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Abstract: When, in 2008, Satoshi Nakamoto envisioned the first distributed database management
system that relied on cryptographically secured chain of blocks to store data in an immutable and
tamper-resistant manner, his primary use case was the introduction of a digital currency. Owing
to this use case, the blockchain system was geared towards efficient storage of data, whereas the
processing of complex queries, such as provenance analyses of data history, is out of focus. The
increasing use of Internet of Things technologies and the resulting digitization in many domains,
however, have led to a plethora of novel use cases for a secure digital ledger. For instance, in the
healthcare sector, blockchain systems are used for the secure storage and sharing of electronic health
records, while the food industry applies such systems to enable a reliable food-chain traceability, e.g.,
to prove compliance with cold chains. In these application domains, however, querying the current
state is not sufficient—comprehensive history queries are required instead. Due to these altered
usage modes involving more complex query types, it is questionable whether today’s blockchain
systems are prepared for this type of usage and whether such queries can be processed efficiently
by them. In our paper, we therefore investigate novel use cases for blockchain systems and elicit
their requirements towards a data store in terms of query capabilities. We reflect the state of the
art in terms of query support in blockchain systems and assess whether it is capable of meeting the
requirements of such more sophisticated use cases. As a result, we identify future research challenges
with regard to query processing in blockchain systems.

Keywords: blockchain systems; query processing; data models; data structures; block structures

1. Introduction

Digitization fostered by the evolution of the Internet of Things (IoT) has made data
one of the most important commodity in both business and private environments [1]. Data
became the backbone for a variety of new data-driven application areas such as digital
health [2], food supply chain [3], or the production of goods in Industry 4.0 [4]. All of these
use cases have in common that they are permanently dependent on demand-driven data
provisioning—i.e., the data generated and provided by several data producers must be
made available to all data consumers in the required quality and quantity [5]. For this
purpose, database systems are often used, as they significantly facilitate the management
and provision of data [6].

However, due to the fact that data are nowadays highly valuable, they became at-
tractive targets for cybercriminals who exploit these data in order to harm the involved
parties. There is a wide variety of attack types, e.g., tampering with the data in these
databases [7]. Detecting data tampering is nearly impossible without additional security
measures, consequently being one of the most serious attacks to defend. Considering the
worst-case scenario, where data are minimally tampered with, at stages that hardly arouse
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suspicion, can cause long-lasting damage to an organization [8]. These attacks are usually
performed either by outsiders such as hackers, who are unaffiliated with the organization
itself, or by malicious insiders such as untrustworthy database or system administrators.
In traditional database systems, data are unprotected against this attack vector because they
lack the necessary data integrity checks in the sense of ensuring that stored data are still in
the same state as it was once inserted. Therefore, the recent emphasis lies on hardening
these databases against data tampering [9].

Another problem is that attackers do not even have to attack the data itself to harm the
involved parties. It is already enough to attempt to affect the availability of the data [10].
Denial-of-service attacks cause the database or the server on which it is running to become
unreachable by flooding it with fake requests. While the server is occupied with processing
the malicious requests, there are no more resources available for processing the legitimate
requests, which is why they do not receive any feedback and thus, the data are no longer
available to them. Another focus with regard to cybersecurity is, therefore, on strengthening
availability to be prepared for the failure of resources [11].

Blockchains offer a solution to these two problems. Firstly, it is immutable and tamper-
resistant, thus protected against data tampering. Secondly, it is decentralized and thus
protected against denial-of-service attacks [12]. Yet, when Satoshi Nakamoto envisioned
the first blockchain system for his digital currency Bitcoin [13], his priority was to solve
the double spending problem, since there is no actual physical relinquishment in a digital
currency. Therefore, many of the conveniences of traditional data management systems,
such as a powerful query engine, are missing, i.e., they are much less convenient to use in
terms of query language and query processing [14].

In this context, blockchains in particular offer many interesting additional use cases
for queries due to their internal data management. In a blockchain, data are only appended,
which results in the construction of a data log (i.e., blockchain data history) where dif-
ferent revisions of data coexist. This enables the possibility to query the data history for
provenance analyses, unlike with a traditional database where data are modified in-place,
which means that there is no natively existing data log to query [15]. The existence of this
blockchain data history, however, means that applications are forced to store data externally
to a blockchain and in many cases also need to perform additional query processing mostly
local to the application.

This is why we investigate the necessary query capabilities for blockchain data histo-
ries. To this end, we provide three contributions in this paper:

1. Based on use cases from different application domains, we derive common types of
usage of blockchain technologies in terms of types of data and queries.

2. For these types of data and queries, we investigate how they can be implemented in
blockchain systems and how they can be supported by the available data history.

3. We explore the state of the art regarding query processing in blockchains and identify
future research challenges.

By means of these three contributions, we identify open research gaps that need to be
solved in order to enable efficient query processing in blockchain systems.

The remainder of this paper is structured as follows: We open by outlining the
fundamentals of blockchain technologies in Section 2, with respect to their relevance
in the context of this paper. In particular, our goal is to highlight the conceptual and
architectural differences between blockchains and traditional database systems that are
responsible for the challenges regarding efficient query processing. We then identify five
emerging application domains in Section 3 where blockchains are becoming prevalent for
data management. Based on a literature review, we identify types of data and queries
that are relevant in these application domains. In Section 4, we generalize these types of
data into two object types that must be distinguished when querying blockchains. Then,
in Section 5, we determine for these two object types which query capabilities are required
in blockchains to be efficiently usable in the application domains. In Section 6, we present
the state of the art in research and discuss to which extent it provides these required query
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capabilities. Subsequently, we identify future research challenges in Section 7 and conclude
this paper in Section 8.

2. Fundamentals of Blockchain Technology

Before we can delve into queries to a blockchain system, we need to address a few fun-
damentals of blockchain technology that have an impact on query processing. Even though
it is often referred to as “the blockchain”, a blockchain is actually a modular assembly of
different components. In general terms, a blockchain is a ledger of sequential blocks that
contain arbitrary information. This ledger is managed by a network of computers. That is,
the distinctive feature of the blockchain is not what can be done with it—i.e., the secure
management of data—but rather how this can be accomplished in a decentralized manner
on a trustless infrastructure. For this purpose, well-established technologies from differ-
ent fields of information technology are used in a blockchain. A blockchain architecture
therefore has a modular structure, consisting of at least three layers: Ê Storage, Ë Network,
and Ì Consensus. Each layer is freely configurable to the respective requirements from a
variety of technology variants, with all their advantages and disadvantages [16]. Figure 1
shows this modular architecture. In the following, we discuss these layers in detail.

Node B

Network

❸Consensus

Storage

❷

❶

Query

Result Set

Node A

Storage❶

Node C

Storage❶ Storage❶

Node D

Data Object

Figure 1. Simplified architecture of a blockchain system with its three layers: Ê Storage, Ë Network,
and Ì Consensus.

A blockchain is a list of blocks that are singly linked backwards using cryptographic
signatures, with each block containing data. Backward linking is accomplished by including
a header in a block that contains the hash value of its predecessor in addition to the actual
payload data. A block cannot be modified subsequently, i.e., it is immutable. In particular,
data and even entire blocks cannot be deleted retroactively due to this structure. In other
words, a blockchain is an append-only data store. When new data are to be added to the
blockchain, a new block must be created for this purpose, which is then appended to an
existing blockchain [17].

There are many ways to manage a blockchain Ê. Usually, the data in a block are
stored in a data structure that enables efficient verification of its integrity (e.g., Merkle
trees [18], Modified Merkle Patricia trees [19]), and the blocks themselves are stored as a
log-like structure on a storage device, with derived information stored in a state database
for ease of access. The log is therefore mainly used to rebuild or verify the state database in
case of problems [20].

Since data are never deleted from a blockchain, a blockchain automatically maintains
a native data history. In contrast, a traditional database system must either manually imple-
ment the data history at the application layer (e.g., by implementing triggers to populate
an audit trail table) or utilize specialized features like plugins for data history support
(e.g., Oracle Flashback Technology (see https://www.oracle.com/database/technologies/
high-availability/flashback.html; accessed on 15 December 2021) for Oracle Databases (see
https://www.oracle.com/database/; accessed on 15 December 2021)) [21].

https://www.oracle.com/database/technologies/high-availability/flashback.html
https://www.oracle.com/database/technologies/high-availability/flashback.html
https://www.oracle.com/database/
https://www.oracle.com/database/
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A blockchain is represented by multiple blockchain instances hosted on separate
nodes in a distributed manner Ë. This replication approach increases availability and
reliability [22].

In order to add new data to a blockchain, a new block must be created and announced
to all nodes to become part of all blockchain instances. This distribution feature, however,
leads to the possible situation where there could be competing blocks that are linked to
the same predecessor and therefore cannot both be appended to the blockchain. To solve
this, all nodes have agreed on a consensus mechanism Ì. This ensures that the network
agrees on the next state of the blockchain, i.e., which block will be appended next to the
blockchain. The consensus mechanism also defines, if a blockchain is permissionless or
public, i.e., everyone can maintain a node, or if a blockchain is permissioned or private, i.e.,
only invited entities can maintain a node [23].

Permissionless. Consensus is typically achieved through communication (e.g., voting
quorums). In a permissionless blockchain, however, the participants are unknown, so it is
not even known how many are participating at all. Here, communication is replaced by
computation. It requires that enough work has been put into the creation of a new block so
that it can be appended to a permissionless blockchain, e.g., Proof-of-Work [24]. This ensures
that only one participant generates a new block in a given period of time on average.
Permissioned. In a permissioned blockchain, the participants are known, and their number
may be limited so that consensus can be reached through communication. This type of
consensus is more lightweight and efficient. In most cases, participants do not trust each
other, so a central database system as an alternative solution is not an option.

In summary, a blockchain has the following three key properties:

I. It is immutable: Once a block is created, it is final. It cannot be modified subsequently,
not even the link to its predecessor. The blockchain is an append-only data store.
A new block can only be appended to an existing blockchain.

II. It is tamper-resistant: The data of a block are stored in authenticated data structures.
These data structures are capable of verifying the integrity of their content. Tampering
with their content gets therefore detected.

III. It is decentralized: Each node in a blockchain network manages its own instance
of the blockchain. Thus, there is no single point of failure or attack. A consensus
mechanism ensures that all nodes append the same, new block to the blockchain.

Although blockchains are becoming more and more popular as a secure and trusted
data store, they differ significantly from traditional databases because of their completely
different focus. While traditional databases are based on client-server architectures,
blockchains are managed by a network of peer nodes, each of which holds a redundant
copy of the full blockchain data. By eliminating the central management entity that has
full control over the data store (and thus the data), trust is built—even if there is no trust
among the participants of the network—but the management and communication over-
head increases significantly. Besides this transparency, blockchains also create additional
trust due to the immutability of the data and their tamper-resistance. These two properties
are inherently guaranteed by the design of the blockchain, i.e., by organizing the data into
blocks, all of which are linked via the cryptographic hashes in their headers. These blocks
have no semantic meaning—they only reflect the chronological sequence in which the data
are inserted into the blockchain. Data within a block can be entirely heterogeneous. There
is no partitioning of the data into semantically associated tables or a strict schema for de-
scribing the data, as is the case for traditional databases. Meanwhile, traditional databases
do not have comparable inherent security mechanisms. Yet, these security features are
obtained in blockchains by the fact that they are append-only data stores, i.e., data cannot
be subsequently deleted or modified. An update to an existing data record must be realized
as a new entry, e.g., as a newer version of the complete data record or as an addition
entry containing only the changes. As a result, blockchains cannot provide full CRUD
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support (create, read, update, and delete). However, due to the append-only structure of
blockchains, they provide a complete data history in addition to the current state of the
stored data, whereas traditional databases usually only contain the latest snapshot of the
data. Depending on the chosen consensus mechanism, it may take some time until a data
record is actually included in the blockchain, whereas there is no such delay in traditional
database systems [25,26]. For all these conceptual and architectural reasons, query per-
formance is also much higher for traditional databases in terms of throughput, the key
efficiency metric for data stores [27,28]. Table 1 summarizes the main differences between
traditional databases and blockchains that have an impact on their query capabilities.

Table 1. Main differences between traditional databases and blockchains.

Property Traditional Database Blockchain

Architecture

The traditional database model assumes
that there is a central trustable adminis-
trator for the entire database. On that ac-
count, the database is hosted on a server
and subordinated clients have to send
their queries to this server.

The blockchain model assumes a network
of equal nodes. Each node hosts its own
instance of the entire blockchain. Al-
though each node can execute queries in-
dependently, the network must agree on
which is the valid state of the blockchain.

Replication

Even though traditional databases can
use replication techniques internally,
e.g., to prevent failure of physical stor-
age media, externally there is only one
database instance.

In a blockchain, there is full replication of
all data on all nodes, i.e., the failure of a
single node does not affect the availability
of the data.

Validation

Traditional databases only ensure that
if the database was in a consistent state
before a write operation, it is also con-
sistent after that operation. In addition,
it is ensured that no side effects can oc-
cur when several users operate on the
database.

Two types of validation take place in
blockchains: (a) The nodes in the network
agree in a consensus feature on what the
valid state of the blockchain is, i.e., what
data are part of the blockchain. (b) Users
can verify the integrity of the data due to
the tamper-resistance.

Structuring Traditional databases organize data into
tables, each with its own schema.

Blockchains organize data into blocks that
have no semantic meaning.

Operations Traditional databases provide full
CRUD support.

Blockchains support only read and write
(add new data) operations.

History Traditional databases contain the latest
snapshot of the data only.

Blockchains provide the complete data his-
tory.

Insertion Inserted data are immediately available
in a traditional database.

Due to the consensus mechanism, data are
inserted with a time delay.

Performance Traditional databases are geared to-
wards a high data throughput.

The data throughput is significantly low
due to the consensus.

Unlike in traditional database systems, data do not necessarily have to be stored in
a blockchain. To this end, there are basically two approaches [29]. In the first approach
called “on-chain”, the actual data are stored within a blockchain. In the second approach,
called “off-chain”, the actual data are still stored in a traditional database system, but the
information required to verify the actual data is stored on the blockchain. However,
the verification overhead is significantly greater than with the first approach. Hybrid
approaches are also possible, e.g., data are stored partly in a blockchain and partly in a
traditional database system with their verification information on a blockchain.

Overall, the public verification of the data in a blockchain is a fundamental character-
istic of blockchain technology. This transparency enables every node to check the integrity
of the data in a blockchain, thus creating trust in the stored data. The focus on blockchain
technology is on security, unlike traditional database systems, which focus on performance
(i.e., transaction throughput). Additionally, blockchain technology provides protection
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against attackers, whether from hackers or malicious insiders, as well as protection against
a single point of failure or attack, as data are replicated by many nodes, hopefully located
around the world.

3. Application Domains Identified through Literature Review

As shown in the previous section, blockchains are technically very different from tradi-
tional databases, yet blockchains can in principle be used just like traditional databases—as
a data store. Due to their decentralization, immutability, and tamper-resistance, blockchains
offer additional security features that traditional data stores lack. At the time of this writing,
many entities like companies, governments, and startups are evaluating the applicability of
blockchain technology in their domains. As a result, further use cases utilizing blockchain
technology in addition to a cryptocurrency have emerged over the course of time. Accord-
ing to Lo et al. [30], the use of blockchain technology is particularly beneficial when one or
more of the following requirements are present:

• There is a need for establishing a trustworthy foundation between several parties
without having to involve external authorities (e.g., notaries).

• There is a need for a single view of the truth (e.g., when different companies have to
share data).

• There is a need for greater auditability by stakeholders through transparency (i.e.,
all published data are visible to every participant in the blockchain network) and
provenance (i.e., the full history of data is available).

• There is a need for data being immutable (i.e., already stored data cannot be subse-
quently modified or deleted) and tamper-resistant (i.e., preventing an attacker from
manipulating stored data).

From our literature review, we have identified five main application domains where
one or more of the aforementioned requirements are present, and blockchain technology
could therefore be a suitable technical design choice. These domains are health data manage-
ment (see Section 3.1), financial accounting (see Section 3.2), registries (see Section 3.3), food
supply chains (see Section 3.4), and e-voting (see Section 3.5). From these application domains,
we derive typical types of data and types of queries in order to determine whether today’s
blockchain technology provides comprehensive query capabilities of the data history of
a blockchain. These application domains are just a few selected examples that seemed
particularly relevant in the context of our work. There are many other application domains
that have similar query requirements, e.g., in the domains of Smart Grids [31,32], digital
rights management [33,34], or Smart Traffic [35,36].

The main findings regarding the requirements for the query engine resulting from
these use cases are summarized at the end of this section (see Section 3.6).

3.1. Health Data Management

In the health sector, digitization of many processes can significantly facilitate the
lives of patients and physicians [37]. To this end, data in the form of patient records, e.g.,
electronic health records [38], must be shared and extended reliably and trustworthy among
physicians. For example, a primary care physician prepares a medical record, and then
refers the patient to a specialist, who adds their diagnosis. In addition, due to the Quantified
Self Movement [39], people started to monitor themselves using IoT technologies, e.g.,
blood glucose measurements via continuous glucose monitoring [40] or heart rates via a
smartwatch [41]. All these measured data are gathered in a central hub (e.g., a smartphone)
and linked to compose a personal health profile [42]. By adding these personal health
profiles to the patient records, physicians have access to even more health-related data
which helps them to make a more accurate diagnosis.

The use of blockchain technology is suitable in such a use case because it allows
decentralized data sharing. With a blockchain, a hospital can provide a data infrastructure
through which physicians can share patient data with each other in a simple manner [43].
Moreover, the inherent immutability and tamper-resistance characteristics of a blockchain
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ensure data security, which is mandatory for medical data. This is particularly important
due to the increasing threat of cyberattacks in healthcare [44]. By enabling patients to
participate in the blockchain, they are empowered to provide additional health-related
data on their own [45].

Especially when sensitive data such as health data are stored in a blockchain, it is ob-
vious that data privacy protection measures have to be applied. This, however, contradicts
the fundamental principles of a blockchain, according to which every participant has full
access to all data. To this end, Peng et al. [46] present an approach in which data are stored
tamper-resistant in a blockchain, but in which queries are processed in a privacy-preserving
manner, and in which the result sets do not allow further inference about the data subjects.

There are multiple examples in literature in which blockchains are used to manage and
share health data, e.g., De Aguiar et al. [47], Hasselgren et al. [48], Khatoon [49], Przytarski
et al. [50], and Tanwar et al. [51].

Based on this research, we can conclude that there are two types of data in health data
management:

• The data entered by physicians are usually documents, e.g., diagnosis and treatment
plans, that are modified over time.

• The data entered by patients are usually measurements carried out by medical IoT
devices that are only valid at a specific point in time.

In the context of health data management, queries regarding the current health status
of an individual patient, information on disease progression over a given period of time,
as well as aggregate measurement data are particularly relevant. Typical queries therefore
include, but are not limited to:

• Retrieve all diagnoses of a specific patient from a given date.
• Retrieve the latest diagnosis of a specific patient where changes to the document are

highlighted.
• Aggregate the measurements of a specific patient over a given period.

3.2. Financial Accounting

Today’s accounting is still based on the double-entry system that was described in a
treatise written by Luca Pacioli over 500 years ago [52]. The double-entry system has two
sides known as debit and credit. Each financial record is entered into an account on both
sides where the entry on the credit side is a corresponding and opposite entry of the debit
side. The books are considered trustworthy if and only if the sum of the debits equals the
sum of the credits [53]. Since a company is accountable to multiple parties—e.g., owners
and investors—it is necessary to publish financial statements regularly. This implies that
financial data must be shared with these shareholders, but also with tax advisors and
financial authorities. The exchange of data is usually carried out via the error-prone import
and export functionality of accounting software. As financial records must be immutable
by law—i.e., they must not be tampered with retrospectively—such a modus operandi
entails a considerable threat potential [54].

Since blockchain technology has already proven to be a backbone for cryptocurrencies,
they also seem suitable for financial accounting. Accounts for any kind of assets, liabilities,
equity, revenue, and expenses are established [55]. As all transactions between these
accounts are transparent to all participants of the blockchain and no party has sole control
over the blockchain due to its decentralized and distributed design, it can be considered
a trusted single view of truth. Moreover, due to the immutability of financial records,
a blockchain-based financial accounting is almost immune to tampering [56].

There are multiple examples in literature in which blockchains are used to support
accounting, e.g., Faccia et al. [57], Gökten and Özdoğan [58], Schmitz and Leoni [59],
Sveistrup Søgaard [60], and Zhang et al. [61].

Based on this research, we can conclude that there is only one type of data in financial
accounting:
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• The data entered by companies and tax advisors are financial records that are only
valid at a specific point in time.

In the context of financial accounting, queries regarding the aggregated characteris-
tic values over a given period of time or queries that support an accounting report are
particularly relevant. Typical queries therefore include, but are not limited to:

• List all financial records for a given period (e.g., usually for a day, week, month,
quarter, or year).

• Generate an accounting report by aggregating the financial records grouped by ac-
counts for a given period.

3.3. Registries

A registry is an authoritative data source of records, usually maintained by a govern-
ment agency. For instance, a land registry specifies who is permitted to use land, for how
long, and on which conditions. Although the registry is maintained by a central authority,
several other parties have to have access to the data in order to enable an economic and
healthy business environment for the sale and purchase of property [62]. Only a few
countries maintain a functioning land registry, which is still often based on paper-based
documents, leaving them vulnerable to loss, misuse, or corruption. As a result, delays in
ownership transfer or tampering with the land register are possible and bound to happen
on a regular basis [63]. Another problem is that some registries exist duplicated in siloed
entities so that this fragmentation might cause possible data conflicts and therefore, no
single view of truth [64].

It is obvious that the use of blockchain technology can also provide a solution to
all of these problems. On the one hand, blockchain technology ensures that documents
are available to all participants almost immediately after they have been added to the
blockchain. This eliminates unnecessary delays in processing that occur when paper-
based documents are shipped. As a result, all participants always have the latest state
of a document at their disposal and conflicting copies of one and the same document
cannot exist [65]. On the other hand, the use of blockchains reliably prevents the forgery
of documents due to the characteristics of a blockchain, i.e., its immutability and tamper-
resistance. Since no central authority can gain full control over the blockchain, corruption is
also not a problem as long as the majority of the participants are honest [66]. Obviously, it
must be ensured that insights from the documents are not made public. However, this can
be achieved by means of access policies and tailored permissions restricting the access of
individual parties to the data. Such an approach is acceptable in terms of fraud protection
as long as the blockchain itself is still governed by multiple entities [67].

This benefit is also demonstrated by many research papers for other registries, e.g.,
Benarous et al. [68], Rosado et al. [69], Sahai and Pandey [70], Shinde et al. [71], and Singh
Yadav and Singh Kushwaha [72].

Based on this research, we can conclude that there is only one type of data in registries:

• The data entered into registries are usually documents (i.e., semi-structured data) that
are modified over time. Typically, the latest state of a document is of importance,
but in cases of conflicts, its history is also required (e.g., in court).

In the context of registries, queries regarding the latest of a certain document (as well
as its history) are particularly relevant. Moreover, a data subject can be part of multiple
registries, e.g., one registry containing all house owners and one containing all vehicle
owners. In order to determine all properties of a certain data subject, a join between all
available registries is required. Typical queries therefore include, but are not limited to:

• Retrieve the latest state of a specific document.
• Retrieve the latest state and a prior state of a specific document to highlight changes

in the latest state.
• Join two or more registries on a certain attribute to get a holistic view of all stored

documents.
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3.4. Food Supply Chains

A supply chain is a network of entities in such sectors as agriculture and manufac-
turing ranging from producers, who produce a product or service, to the final consumer.
In such supply chains, not only the physical exchange of the goods is important, but also
the exchange of information about these goods. This information must be available to the
participants of supply chain management in order to be able to ensure comprehensive
quality control [73]. In the food industry, for example, meat products must maintain a cold
chain in order to avoid endangering consumers’ health [74]. This means, the temperature
of the meat products has to be permanently monitored and fully documented during
transport from the slaughterhouse to a retail store [75]. In order to exclude human errors,
IoT technologies can be used for the metering and documentation [76].

While the use of IoT technologies can prevent unintentional measurement errors, it is
also necessary to prevent tampering with the documents retrospectively, e.g., to guarantee
that a breach of the cold chain is recognizable. Although the captured data must not be
edited subsequently, it has to be possible to modify the accompanying documents to the
meat products nevertheless, e.g., if additional entries are made during customs inspections
or when the goods are handed over to the next supply chain entity [77]. The use of a
blockchain to establish an immutable and decentralized data store for this data therefore
makes sense. Besides eliminating the risk of fraud, the transparent data sharing capabilities
of the blockchain also increase consumer confidence in the quality assurance of food
products, as they can verify it in a tamper-proof manner [78].

There are multiple examples in literature in which blockchains are used to store proofs
and certificates regarding food supply chains, e.g., Duan et al. [79], Köhler and Pizzol [80],
Kayikci et al. [81], Shahid et al. [82], and Zhang et al. [83].

Based on this research, we can conclude that there are two types of data in food
supply chains:

• The data generated by IoT devices are events and thus, only valid at a specific point
in time (e.g., temperature or location).

• There may exist accompanying documents (i.e., semi-structured data) to the goods
that are modified over time (e.g., during customs inspections).

In the context of food supply chains, queries that provide an aggregated overview
of all captured data, as well as comprehensive querying of all documented data related
to the transport, are particularly relevant. Typical queries, therefore, include, but are not
limited to:

• Aggregate the events by specific attributes for a given period.
• Retrieve the latest state of an accompanying document for a given transport.
• Retrieve the latest state and a prior state of a specific document to highlight changes

in the latest state.

3.5. E-Voting

Electronic voting systems (known as e-voting) are a means of strengthening democratic
processes. By digitizing the election process, not only is bureaucracy reduced, but people
can cast their votes much more efficiently. This is an advantage especially for elderly voters
or voters with a disability, as e-voting enables them to participate in the election without
having to leave home and rely on the help of others [84]. While in the past, mostly technical
difficulties impeded the introduction of e-voting, in today’s fully connected world, it is
rather a matter of security concerns [85]. To this end, the transmission of votes must be
trustworthy and secure [86], and the secrecy of the ballot has to be respected [87].

However, one of the most important confidence-building measures is to ensure full
transparency in e-voting and election results. This means, all voters must be able to verify
that every vote is counted and that ballots are not manipulated retroactively. The use of
blockchains is therefore particularly suitable to manage the votes. First of all, the commu-
nity decides by consensus which data are included in the blockchain, i.e., which votes are



Future Internet 2022, 14, 1 10 of 31

valid. Storing votes in a blockchain ensures that they are immutable, and tampering can be
detected immediately. In addition, blockchains provide great transparency because each
participant in the blockchain network keeps a complete copy of the blockchain—and thus
all of the data—on their node [88]. Furthermore, the decentralized nature of blockchains en-
sures availability, as they are less susceptible to denial-of-service attacks than a centralized
approach [89].

There are multiple examples in literature in which blockchains are used to support se-
cure and transparent e-voting, e.g., Hanifatunnisa and Rahardjo [90], Hjálmarsson et al. [91],
Kshetri and Voas [92], Ruparel et al. [93], and Wang et al. [94].

Based on this research, we can conclude that there is only one type of data in e-voting:

• The votes are stored in the blockchain as independent records. Once a vote has been
cast, it must not be subsequently altered or deleted. Without any loss of generality, we
assume that some kind of verification of whether a ballot is valid takes place before
the votes are entered into the blockchain. Therefore, no extensions to the stored data
are required.

In the context of e-voting, statistical queries that aggregate the stored data are particu-
larly relevant. Typical queries therefore include, but are not limited to:

• Determine the final result of an election.
• Determine the voting behavior of different groups of voters.
• Determine which shifts of voters happened compared to the last election.

3.6. Lessons Learned

Derived from the presented application domains, we conclude that there are two
different types of data that are entered into a blockchain. We outline their characteristics
in Table 2. The first type of data entered into a blockchain is only valid at a specific point
in time, which we call a constant object. Constant objects are, in other words, just events,
such as those known from complex event processing [95]. However, there is a peculiarity
in dealing with the timestamp of a constant object. This is because the timestamp can be
dependent on the block in which the object is stored (i.e., an object with a block-dependent
timestamp), or dependent on the object, because the object itself provides a timestamp
attribute that must be used rather than the timestamp of the block (i.e., an object with an
object-dependent timestamp). The second type of data entered into a blockchain is modified
over time, which we call an expandable object. As the modifications are scattered over many
blocks, they must first be combined in order to be used further. Therefore, expandable
objects have only block-dependent timestamps. We use the term “object” to describe a set
of attributes, i.e., data in the form of a set of key-value pairs, so-called fields. Although the
concept of objects is mainly known in the paradigm of object orientation, this data model
does not restrict us to the use of object-oriented data stores. These objects can also be
represented in other data models such as JSON documents, RDF triples (i.e., mapping the
fields of an object to individual triples), or XML instances. Listing ?? shows an object named
obj1 with three attributes and their values in those three representations. We discuss those
object types further in Section 4.

Furthermore, from the presented use cases, we derive eight query capabilities that
an efficient query engine for blockchain systems has to support in order to be usable in
the given application domains. These required capabilities are projection, selection, sorting,
aggregation, grouping, and joins. These operators are well-known from the relational algebra,
on which the query languages of many traditional database systems are based.
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Table 2. The two types of objects which are relevant in the context of blockchains.

Type of Data Main Property Timestamp

Constant Object

This type of data is only valid at a specific point
in time. Thus, it is final, i.e., its fields (key-value
pairs) and corresponding values are constant and
do not change over time.

block-dependent

object-dependent

Expandable Object

This type of data can grow and shrink over time,
i.e., in the future, new fields may be added, val-
ues of existing fields may be modified, or existing
fields may be removed. Any state of the object can
be restored by exploiting the history feature of the
blockchain.

block-dependent

Listing 1. An object with three attributes and their values represented as a JSON document,
RDF triples, and an XML instance.

An object represented in
the form of a JSON
document named obj1.

{
"attr1": "val1" ,
"attr2": "val2" ,
"attr3": "val3"
}

An object represented in
the form of RDF triples.

<obj1, attr1, "val1" >
<obj1, attr2, "val2" >
<obj1, attr3, "val3" >

An object represented in
the form of an XML
instance.

<obj1>
<attr1>val1</attr1>
<attr2>val2</attr2>
<attr3>val3</attr3>
</obj1>

Projection means selecting specific attributes from objects that are included in the
result set, i.e., if an object has several attributes, only a specific subset of them is returned.
For instance, a physician requires a projection operator to query specifically blood pressure
measurements from an electronic health record, which also includes other medical data
such as blood glucose measurements or dietary studies. Selection means eliminating objects
from the result set, i.e., an object is only included in the result set, if its attribute values
meet a given condition. For instance, a physician requires a selection operator to query
for female patients (i.e., patients whose attribute “gender” is set to “female”). Sorting
means to sort the objects in the result set in ascending or descending order, based on the
values of the attributes of the objects. For instance, in financial accounting, it is necessary
to sort the accounting items in order to present them according to the date they were
registered. Aggregation means to compute a single value from a set of values with the
help of an aggregate function, such as average, maximum/minimum, or sum. For instance,
in financial accounting, an aggregation is required to compare the total sum of income with
the total sum of expenses in the end. Grouping means to partition objects into groups of
objects, based on the values of their attribute. For instance, land registries have to group
the landowners based on the county their property is assigned to. Usually, an aggregation
is then applied on these groups, e.g., to determine how much real estate tax each county
receives. Joining means to combine data from multiple sources into a joint result set.
While in traditional database systems joins are applied to different tables within the same
database, in blockchains there is no such semantically structuring construct like a table.
Therefore, joins have to be applied to different blockchains. This, however, raises further
technical issues, see Sections 5 and 7. Nevertheless, there are use cases in which joins have
to be supported by blockchain systems. For instance, if there are different registries, e.g.,
a land register and a car register, each stored in its own blockchain. In order to query all
possessions of a data subject, a join on all of these blockchains is necessary.
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In addition to these six basic query operators, which are also known from traditional
database systems, blockchains have special requirements towards query capabilities due to
the two different object types that have to be handled by them. Firstly, there are temporal
queries when dealing with constant objects. In temporal queries, the temporal relationship
of the data plays a key role. These time references can be obtained from two different
sources: On the one hand, each block has its own inherent timestamp. Since new blocks
can only be added at the end of the blockchain, the sequence of the blocks implicitly
reflects the chronological order in which they were created. This timestamp is used for
block-dependent objects for temporal queries. However, it is possible that this timestamp
deviates substantially from the time at which a data object was captured, since data initially
remain in a data pool until a consensus is reached, and they are added to a new block.
Therefore, for object-dependent objects, where the time of capturing the data is crucial,
an additional individual timestamp for each object is needed. For instance, in the e-voting
context it is necessary to query only valid votes, i.e., only ballots that were submitted
neither too early nor too late have to be considered. Secondly, there are state-based queries
when dealing with expandable objects. Such objects are initially added to the blockchain
and then changes are made by means of transactions (e.g., to change certain attribute values,
and add or remove some attributes) which are also stored in the blockchain. In a state-based
query, the complete change history up to a specific point in time must therefore first be
retrieved from the blockchain in order to assemble the expandable object. For instance,
in the food supply chain it must be possible to query the status of a food product at any
time between production and sale, e.g., in order to monitor the cold chain.

Table 3 provides an overview of these six basic operators as well as the two blockchain-
specific query capabilities. More details on these query options are provided in Section 5.

Table 3. Overview of the six basic query operators (white rows) and two blockchain-specific query
capabilities (gray rows) derived from the presented application domains.

Query Capability Main Property

Projection It is possible to specify which fields (i.e., key-value pairs) are included in
the result set.

Selection It is possible to specify which objects are included in the result set.

Sorting It is possible to sort the result set by given fields.

Aggregation It is possible to aggregate the values of certain fields using functions.

Grouping It is possible to group given fields.

Join It is possible to join different blockchains.

Temporal Queries

It is possible to query constant objects based on a timestamp. While for
block-dependent objects there is an inherent timestamp given by the
block they are stored in, object-dependent objects have their individual
timestamp, which is specified in their attributes.

State-based Queries
It is possible to query expandable objects. Expandable objects can be
scattered over multiple blocks, meaning that a state-based query must
first find all pieces and compose them.

4. Object Types in Blockchains

From the presented application domains in Section 3, we derive two object types that
are relevant in the context of blockchains, namely constant objects and expandable objects.
Their main properties are summarized in Table 2. In the following, we elaborate on these
two object types and describe why they need to be considered in particular when managing
data in blockchains.

As described in Section 2, blockchains are append-only data stores where blocks are
appended to an existing blockchain. Furthermore, blocks cannot be modified subsequently,
so the data within a block are immutable. If changes to the data must occur, there are two
options. Either the complete object with all its fields is recreated or only a change history is
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kept. This means that there are two different forms of use. Either, an object lives until a new
version of it is added to the blockchain or the entire change history of an object must be
searched in the blockchain and applied to the genesis object, i.e., the original version of the
object. These two forms of use are reflected by the following two object types:

Constant Object. A constant object is final. This means that once the object is added to a
block, its fields do not change. Constant objects occur over time and are valid at a specific
point in time. In other words, constant objects are events, i.e., actions or occurrences that
happened at a specific point in time.
Expandable Object. An expandable object is never final. This means that over time,
the fields of this object are modified, new fields are added, or existing fields are removed.
In other words, expandable objects are documents that get modified over time.

Constant objects are, for example, votes in e-voting (see Figure 2a) or blood pressure
measurements from medical IoT devices in health data management (see Figure 2b).

vote_id: 98fc1c1
election: …
vote: CANDIDATE_A

vote_id: 3e23e81
election: …
vote: CANDIDATE_B

vote_id: 2e7d2c0
election: …
vote: CANDIDATE_A

vote_id: 18ac3e7
election: …
vote: CANDIDATE_D

vote_id: 3f79bb7
election: …
vote: CANDIDATE_A

t

Elec�ons
Administrator

Block 1

Block 2

vote_id: 252f10c
election: …
vote: CANDIDATE_C

(a) Votes during an election, represented as
constant objects with block-dependent times-
tamps, which are aggregated by an election
administrator.

t

device_id: e3b0c442
type: BLOOD_PRESSURE
systolic: 135 mmHg
diastolic: 84 mmHg
pulse: 62 P/min
timestamp: 2021-01-01 14:00:12

device_id: e3b0c442
type: BLOOD_PRESSURE
systolic: 128 mmHg
diastolic: 83 mmHg
pulse: 69 P/min
timestamp: 2021-01-02 16:15:52

device_id: e3b0c442
type: BLOOD_PRESSURE
systolic: 118 mmHg
diastolic: 78 mmHg
pulse: 70 P/min
timestamp: 2021-01-03 09:22:42

Physician

Block 1

Block 2

Block 3

(b) Blood pressure measurements from medi-
cal IoT devices, represented as constant objects
with object-dependent timestamps, which are
analyzed by a physician.

Figure 2. Two different use cases utilizing constant objects with (a) block-dependent timestamps and
(b) object-dependent timestamps.

In e-voting, votes are created by voters during elections. These votes are only valid
once they are successfully added to the blockchain. A vote does not contain its own
timestamp attribute, because in this case, only the timestamp of the block is relevant.
An election official can query and aggregate these votes to derive valuable information
about an election. For these queries, it is relevant in which block a vote is included.

In health data management, a medical IoT device performs blood pressure measure-
ments at certain time intervals. These measurements are either added to the blockchain
individually or in batches. A measurement contains, among other attributes, a timestamp
that records the time of the measurement. A physician can query and aggregate these mea-
surements so that valuable information can be derived for the patient. For these queries,
however, it is not relevant in which block the measurement is included, but at which time
it was performed (nota bene: Due to the delayed insertion of data into the blockchain, not
only the timestamp of a measurement can significantly differ from the timestamp of the
block it is stored in, but also the chronological order in which measurements are captured
can differ from the order within the blocks.).

Thus, in the first example, the timestamp of the block is relevant, but in the second
example, the timestamp of the object is relevant. For this reason, we introduce the following
notion for timestamps on objects:

Block-Dependent. In this case, the object depends on the timestamp of the block it was
included in. Each block has its own timestamp, i.e., the time at which it was created. Here,
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the timestamp of a block acts as a global timestamp for all its payload data, superseding
possible timestamp attributes of objects, thus all objects in a block have the same timestamp.
Object-Dependent. In this case, the object has its own timestamp attribute. Additionally,
it is not relevant in which block this object was included. During query processing,
the timestamps of these objects must be considered instead of the timestamp of a block.
However, this entails new challenges. In a blockchain architecture, there is no guarantee
that the objects are sorted by the timestamp attribute of the objects. As a result, when
searching for an object with a specific timestamp, it can only be assumed that the object was
created earlier than the block that includes it. Thus, the lower search bound is set by the
timestamp of the object, however, no statement can be made about the upper search bound.

Whether an object has a block-dependent or an object-dependent timestamp is de-
termined by its further usage. In our e-voting example, the action is to cast a vote and
this is considered to be performed once it is correctly added to the blockchain. In our
health data management example, the action is a blood pressure measurement carried out
by an IoT medical device, which is considered to be performed once the measurement is
successfully completed. This action is completely independent of the creation of a block for
a blockchain.

Expandable objects are, for example, documents in land registries (see Figure 3). An ex-
pandable object consists of a genesis object (i.e., the source object) as well as modifications
to the object that are scattered over numerous blocks. As a result, it has as many states (i.e.,
document revisions) as how many blocks exist that include fields of this object.

t

description: …
location: …
type: AGRICULTURE

type: HOUSING
mortgage: …

mortgage: …

Object δ

Object δ

Object δ

Block 10

Block 33

Block 89

Historical State

Latest State

description: …
location: …
type: HOUSING

Object δ

description: …
location: …
type: HOUSING
mortgage: …

Object δ

Left-Fold

Left-Fold
Land Registry

Advisor
Field is removed

Figure 3. A land registry document, represented as expandable object, which is modified over time.
Different states of the document can be retrieved, i.e., the latest state and all historical states.

In land registries, land documents are inserted, modified, and deleted over time.
When a land document is modified, it means that fields of the document are modified, new
fields are added, or existing fields are removed. The result of a modification is a new state
of the expandable object. Thus, each block that include a modification of an expandable
object represents a different state of this very object. A land registry advisor can query
these land documents at any available state. For this, the requested state of the document
has to be computed.

To compute a state of an expandable object, all fields from the previous and the
requested block must be combined. This is done by recursively recombining the fields from
the first block that includes fields of the object until the requested state—this approach is
also called left-folding.

In our land registry example, the object first appeared in Block 10, the so-called genesis
object. After that, there have been two modifications to it, namely in Block 33 and Block 89.
This means that there are three states for this object, all of which can be queried. Querying
its state in Block 10 is simple, since no modifications have taken place yet. Querying its
state in Block 33 requires its assembly by combining the fields from Block 10 with the
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modifications in Block 33. The same procedure is used for querying its state in Block 89,
although an additional combination step has to be performed then.

Furthermore, the timestamps of expandable objects are only block-dependent, i.e.,
the block defines the corresponding timestamp for these objects.

5. Query Capabilities for Blockchain Technology

As discussed in Section 4, the different object types have a significant impact on how
data can be queried in a blockchain. Therefore, in this section, we adapt a potential query
language to the object types using the query capabilities listed in Table 3 and elaborate on
possible issues that need to be considered when implementing a query engine.

In blockchain technology, writing data is a completely different process compared to
traditional database systems. This is due to the consensus mechanism used to add new
data to the blockchain (see Section 2). Therefore, we only consider non-modifying query
techniques, i.e., read queries as they have no persistent effects. Nevertheless, data can
still be added to a blockchain by creating a new block that includes the new data and
propagating it via the given consensus mechanism.

A query engine consists of a frontend and a backend. The frontend is responsible
for transforming a query written in a defined query language into an intermediate repre-
sentation. The backend is responsible for processing this intermediate representation and
computing the result of that query.

The use cases shown in Section 3 require comprehensive query capabilities such as
aggregations or joins. For the complete breakdown of required capabilities, see Table 3.
We consider a query engine to be powerful, if it supports a query language with at least
the same power as a SELECT statement from the declarative query language SQL—just
like in traditional database systems. Current blockchain systems, however, have native
but naive query interfaces [96]. Moreover, their query languages and the efficiency of
query processing is severely limited [97]. Since descriptive query languages have proven
themselves in practice also for object-oriented database systems [98], we describe the
required queries in SQL. SQL provides an expressive query language [99], however, SQL
is just one example that can easily be replaced by any other declarative query language.
In particular, we focus on the SELECT statement, since this is used for the read queries.
However, the SELECT statement cannot be simply adopted, but has to be modified to
support the different object types.

In relational database systems, the SQL SELECT statement is the most common option
to query a database. Within this SELECT statement, there are various clauses intended for,
e.g., selecting, aggregating, or sorting. Table 4 shows these various clauses and maps them
to the respective query capability along with a mapping to the blockchain domain.

For almost all of these clauses, a relatively straightforward mapping to the blockchain
domain can be found. However, the JOIN command represents an exception. Since
blockchains have no logical internal structuring (nota bene: The blocks in which the data
are organized have no semantic meaning regarding the data. They only represent the
chronological order in which the data were added to the blockchain.) (e.g., in semantically
and schematically homogeneous tables), a JOIN gets a different and new meaning in this
context. As illustrated in the example of the registries (see Section 3.3), it happens in
practice that data from a single data subject are contained in several different blockchains.
To collect and combine all information, a JOIN across multiple blockchains is required.
However, as outlined in Section 2, blockchains do not have a uniform structure. Thus, it
must be resolved how a JOIN can be realized despite the highly diverse technologies that
are involved in this case.

While these SQL clauses are sufficient to cover all six basic query operators (see Table 3),
the inclusion of novel blockchain-specific object types (see Section 4) represent a significant
deviation from SQL. Due to these object types, additional query capabilities—alongside with
extensions to the query language—are needed in blockchain systems.
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Table 4. The various clauses of an SQL statement and their mapping to the blockchain domain.

Query Capability Relational Data Model Blockchain Domain

Projection SELECT <columns>
An SQL statement starts with the
projections, a list of columns to in-
clude in the final result set.

SELECT <attributes>
Instead of columns, attributes of objects
are specified.

Join FROM <table> JOIN <other
tables>
This clause indicates the table from
which to retrieve the data. JOIN
subclauses enable the joining of
additional tables.

FROM <blockchain> JOIN <other
blockchains>
Instead of a table, the blockchain is
specified. If there is only one blockchain
given, then the clause might be omitted.
If there is more than one blockchain
given, JOIN subclauses are required.

Selection WHERE <comparison predicates
on columns>
This clause eliminates all rows from
the result set where a comparison
predicate does not evaluate to true.

WHERE <comparison predicates on
attributes>
Instead of rows, objects are eliminated.

Grouping &
Aggregation

GROUP BY <columns>
This clause groups values of one or
more columns in conjunction with
aggregation functions in the projec-
tion on those columns.

GROUP BY <attributes>
Instead of columns, attributes of objects
are specified.

HAVING <comparison predicates
on groups>
This clause eliminates all groups of
returned rows to only those whose
comparison predicate does not
evaluate to true.

HAVING <comparison predicates on
groups>
Instead of rows, objects are returned.

Sorting ORDER BY <columns>
This clause indicates the columns to
use to sort the result set including
the sort direction.

ORDER BY <attributes>
Instead of columns, attributes of objects
are specified.

Constant objects are self-contained, which means that, considered individually, they
do not provide valuable information in most cases. Thus, it is suitable to consider several
of these objects at the same time. This can be done, for example, either in the form of an
aggregation or viewing the data as time series to track any trends. In order to support
this, a start and end point are required. However, the range queries differ here in whether
the objects have block-dependent or object-dependent timestamps. For objects with block-
dependent timestamps, the timestamp of a block is relevant, therefore, it must be possible
to specify two block numbers. Thus, it must be possible to search between block N1 and
block N2. To apply this to SQL, the SELECT start clause could be adjusted as follows:

Block Range. SELECT <attributes> BETWEEN BLOCK N1 AND N2
(where N1 and N2 of type Integer and N1 ≤ N2)
A block range is necessary when a blockchain stores constant objects with
block-dependent timestamps.

The situation is different for objects with object-dependent timestamps. Here, the order
in which the data was added to the blockchain is irrelevant, it only matters when the data
was originally generated. Therefore, it is necessary to search via the timestamp of the
objects. This means that only objects created between timestamp T1 and T2 are searched.
To apply this to SQL, the SELECT start clause could be adjusted as follows:

Timestamp Range. SELECT <attributes> BETWEEN TIMESTAMP T1 AND T2
(where T1 and T2 of type DateTime (e.g., ISO 8601 [100]) and T1 ≤ T2)
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A timestamp range is necessary when a blockchain stores constant objects with
object-dependent timestamps.

Even though the two queries look very similar, they are internally very different from
each other. Since the block range corresponds to the structure of the blockchain, such a
query can be supported very efficiently. The timestamp range, however, requires all blocks
between the block with timestamp T1 (nota bene: Even if it is not clear when an object is
added to the blockchain, the insertion time (i.e., the timestamp of a block) can in no case
precede the timestamp of the object (i.e., the time of capturing).) and now to be searched,
since the timestamp of the actual block where the object has been included is greater than
the timestamp of the object itself.

Expandable objects have fields that are scattered over one or more blocks. These
objects must be assembled before they can be processed to compute the result of a query. It
is obvious that the states of all processed objects must be at the same height (In this context,
the term “height” is used to describe the block number within a blockchain up to which all
required objects have to be assembled.) to prevent the processing of incompatible states of
data. Therefore, it is necessary to specify a block number N up to which block the objects
are being assembled (nota bene: A lower bound is not required in this case, since it is
always necessary to start with the genesis object and apply all modifications from there.).
To support this, the SELECT start clause could be adjusted as follows:

Block Number. SELECT <attributes> ASOF BLOCK N
(where N of type Integer)
A block number is necessary when a blockchain stores expandable objects.

This way, all required query capabilities for all object types can be represented in a
declarative query language. This shows how powerful a declarative query language is.
However, the query language is just the frontend of a query engine.

The actual issues arise when the backend of a query engine is considered, as it accesses
the underlying data structures to compute the result of a query. We identified the following
eight issues that need to be addressed:

1. JOIN operators as provided by traditional database systems, do not need to be consid-
ered here, as there is no demand for this functionality in practice. Unlike traditional
database systems, blockchain typically store data on a single topic only. An internal
structuring into separate tables, each with its own schema, is therefore not necessary
in blockchain systems. Consequently, joins cannot be performed within the data
set of a single blockchain. However, there are use cases that require a join between
data sets held in different blockchains. For instance, Blockchain X contains health
data that are captured self-reliant by patients as part of the Quantified Self Move-
ment, while Blockchain Y contains clinical data of these patients captured by hospital
staff as part of health checks. In order to get a comprehensive view of a patient’s
health situation or history, physicians need to be able to join the data from these
two blockchains. Since each blockchain system has its unique technical architecture
regarding its storage, network, and consensus (see Section 2), such a join represents a
substantial technical challenge.

2. Unlike a relational table, where all data are applied to a table schema, blockchain
objects have no common well-defined schema. Here, the structuring of the objects
is done solely at the application level. That is, each application stores its objects in
its own predefined schema. However, when several applications share a blockchain
to store their data, multiple schemas are simultaneously present in that blockchain.
Therefore, the question is how this inhomogeneity affects query processing?

3. Data read from a blockchain should always be verified to detect any tampering. How-
ever, data could also be stored externally to a blockchain in a database system with
better query capabilities, but without verification capabilities. Therefore, the question
here is how, and when does the verification of the data take place? During query
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processing, if possible, or as an additional step by verifying an externally computed
result against the blockchain?

4. Database systems utilize index structures to facilitate query processing. Can such
structures also be used for query processing in blockchains? If so, how could these
look like for constant objects and/or expandable objects? Is it possible to verify the
data in these index structures?

5. Blockchains lack an internal structuring that has a semantic meaning. While the seg-
mentation into blocks is beneficial for some queries—think of queries for expandable
objects, for instance, where the state up to a specific point in time is required, which
can be easily realized via a query on the block number—this complicates queries
on the timestamp of a constant object, for instance, since all blocks created at this
timestamp or later have to be traversed for this purpose.

6. The query processing of constant objects and expandable objects is very different.
Can these objects be technically processed simultaneously in a blockchain? If so, does
it make sense from a query language perspective?

7. The query processing of constant objects with object-dependent timestamps is more
complex than that of constant objects with block-dependent timestamps. Can these
objects be technically processed simultaneously in a blockchain? If so, does it make
sense from a query language perspective?

8. The query processing of expandable objects is significantly more complex than that
of constant objects with block-dependent timestamps, since for each object it is first
necessary to determine which attributes it has, and in which blocks they are located.

6. Overview of the State of the Art

While blockchain technology was initially developed for cryptocurrencies, for which
it is sufficient to query the current account balance, the new use cases identified from the
application domains in Section 3 introduce different types of objects (see Section 4) that
require comprehensive query capabilities (see Section 5). Since there is not a standard
for blockchain systems, but rather a modular design that can be freely configured from
a variety of technology variants (see Section 2), there are various blockchain systems,
each targeting a different goal. As a result, the query capabilities of these systems are
quite different. In this section, we therefore first consider the state of technology (see
Section 6.1) and then the state of research (see Section 6.2) in the field of query processing
in blockchains.

6.1. State of Technology

The currently most popular blockchain system Hyperledger Fabric [101] manages a
ledger that consists of a blockchain and a database that holds the current world state.
The world state represents the latest state of a blockchain and is stored in an additional
NoSQL database. Hyperledger Fabric uses CouchDB (see https://couchdb.apache.org;
accessed on 15 December 2021) to this end. Despite the fact that a blockchain maintains a
native data history, however, there are only limited interfaces to access this data history
(e.g., through Fabric SDK (see https://hyperledger-fabric.readthedocs.io/en/release-2.
2/fabric-sdks.html; accessed on 15 December 2021) or smart contracts). It is possible
to execute comprehensive queries against the CouchDB, which manages the latest state.
However, the result of a query is not cross-checked against the blockchain, so there is a
possibility of reading tampered data.

In such blockchain systems, there is no efficient technique to query the underlying
data structure, i.e., the data history of the blockchain. A solution to overcome this limi-
tation is therefore to duplicate the data of the blockchain (or even just the current state)
into a separate database with support for a powerful query engine, while sacrificing the
built-in technique of the blockchain to verify the integrity of data while computing the
result of a query. If, thus, information must be directly extracted from the data history

https://couchdb.apache.org
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric-sdks.html
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of the blockchain, expert knowledge and self-developed tools are required to extract
this information.

Furthermore, there are systems that have features from blockchains and databases.
They are called hybrid systems and there are two alternative approaches. The first approach
is to start with a blockchain system and then enhance it with database features. The second
approach is to start with a database system and then enhance it with blockchain features.
Ruan et al. [102] compare six of such hybrid systems and came to the following findings:

Blockchain Systems Enhanced with Database Features. These systems use blockchains
as an integrity-protected data store and utilize a separate database layer on top of it.
Within the network, storage operations are replicated (e.g., a block containing transactions)
rather than individual transactions. Examples are:

• BlockchainDB [103] provides a key-value database layer on top of a blockchain, which
provides a simple get/put interface as well as an additional verify method for data
verification.

• FalconDB [104] provides a “traditional” database layer with temporal attributes on
top of a blockchain. It relies on smart contracts for querying as there is an incentive
model that each node remains honest.

• Veritas [105] provides a verifiable database layer on top of a blockchain.

Database Systems Enhanced with Blockchain Features. These systems use ordinary
database systems and utilize transaction-based replication. Within the network, each node
manages its own database instance and executes globally ordered transactions (achieved
through a consensus mechanism) on it. Examples are:

• BigchainDB [106] provides a blockchain layer on top of a MongoDB (see https://www.
mongodb.com; accessed on 15 December 2021) database. As all blocks, transactions,
and metadata are stored in it, the full query power of MongoDB can be used to query
data.

• Blockchain Relational Database [107] integrates a blockchain layer into a relational
database management system, namely PostgreSQL (see https://www.postgresql.org;
accessed on 15 December 2021). PostgreSQL was chosen because it keeps all versions
of a row. Usually, relational database systems update data in-place and maintain a
rollback log.

• ChainifyDB [108] provides a blockchain layer on top of arbitrary database management
systems that are SQL-99 [109] compliant. It uses a new processing model that reaches
consensus on the effects, i.e., database states and snapshots.

We conclude that in both approaches, the system can provide query capabilities
that are mostly as powerful as the query engines of the applied database systems (i.e.,
document-oriented databases and relational databases). However, these underlying tra-
ditional database systems provide no support for block range queries, timestamp range
queries, and block number queries, as required in modern blockchain use cases. In addition,
each approach has its own disadvantage.

The disadvantage of blockchain systems enhanced with database features is generally
that data in the database are decoupled from the data in the blockchain so that verifying
the results of a query is an additional step that can become expensive. Depending on how
the data of the blockchain are stored in the database, queries are possible either only on the
latest state or also on the history. FalconDB uses MySQL (see https://www.mysql.com ;
accessed on 15 December 2021), which provides a relational data model, that they extended
by temporal attributes to support SQL queries on the history.

The disadvantage of database systems enhanced with blockchain features is generally
that the database system itself might not use tamper-resistant data structures so that
tampered data is detectable. There are techniques to overcome this such as querying
multiple nodes in the blockchain network and comparing the result or re-executing the

https://www.mongodb.com
https://www.mongodb.com
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transactions from the blockchain to detect incorrect data. However, these techniques are
cumbersome and can also become expensive.

6.2. State of Research

Given the problems with the State of Technology, there is also a variety of research.
These can be divided into four research directions:

Improvements to the Frontend Query Capabilities. Ethereum [110] is a popular public
blockchain that supports smart contracts, which are programs with code (i.e., functions)
and data (i.e., states) that run on the blockchain. It uses the key-value database LevelDB as
persistent storage. Han et al. [111] extend the Ethereum-based blockchain system quorum by
an embedded relational database system SQLite (see https://www.sqlite.org/index.html;
accessed on 15 December 2021) next to LevelDB (see https://github.com/google/leveldb;
accessed on 15 December 2021) enabling SQL SELECT queries. In this system, the data
of smart contract transactions are stored in the SQLite database instead of the LevelDB
database. Smart contract transactions can use SQL queries (e.g., range or conditional
queries), which are then executed by the relational database system. However, there are
some open questions, e.g.,

• What happens, if the data in the relational database SQLite is tampered with?
• Smart contracts in Ethereum only have access to the latest state of their data. Is this

also the case here?

The research work of Tong et al. [112] also focuses on providing SQL support in
blockchains systems. However, they take a different approach. They introduce an SQL mid-
dleware, which encapsulates RPC-based (remote procedure call) interfaces of blockchain
systems as SQL interfaces to facilitate SQL queries on the blockchain data, just like the
aforementioned approach, where blockchain systems are enhanced with database features.
Furthermore, Li et al. [113] present a data query layer called EtherQL, which enables a set
of useful analytical queries such as range and top-k queries on the blockchain Ethereum.

Efficiency Improvements in Query Processing. Bragagnolo et al. [114] use the paralleliza-
tion technique Map/Reduce to extract and analyze information from a blockchain, in their
case from the Ethereum blockchain. Here, a master node instructs different jobs to worker
nodes, each of which extracts data from the Ethereum blockchain and writes them to a
relational database. After that, queries can be made to the relational database to obtain
information from the Ethereum blockchain.

Xu et al. [115] present an accumulator-based authenticated data structure that allows
aggregation over arbitrary attributes. This enables lightweight users, i.e., users who have
only the block headers locally stored, to have service providers storing the full blockchain
to execute boolean range queries, while allowing them to verify the integrity of the results.

Xing et al. [116] present a subchain index structure for the transaction chain. Here,
the transaction chain is divided into subchains and different subchains are linked with
hash pointers. The goal is to shorten the query path for queries on historical transactions.

Jia et al. [117] present the AB-M tree structure as a storage structure for transactions,
which combines the advantages of balanced binary trees (fast data retrieval) and Merkle trees
(fast data verification). Instead of storing transactions in an ordinary Merkle tree within
a block, they are now stored in an AB-M tree. This provides faster transaction retrieval,
but at the same time guarantees the integrity of the transactions.

Peng et al. [118] and, based on this, Wu et al. [119] present a middleware layer called
Verifiable Query Layer (VQL). It extracts information about the blocks, their transactions,
and possible balances from an underlying blockchain system and stores these data reor-
ganized in one or more databases so that queries can be answered more efficiently. Then,
a cryptographic hash value for each generated database is computed and stored in a
blockchain, preferably in the underlying blockchain system. Whenever data is queried

https://www.sqlite.org/index.html
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through the middle layer, the integrity of the queried database can be verified by comparing
the hash value in the blockchain with the hash value computed by the user.

Tailored Blockchain Optimizations for Specific Use Cases. As IoT technologies capture
growing volumes of time series data, there is an emerging need to comprehensively analyze
it in an efficient manner. While there are approaches to verify the authenticity of the sources
of this IoT data [120] and subsequently provide these time series data to third parties on a
demand-driven basis [121], it is also necessary to ensure that the data cannot be tampered
with when it is stored and managed.

Wortner et al. [122] therefore investigate particularly for time series data how these
can be managed in blockchain systems and how in particular their timestamps, which
play a key role in subsequent analyses, can be protected against tampering. In this context,
however, the focus is solely on the storage of the data. An efficient processing of queries
or let alone an analysis of the blockchain data is completely out of scope. This is being
researched by Dhanush et al. [123]. In their approach, however, the time series data must
first be completely extracted from the blockchain and then stored and analyzed in a special
time series database (e.g., InfluxDB (see https://www.influxdata.com/products/influxdb/;
accessed on 15 December 2021)) for which there are tailored analysis tools and dashboards
(e.g., Grafana (see https://grafana.com; accessed on 15 December 2021)). This causes a large
overhead, because there are no efficient ways to restrict the amount of data in such a way
that only those data are read that are relevant for the analysis. Since the amount of data in
the blockchain is continuously growing due to the append-only nature of the blockchain,
this overhead is also constantly increasing. Another problem with this approach is the fact
that once the data has been extracted, there is no longer any protection against tampering.
This completely undermines the main reason why the data was stored in the blockchain in
the first place.

Yu et al. [124] therefore propose a novel blockchain storage architecture specifically
for time series data. In their approach, they introduce an index structure for blockchains
enabling an efficient access to the blocks and transactions in conjunction with a time series
database for managing the time series data. The system decides for incoming queries
whether they should be processed by the blockchain or the time series data and then
forwards them accordingly. This approach reduces the overhead significantly, because on
the one hand, time series databases are highly optimized to process time series queries.
On the other hand, time series data are not immutable so that the data volume can be
reduced as needed by deleting data that is no longer needed. However, this also represents
the key weak point of this approach—the data in the time series databases are not protected
against tampering or deletion.

Yet, there are research approaches towards tailored index structures especially for
time series data in blockchains. Studies show that the performance of time series queries in
blockchain systems can be increased significantly by such indices [125]. This could also
improve the throughput of, for example, timestamp range queries (see Section 5).

Similar research approaches can be found for other specialized data and query types,
such as index structures for location data in order to support efficient spatial queries, e.g.,
the work by Nurgaliev et al. [126].

Verifiable Queries and Database Systems. With verifiable queries, a user is able to verify
the integrity of the result of a query. This ensures that the data and the execution have
not been tampered with. For this purpose, a new class of database systems has emerged,
the so-called verifiable database systems.

Zhang et al. [127] propose such a verifiable database system called vSQL, which
supports arbitrary SQL queries. Here, a user is able to outsource a relational database to an
untrusted server and has only to store a hash value locally. Then, the user can send SQL
queries to that untrusted server and verify the integrity of the result. This verification is
done by an interactive protocol, which utilizes interactive proofs.

https://www.influxdata.com/products/influxdb/
https://grafana.com
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Zhang et al. [128] propose another verifiable database system, which is called Spitz.
It builds on top of Forkbase [129], which is a distributed multi-version storage engine
utilizing the key-value data model, and maintains multiple index structures to facilitate
verifiable query processing. The verification of the result of a query is done by comparing
the hash value, which must be computed by using the proofs included in the result, with a
previously locally stored hash value.

Zhou et al. [130] propose an SGX-based verifiable database system called VeriDB, which
uses a trusted execution environment called Intel SGX (see https://www.intel.com/content/
www/us/en/architecture-and-technology/software-guard-extensions.html; accessed on
15 December 2021) where data are isolated and encrypted in memory [131]. VeriDB hosts
the query engine supporting SQL queries within an Intel SGX enclave, with the actual data
residing in untrusted memory. The verification of the data is performed during the query
processing by the query engine using a verifiable storage layer.

Table 5 summarizes the main findings regarding the characteristics and features of
these six research directions in the field of query processing in blockchains.

Table 5. Summary of key findings regarding the state of the art.

Research Direction Characteristics and Features

Blockchain Systems Enhanced with
Database Features

A database layer is built on top of a blockchain system that
is used as an integrity-protected data store. The database
layer provides an interface for querying data efficiently.
However, verifying the results of a query is an additional
step, which increases the overhead significantly.

Database Systems Enhanced with
Blockchain Features

A blockchain layer is built on top of a traditional database
system. Data are queried directly from the database system.
However, these database systems are not designed to detect
tampered data during query processing.

Improvements to the Frontend Query
Capabilities

Existing public blockchain systems such as Ethereum are in-
ternally modified or extended with a query layer to support
familiar query languages such as SQL. However, queries
regarding the data history are expensive.

Efficiency Improvements in Query
Processing

Various techniques such as the parallelization of data pro-
cessing or novel data structures enable more efficient query-
ing of blockchain data. However, in order for query engines
to benefit from this, they have first to be adapted accord-
ingly.

Tailored Blockchain Optimizations for
Specific Use Cases

Tailored index structures for blockchain systems increase
the performance of specific types of queries such as time
series queries. However, they are designed specifically for
a certain use case, i.e., the blockchain system loses some of
its universality.

Verifiable Queries and Database Sys-
tems

Verifiable queries are enabled over novel or existing
database systems. However, these approaches do not neces-
sarily require blockchain systems to be involved.

Blockchains were conceptually not developed to compete with traditional database
systems in terms of data and query throughput. However, due to their inherent security
features, they are increasingly used for managing important data. Considering the current
state of technology, however, blockchains are still at the very beginning as far as query
capabilities are concerned. Either one has to live with the native but naive query interfaces
or the data processing takes place in a connected database system, which partially elimi-
nates or at least reduces the security features. Therefore, there is a large body of research
that aims to improve query capabilities in terms of usability, power, and performance.
However, as our assessment of the state of research has shown, there are still many open
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research questions to be answered. In the following section, we elaborate on these open
research questions.

7. Future Research Challenges

In this section, we elaborate on future research challenges based on the issues identi-
fied in Section 5 that need to be solved in order to enable an efficient query processing in
blockchain systems. We group these issues into four categories of challenges, namely re-
search challenges regarding data models, data structures, block structures, and query processing.

7.1. Data Models

In order to realize a JOIN operator for blockchains, a query engine has to be able to
access, read, and process the common data stock of all involved blockchain systems. Since
different blockchain systems have a highly heterogeneous technological infrastructure,
a generic and standardized data model is needed that can be applied on all of these systems
(see Issue A). Furthermore, for constant objects with object-dependent timestamps, it is
useful to assign these timestamps a special status in the data model in order to access
them more easily and in a standardized manner. To enable comparability of objects, it is
worth considering introducing a type system, so that it is ensured that when comparing
attributes of multiple objects with the same identifier, they are of the same type (see Issue
B). Therefore, the first challenge is to create a standard for an expressive data model for
blockchains. With such a data model, it must be possible to represent arbitrary kinds of
data for any given use case. Triples, for example, have demonstrated their suitability in the
context of RDF stores and could also be a beneficial approach for a blockchain data model.

7.2. Data Structures

In order to process queries on blockchain systems efficiently, state-of-the-art solutions
operate a traditional database system in parallel to the actual blockchain. This database
presents the current world state, i.e., the current value of the attributes of the objects stored
in the blockchain. However, since these database systems cannot check the integrity of
the data as required, an additional verification step is needed to check the results against
the blockchain (see Issue C). To eliminate this verification step, it is necessary to come up
with novel data structures, e.g., by combining search data structures with authenticated
data structures such as Merkle B-Trees [132]. Such data structures are applied in current
blockchain systems such as Ethereum. However, these structures are primarily used
to facilitate the verification of transactions. A full-fledged support for comprehensive
queries, as required by emerging use cases, is not provided by these structures. Therefore,
the second challenge is to investigate how data structures can be designed that store generic
data in a verifiable manner while providing fast access to the stored data.

7.3. Block Structures

There is some flexibility in organizing the data within a block. Data can either be
physically clustered or added to useful data structures that allow efficient access to that
data (see Issue D). It is also possible to construct index structures outside a block, but this
would again require an additional verification step to check the results of a query against
the blockchain. Thus, it is necessary to consider how the data are stored within a block.
For example, different versions of the data can be stored within a block, each optimized for
a certain type of query [133], similar to a triplestore with an RDF3X engine [134]. A lot of
related work is concerned with the support of efficient spatio-temporal queries by adding
special index structures to blockchain systems. Similar efforts are also needed for other
types of data that are relevant in emerging application domains for blockchains (see Issue
E). For example, expandable objects require special index structures in order to assemble
them more efficiently. This can be done by storing pointers to their previous state, which
simplifies left-folding. Similarly, constant objects also require index structures so that their
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history can be queried efficiently. Therefore, the third challenge is to investigate how the
structure of a block could be designed to efficiently support different types of queries.

7.4. Query Processing

In query processing, the question is whether technically both object types (constant
and expandable) can be supported at the same time (see Issue F). Even if this is technically
possible, it could be contradictory from the perspective of the query language. The same
question arises whether constant objects with object-dependent timestamps should be
stored together with block-dependent timestamps (see Issue G). Another difficulty concerns
the expandable objects, since their fields might be scattered over multiple blocks (see Issue
H). During query processing, it is first necessary to locate the blocks that include the fields
of the requested object, and then to assemble them by left-folding. Therefore, the fourth
challenge is to investigate how query processing should be performed for each object type
in order to efficiently compute the result of a query. Additionally, it is also necessary to
investigate how a user can be supported in such a way that they can adequately formulate
their queries.

The four research challenges mentioned above generally apply to any current
blockchain system due to the conceptual design of blockchains. However, we expect
that two factors will make these challenges even more difficult in the future, namely new
blockchain architectures and legal restrictions.

7.5. New Blockchain Architectures

The fundamental architecture of a blockchain, as presented in Section 2, is constantly
evolving. One trend that can be observed in this context is the so-called sharding. Sharding
is introduced to address the typically low scalability of blockchains [135]. With blockchain
sharding, the blockchain data is horizontally partitioned into shards where each shard is
managed by a subset of the nodes in a network. One strategy in this regard can be to keep
thematically related data in a common partition in order to create homogeneous partitions.
A quite similar approach is known from traditional databases when a snowflake schema
is applied. That is, data is divided among several tables in accordance with a specific
dimension [136]. This makes queries regarding a certain topic highly efficient, since only a
part of the data needs to be processed. However, the number of necessary joins increases
if a comprehensive view on the entire data set is required. The same issue arises with
sharding. As discussed in Issue A, blockchain systems are not designed to support joins
efficiently. Moreover, the nodes that belong to an associated shard can only validate data
they store. Therefore, when a join is made, the validation results from different shards
must first be merged. For this reason, the data structures and block structures as well
as the query processing must be adapted so that even complex JOIN operators can be
executed efficiently.

Another emerging trend are the so-called atomic cross-chain swaps. Here, multiple
parties exchange assets across multiple blockchains. Initially, this function was introduced
so that different cryptocurrencies can be traded [137]. However, the exchanged assets are
technically not limited to cryptocurrencies. That is, using cross-chain swaps, it is also
possible to transfer data from one blockchain system to another [138]. Similar to sharding,
this allows to create thematically homogeneous blockchains. Each blockchain provider
would then only include data that corresponds to its respective topic. If necessary, external
content can be imported from another blockchain via cross-chain swaps. Of course, this also
results in the same challenges as with sharding, namely the high number of joins required
to obtain a comprehensive view on the entire data set. Unlike sharding, where all partitions
have at least the same technical foundation, cross-chain swap requires a wide variety of
blockchain systems to interoperate in order to support cross-chain join operations. Thus,
the data structures and block structures must also be created in a cross-blockchain manner.
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7.6. Legal Restrictions

As illustrated in Section 3.1, blockchains are becoming increasingly popular for storing
sensitive data, such as health data. However, such private data are protected by data protec-
tion laws, such as the General Data Protection Regulation (GDPR) [139]. Although blockchains
are ideal for the secure storage and distribution of sensitive data in terms of immutability
and tamper-resistance, they are fundamentally in conflict with data privacy principles [140].
Special categories of personal data, such as health data, however, are subject to a partic-
ularly high degree of protection—here data subjects must be granted full control over
their data. To this end, comprehensive adjustments to a blockchain are necessary [141].
In particular, the right to be forgotten is in conflict with the immutability of a blockchain, and
the right to restriction of processing contradicts the fully decentralized distribution of data
to nodes that manage them autonomously. Moreover, it is impossible for data subjects to
exercise their right to data minimization against individual data processors, since the data
are tamper-resistant available in a blockchain [142].

However, such adjustments to make a blockchain GDPR-compliant also have a signifi-
cant impact on query processing in blockchains. These implications concern two aspects
in particular. On the one hand, due to the right to be forgotten DELETE statements are
required. In the context of blockchains, however, this is technically difficult not only due to
immutability, but also because of expandable objects. If such an object has to be deleted, ini-
tially all components of the object have to be found. These components can be distributed
arbitrarily over all blocks of the blockchain. To support DELETE statements efficiently, data
structures and block structures are required that exceed auxiliary structures found in cur-
rent blockchains systems significantly. On the other hand, the access control in blockchain
systems must be considerably refined in order to grant data subjects the legally guaranteed
control over their data. Data subjects must be able to make fine-grained decisions about
who should have access to which data. As a consequence, queries regarding the change
history of objects become much more complex in particular. If a user has restricted access
to some of the changes, only, it must be resolved how a history query can be executed in
this case without having to process the restricted data. Expandable objects constitute a
special challenge in this respect as well, since they can only be queried and assembled if
all components can be accessed. If this cannot be guaranteed due to access restrictions,
the data models and also the query processing itself have to be revised.

8. Conclusions

Blockchains are considered the new go-to technology in many application domains to
store data in an immutable and tamper-resistant manner while ensuring high availability.
A blockchain, however, is rather a conceptual design than a specific embodiment of a
technology. Therefore, there are different implementations of a blockchain, each with their
respective advantages and disadvantages. To support query capabilities on blockchain
data, there are currently two prevalent approaches:

The first approach is to store all data in the blockchain and then execute the queries on
it. The advantages of this approach are that the data history is fully available, and the data
are protected by being immutable and tamper-resistant. The disadvantage of this approach
is that query processing requires sequential traversal of the blocks, since there are no index
structures to improve the efficiency of query processing.

The second approach is to operate a database in parallel to the blockchain. This
database maintains the world state. This way, SQL-like queries can be executed efficiently,
which is this approach’s advantage. Its disadvantage is that such a database does not
provide the data history. As a consequence, temporal queries and state-based queries are
not or at least insufficiently supported. Furthermore, the authenticity of this data is not
guaranteed by the blockchain. To this end, an additional verification step is required.

Therefore, to unlock the full potential of the blockchain technology (i.e., security and
data history combined with comprehensive query capabilities), many research efforts
are still needed (e.g., in terms of developing new index and data access structures for
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blockchains). In particular, we identified four categories of current research challenges in
this regard: data models, data structures, block structures, and query processing.

In summary, the importance of blockchain systems as a secure data store is unde-
niable for a digitized society. However, there are still many research questions to be
addressed before blockchains can compete with traditional database systems in terms of
query capabilities and efficiency.
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74. Nastasijević, I.; Lakićević, B.; Petrović, Z. Cold chain management in meat storage, distribution and retail: A review. IOP Conf.
Ser. Earth Environ. Sci. 2017, 85, 012022:1–012022:10. [CrossRef]

75. Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In Proceedings of
the 2017 International Conference on Service Systems and Service Management, ICSSSM ’17, Dalian, China, 16–18 June 2017;
pp. 1–6.

76. Stach, C.; Gritti, C.; Przytarski, D.; Mitschang, B. Trustworthy, Secure, and Privacy-aware Food Monitoring Enabled by
Blockchains and the IoT. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications
Workshops, PerCom ’20, Austin, TX, USA, 23–27 March 2020; pp. 50:1–50:4.

77. Fan, Y.; de Kleuver, C.; de Leeuw, S.; Behdani, B. Trading off cost, emission, and quality in cold chain design: A simulation
approach. Comput. Ind. Eng. 2021, 158, 107442:1–107442:16. [CrossRef]

78. Menon, K.N.; Thomas, K.; Thomas, J.; Titus, D.J.; James, D. ColdBlocks: Quality Assurance in Cold Chain Networks Using
Blockchain and IoT. In Proceedings of the 2nd International Conference on Emerging Technologies in Data Mining and
Information Security, IEMIS ’20, Kolkata, India, 2–4 July 2020; pp. 781–789.

79. Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A Content-Analysis Based Literature Review in Blockchain Adoption within Food
Supply Chain. Int. J. Environ. Res. Public Health 2020, 17, 1784. [CrossRef]

80. Köhler, S.; Pizzol, M. Technology assessment of blockchain-based technologies in the food supply chain. J. Clean. Prod. 2020,
269, 122193:1–122193:10. [CrossRef]

81. Kayikci, Y.; Subramanian, N.; Dora, M.; Singh Bhatia, M. Food supply chain in the era of Industry 4.0: Blockchain technology
implementation opportunities and impediments from the perspective of people, process, performance, and technology. In
Production Planning & Control; Taylor & Francis: Zug, Switzerland; Saint Helier, Jersey, 2020; pp. 1–21.

82. Shahid, A.; Almogren, A.; Javaid, N.; Al-Zahrani, F.A.; Zuair, M.; Alam, M. Blockchain-Based Agri-Food Supply Chain: A
Complete Solution. IEEE Access 2020, 8, 69230–69243. [CrossRef]

83. Zhang, X.; Sun, P.; Xu, J.; Wang, X.; Yu, J.; Zhao, Z.; Dong, Y. Blockchain-Based Safety Management System for the Grain Supply
Chain. IEEE Access 2020, 8, 36398–36410. [CrossRef]

84. Gritzalis, D.A. Principles and requirements for a secure e-voting system. Comput. Secur. 2002, 21, 539–556. [CrossRef]
85. Gibson, J.P.; Krimmer, R.; Teague, V.; Pomares, J. A review of E-voting: The past, present and future. Ann. Telecommun. 2016,

71, 279–286. [CrossRef]
86. Boyd, C.; Gjøsteen, K.; Gritti, C.; Haines, T. A Blind Coupon Mechanism Enabling Veto Voting over Unreliable Networks. In

Proceedings of the 20th International Conference on Cryptology in India, INDOCRYPT ’19, Hyderabad, India, 15–18 December
2019; pp. 250–270.

87. Haines, T.; Gritti, C. Improvements in Everlasting Privacy: Efficient and Secure Zero Knowledge Proofs. In Proceedings of the
4th International Joint Conference on Electronic Voting, E-Vote-ID ’19, Bregenz, Austria, 1–4 October 2019; pp. 116–133.

88. Moura, T.; Gomes, A. Blockchain Voting and Its Effects on Election Transparency and Voter Confidence. In Proceedings of
the 18th Annual International Conference on Digital Government Research, dg.o ’17, Staten Island, NY, USA, 7–9 June 2017;
pp. 574–575.

89. Wani, S.; Imthiyas, M.; Almohamedh, H.; Alhamed, K.M.; Almotairi, S.; Gulzar, Y. Distributed Denial of Service (DDoS) Mitigation
Using Blockchain–A Comprehensive Insight. Symmetry 2021, 13, 227. [CrossRef]

90. Hanifatunnisa, R.; Rahardjo, B. Blockchain based e-voting recording system design. In Proceedings of the 2017 11th International
Conference on Telecommunication Systems Services and Applications, TSSA ’17, Lombok, Indonesia, 26–27 October 2017; pp. 1–6.

91. Hjálmarsson, F.Þ.; Hreiðarsson, G.K.; Hamdaqa, M.; Hjálmtýsson, G. Blockchain-Based E-Voting System. In Proceedings of the
2018 IEEE 11th International Conference on Cloud Computing, CLOUD ’18, San Francisco, CA, USA, 2–7 July 2018; pp. 983–986.

92. Kshetri, N.; Voas, J. Blockchain-Enabled E-Voting. IEEE Softw. 2018, 35, 95–99. [CrossRef]
93. Ruparel, H.; Hosatti, S.; Shirole, M.; Bhirud, S. Secure Voting for Democratic Elections: A Blockchain-Based Approach.

In Proceedings of the 2020 International Conference on Communication, Computing and Electronics Systems, ICCCES ’20,
Coimbatore, India, 21–22 October 2020; pp. 615–628.

94. Wang, B.; Sun, J.; He, Y.; Pang, D.; Lu, N. Large-scale Election Based On Blockchain. Procedia Comput. Sci. 2018, 129, 234–237.
[CrossRef]

95. Buchmann, A.; Koldehofe, B. Complex Event Processing. IT-Inf. Technol. 2009, 51, 241–242. [CrossRef]
96. Pratama, F.A.; Mutijarsa, K. Query Support for Data Processing and Analysis on Ethereum Blockchain. In Proceedings of the

2018 International Symposium on Electronics and Smart Devices, ISESD ’18, Bandung, Indonesia, 23–24 October 2018; pp. 1–5.
97. Zhu, Y.; Zhang, Z.; Jin, C.; Zhou, A.; Yan, Y. SEBDB: Semantics Empowered BlockChain DataBase. In Proceedings of the 2019

IEEE 35th International Conference on Data Engineering, ICDE ’19, Macao, China, 8–11 April 2019; pp. 1820–1831.
98. Heuer, A.; Scholl, M.H. Principles of Object-Oriented Query Languages. In Datenbanksysteme in Büro, Technik und Wissenschaft;

Appelrath, H.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 178–197.
99. Libkin, L. Expressive power of SQL. Theor. Comput. Sci. 2003, 296, 379–404. [CrossRef]

http://dx.doi.org/10.18280/isi.260102
http://dx.doi.org/10.1109/TEM.2002.803382
http://dx.doi.org/10.1088/1755-1315/85/1/012022
http://dx.doi.org/10.1016/j.cie.2021.107442
http://dx.doi.org/10.3390/ijerph17051784
http://dx.doi.org/10.1016/j.jclepro.2020.122193
http://dx.doi.org/10.1109/ACCESS.2020.2986257
http://dx.doi.org/10.1109/ACCESS.2020.2975415
http://dx.doi.org/10.1016/S0167-4048(02)01014-3
http://dx.doi.org/10.1007/s12243-016-0525-8
http://dx.doi.org/10.3390/sym13020227
http://dx.doi.org/10.1109/MS.2018.2801546
http://dx.doi.org/10.1016/j.procs.2018.03.063
http://dx.doi.org/10.1524/itit.2009.9058
http://dx.doi.org/10.1016/S0304-3975(02)00736-3


Future Internet 2022, 14, 1 30 of 31

100. Klyne, G.; Newman, C. Date and Time on the Internet: Timestamps; Standards Track RFC 3339, July; IETF—Network Working
Group: Reston, VA, USA; Geneva, Switzerland, 2002.

101. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, Porto, Portugal, 23–26 April 2018; pp. 30:1–30:15.

102. Ruan, P.; Dinh, T.T.A.; Loghin, D.; Zhang, M.; Chen, G.; Lin, Q.; Ooi, B.C. Blockchains vs. Distributed Databases: Dichotomy and
Fusion. In Proceedings of the 2021 International Conference on Management of Data, SIGMOD/PODS ’21, China (Virtual Event),
20–25 June 2021; pp. 1504–1517.

103. El-Hindi, M.; Binnig, C.; Arasu, A.; Kossmann, D.; Ramamurthy, R. BlockchainDB: A Shared Database on Blockchains. Proc.
VLDB Endow. 2019, 12, 1597–1609. [CrossRef]

104. Peng, Y.; Du, M.; Li, F.; Cheng, R.; Song, D. FalconDB: Blockchain-Based Collaborative Database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, Portland, OR, USA, 14–19 June 2020; pp. 637–652.

105. Allen, L.; Antonopoulos, P.; Arasu, A.; Gehrke, J.; Hammer, J.; Hunter, J.; Kaushik, R.; Kossmann, D.; Lee, J.; Ramamurthy,
R.; Setty, S.; Szymaszek, J.; van Renen, A.; Venkatesan, R. Veritas: Shared Verifiable Databases and Tables in the Cloud. In
Proceedings of the 9th Biennial Conference on Innovative Data Systems Research, CIDR ’19, Asilomar, CA, USA, 13–16 January
2019; pp. 111:1–111:9.

106. BigchainDB GmbH. BigchainDB 2.0: The Blockchain Database; White Paper; BigchainDB GmbH: Berlin, Germany, 2018.
107. Nathan, S.; Govindarajan, C.; Saraf, A.; Sethi, M.; Jayachandran, P. Blockchain Meets Database: Design and Implementation of a

Blockchain Relational Database. Proc. VLDB Endow. 2019, 12, 1539–1552. [CrossRef]
108. Schuhknecht, F.M.; Sharma, A.; Dittrich, J.; Agrawal, D. chainifyDB: How to get rid of your Blockchain and use your DBMS

instead. In Proceedings of the 11th Annual Conference on Innovative Data Systems Research, CIDR ’21, online, 11–15 January
2021; pp. 4:1–4:10.

109. Eisenberg, A.; Melton, J. SQL: 1999, Formerly Known as SQL3. ACM SIGMOD Rec. 1999, 28, 131–138. [CrossRef]
110. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Yellow Paper Berlin Version 888949c,

Ethereum Project. 2021. Available online: https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf (accessed on 12
December 2021).

111. Han, J.; Kim, H.; Eom, H.; Coignard, J.; Wu, K.; Son, Y. Enabling SQL-Query Processing for Ethereum-based Blockchain Systems.
In Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics, WIMS ’19, Seoul, Korea, 26–28
June 2019; pp. 9:1–9:7.

112. Tong, X.; Tang, H.; Jiang, N.; Fan, W.; Gao, Y.; Deng, S.; Zhang, Z.; Jin, C.; Yang, Y.; Qin, G. SQL-Middleware: Enabling the
Blockchain with SQL. In Proceedings of the 26th International Conference on Database Systems for Advanced Applications,
DASFAA ’21, Taipei, Taiwan, 11–14 April 2021; pp. 622–626.

113. Li, Y.; Zheng, K.; Yan, Y.; Liu, Q.; Zhou, X. EtherQL: A Query Layer for Blockchain System. In Proceedings of the 22nd
International Conference on Database Systems for Advanced Applications, DASFAA ’17, Suzhou, China, 27–30 March 2017;
pp. 556–567.

114. Bragagnolo, S.; Marra, M.; Polito, G.; Gonzalez Boix, E. Towards Scalable Blockchain Analysis. In Proceedings of the 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain, WETSEB ’19, Montreal,
QC, Canada, 27 May 2019; pp. 1–7.

115. Xu, C.; Zhang, C.; Xu, J. vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD ’19, Amsterdam, The Netherlands, 30 June–5 July 2019;
pp. 141–158.

116. Xing, X.; Chen, Y.; Li, T.; Xin, Y.; Sun, H. A blockchain index structure based on subchain query. J. Cloud Comput. 2021,
10, 52:1–52:11. [CrossRef]

117. Jia, D.Y.; Xin, J.C.; Wang, Z.Q.; Lei, H.; Wang, G.R. SE-Chain: A Scalable Storage and Efficient Retrieval Model for Blockchain. J.
Comput. Sci. Technol. 2021, 36, 693–706. [CrossRef]

118. Peng, Z.; Wu, H.; Xiao, B.; Guo, S. VQL: Providing Query Efficiency and Data Authenticity in Blockchain Systems. In Proceedings
of the 2019 IEEE 35th International Conference on Data Engineering Workshops, ICDEW 19, Macao, China, 8–12 April 2019;
pp. 1–6.

119. Wu, H.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems. IEEE
Trans. Parallel Distrib. Syst. 2022, 33, 1393–1406. [CrossRef]

120. Gritti, C.; Önen, M.; Molva, R. Privacy-Preserving Delegable Authentication in the Internet of Things. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC ’19, Limassol, Cyprus, 8–12 April 2019; pp. 861–869.

121. Stach, C.; Bräcker, J.; Eichler, R.; Giebler, C.; Gritti, C. How to Provide High-Utility Time Series Data in a Privacy-Aware Manner:
A VAULT to Manage Time Series Data. Int. J. Adv. Secur. 2020, 13, 88–108.

122. Wortner, P.; Schubotz, M.; Breitinger, C.; Leible, S.; Gipp, B. Securing the Integrity of Time Series Data in Open Science Projects
using Blockchain-based Trusted Timestamping. In Proceedings of the Workshop on Web Archiving and Digital Libraries held
in conjunction with the 18th ACM/IEEE Joint Conference on Digital Libraries, WADL ’19, Champaign, IL, USA, 2 June 2019;
pp. 2:1–2:3.

http://dx.doi.org/10.14778/3342263.3342636
http://dx.doi.org/10.14778/3342263.3342632
http://dx.doi.org/10.1145/309844.310075
https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf
http://dx.doi.org/10.1186/s13677-021-00268-0
http://dx.doi.org/10.1007/s11390-020-0158-2
http://dx.doi.org/10.1109/TPDS.2021.3113873


Future Internet 2022, 14, 1 31 of 31

123. Dhanush, G.A.; Raj, K.S.; Kumar, P. Blockchain Aided Predictive Time Series Analysis in Supply Chain System. In Proceedings of
the 2021 2nd International Conference on Electrical and Electronics Engineering, ICEEE ’21, NCR New Delhi, India, 2–3 January
2021; pp. 913–925.

124. Yu, Z.; Cai, Y.; Hong, W. A Storage Architecture of Blockchain for Time-Series Data. In Proceedings of the 2019 2nd International
Conference on Hot Information-Centric Networking, HotICN ’19, Chongqing, China, 13–15 December 2019; pp. 90–91.

125. Qu, Q.; Nurgaliev, I.; Muzammal, M.; Jensen, C.S.; Fan, J. On spatio-temporal blockchain query processing. Future Gener. Comput.
Syst. 2019, 98, 208–218. [CrossRef]

126. Nurgaliev, I.; Muzammal, M.; Qu, Q. Enabling Blockchain for Efficient Spatio-Temporal Query Processing. In Proceedings of
the 19th International Conference on Web Information Systems Engineering, WISE ’18, Dubai, United Arab Emirates, 12–15
November 2018; pp. 36–51.

127. Zhang, Y.; Genkin, D.; Katz, J.; Papadopoulos, D.; Papamanthou, C. vSQL: Verifying Arbitrary SQL Queries over Dynamic
Outsourced Databases. In Proceedings of the 2017 IEEE Symposium on Security and Privacy, SP ’17, San Jose, CA, USA, 22–26
May 2017; pp. 863–880.

128. Zhang, M.; Xie, Z.; Yue, C.; Zhong, Z. Spitz: A Verifiable Database System. Proc. VLDB Endow. 2020, 13, 3449–3460. [CrossRef]
129. Wang, S.; Dinh, T.T.A.; Lin, Q.; Xie, Z.; Zhang, M.; Cai, Q.; Chen, G.; Ooi, B.C.; Ruan, P. Forkbase: An Efficient Storage Engine for

Blockchain and Forkable Applications. Proc. VLDB Endow. 2018, 11, 1137–1150. [CrossRef]
130. Zhou, W.; Cai, Y.; Peng, Y.; Wang, S.; Ma, K.; Li, F. VeriDB: An SGX-Based Verifiable Database. In Proceedings of the 2021

International Conference on Management of Data, SIGMOD/PODS ’21, China (Virtual Event), 20–25 June 2021; pp. 2182–2194.
131. McKeen, F.; Alexandrovich, I.; Anati, I.; Caspi, D.; Johnson, S.; Leslie-Hurd, R.; Rozas, C. Intel® Software Guard Extensions

(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, HASP ’16, Seoul, Korea, 18 June 2016; pp. 1–9.

132. Li, F.; Hadjieleftheriou, M.; Kollios, G.; Reyzin, L. Dynamic Authenticated Index Structures for Outsourced Databases. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, Chicago, IL, USA, 27–29
June 2006; pp. 121–132.

133. Przytarski, D. Using Triples as the Data Model for Blockchain Systems. In Proceedings of the Blockchain enabled Semantic Web
Workshop and Contextualized Knowledge Graphs Workshop co-located with the 18th International Semantic Web Conference,
BlockSW/CKG@ISWC ’19, Auckland, New Zealand, 26–30 October 2019; pp. 1–2.

134. Neumann, T.; Weikum, G. The RDF-3X engine for scalable management of RDF data. VLDB J. 2010, 19, 91–113. [CrossRef]
135. Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C. Towards Scaling Blockchain Systems via Sharding. In

Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19, Amsterdam, The Netherlands, 30 June–5
July 2019; pp. 123–140.

136. Levene, M.; Loizou, G. Why is the snowflake schema a good data warehouse design? Inf. Syst. 2003, 28, 225–240. [CrossRef]
137. Herlihy, M. Atomic Cross-Chain Swaps. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,

PODC ’18, Egham, UK, 23–27 July 2018; pp. 245–254.
138. Xu, J.; Ackerer, D.; Dubovitskaya, A. A Game-Theoretic Analysis of Cross-Chain Atomic Swaps with HTLCs. In Proceedings of

the 2021 IEEE 41st International Conference on Distributed Computing Systems, ICDCS ’21, Washington, DC, USA, 7–10 July
2021; pp. 584–594.

139. European Parliament and Council of the European Union. Regulation on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (Data Protection Directive).
Legislative Acts L119. Off. J. Eur. Union 2016.

140. Hofman, D.; Lemieux, V.L.; Joo, A.; Alves Batista, D. “The margin between the edge of the world and infinite possibility”:
Blockchain, GDPR and information governances. Rec. Manag. J. 2019, 29, 240–257. [CrossRef]

141. Shi, S.; He, D.; Li, L.; Kumar, N.; Khan, M.K.; Choo, K.K.R. Applications of blockchain in ensuring the security and privacy of
electronic health record systems: A survey. Comput. Secur. 2020, 97, 101966:1–101966:20. [CrossRef] [PubMed]

142. Tatar, U.; Gokce, Y.; Nussbaum, B. Law versus technology: Blockchain, GDPR, and tough tradeoffs. Comput. Law Secur. Rev. 2020,
38, 105454:1–105454:11. [CrossRef]

http://dx.doi.org/10.1016/j.future.2019.03.038
http://dx.doi.org/10.14778/3415478.3415567
http://dx.doi.org/10.14778/3231751.3231762
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1016/S0306-4379(02)00021-2
http://dx.doi.org/10.1108/RMJ-12-2018-0045
http://dx.doi.org/10.1016/j.cose.2020.101966
http://www.ncbi.nlm.nih.gov/pubmed/32834254
http://dx.doi.org/10.1016/j.clsr.2020.105454

	Introduction
	Fundamentals of Blockchain Technology
	Application Domains Identified through Literature Review
	Health Data Management
	Financial Accounting
	Registries
	Food Supply Chains
	E-Voting
	Lessons Learned

	Object Types in Blockchains
	Query Capabilities for Blockchain Technology
	Overview of the State of the Art
	State of Technology
	State of Research

	Future Research Challenges
	Data Models
	Data Structures
	Block Structures
	Query Processing
	New Blockchain Architectures
	Legal Restrictions

	Conclusions
	References

