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Abstract: As part of studies that employ health electronic records databases, this paper advocates 
the employment of graph theory for investigating drug-switching behaviors. Unlike the shared ap-
proach in this field (comparing groups that have switched with control groups), network theory can 
provide information about actual switching behavior patterns. After a brief and simple introduction 
to fundamental concepts of network theory, here we present (i) a Python script to obtain an adja-
cency matrix from a records database and (ii) an illustrative example of the application of network 
theory basic concepts to investigate drug-switching behaviors. Further potentialities of network the-
ory (weighted matrices and the use of clustering algorithms), along with the generalization of these 
methods to other kinds of switching behaviors beyond drug switching, are discussed. 
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1. Introduction 
Information and Communication Technologies (ICTs) are major players in society 

nowadays. The ubiquitous presence of Internet-connected computer systems (via 
smartphones, tablets, wearable devices) in daily life allows us to virtually obtain all kinds 
of information, and at the same time, a lot of information about human behavior is sys-
tematically stored in databases [1–3]. Among others, health and medical services have 
been radically transformed by the ICT progress over recent decades. In this regard, a piv-
otal role has been played by health care databases, which contain information about indi-
viduals’ health and related behaviors [4–11]. ICTs allow continuously and automatically 
updating administrative databases as soon as an event takes place (the prescription of a 
drug made by a physician, medical procedures, diagnoses information, records of health 
services, etc.). 

In this paper, we will focus on analyzing electronic health records database data re-
lated to drug prescription and, specifically, drug switching. Traditional methods em-
ployed for investigating drug-switching behaviors are often unable to determine the ac-
tual switching pattern. Here, we propose the use of network theory to improve the anal-
yses of these kinds of data. A previous contribution on this topic [12] was limited to ad-
vocating the application of network theory for investigating switching behaviors. There-
fore, we provide a step-by-step user guide, along with a ready-to-use Python script for 
obtaining an adjacency matrix from raw data. 
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1.1. Getting Data from an Electronic Records Database 
When considering health electronic records databases, there are essentially two types 

of repositories [13]: medical records databases (information is recorded as part of clinical 
outpatient care) and administrative databases (information is recorded for monitoring 
and controlling health expenditures). Both kinds of databases contain information about 
prescription drugs and medical diagnoses. 

Of note, within the European Union, a researcher willing to analyze an electronic 
records database must take into consideration the General Data Protection Regulation 
(GDPR). This regulation was put into effect on 25 May, 2018, and specifies responsibilities 
and requirements on entities that handle personal data. Needless to say, the Ethical Com-
mittee Approval for an administrative database analysis-based study must comply with 
GDPR. In this regard, we recommend further exploring this topic in the literature dedi-
cated to GDPR and health research [14–17]. 

To satisfy storage, security and privacy constraints of medical records, recent litera-
ture has explored the possibility of using blockchain-based approaches [18,19], also taking 
into account GDPR compliance [20]. Our primary source of data, though, still relies on 
extraction from traditional Relational Database Management Systems (e.g., [5]). More 
broadly speaking, it is important to clarify how information is recorded in the healthcare 
database under scrutiny. Depending on the country, healthcare information is stored in 
different ways. This may have an impact on the results of the analyses. For example, what 
happens when a patient changes medical doctor or hospital? The answer depends on the 
organization of the healthcare system of the country. The Italian healthcare system is re-
gionally based. Usually, some fields of the administrative database records can change 
(medical doctor, hospitals), while the overall process is still handled within the specific 
region. Before carrying out the analysis of the database, it is critical to explore these issues 
to understand the limitations of the study. 

1.2. The Importance of Investigating Drug-Switching Behaviors 
After a physician consultation, the patient usually receives a treatment plan (e.g., 

drug prescriptions, dietary habits, performing or avoiding physical activities). However, 
the patient may or may not follow medical advice. The term compliance (also called ad-
herence) refers to behavior in which the patient follows the physician’s instructions. Com-
pliance becomes critical in the case of chronic illness medication, where the patient must 
take a specific drug (or different drugs in sequence) for a prolonged interval of time. There 
is no way for the physician to directly ascertain the compliance of the patient. However, 
drugs consumption can be inferred from administrative and medical databases, and alt-
hough the prescription of a drug does not necessarily correspond to the consumption of 
that drug, it can be considered a good indicator [5,20–22]. It is worth noting that statistical 
analysis of these kinds of databases is not straightforward because they are commonly 
characterized by records of tens of thousands of people (or more) for several years. A row 
is created when a new event related to a patient occurs (e.g., a new prescription, an update 
about a new medical condition). Table 1 reports a simplified extract of a few lines of a 
typical database. 

Table 1. An illustrative example of a health records database. 

ID DATE CODE 
1002 12/10/2020 1 
2043 12/10/2020 1 
2005 12/10/2020 2 
1002 13/10/2020 3 
4345 13/10/2020 1 
… … … 
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Following previous contributions [12,23], here, we will focus on a specific issue that 
can answer questions such as, “Given a certain drug, what are the other drugs with which 
a switch is more likely?”. This is an example of switching behavior, which is particularly 
important within health literature [24–26]. Under certain circumstances, a physician may 
ask a patient to switch medication. For example, within the psychiatric field, there are 
circumstances (especially for patients who require long-term treatment) where switching 
the current antipsychotic medication to another antipsychotic drug is required because 
adverse effects were observed or the response to treatment is inadequate [27]. Information 
about how prescriptions of various drugs change in sequence is stored in the aforemen-
tioned databases. Thus, their analysis may contribute to ascertaining what kind of switch 
pattern is associated with the best clinical outcome (reduction of adverse effects and opti-
mal clinical response). 

Investigating drug-switching patterns is a critical aspect also in the domain of behav-
ior change interventions [28–31]. In order to obtain the best clinical outcome, patients have 
to switch drugs in the way prescribed by the physician. The adherence to physician’s 
guidelines depends on several variables (e.g., intentions, beliefs, habits, motivation). Tra-
ditionally, health psychology has proposed several theoretical models to design behavior 
change interventions that can help to improve adherence [32,33]. More recently, cognitive-
oriented forms of interventions have been proposed. Exploiting the sensitivity to the con-
text of cognitive processes [34–38] and, in particular, decision making [39–42], the so-
called “Nudge approach” proposes changing the architecture of choice (i.e., the design in 
which choices are presented to decision makers) in order to obtain nonforced compliance 
[43]. The Nudge theory is based on indirect suggestions and default behavior. In other 
terms, the context in which a certain choice is made is organized in order to induce auto-
matic and effortless behaviors [44–47] that are associated with better adherence. The com-
parison of different types of intervention (e.g., Nudge-based or classic behavior change 
intervention) aiming at a specific drug-switching pattern could greatly benefit from a 
more accurate method of inferring the actual patients’ behavior. 

Furthermore, studying drug switching may also be relevant for investigating poten-
tial differences between generic and brand-name drugs. It is not unusual for the pharma-
cist—having taken note of the doctor’s prescription—to ask the patient to choose between 
the branded or the generic drug. This takes on weight if we consider that the scientific 
literature [48,49] reports that two typologies of drugs may be different in terms of tolera-
bility or efficacy. Thus, investigating drug-related switching behaviors can be extremely 
useful in the case of chronic diseases where patients may switch continuously from 
branded drugs to generic ones unbeknownst to the physician. Assessing the relationship 
between the observed switch pattern with clinical outcomes may give physicians new in-
sights into the therapeutic intervention. 

1.3. The Statistical Analysis of Drug-Switching Behavior 
In the previous section, we described the relevance of using databases for investigat-

ing drug-switching behaviors. However, the analyses commonly employed in previous 
studies are usually characterized by some limitations. Indeed, studies are often limited to 
a comparison between the group of patients who have switched drugs with the group 
who have not switched in a given interval of time [50–52]. Then, the groups can be com-
pared by employing an adherence index such as the Medical Possession Ratio (MPR). 
When the health records database provides information about only a few different types 
of drugs, the commonly employed approach is very effective. However, when the number 
of different types of drugs increases along with the dimension of the number of rows of 
the database, these methods can miss the real complexity of the switching behaviors of 
patients. 

Among the wide range of mathematical tools usefully employed within healthcare, 
graph theory [53,54] could be an ideal tool to investigate switching behavior by means of 
database analysis (as previously suggested in the health domain [12] and in other fields, 
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such as marketing research [55]). This paper aims to offer a simple and straightforward 
introduction to basic concepts of graph theory in order to exploit its potentialities as a tool 
to analyze switching behavior. The ideal reader is a healthcare researcher that can find 
here a ready-to-use guide to carry out the analysis of drug-switching behavior. 

In the following sections, first, the elementary concepts of graph theory relevant for 
this paper will be introduced. Then, after a description of the basic characteristics of illus-
trative electronic health records databases, an example of the application of graph theory 
for analyzing switching behavior will be displayed (including a Python script for obtain-
ing the adjacency matrix necessary for network analysis). 

2. Fundamentals of Graph Theory 
In this section, we will provide a very basic introduction to the fundamental concepts 

of graph theory. We will avoid a formal approach in favor of a more discursive presenta-
tion in order to allow researchers without a mathematical background (or mathematical 
aptitude) to easily understand this topic. A formal introduction can be found in the books 
of Kolaczyk et al. [53] or Luke [54]. 

From a mathematical point of view, a network (also called graph) consists of a set of 
nodes (or vertices) and a set of connections between nodes, the edges (or links). A network 
can be either directed or undirected. A directed network is characterized by edges that 
point in only one direction (from a node to another node). When links between edges are 
not oriented in a specific direction (i.e., they are generic connections), the network is an 
undirected network. In this paper, we will deal with directed networks, which represent 
an ideal approach to model switching behaviors. 

Calling V the set of nodes and E the set of edges, a graph G can be defined as a pair 
G = (V, E). In a directed graph, E is the set of ordered pairs of vertices (that is, an edge is 
associated with two distinct nodes). A graph can be represented by using an adjacency 
matrix A, a square n x n matrix, where n is the number of nodes. Each element Ai,j is 
different from zero if node i is connected to node j by an edge in the graph. The value of 
each element of the matrix represents the weight of the connection between two nodes. 
Because we are considering directed graphs, it is necessary to specify that weights stand 
for the link from the starting node (reported on rows, for example) to the destination node 
(thus reported on the columns in this example). Adjacency matrices of directed graphs 
can be asymmetric of course, and in the case of recurrent connections on the same node, 
the main diagonal elements may be nonzero. 

Within the study of network topology, several measures can be defined. First, it is 
necessary to clarify the meaning of some terms. A walk is a sequence (finite or infinite) of 
links that joins a sequence of nodes. A walk, in which all links are distinct is called a trail. 
Finally, a trail, in which all nodes (and thus all edges) are distinct is defined as a path. 

The distance between two nodes is the length of the shortest directed (in the case of 
a directed graph, as the case object of this study) path. Of course, there may be more than 
a single shortest path between two nodes. 

In order to evaluate the structure of a graph, the average path length that is the mean 
value of the shortest paths for all possible pairs of graph vertices can be computed. Gen-
erally, it is considered an efficiency measure of the information flow of the network. Tak-
ing into account the distance between each pair of vertices, the greatest length of any of 
these paths is called the diameter of the network. 

In a directed graph, each node is characterized by the in-degree value (the number of 
incoming links) and an out-degree (the number of outgoing links). The centrality degree 
values represent a sort of popularity index [56]. As the number of incoming links (or out-
going, in other cases) increases, the importance of a node within the network increases 
too. 

Other useful measures are the node betweenness centrality and closeness. Node be-
tweenness centrality allows understanding the importance of a node in the “flow man-
agement” of the network. Indeed, the interaction between two nonadjacent nodes A and 
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B is related to the nodes placed on the path between A and B. Node betweenness centrality 
of a node X is the ratio between the number of shortest paths (between any pair of vertices 
in the network) that passes through X and the total number of shortest paths existing be-
tween any couple of nodes in the network. 

The closeness of a node W is the reciprocal of the sum of every shortest path between 
node W and all other nodes in the graph. High values of closeness indicate that node W 
is “near” to all other nodes. It is important to note that closeness is an average tendency 
of a node to be isolated or close to other vertices. 

A network can also be characterized by weights that measure the strength of connec-
tions between nodes. The application of indexes based on the weights of the network is 
beyond the scope of this paper; however, taking into account the weights of the graph 
may be extremely interesting in the study of switching behavior adjacency matrix. 

3. From Electronic Records Databases to Adjacency Matrix 
Electronic health databases may contain a huge amount of diverse information. Here, 

we will focus on a simplified and illustrative example of drug prescription. Table 1 repre-
sents the basic information needed for switch behavior analysis with graph theory. The 
considered variables are: the identification number of each patient ID (ID), the date of 
prescription (DD/MM/YEAR) and the kind of drug (CODE, labeled with numbers) (In this 
example, the variable CODE refers to the kind of drug. However, this variable can repre-
sent other behavior that an individual may show or adopt (choosing food in a cafeteria, 
see a particular doctor with different specialization, and so on)). 

Whenever someone (identified by their personal ID) receives a prescription drug 
from the physician, that information is recorded in the database. The kind of drug is re-
ported in the CODE column. It is important to note that this kind of database (especially 
when the number of entries is very large) often needs to be cleaned out (false or wrong 
IDs, impossible dates, duplicate records and so on). A crucial step to performing switching 
behavior analysis based on network theory consists of obtaining an adjacency matrix from 
the database. In Appendix A, a simple Python script is reported that achieves this result. 
The output of the Python code is a weighted adjacency matrix with the drugs codes on 
the rows/columns. The weights represent the number of switches from one drug to an-
other. As mentioned earlier, this paper does not focus on the weighted matrix but rather 
on an unweighted direct adjacency matrix. An example of analysis will be described in 
the next section. 

4. A Working Example 
Let us suppose we have an electronic database that, after the application of the Py-

thon script in Appendix A, is transformed in the adjacency matrix represented in the 
graph of Figure 1. 

 
Figure 1. Example of a graph generated from an adjacency matrix with 8 different types of drugs. 
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This is not an example based on real data, but it may be considered a plausible situ-
ation. The eight nodes may represent eight different types of pharmaceutical equivalent 
drugs (i.e., same active ingredients, same dosage form and method of administration, 
identical in concentration/strength), branded or not. A sample of patients in a given inter-
val of time switched between these different drugs, as represented in the adjacency matrix 
of Figure 1. 

We are going to compare this setting (called Case Study) with a reference scenario 
with a fully connected network (Figure 2). It represents a situation where a sample of pa-
tients switches from a specific drug to any other drug (given the eight drugs under scru-
tiny). This may represent an actual situation. Fully connected networks are often used as 
a benchmark to compare the features of a given network [53,54,57]. 

 
Figure 2. Fully connected adjacency matrix with 8 different types of drugs. 

Network analyses have been performed with the statistical software R [58] (in partic-
ular using the packages tidyverse [59] and igraph [60]), which easily allows computing the 
degree, the in-degree, the out-degree, betweenness centrality and closeness for each node 
and for the two scenarios (Table 2). They are computed giving as input the graph and 
provide the outputs as defined in Section 2. Appendix B reports the R script employed to 
obtain the data presented here. 

Table 2. Degree, in-degree, out-degree, betweenness centrality and closeness for each node and for the two scenarios. 

 Case Study Fully Connected Network 

Drug Degree In-degree Out-degree 
Between-

ness 
centrality 

Closeness Degree In-degree Out-degree 
Betweenness 

centrality Closeness 

1 8 4 4 4.00 0.10 16 8 8 0 0.14 
2 10 4 6 4.00 0.11 16 8 8 0 0.14 
3 9 4 5 1.50 0.11 16 8 8 0 0.14 
4 7 4 3 1.50 0.09 16 8 8 0 0.14 
5 9 3 6 5.50 0.11 16 8 8 0 0.14 
6 4 3 1 0.00 0.07 16 8 8 0 0.14 
7 4 2 2 0.50 0.07 16 8 8 0 0.14 
8 5 4 1 0.00 0.08 16 8 8 0 0.14 

Drug 2, Drug 3 and Drug 5 have the highest degree (thus, they are more the center of 
switching behaviors). However, Drugs 2 and 3 have the same in-degree (switching to that 
drug) equal to four (likewise other kinds of drug, for example, Drugs 1, 4 and 8) and 
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higher than Drug 5 (in-degree equal to three). The high degree scores of these three drugs 
depend mainly on the out-degree (switching to another drug). It is easy to observe that in 
the fully connected network, there are no differences among nodes for degree, in-degree 
and out-degree where all the values have the highest possible amount. 

When drugs are switched in sequence, Drug 5 is the most “central” (with a between-
ness centrality equal to 5.50), followed by Drugs 1 and 2. This means that these drugs are 
a sort of recurrent “bridge” between other drugs. In other terms, they have a crucial role 
in the flow of drug switching. The differences among nodes in closeness values are not so 
high, but results confirm that Drugs 2, 3 and 5 are nearer (in terms of switching) to other 
drugs. Again, in the fully connected network, the distribution of betweenness centrality 
and closeness are uniform: specifically, equal to zero for each node and equal to 0.14 for 
betweenness centrality and closeness, respectively. 

Lastly, the diameter of the Case Study network is three, whereas the diameter of the 
fully connected network is one, confirming that the former is “larger” (i.e., there are some 
drugs that do not switch directly to each other) than the fully connected network. 

5. Discussion and Conclusions 
This paper aimed to promote the use of network theory as a method to investigate 

switching behaviors (in particular, drug switching). The current and shared approach is 
usually based on classical statistical analyses (to compare individuals who have switched 
in a given period with those who have not switched) [51,61,62]. However, this approach 
is unable to grasp the real complexity and switching pattern that a health database may 
contain. Network theory may represent a useful tool for analyzing switching behavior for 
healthcare researchers. In this contribution, we reported a brief list of network theory fun-
damental concepts, a Python script that allows obtaining an adjacency matrix from the 
basic information of a healthcare database and an illustrative example of the application 
of graph analysis. Focusing only on the analysis of an unweighted directed adjacency ma-
trix, it was possible to see how network theory indexes can be very informative about the 
switching pattern about drugs. Indeed, in some cases, it may be observed a fully con-
nected network, whereas in other cases, the database analysis could reveal a situation 
more similar to the reported Case Study where some drugs play a more central role in 
switching patterns compared to other more peripheral. 

Here, we focused on a basic analysis in order to propose to healthcare researchers a 
ready-to-use guide to get started. However, compared to the simple analyses presented 
in this paper, it could be useful to integrate them with the computation of indexes based 
on the weights of the adjacency matrix [53,54]. Indeed, the Python script reported in this 
paper produces a weighted matrix, and the weights can allow obtaining useful insight 
about switching behaviors. Typically, the highest weights are found in correspondence to 
switches towards the same drug [20]. However, with regard to the switch from one drug 
to another, it could be useful to differentiate which kind of switch is more frequent. The 
importance of also taking into account the weight between nodes is testified by studies 
that observed how weighted networks are successful in simulating real-world networks 
[63,64]. The use of an adjacency matrix opens also the possibility to employ clustering 
algorithms [65,66]. Clustering allows dividing the whole sample of nodes into subsamples 
that maximize intracluster similarities and intercluster sparsity. In other terms, the basic 
idea is that the nodes in the same cluster are closer to each other than the nodes in other 
clusters. Thus, this analysis can allow detecting subsets of drugs that tend to switch to 
each other. 

The use of network theory to analyze drug switching may allow obtaining deeper 
insights about patients’ behaviors and their health compared to current approaches. De-
termining what kind of drug-switching pattern is associated with the best outcome or if 
there is no difference in health outcomes when switching between branded and non-
branded drugs may result in beneficial effects in terms of well-being and financial sus-
tainability of the healthcare system. 
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This paper is focused on drug switching as a peculiar example of information taken 
by health records databases, but it is important to note that this approach can be general-
ized to other health-related behaviors (e.g., the consumption of water with different 
amounts of calcium [67], the investigation of the influence of nudging strategies to differ-
ent health behaviors [68] or the study of placebo/nocebo effects [69,70]). Every behavior 
or event automatically recorded in a database that can be switched is of course amenable 
to the proposed approach. 

We hope that this contribution may represent a user guide to improve the investiga-
tion of switching behavior inferred from health records databases through the deploy-
ment of network theory. 
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Appendix A 
The following flowchart describes the algorithm (Figure A1): 

 
Figure A1. Algorithm flowchart 

The Python code starts by reading the input list of prescriptions in Comma Separated 
Values (.csv) format and creating the corresponding Pandas DataFrame. After sorting the 
values by ascending ID and DATE (i.e., all IDs in increasing order, with the same IDs all 
adjacent, and then in each group, rows ordered by date), we use the groupby function to 
obtain a group for each ID. The helper function compute_complete_switches (group) is ap-
plied to each group in order to obtain a dictionary with, for each CODE (top-level key), 
an inner dictionary (again with CODE as key, second-level key) with the number of 
switches from the outer CODE to the inner CODE. The groups.apply function applies the 
helper function to each group and then returns the aggregate of all the dictionaries as a 
new DataFrame. Finally, the get_adjacency_matrix (input_frame, codes) function creates an 
n x n matrix with indices corresponding to CODEs. By iterating over the dictionary, it 
updates the value in the corresponding cell by adding the number of switches in the group 
of the input_frame. The result is returned as a new Pandas DataFrame and saved back in 
CSV format. 
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