile edge computing. IEEE J. Sel.
Areas Commun. 2018, 36, 1–10.

17. Carofiglio, G.; Morabito, G.; Muscariello, L.; Solis, I.; Varvello, M. From content delivery today to information centric networking.
Comput. Netw. 2013, 57, 3116–3127. [CrossRef]

18. Adrian-Cristian, N.; Spyridon, M.; Ioannis, P. Store Edge Networked Data (SEND): A Data and Performance Driven Edge Storage
Framework. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Virtual Conference,
10–13 May 2021; pp. 1–10.

19. Eve, M.; David, Z.; Jeff, S.; Moustafa, H.; Brown, A.; Ambrosin, M. An Architectural Vision for a Data-Centric IoT: Rethinking
Things, Trust and Clouds. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 1717–1728.

20. Benet, J. IPFS—Content Addressed, Versioned, P2P File System. arXiv 2014, arXiv:1407.3561.
21. Cinquini, L.; Crichton, D.; Mattmann, C.; Harney, J.; Shipman, G.; Wang, F.; Ananthakrishnan, R.; Miller, N.; Denvil, S.; Morgan,

M.; et al. The earth system grid federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput.
Syst. 2014, 36, 400–417. [CrossRef]

22. Karl, E.; Ronald, J.; Gerald, A. An overview of cmip5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498.
23. Alvise, D.; Peter, E.; Fabrizio, F.; Andrew, H. Xrootd-a highly scalable architecture for data access. WSEAS Trans. Comput. 2005, 4,

348–353.
24. Ying, C.; Fan, L.; Edmund, Y.; Ran, L. Enhanced VIP Algorithms for Forwarding, Caching, and Congestion Control in Named

Data Networks. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC USA, 4–8
December 2016; pp. 1–7.

25. Zeng, L.; Ni, H.; Han, R. An Incrementally Deployable IP-Compatible-Information-Centric Networking Hierarchical Cache
System. Appl. Sci. 2020, 10, 6228. [CrossRef]

26. Xu, Y.; Ni, H.; Zhu, X. An Effective Transmission Scheme Based on Early Congestion Detection for Information-Centric Network.
Electronics 2021, 10, 2205. [CrossRef]

27. You, J.; Ji, G.; Xiao, Z.; Jin, L. ITU-T Y.3075 Requirements and Capabilities of ICN Routing and Forwarding based on Control and
User Plane Separation in IMT-2020. Available online: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3075-202
009-I!!PDF-E&type=items (accessed on 12 December 2021).

28. Psaras, I.; Ascigil, O.; Rene, S.; Pavlou, G.; Afanasyev, A.; Zhang, L. Mobile Data Repositories at the Edge. In Proceedings of the
USENIX Workshop on Hot Topics in Edge Computing HotEdge ’18, Boston, MA, USA, 10 July 2018.

29. Dang, S.; You, J.; Li, Y.Y. ICN-DOS, Requirements and Capabilities of Data Object Segmentation in Information Centric NET-
WORKING for IMT-2020. Available online: https://www.itu.int/md/T17-SG13-C-1318 (accessed on 12 December 2021).

30. Raychaudhuri, D.; Nagaraja, K.; Venkataramani, A. MobilityFirst: A robust and trustworthy mobility-centric architecture for the
future internet. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2012, 16, 2–13. [CrossRef]

31. Ye, X.; Cao, J.; Zhu, X.Y. ICN-TL Requirements and Mechanisms of Transport Layer for Information Centric Networking in
IMT-2020. Available online: https://www.itu.int/md/T17-SG13-200720-TD-WP1-0589 (accessed on 12 December 2021).

32. Wang, J.; Chen, G.; You, J.; Sun, P. SEANet: Architecture and Technologies of an On-site, Elastic, Autonomous Network. New
Media 2020, 9, 1–8.

33. Song, Y.; Ni, H.; Zhu, X. Analytical modelling of optimal chunk size for efficient transmission in information-centric network. Int.
J. Innov. Comput. Inf. Control 2020, 16, 1511–1525.

34. Schneider, K.; Zhang, B.; Mai, V.S.; Benmohamed, L. The Case for Hop-by-Hop Traffic Engineering. arXiv 2020, arXiv:2010.13198.
35. You, J.; Zhang, J.; Li, Y.Y. ICN-NMR Framework of Locally Enhanced Name Mapping and Resolution for Information Centric

Networking in IMT-2020. Available online: https://www.itu.int/md/T17-SG13-C-1319/ (accessed on 12 December 2021).
36. Jacobson, V. Congestion avoidance and control. SIGCOMM Comput. Commun. Rev. 1988, 18, 314–329. [CrossRef]
37. Zhou, J.; Tewari, M.; Zhu, M.; Kabbani, A.; Poutievski, L.; Singh, A.; Vahdat, A. WCMP: Weighted cost multipathing for improved

fairness in data centers. EuroSys 2014, 5, 1–14.
38. Qadir, J.; Ali, A.; Yau, K.L.; Sathiaseelan, A.; Crowcroft, J. Exploiting the Power of Multiplicity: A Holistic Survey of Network-Layer

Multipath. IEEE Commun. Surv. Tutor. 2015, 17, 2176–2213. [CrossRef]
39. Rottenstreich, O.; Kanizo, Y.; Kaplan, H.; Rexford, J. Accurate Traffic Splitting on SDN Switches. IEEE J. Sel. Areas Commun. 2018,

36, 2190–2201. [CrossRef]

http://doi.org/10.1145/1165389.945450
http://doi.org/10.1016/j.comnet.2013.07.002
http://doi.org/10.1016/j.future.2013.07.002
http://doi.org/10.3390/app10186228
http://doi.org/10.3390/electronics10182205
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3075-202009-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3075-202009-I!!PDF-E&type=items
https://www.itu.int/md/T17-SG13-C-1318
http://doi.org/10.1145/2412096.2412098
https://www.itu.int/md/T17-SG13-200720-TD-WP1-0589
https://www.itu.int/md/T17-SG13-C-1319/
http://doi.org/10.1145/52325.52356
http://doi.org/10.1109/COMST.2015.2453941
http://doi.org/10.1109/JSAC.2018.2869949

Future Internet 2022, 14, 18 19 of 19

40. Tuncer, D.; Charalambides, M.; Clayman, S.; Pavlou, G. Flexible Traffic Splitting in OpenFlow Networks. IEEE Trans. Netw. Serv.
Manag. 2016, 3, 407–420. [CrossRef]

41. Kang, N.; Ghobadi, M.; Reumann, J.; Shraer, A.; Rexford, J. Efficient traffic splitting on commodity switches. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT 2015, Heidelberg, Germany, 1–4
December 2015.

42. Li, S.; Hu, D.; Fang, W.; Ma, S.; Chen, C.; Huang, H.; Zhu, Z. Protocol Oblivious Forwarding (POF): Software-Defined Networking
with Enhanced Programmability. IEEE Netw. 2017, 31, 58–66. [CrossRef]

43. Andy, H. Bbcp. Available online: https://www.slac.stanford.edu/~abh/bbcp/ (accessed on 10 December 2021).
44. Liu, Y.; Qin, X.; Zhu, T.; Chen, X.; Wei, G. Improve MPTCP with SDN: From the perspective of resource pooling. J. Netw. Comput.

Appl. 2019, 141, 73–85. [CrossRef]
45. Klaus, S.; Bei, C.; Lotfi, B. Hop-by-Hop Multipath Routing: Choosing the Right Nexthop Set. In Proceedings of the IEEE

INFOCOM 2020—IEEE Conference on Computer Communications, Virtual Conference, 6–9 July 2020; pp. 2273–2282.

http://doi.org/10.1109/TNSM.2016.2580666
http://doi.org/10.1109/MNET.2017.1600030NM
https://www.slac.stanford.edu/~abh/bbcp/
http://doi.org/10.1016/j.jnca.2019.05.015

	Introduction
	Background
	Distributed Storage
	Storage at the Edge
	Current Scientific Data Management Systems
	NDN Based Big Science

	Proposed System Architecture
	System Architecture
	An ID-Based Cooperative Storage Protocol
	In-Network Storage Service Node Structure

	In-Network Cooperative Storage Mechanism
	Neighbor Selection Mechanism
	Cooperative Storage Strategy

	Evaluation
	Network Environment Setup
	Performance Results
	Evaluation of the Selection Mechanism
	Comparison with End-to-End Transmission
	Influence of Cooperative Storage Schema
	The Accuracy of Traffic Split Ratio
	Comparison with Common File Systems

	Conclusions
	References

