
future internet

Article

Cross-Project Defect Prediction Method Based on Manifold
Feature Transformation

Yu Zhao 1 , Yi Zhu 1,2,* , Qiao Yu 1 and Xiaoying Chen 1

����������
�������

Citation: Zhao, Y.; Zhu, Y.; Yu, Q.;

Chen, X. Cross-Project Defect

Prediction Method Based on

Manifold Feature Transformation.

Future Internet 2021, 13, 216.

https://doi.org/10.3390/fi13080216

Academic Editor: Paolo Bellavista

Received: 10 August 2021

Accepted: 19 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China;
zhaoyu@jsnu.edu.cn (Y.Z.); yuqiao@jsnu.edu.cn (Q.Y.); cxy@jsnu.edu.cn (X.C.)

2 Key Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

* Correspondence: zhuy@jsnu.edu.cn

Abstract: Traditional research methods in software defect prediction use part of the data in the same
project to train the defect prediction model and predict the defect label of the remaining part of the
data. However, in the practical realm of software development, the software project that needs to be
predicted is generally a brand new software project, and there is not enough labeled data to build a
defect prediction model; therefore, traditional methods are no longer applicable. Cross-project defect
prediction uses the labeled data of the same type of project similar to the target project to build the
defect prediction model, so as to solve the problem of data loss in traditional methods. However, the
difference in data distribution between the same type of project and the target project reduces the
performance of defect prediction. To solve this problem, this paper proposes a cross-project defect
prediction method based on manifold feature transformation. This method transforms the original
feature space of the project into a manifold space, then reduces the difference in data distribution
of the transformed source project and the transformed target project in the manifold space, and
finally uses the transformed source project to train a naive Bayes prediction model with better
performance. A comparative experiment was carried out using the Relink dataset and the AEEEM
dataset. The experimental results show that compared with the benchmark method and several
cross-project defect prediction methods, the proposed method effectively reduces the difference in
data distribution between the source project and the target project, and obtains a higher F1 value,
which is an indicator commonly used to measure the performance of the two-class model.

Keywords: cross-project defect prediction; manifold feature transformation; naive Bayes prediction
model; F1

1. Introduction

Currently, the complexity of software is increasing, which is mainly reflected in the
continuous increase in the number of developers and the scale of the software system.
The increase in personnel and scale will inevitably lead to more hidden defects in the
software system. However, a comprehensive test of a complex software system requires a
considerable amount of resources. Therefore, we hope to know the defect tendency of each
module of the software system in advance so as to allocate the test resources of each module
in a targeted manner. Software defect prediction technology [1–5] can help us achieve this
goal. Through software defect prediction technology, we can predict the defects of each
module of the software project. If the predicted module is defective, then we will focus
on testing the module so as to achieve the purpose of allocating testing resources for each
software module in a targeted manner.

Software defect prediction technology is used to build a software defect prediction
model with the help of machine learning methods. The training data are the value of
the measurement features extracted from software modules, such as CK metrics [6]. The
current research on within-project defect prediction (WPDP) [7–10] has been established,

Future Internet 2021, 13, 216. https://doi.org/10.3390/fi13080216 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7776-3178
https://orcid.org/0000-0002-0996-0142
https://doi.org/10.3390/fi13080216
https://doi.org/10.3390/fi13080216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13080216
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13080216?type=check_update&version=2

Future Internet 2021, 13, 216 2 of 17

but WPDP cannot be practical because WPDP requires part of the defect data of the same
project or the historical version of the project. However, the software developed in practice
is generally a brand new software project, and the brand new software project does not
have historical version data. Machine learning methods are data-supported methods; thus,
WPDP lacks practicality in the absence of training data.

In view of the lack of training data, researchers have proposed cross-project defect
prediction (CPDP) [11–13]. CPDP is based on the labeled defect data of other similar soft-
ware projects (i.e., source project) to train the model and predict the defects of the software
projects under development (i.e., target project). However, due to the large differences in
the data distribution of the source project and the target project, the defect prediction model
constructed using the source project data cannot achieve good predictive performance on
the target project. Therefore, how to reduce the difference in data distribution between the
source project and the target project has become the focus of CPDP research.

Researchers have proposed a variety of methods and models to reduce the difference in
data distribution between projects to improve the performance of CPDP. These efforts include
the Burak instance filtering method [14] and Peters instance filtering method [15] based on
similarity training data selection, the TNB model based on instance weighting proposed by
Ma et al. [16], the large-scale combination model HYDRA based on searching the best instance
weights proposed by Xia et al. [17], the source project training data selection method CFPS
based on collaborative filtering proposed by Sun et al. [18], the TCA+ method based on feature
space transformation proposed by Nam et al. [19], the method based on feature matching
and migration proposed by Yu et al. [20], the cross-project defect prediction method based on
feature migration and instance migration proposed by Ni [21], etc.

In the above methods, we found that research from the perspective of feature space
transformation or feature migration can greatly improve the performance of CPDP. How-
ever, the results achieved so far are not very satisfactory. The reason for our analysis is
that the feature transformation is to map the source project and the target project from
the original feature space to the common feature space, and feature migration is to match
the features of the source project to the features of the target project in the original feature
space. These methods perform feature transformation and feature migration in the original
feature space. Additionally, the original feature space has feature distortions, which results
in the data distribution between the transformed source project and target project not being
effectively reduced. Therefore, the effect of feature transformation and migration will be
restricted. These problems are also very common in the field of image recognition [22].
Related researchers [23,24] proposed a method to measure the distribution of different
domains in the manifold space and reduced the drift between domains, which effectively
improves the accuracy of image classification.

Inspired by this, we introduce the method of manifold feature transformation and
propose a cross-project defect prediction method based on manifold feature transformation
(i.e., MFTCPDP). Specifically, first, the original feature space was transformed into manifold
space, and then the data distribution difference between the source project and the target
project in the manifold space was reduced. Finally, the classifier was constructed by using
the source project data and labels in the manifold space to predict the defects of the target
project. In order to demonstrate the effectiveness of the MFTCPDP method, we conducted
experiments on the Relink datasets and the AEEEM datasets to conduct experimental
research on the overall performance of the method. The experimental results show that the
prediction performance of the MFTCPDP method is better than the benchmark method
and has certain advantages, compared with several CPDP methods.

The rest of the paper is organized as follows: Section 2 briefly introduces the existing
methods in the field of cross-project defect prediction. Section 3 introduces the cross-
project defect prediction method based on manifold feature transformation proposed in
this paper in detail. Section 4 conducts empirical research on the methods proposed in
this paper, including evaluation objects, evaluation indicators, experimental settings, and

Future Internet 2021, 13, 216 3 of 17

experimental results and analysis. Section 5 summarizes the full text and presents the next
steps.

2. Related Work

In recent years, CPDP research has attracted widespread attention from software
engineering researchers. Briand et al. [25] conducted a feasibility study on CPDP for the
first time and discussed whether CPDP is worth studying. Finally, they found that CPDP
research is very valuable and very challenging. Subsequently, Zimmermann et al. [26]
conducted a large-scale experimental study on CPDP research and found that most of the
experimental results had poor performance, and only a few CPDP experiments achieved
satisfactory performance on a variety of indicators. Since then, researchers have proposed
various methods to improve the performance of CPDP from different angles.

Some researchers choose suitable training data for the target project based on the
similarity measure. He et al. [27] and Herbold et al. [28] calculated the values of the features
of each project on a variety of statistical indicators, such as mode, average, variance, etc.,
constructed a new distribution vector, and then selected the most similar source project
for the target project as the training data by calculating the difference of each distribution
vector. Turhan et al. [14] proposed a Burak filtering method based on target project
instances, which, in turn, selected the most similar k instances from candidate source
projects for each instance in the target project to obtain training data. Peters et al. [15]
proposed a similar instance filtering method. The difference is that Peters et al. used a
clustering algorithm to select training data from source project instances.

Some researchers solve the problem of data distribution differences between projects
from the perspective of feature transformation and feature migration. Nam et al. [19]
proposed a method TCA+ based on feature transformation and migration; TCA+ defines
some standardization rules first, selects the best data standardization strategy, and then
performs feature migration on CPDP to make the feature distribution of different projects
similar. It also improves the performance of CPDP. Ma et al. [16] proposed a TNB method
based on instance weighting and transfer learning, which sets weights and migrates
instances in candidate source projects by predicting the distribution of target project data
and improves the performance of CPDP. Yu et al. analyzed the importance of features
and instances in cross-project defect prediction methods [29], conducted a lot of empirical
research on feature selection methods [30], and proposed a feature matching and migration
cross-project defect prediction method [20].

Recently, researchers have turned to semi-supervised cross-project defect prediction
methods. Wu et al. [31] studied the problem of semi-supervised cross-project defect pre-
diction and proposed a cost-sensitive kernel semi-supervised dictionary learning method
(CKSDL). They introduced semi-supervised dictionary learning into the field of software de-
fect prediction. CKSDL uses kernel mapping to enhance the separability and cost-sensitive
technique to ease the misclassification problem. Chao et al. [21] proposed a cross-project
defect prediction method based on feature migration and instance migration. Specifically,
in the feature migration stage, the method uses cluster analysis to select the features with
high distribution similarity between the source project and the target project; in the in-
stance migration stage, based on the TrAdaBoost method, this method selects instances
with similar distribution to these labeled instances from the source project with the help of
a small number of labeled instances in the target project. In addition, Li et al. [32] proposed
a cost-sensitive transfer kernel method for linear inseparability and class imbalance in
CPDP. Additionally, Fan et al. [33] extracted and migrated from the source project from the
perspective of instance filtering and instance migration, and transformed the training data
with high correlation with the target data.

Currently, researchers developed multi-source defect prediction methods for the data
of multiple source projects. Zhang et al. [34] evaluated 7 composite algorithms on 10 open
source projects. When predicting a target project, a collection of labeled instances of other
projects is used to iteratively train the composite algorithm. Experimental results show

Future Internet 2021, 13, 216 4 of 17

that the use of bagging and boosting algorithms, combined with appropriate classification
models, can improve the performance of CPDP. Xia et al. [17] proposed a large-scale
combination model HYDRA for cross-project defect prediction. HYDRA considered the
weights of instances in the training data and searched for the best weights on the training
data for instance selection. Chen et al. [35] proposed a collective transfer learning for
defect prediction (CTDP), which includes two stages—the source data expansion stage
and the adaptive weighting stage. CTDP expands the source project dataset by using the
TCA method, then builds multiple base classifiers for multiple source projects, and finally
uses the PSO algorithm to adaptively weight multiple base classifiers to build a collective
classifier to obtain better prediction results.

From various angles, the above methods ultimately improve the performance of
CPDP, especially methods such as feature transformation and feature migration can greatly
improve the performance of CPDP. However, few researchers consider the feature distortion
phenomenon in the datasets when the feature dimension is large. Therefore, we propose a
method of manifold feature transformation from this aspect.

3. Cross-Project Defect Prediction Method Based on Manifold Feature Transformation

This section first introduces the relevant symbol definitions involved in the MFTCPDP
method, then describes the overall framework of the MFTCPDP method, introduces the
manifold feature transformation process in detail, and finally, provides the model construc-
tion algorithm.

3.1. Definition of Related Symbols

DS represents the source project data with a label, and DT represents the target project
data without label;DS = {XSi, YSi}n

i=1 represents a module with n known labels in the
source project DS, and DT =

{
XTj
}m

j=1 represents a module with m unknown labels in the
target project. DS and DT have the same feature space and label space—that is, feature
space FS = FT and label space YS = YT . The same feature space means that the metrics of
the source project and the target project are the same, and the same label space means that
the modules of the source project and the target project are binary; that is, they either belong
to a non-defective class or defective class. The cross-project defect prediction problem is
used to train the defect prediction model from the data in DS and then predict the label of
the data in DT .

3.2. Method Framework

The framework of the MFTCPDP method is shown in Figure 1. The input is a source
project and a target project. After manifold feature transformation, new source projects
and target projects were obtained. Then, we used the machine learning model to build
a defect prediction model on the transformed source project and predict defects on the
transformed target project to obtain a prediction label. Finally, the performance of the
MFTCPDP method was compared with real labels. The core of the MFTCPDP method
lies in the process of manifold feature transformation. We introduce the concept and
implementation details of manifold feature transformation in the next section.

3.3. Manifold Feature Transformation

Manifold feature transformation is to transform the original feature space into mani-
fold space and then reduce the data distribution difference between the transformed source
project and the transformed target project in the manifold space. The data in the manifold
space have the low-dimensional manifold structure of high-dimensional space. Therefore,
the data features have good geometric properties, which can avoid the phenomenon of
feature distortion [36]. Therefore, we first transformed the features in the original space
into the manifold space and then transferred them in the manifold space.

Future Internet 2021, 13, 216 5 of 17
Future Internet 2021, 13, x FOR PEER REVIEW 5 of 18

Source Project

Target Project

Manifold Feature
Transformation

Transformed
Source Project

Transformed
Target Project

Build Prediction
Modelmodel building algorithm

predict defects

Performance
Analysis

predict results

Figure 1. MFTCPDP method framework.

3.3. Manifold Feature Transformation
Manifold feature transformation is to transform the original feature space into man-

ifold space and then reduce the data distribution difference between the transformed
source project and the transformed target project in the manifold space. The data in the
manifold space have the low-dimensional manifold structure of high-dimensional space.
Therefore, the data features have good geometric properties, which can avoid the phe-
nomenon of feature distortion [36]. Therefore, we first transformed the features in the
original space into the manifold space and then transferred them in the manifold space.

In the Grassmann manifold, the feature transformation has an effective numerical
form, which can be expressed and solved efficiently [37]. Therefore, this paper trans-
formed the original feature space into the Grassmann manifold space. There are many
ways to accomplish this process [38,39]. We chose the geodesic flow kernel method (i.e.,
GFK) [40,41] to complete the manifold feature transformation process because GFK has
higher computational efficiency.

GFK attempts to model the data domain with d-dimensional subspaces and then em-

beds these subspaces into the manifold G . Let sP and TP respectively, represent the
subspace of the original data space after principal component analysis, then G can be
regarded as a collection of all d-dimensional subspaces. Each d-dimensional original sub-
space can be regarded as a point on G . Therefore, the geodesic { (),0 1}t tΦ ≤ ≤ between two
points can form a path between the two subspaces. If we make (0), (1)S TP P= Φ = Φ , then find-
ing a geodesic from (0)Φ to (1)Φ is equivalent to transforming the original feature into
an infinite-dimensional space, and the integral calculation of this path is the process of
migrating the source project to the target project in the manifold space so as to reduce the
data distribution difference between the two projects [36]. This method can be considered
an incremental migration method from (0)Φ to (1)Φ . Below, we will introduce the con-
struction process and solution process in detail.

D d
sP ×∈ and

D d
TP ×∈ respectively represent the subspace of the source project da-

taset and the target project dataset after principal component analysis, and d represents

the feature dimension of the subspace,
()D d d

sR − ×∈ represents the orthogonal comple-

ment to sP . Using the canonical Euclidean metric of the Riemannian manifold, the geo-
desic flow is parameterized [38] as follows：

Figure 1. MFTCPDP method framework.

In the Grassmann manifold, the feature transformation has an effective numerical
form, which can be expressed and solved efficiently [37]. Therefore, this paper trans-
formed the original feature space into the Grassmann manifold space. There are many
ways to accomplish this process [38,39]. We chose the geodesic flow kernel method (i.e.,
GFK) [40,41] to complete the manifold feature transformation process because GFK has
higher computational efficiency.

GFK attempts to model the data domain with d-dimensional subspaces and then
embeds these subspaces into the manifold G. Let Ps and PT respectively, represent the sub-
space of the original data space after principal component analysis, then G can be regarded
as a collection of all d-dimensional subspaces. Each d-dimensional original subspace can be
regarded as a point on G. Therefore, the geodesic {Φ(t), 0 ≤ t ≤ 1} between two points
can form a path between the two subspaces. If we make PS = Φ(0), PT = Φ(1), then
finding a geodesic from Φ(0) to Φ(1) is equivalent to transforming the original feature
into an infinite-dimensional space, and the integral calculation of this path is the process
of migrating the source project to the target project in the manifold space so as to reduce
the data distribution difference between the two projects [36]. This method can be consid-
ered an incremental migration method from Φ(0) to Φ(1). Below, we will introduce the
construction process and solution process in detail.

Ps ∈ RD×d and PT ∈ RD×d respectively represent the subspace of the source project
dataset and the target project dataset after principal component analysis, and d represents
the feature dimension of the subspace, Rs ∈ R(D−d)×d represents the orthogonal comple-
ment to Ps. Using the canonical Euclidean metric of the Riemannian manifold, the geodesic
flow is parameterized [38] as follows:

Φ(t) ∈ G(d, D), t ∈ [0, 1]

Additionally, Ps = Φ(0), PT = Φ(1), for the other t:

Φ(t) = PsU1Γ(t)− RsU2Σ(t)

where U1 ∈ Rd×d, U2 ∈ R(D−d)×d are orthogonal matrices, and they are given by the
following SVDs:

PT
s PT = U1ΓVT , RT

s PT = −U2ΣVT

Future Internet 2021, 13, 216 6 of 17

where Γ and Σ are diagonal matrices. The diagonal elements are cos θi and sin θi, i = 1, 2,
. . . , d. θi represents the principal angles between Ps and PT .

0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θd ≤ π/2

For the two original feature vectors Fi and Fj, we compute their projections into Φ(t)
for a continuous t from 0 to 1 and concatenate all the projections into infinite-dimensional
feature vectors Z∞

i and Z∞
j . The inner product [40] between them defines our geodesic-flow

kernel as follows: 〈
Z∞

i , Z∞
j

〉
=
∫ 1

0
(Φ(t)T Fi)(Φ(t)T Fj)dt = Fi

TGFj

Therefore, through Z =
√

GF, the features in the original space can be transformed
into the Grassmann manifold space and the migration from the source project to the target
project can be completed.

G is a positive semidefinite matrix, which can be computed [41] in a closed-form from
previously defined matrices as follows:

G = [Ps U1 RsU2]

(
Λ1 Λ2
Λ2 Λ3

)(
UT

1 PT
s

UT
2 RT

s

)
where Λ1, Λ2, Λ3 are diagonal matrices, whose diagonal elements are

λ1i = 1 +
sin 2θi

2θi
, λ2i = 1 +

cos 2θi − 1
2θi

, λ3i = 1− sin 2θi
2θi

3.4. Model Building Algorithm

According to the above process, the model construction algorithm is shown as follows
(Algorithm 1):

Algorithm 1 MFTCPDP

Input: Labeled Source Project S, Unlabeled Target Project T
Output: Predicted labels L
1: Preprocess the project data to get SP and TP;
2: Construct the manifold space according to Equations (1)–(3);
3: Calculate G according to Equations (5)–(7);
4: Use G to perform a manifold transformation on SP and TP and get SG, TG;
5: Use SG to train naive Bayes classifier and predict the labels of TG;
6: loop all projects.

4. Experimental Research

This section explains the experimental research process to explore the experimental
performance of the MFTCPDP method. We first introduce the experimental datasets and
performance evaluation indicators used in the experiment, then set the parameters involved
in the experiment, and finally analyze the experimental results.

4.1. Experimental Datasets

The Relink dataset [42] and the AEEEM dataset [43] are two open source datasets that
are frequently used by researchers in the field of software defect prediction. We also used
these two datasets in our experiments. Table 1 shows the project name, the number of
modules, the number of features, the number of defects, and the defect ratio of the two
datasets [44]. Among them, Apache, Safe, and ZXing belong to the Relink dataset, and the
rest are projects in the AEEEM dataset.

Future Internet 2021, 13, 216 7 of 17

Table 1. Experimental datasets.

Project Modules Features Defects Defect Ratio

Apache 194 26 98 50%
Safe 56 26 22 39%
ZXing 399 26 118 30%
EQ 325 61 129 40%
JDT 997 61 206 21%
LC 399 61 64 9%
ML 1862 61 245 13%
PDE 1492 61 209 14%

From Table 1, we can observe that the projects in the Relink dataset have 26 features,
and the projects in the AEEEM dataset have 61 features. The research of this paper aimed
to carry out experimental exploration on the phenomenon of feature distortion when there
are many features and put forward the solution of manifold feature transformation.

The features of the two datasets are mainly described from code complexity and
abstract syntax tree. The Understand website (https://www.scitools.com, accessed on 18
August 2021) can query the specific meaning of each feature.

4.2. Evaluation Indicator

This paper focuses on the two classifications of software defects—that is, whether the
classification result is defective or not. There are some two-category evaluation indicators
in research related to machine learning, such as accuracy, precision, and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

Among these indicators, researchers in the field of software defect prediction often
use the F1 value. From the actual situation of the software project, only a few software
modules may have defects. If only the accuracy indicator is used to evaluate, even if all
modules are judged to be free of defects, the accuracy value will be very high, but this does
not mean that the effect of the model is better. It can be inferred from Equation (8) that the
F1 value is the harmonic average of precision and recall indicators, and the values of these
two indicators are considered at the same time. Therefore, we also used the F1 value as the
main evaluation indicator.

4.3. Experimental Parameter Setting

The MFTCPDP method mainly includes two main steps—manifold feature trans-
formation and defect prediction model construction. In the process of manifold feature
transformation, we need to set the feature dimension. For the Relink dataset, we set the
feature dimension as 2, and for the AEEEM dataset, we set the feature dimension as 10. In
the experiment, we chose the naive Bayes classifier as the default classifier when building
the model. The influence of different feature dimensions and different classifiers on the
MFTCPDP method are discussed below.

All experiments were run on a computer with the following configuration: Windows
10, 64-bit; CPU: Intel(R) Core(TM) i5-6300HQ CPU@2.30GHz; RAM: 12G.

4.4. Experimental Results and Analysis

In order to verify the effectiveness of the MFTCPDP method, we first conducted
an experimental study on the MFTCPDP method on two datasets frequently used by
researchers, then compared the performance with the benchmark method, several currently
popular CPDP methods and WPDP methods. Finally, we considered the internal factors
that affect the performance of the MNTCPDP method, including the influence of the
method parameters and the choice of a classifier on the method performance. Therefore, we

https://www.scitools.com

Future Internet 2021, 13, 216 8 of 17

designed three research questions and realized a comprehensive analysis of the MFTCPDP
method through the answers to these questions.

Question 1: Compared with the benchmark method, can the MFTCPDP method
improve the performance of CPDP? Additionally, is it better than several popular CPDP
methods? How does the performance compare to the WPDP method?

Herbold et al. [45] and Zhou et al. [46] conducted empirical studies on the current
reproducible CPDP methods and found that most of the current CPDP methods are difficult
to surpass the performance of some existing classical methods, such as the method of
reducing distribution difference proposed by Watanabe et al. [47] evaluated by Herbold
et al., the Burak filtering method based on instance selection proposed by TURHAN
et al. [14], and the TCA + method based on feature transformation and migration proposed
by Nam et al. [19]. These three methods rank high in the comprehensive performance of all
CPDP methods; therefore, we compared the MFTCPDP method with these three CPDP
methods. Moreover, in the CPDP research, Zimmermann et al. [26] proposed a method of
directly using source project data to train the model and then predicting the target project,
which is recorded as the DCPDP (i.e., direct cross-project defect prediction) method. It is
often used as a benchmark method for comparison. In addition, we have also conducted
an experimental comparison with the 10-fold cross-validated WPDP method. The 10-fold
cross-validated WPDP method is the most reasonable experimental setting, which can
show the gap between the MFTCPDP method and WPDP and analyze the problems of the
current method.

Before the performance comparison of the methods, we first conducted experiments
to explore the feature distortion phenomenon in the original feature space. Therefore, we
carried out the experiment of the DCPDP method with data standardization operation,
which was recorded as the comparison between the DCPDP-Norm and the DCPDP method.
Generally speaking, a simple data normalization operation can improve the experimen-
tal performance, but when the value distribution in the feature space is distorted, the
experimental performance may be reduced.

We conducted experiments on two datasets and obtained the following experimental
results. Table 2 shows the performance comparison between DCPDP-Norm and DCPDP.
Table 3 shows the performance comparison between the MFTCPDP method and benchmark
method DCPDP, several DCPDP methods, and WPDP method.

First, we compared DCPDP and DCPDP-Norm with data standardization operations.
As shown in Table 2, the overall performance difference between the DCPDP-Norm and the
DCPDP on the Relink dataset (i.e., rows 2 to 7) is considerably noticeable. Specifically, it can
be found in each pair of CPDP experiments that data standardization operation sometimes
cannot improve the performance of the method or even regress the performance. In Relink
dataset, the performance of four pairs of experiments decreased significantly using the
DCPDP-Norm method; in the cases in which the performance decreased significantly,
such as in the Safe→Apache pair, the F1 value of DCPDP was 0.714, but the F1 value of
DCPDP-Norm was 0.583. Among the six experiments on Relink dataset, only two sets of
experiments have improved the performance of data standardization operations. There is
also such a phenomenon on the AEEEM dataset (i.e., rows 8 to 27). For example, JDT→LC,
JDT→PDE, and PDE→ML are all reduced in performance after data standardization
operations. Generally speaking, on the two datasets, performance degradation is not
rare. There are 26 groups of CPDP experiments in total, and 12 groups have performance
degradation. Almost half of the experimental performances have not been improved.
However, under normal circumstances, using the data after the data standardization
operation to train the model can often obtain better performance. Therefore, we believe
that there is a feature distortion phenomenon in the data distribution of the original feature
space, which causes a decrease in the performance level of the experiment, rather than an
increase.

Future Internet 2021, 13, 216 9 of 17

Table 2. Comparison of F1 values between DCPDP-Norm and DCPDP.

Source→Target DCPDP-Norm DCPDP

Apache→Safe 0.787 0.459
Apache→ZXing 0.606 0.582
Safe→Apache 0.583 0.714
Safe→ZXing 0.651 0.654
ZXing→Apache 0.437 0.645
ZXing→Safe 0.645 0.699
EQ→JDT 0.596 0.422
EQ→LC 0.843 0.813
EQ→ML 0.367 0.344
EQ→PDE 0.775 0.687
JDT→EQ 0.716 0.633
JDT→LC 0.755 0.884
JDT→ML 0.788 0.769
JDT→PDE 0.702 0.826
LC→EQ 0.709 0.663
LC→JDT 0.804 0.545
LC→ML 0.770 0.462
LC→PDE 0.771 0.789
ML→EQ 0.711 0.688
ML→JDT 0.732 0.578
ML→LC 0.837 0.875
EQ→JDT 0.804 0.809
EQ→LC 0.722 0.674
EQ→ML 0.519 0.571
EQ→PDE 0.523 0.871
JDT→EQ 0.384 0.437

Table 3. Comparison of F1 value between MFTCPDP and several CPDP methods and WPDP.

Source→Target MFTCPDP TCA+ Watanabe Burak DCPDP WPDP

Safe→Apache 0.711 0.670 0.716 0.565 0.714
0.625ZXing→Apache 0.653 0.671 0.705 0.358 0.645

ZXing→Safe 0.769 0.512 0.717 0.735 0.699
0.703Apache→Safe 0.460 0.569 0.717 0.234 0.459

Apache→ZXing 0.587 0.595 0.653 0.155 0.582
0.666Safe→ZXing 0.652 0.628 0.636 0.596 0.654

MEAN 0.638 0.607 0.691 0.441 0.625 0.665
JDT→EQ 0.556 0.606 0.688 0.452 0.633

0.723
LC→EQ 0.667 0.549 0.683 0.473 0.663
ML→EQ 0.623 0.637 0.679 0.452 0.688
PDE→EQ 0.628 0.608 0.687 0.453 0.674
LC→JDT 0.572 0.731 0.818 0.700 0.545

0.829
PDE→JDT 0.724 0.743 0.827 0.702 0.571
ML→JDT 0.608 0.726 0.828 0.701 0.578
EQ→JDT 0.527 0.455 0.736 0.432 0.422
JDT→LC 0.889 0.798 0.825 0.861 0.884

0.865
ML→LC 0.882 0.861 0.860 0.863 0.875
PDE→LC 0.876 0.786 0.811 0.860 0.871
EQ→LC 0.842 0.479 0.015 0.808 0.813
JDT→ML 0.836 0.772 0.777 0.805 0.769

0.837
LC→ML 0.781 0.470 0.806 0.807 0.462
PDE→ML 0.833 0.788 0.807 0.807 0.437
EQ→ML 0.762 0.385 0.349 0.590 0.344
EQ→PDE 0.718 0.619 0.760 0.525 0.687

0.831
JDT→PDE 0.828 0.797 0.781 0.790 0.826
LC→PDE 0.780 0.804 0.812 0.796 0.789
ML→PDE 0.822 0.819 0.822 0.794 0.809
MEAN 0.738 0.671 0.718 0.684 0.667 0.817

Table 3 shows the performance comparison between the MFTCPDP method and the
benchmark method DCPDP, several CPDP methods, and the WPDP method. Firstly, com-

Future Internet 2021, 13, 216 10 of 17

pared with DCPDP, in a total of 26 CPDP experiments on the two datasets, the MFTCPDP
method can achieve better prediction performance in most of the cross-project defect pre-
diction experiments. The F1 value of the MFTCPDP method is higher in 20 groups of
experiments, and the F1 value of the remaining 6 groups of experiments is higher in the
DCPDP method, but the performance gap of these 6 groups of experiments is very weak.
For example, in the Safe→ZXing experiment, MFTCPDP obtained an F1 value of 0.652,
while DCPDP obtained an F1 value of 0.654, with a difference of only 0.002. From the
average value, the performance of MFTCPDP is also better. The DCPDP method achieved
an average value of 0.625 on the Relink dataset and an average value of 0.667 on the AEEEM
dataset, while the MFTCPDP method obtained an average value of 0.638 on Relink dataset
and 0.738 on the AEEEM dataset. In addition, from the distribution of performance values,
the minimum F1 value obtained by the DCPDP method in all experiments is 0.344, the
maximum F1 value is 0.884, and there are five groups of experiments with a value lower
than 0.5, but the minimum F1 value obtained by MFTCPDP method in all experiments is
0.460, the maximum F1 value is 0.889, and only one group of experiments with a value
lower than 0.5. This shows that the MFTCPDP method has a smaller F1 value fluctuation
range than the DCPDP method, and the overall performance is more stable. Therefore,
compared with the benchmark method DCPDP, the MFTCPDP method can improve the
performance of CPDP.

Compared with several CPDP methods, the MFTCPDP method also has advantages.
Compared with the Burak filter method, the MFTCPDP method achieved better perfor-
mance in all CPDP experiments on the Relink dataset. At the same time, MFTCPDP also
performed better in average performance. The Burak filter method achieved an average
performance value of 0.441, while the MFTCPDP method achieved an average performance
value of 0.638. In the 20 groups of CPDP experiments on the AEEEM dataset, the MFTCPDP
method performed better in 16 groups. In the other 4 groups of experiments, although the
performance was not as high as the Burak filter method, the gap is also very small. For
example, in the two experiments of LC→ML and LC→PDE, the performance values of
the two are basically around 0.8. From the perspective of performance stability, the Burak
filter method has the lowest performance on the Relink dataset of 0.155 and the highest
value of 0.735. The lowest performance on the AEEEM dataset is 0.432, the highest value
is 0.863, and the performance fluctuates greatly, while the performance of the MFTCPDP
method is relatively stable without a significant difference in performance. In fact, the
Burak filter method is an instance selection method based on similarity, which simply relies
on similarity measurement and destroys the distribution of datasets. Therefore, in many
cases, the performance of the Burak filter method fluctuates greatly, and the performance is
not ideal. From this perspective, the MFTCPDP method has more advantages. Compared
with TCA+, our method MFTCPDP also performs better. In the six sets of experiments on
the Relink dataset, three sets of MFTCPDP methods performed better. Among the 20 sets
of experiments on the AEEEM dataset, 13 sets of MFTCPDP methods performed better.
In terms of average value, the MFTCPDP method achieved the average performance of
0.638 and 0.738, respectively, while TCA+ only obtained average performance of 0.607 and
0.671. In general, the MFTCPDP method is indeed better than TCA+. As we discussed
earlier, feature distortion is easy to occur when there are many features in the dataset,
and the TCA+ method is to map the data of the source project and the target project into
a potential space to reduce the distribution difference between the source project and
the target project. In the case of feature distortion, TCA+ may not be able to map to the
latent space while preserving the structure and features of the original dataset. Therefore,
the performance is not ideal in many cases. Compared with the Watanabe method, the
MFTCPDP method also has advantages, but the advantages are relatively weak. In terms
of average performance, on the Relink dataset, the MFTCPDP method achieved an average
performance of 0.638, while the Watanabe method achieved an average performance of
0.691. On the AEEEM dataset, the average performance of the MFTCPDP method reached
0.738, while the Watanabe method achieved an average performance of 0.718. From this

Future Internet 2021, 13, 216 11 of 17

point of view, there seems to be little difference. However, the Watanabe method performs
abnormally in some cases. For example, the F1 value of EQ→LC is only 0.015, and the
F1 value of EQ→ML is only 0.349. We analyzed that the Watanabe method relies on the
mean value of the attribute to reduce the distribution difference of the data. Sometimes,
the value of some attributes is special, such as when the value is all 0, the average value
of the attribute is 0, etc., resulting in poor performance in some cases. Therefore, some
feature selection methods need to be combined with the Watanabe method to achieve better
performance.

Finally, we compared the performance of the MFTCPDP method and the 10-fold
cross-validated WPDP. Since WPDP uses part of the project data to train the model to
predict the remaining part of the data, only one F1 value was generated for each project.
It can be inferred from Table 3 that our MFTCPDP method has a large gap, compared
with WPDP. Only in the experiment with Apache as the target project, the performance
of MFTCPDP completely exceeds WPDP. Additionally, in the experiment with LC as the
target project, three groups of experiments of MFTCPDP surpass WPDP. However, the
performance of other experiments is completely inferior to WPDP. The same is true for
the other CPDP methods, and it is difficult to surpass the WPDP method. However, the
WPDP method is not suitable for practical applications. Therefore, this is also the focus of
current CPDP research. When the target project is completely unmarked, the performance
of CPDP should further improve so as to be used in actual production.

In order to ensure that our analysis is reasonable, we carried out a statistical test and
analysis on the above experimental results. We used Wilcoxon signed-rank test, which is a
non-parametric statistical hypothesis test used to judge whether two matched samples are
selected from the same distribution. If the p-value reported by the Wilcoxon signed-rank
test is less than 0.05, then the distributions to be tested are considered to be significantly
different; otherwise, they are not considered to be significant.

We conducted four groups of Wilcoxon signed-rank tests—namely, MFTCPDP and
TCA+, MFTCPDP and Burak, MFTCPDP and DCPDP, MFTCPDP and Watanabe, respec-
tively marked as M&T, M&B, M&D, and M&W. Finally, we obtained four p values—namely,
M&T 0.0248, M&B 0.0002, M&D 0.004, and M&W 0.2796. We found that the p values
of M&T, M&B, and M&D are all less than 0.05, which means that there is a significant
difference between MFTCPDP and TCA+, Burak, DCPDP. This shows that our above
analysis is reasonable. Additionally, compared with the benchmark method DCPDP, the
CPDP method Burak filter, and the TCA+, our MFTCPDP method indeed performs better.
However, the p value of M&W is 0.2796, which exceeds 0.05. This shows that there is no
significant difference between MFTCPDP and Watanabe. However, this does not mean that
our above analysis is unreasonable. In fact, in terms of overall performance, compared with
Watanabe, the advantage of MFTCPDP is indeed very weak, but the Watanabe method
performed abnormally in some cases mentioned above. Therefore, our MFTCPDP method
is more reliable from this point of view.

Finally, we explain the execution efficiency of the MFTCPDP algorithm (i.e., Algorithm 1).
The 26 groups of experiments shown in Table 3 are all executed by the process shown in
Algorithm 1. We executed the algorithm twice. The first time we executed it on the Relink
dataset, we obtained six sets of experimental results, which required about 3.2 s; the second
time we executed it on the AEEEM dataset, we obtained 20 sets of experimental results,
which required about 10.8 s. The average time of each experiment is about 0.5 s. This time
efficiency is acceptable.

Question 2: How does the setting of different subspace dimensions in the MFTCPDP
method affect the performance of the method?

In the manifold feature transformation of source project and target project, the selection
of subspace dimension entails how many dimensions of data need to be retained to
represent the source project and the target project in the manifold space. This parameter
may have an impact on the experimental performance. We aimed to analyze whether
different dimension settings affect the final experimental performance, and then confirm the

Future Internet 2021, 13, 216 12 of 17

optimal subspace dimension. In order to analyze the influence of setting different subspace
dimensions on the performance of the MFTCPDP method during the transformation of
manifold features, we selected different subspace dimensions on the Relink dataset and
the AEEEM dataset to conduct experiments. The software projects on Relink dataset have
26 features; therefore, we selected subspace dimensions from 13 to 1 for experiments. The
software projects on the AEEEM dataset have 61 features, and the number of features is
relatively large; therefore, we studied the performance in several subspace dimensions
of 30, 25, 20, 15, 10, and 5. We made box plots of F1 values corresponding to different
subspace dimensions for all CPDP experiments on the Relink dataset and AEEEM dataset,
as shown in Figures 2 and 3 below.

Figure 2. F1 values obtained from different subspace dimensions on the Relink dataset.

In the figures, the horizontal axis represents the observed indicator and the selected
feature dimension, and the vertical axis represents the corresponding indicator value. For
example, F1_13 in Figure 2 represents the F1 indicator value with 13 subspace dimensions
of the Relink dataset.

Figure 3. F1 values obtained from different subspace dimensions on the AEEEM dataset.

As can be observed from Figure 2, with the decrease in the subspace dimension on the
Relink dataset, the F1 value obtained by the MFTCPDP method gradually increases, and
the maximum value of the F1 indicator and the overall value distribution slowly increase.
It reaches the maximum value when the subspace dimension is 2, and the performance
suddenly decreases when the subspace dimension is 1. The minimum values of each group
of experiments are very close, and they are all at the lowest point of the box plot. Therefore,
we deduce that on the Relink dataset, the selection of the subspace dimension has a certain
impact on the experimental performance, and the performance is best when the subspace

Future Internet 2021, 13, 216 13 of 17

dimension is 2. It can be observed from Figure 3 that the performance of the F1 value on the
AEEEM dataset is similar to that of Figure 2. Basically, as the subspace dimension decreases,
the F1 value obtained by the MFTCPDP method gradually increases, but the improvement
here is more obvious. Both the minimum value and overall value distribution are improved,
and the performance decreases when the last subspace dimension is 5. Therefore, we also
deduce that on the AEEEM dataset, the selection of the subspace dimension has a certain
impact on the experimental performance, and the performance is best when the subspace
dimension is 10.

Analyzing the above two figures, we conclude that the selection of the subspace
dimension in the manifold feature transformation will have a certain impact on the exper-
imental performance of the method. Choosing an appropriate subspace dimension can
achieve better experimental performance.

Question 3: How do different classification models affect the performance of the
MFTCPDP method?

Any method requires a classifier to complete the construction of the defect prediction
model, and the MFTCPDP method is no exception. In the field of software defect prediction,
different types of classifiers may have uncertain effects on the final experimental perfor-
mance. Therefore, we need to study the impact of different classifiers on the performance of
the MFTCPDP method. In response to this problem, we selected several different types of
classification models. We compared the experimental results of decision tree (DT), logistic
regression (LR), k-nearest neighbor (KNN), and naive Bayes (NB). We made the F1 values
of all cross-project defect prediction experiments on the Relink dataset and the AEEEM
dataset into box plots. Figures 4 and 5 show the F1 values obtained by the MFTCPDP
method using different classifiers.

The horizontal axis in the figures represents the classifiers and indicators used. For
example, KNN_F1 represents the F1 value obtained by the MFTCPDP method using the
KNN classifier in the experiment, and the vertical axis represents the corresponding F1
value.

As can be observed from Figure 4, in the Relink dataset, the F1 values of all classifiers
are not significantly different, and the performance of the naive Bayes classifier is slightly
better. Figure 5 reveals that in the AEEEM dataset, all classifiers perform very similarly
in F1 values. Only the F1 value of the decision tree model is more stable above 0.6, the
values of the other three classifiers are slightly scattered. However, the performance of the
decision tree model on the Relink dataset is general; therefore, we chose the naive Bayes
classifier in this paper.

Figure 4. F1 values obtained by different classifiers on the Relink dataset.

Future Internet 2021, 13, 216 14 of 17

Figure 5. F1 values obtained by different classifiers on the AEEEM dataset.

Through the above analysis, we can draw the conclusion that among the several
classification models experimented with the MFTCPDP method, the overall performance
of the naive Bayes classifier is relatively better. Different types of classification models will
have a certain impact on the performance of the MFTCPDP method. Choosing a suitable
model for different methods can improve the performance of CPDP.

5. Conclusions and Prospects

This paper proposed a cross-project defect prediction method based on manifold
feature transformation, which can avoid feature distortion in the original feature space and
effectively reduce the difference in data distribution between the source project and the
target project in the manifold space. Experimental research shows that our method can
alleviate the feature distortion in the original feature space, and especially when the feature
dimension is large, it can improve the performance of cross-project defect prediction.

A question worth discussing is why our method achieves better performance, espe-
cially when compared with the feature transformation and migration methods such as
TCA+. As the results of previous experiments have shown, performing feature transforma-
tion and migration in the original feature space may not be able to capture the potential
public space. It is more suitable for transformation and migration in the manifold space
when the data feature dimension is high. Therefore, our method of manifold feature
transformation is more effective in this case.

At present, some artificial intelligence algorithms and their applications are also de-
veloping very rapidly, such as online learning algorithms [48], multi-objective optimization
algorithms [49], related heuristic algorithms [50], etc. Therefore, CPDP research does not
stop at using the feature transformation or feature migration methods mentioned in this
article. The above is also worthy of being introduced into different scenarios of CPDP
research. For example, online learning algorithms are combined with just-in-time software
defect prediction [51], training models are obtained through dynamic incremental methods,
multi-objective optimization and some heuristic algorithms are used for feature selection
and instance selection [52], some data classification algorithms are used to enhance the
effectiveness of defect prediction [53], etc.

There are still many future steps worth noting in this paper. Firstly, the feature dimen-
sion of the original feature space transformed to the manifold space was not automatically
selected. The later stage can focus on the automatic selection of the optimal parameters.
Secondly, the distribution difference between the source project and the target project in
the manifold space can be adapted from two aspects—edge distribution and conditional
distribution, which were not considered in this paper. Thirdly, in the experiment, we chose
two datasets of software projects, and our method can further extend to other suitable
datasets in later periods. Finally, different classifiers have a certain impact on the method,
and relevant research shows that ensemble learning can significantly improve the perfor-

Future Internet 2021, 13, 216 15 of 17

mance of the method. In the future, we can study the impact of ensemble learning on the
performance of the cross-project defect prediction method.

Author Contributions: Conceptualization, Y.Z. (Yu Zhao) and Y.Z. (Yi Zhu); methodology, Y.Z. (Yu
Zhao); software, Y.Z. (Yu Zhao) and Q.Y.; validation, Y.Z. (Yu Zhao), Y.Z. (Yi Zhu) and X.C.; formal
analysis, Y.Z. (Yu Zhao); investigation, Y.Z. (Yu Zhao); resources, Y.Z. (Yu Zhao); data curation, Y.Z.
(Yu Zhao); writing—original draft preparation, Y.Z. (Yu Zhao); writing—review and editing, Y.Z. (Yu
Zhao) and Y.Z. (Yi Zhu); visualization, Y.Z. (Yu Zhao); supervision, Q.Y.; project administration, X.C.;
funding acquisition, Y.Z. (Yu Zhao), Y.Z. (Yi Zhu), Q.Y., and X.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(62077029, 61902161); the Open Project Fund of Key Laboratory of Safety-Critical Software Min-
istry of Industry and Information Technology (NJ2020022); the Applied Basic Research Program of
Xuzhou (KC19004); the Natural Science Foundation of the Jiangsu Higher Education Institutions
of China (18KJB520016); the Graduate Science Research Innovation Program of Jiangsu Province
(KYCX20_2384, KYCX20_2380).

Data Availability Statement: The datasets presented in this study are available on https://bug.inf.
usi.ch/download.php (accessed on 18 August 2021); For any other questions, please contact the
corresponding author or first author of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gong, L.N.; Jiang, S.J.; Jiang, L. Research progress of software defect prediction. J. Softw. 2019, 30, 3090–3114.
2. Chen, X.; Gu, Q.; Liu, W.S.; Liu, S.; Ni, C. Survey of static software defect prediction. J. Softw. 2016, 27, 1–25.
3. Tracy, H.; Sarah, B.; David, B.; Gray, D.; Counsell, S. A systematic literature review on fault prediction performance. IEEE Trans.

Softw. Eng. 2012, 38, 1276–1304.
4. Li, Z.; Jing, X.Y.; Zhu, X. Progress on approaches to software defect prediction. IET Softw. 2018, 12, 161–175. [CrossRef]
5. Li, Y.; Huang, Z.Q.; Wang, Y.; Fang, B.W. Survey on data driven software defects prediction. Acta Electron. Sin. 2017, 45, 982–988.
6. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object-oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
7. Jin, C. Software defect prediction model based on distance metric learning. Soft Comput. 2021, 25, 447–461. [CrossRef]
8. Hosseini, S.; Turhan, B.; Gunarathna, D. A systematic literature review and meta-analysis on cross project defect prediction. IEEE

Trans. Softw. Eng. 2019, 45, 111–147. [CrossRef]
9. Bowes, D.; Hall, T.; Petric, J. Software defect prediction: Do different classifiers find the same defects. Softw. Qual. J. 2018, 26,

525–552. [CrossRef]
10. Manjula, C.; Florence, L. Deep neural network-based hybrid approach for software defect prediction using software metrics.

Clust. Comput. 2019, 22, 9847–9863. [CrossRef]
11. Chen, S.; Ye, J.M.; Liu, T. Domain adaptation approach for cross-project software defect prediction. J. Softw. 2020, 31, 266–281.
12. Chen, X.; Wang, L.P.; Gu, Q.; Wang, Z.; Ni, C.; Liu, W.S.; Wang, Q. A survey on cross-project software defect prediction methods.

Chin. J. Comput. 2018, 41, 254–274.
13. Herbold, S.; Trautsch, A.; Grabowski, J. Global vs. local models for cross-project defect prediction. Empir. Softw. Eng. 2017, 22,

1866–1902. [CrossRef]
14. Turhan, B.; Menzies, T.; Bener, A.; Di Stefano, J. On the relative value of cross-company and within-company data for defect

prediction. Empir. Softw. Eng. 2009, 14, 540–578. [CrossRef]
15. Peters, F.; Menzies, T.; Marcus, A. Better cross company defect prediction. In Proceedings of the 2013 10th Working Conference on

Mining Software Repositories, San Francisco, CA, USA, 18–19 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 409–418.
16. Ying, M.; Luo, G.; Xue, Z.; Chen, A. Transfer learning for cross-company software defect prediction. Inf. Softw. Technol. 2012, 54,

248–256.
17. Xia, X.; Lo, D.; Pan, S.J.; Nagappan, N.; Wang, X. Hydra: Massively compositional model for cross-project defect prediction. IEEE

Trans. Softw. Eng. 2016, 42, 977–998. [CrossRef]
18. Sun, Z.; Li, J.; Sun, H.; He, L. CFPS: Collaborative filtering based source projects selection for cross-project defect prediction. Appl.

Soft Comput. 2020, 99, 106940.
19. Nam, J.; Pan, S.J.; Kim, S. Transfer defect learning. In Proceedings of the 2013 35th International Conference on Software

Engineering, San Francisco, CA, USA, 18–26 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 382–391.
20. Yu, Q.; Jiang, S.; Zhang, Y. A feature matching and transfer approach for cross-company defect prediction. J. Syst. Softw. 2017, 132,

366–378. [CrossRef]
21. Ni, C.; Chen, X.; Liu, W.S. Cross-project defect prediction method based on feature transfer and instance transfer. J. Softw. 2019,

30, 1308–1329.

https://bug.inf.usi.ch/download.php
https://bug.inf.usi.ch/download.php
http://doi.org/10.1049/iet-sen.2017.0148
http://doi.org/10.1109/32.295895
http://doi.org/10.1007/s00500-020-05159-1
http://doi.org/10.1109/TSE.2017.2770124
http://doi.org/10.1007/s11219-016-9353-3
http://doi.org/10.1007/s10586-018-1696-z
http://doi.org/10.1007/s10664-016-9468-y
http://doi.org/10.1007/s10664-008-9103-7
http://doi.org/10.1109/TSE.2016.2543218
http://doi.org/10.1016/j.jss.2017.06.070

Future Internet 2021, 13, 216 16 of 17

22. Wang, J.; Chen, Y.; Hao, S.; Feng, W.; Shen, Z. Balanced distribution adaptation for transfer learning. In Proceedings of the 2017
IEEE International Conference on Data Mining, New Orleans, LA, USA, 18–21 November 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 1129–1134.

23. Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual domain adaptation with manifold embedded distribution
alignment. In Proceedings of the 26th ACM International Conference on Multimedia, New York, NY, USA, 22–26 October 2018;
ACM: New York, NY, USA, 2018; pp. 402–410.

24. Baktashmotlagh, M.; Harandi, M.T.; Lovell, B.C.; Salzmann, M. Unsupervised domain adaptation by domain invariant projection.
In Proceedings of the IEEE International Conference on Computer Vision. Sydney Convention and Exhibition Centre, Sydney,
Australia, 1–8 December 2013; ACM: New York, NY, USA, 2013; pp. 769–776.

25. Briand, L.C.; Melo, W.L.; Wust, J. Assessing the applicability of fault-proneness models across object-oriented software projects.
IEEE Trans. Softw. Eng. 2002, 28, 706–720. [CrossRef]

26. Zimmermann, T.; Nagappan, N.; Gall, H.; Giger, E.; Murphy, B. Cross-project defect prediction: A large scale experiment on data
vs. domain vs. process. In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM
Sigsoft Symposium on the Foundations of Software Engineering, New York, NY, USA, 24–28 August 2009; pp. 91–100.

27. He, Z.; Shu, F.; Yang, Y.; Li, M.; Wang, Q. An investigation on the feasibility of cross-project defect prediction. Autom. Softw. Eng.
2012, 19, 167–199. [CrossRef]

28. Herbold, S. Training data selection for cross-project defect prediction. In Proceedings of the 9th International Conference on
Predictive Models in Software Engineering, New York, NY, USA, 9 October 2013; pp. 61–69.

29. Yu, Q.; Jiang, S.; Qian, J. Which is more important for cross-project defect prediction: Instance or feature. In Proceedings of the
2016 International Conference on Software Analysis, Testing and Evolution, Kunming, China, 3–4 November 2016; Volume 11,
pp. 90–95.

30. Yu, Q.; Qian, J.; Jiang, S.; Wu, Z.; Zhang, G. An empirical study on the effectiveness of feature selection for cross-project defect
prediction. IEEE Access 2019, 7, 35710–35718. [CrossRef]

31. Wu, F.; Jing, X.Y.; Sun, Y.; Sun, J.; Huang, L.; Cui, F. Cross-project and within-project semi supervised software defect prediction:
A unified approach. IEEE Trans. Reliab. 2018, 67, 581–597. [CrossRef]

32. Li, Z.; Jing, X.Y.; Wu, F.; Zhu, X.; Xu, B.; Ying, S. Cost-sensitive transfer kernel canonical correlation analysis for heterogeneous
defect prediction. Autom. Softw. Eng. 2018, 25, 201–245. [CrossRef]

33. Fan, G.; Diao, X.; Yu, H.; Chen, L. Cross-project defect prediction method based on instance filtering and transfer. Comput. Eng.
2020, 46, 197–202+209.

34. Zhang, Y.; Lo, D.; Xia, X.; Sun, J. An empirical study of classifier combination for cross-project defect prediction. In Proceedings of
the IEEE Computer Software & Applications Conference, Taichung, Taiwan, 1–5 July 2015; Volume 7, pp. 264–269.

35. Chen, J.; Hu, K.; Yang, Y.; Liu, Y.; Xuan, Q. Collective transfer learning for defect prediction. Neurocomputing 2020, 416, 103–116.
[CrossRef]

36. Balasubramanian, M.; Schwartz, E.L.; Tenenbaum, J.B.; de Silva, V.; Langford, J.C. The isomap algorithm and topological stability.
Science 2002, 295, 7. [CrossRef] [PubMed]

37. Hamm, J.; Lee, D.D. Grassmann discriminant analysis: A unifying view on subspace-based learning. In Proceedings of the 25th
International Conference on Machine Learning, New York, NY, USA, 5–9 July 2008; pp. 376–383.

38. Gopalan, R.; Li, R.; Chellappa, R. Domain adaptation for object recognition: An unsupervised approach. In Proceedings of the
2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp.
999–1006.

39. Baktashmotlagh, M.; Harandi, M.T.; Lovell, B.C.; Salzmann, M. Domain adaptation on the statistical manifold. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 2481–2488.

40. Gong, B.; Shi, Y.; Sha, F.; Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 2066–2073.

41. Wang, J.; Chen, Y.; Feng, W.; Yu, H.; Huang, M.; Yang, Q. Transfer learning with dynamic distribution adaptation. ACM Trans.
Intell. Syst. Technol. 2020, 11, 1–25. [CrossRef]

42. Wu, R.; Zhang, H.; Kim, S.; Cheung, S.C. ReLink: Recovering links between bugs and changes. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, Szeged, Hungary, 5–9
September 2011; ACM: New York, NY, USA, 2011; pp. 15–25.

43. Dambros, M.; Lanza, M.; Robbes, R. Evaluating defect prediction approaches: A benchmark and an extensive comparison. Empir.
Softw. Eng. 2012, 17, 531–577. [CrossRef]

44. Yang, Y.; Yang, J.; Qian, H. Defect prediction by using cluster ensembles. In Proceedings of the 2018 Tenth International Conference
on Advanced Computational Intelligence, Xiamen, China, 29–31 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 631–636.

45. Steffen, H.; Alexander, T.; Jens, G. A comparative study to benchmark cross-project defect prediction approaches. IEEE Trans.
Softw. Eng. 2017, 44, 811–833.

46. Zhou, Y.; Yang, Y.; Lu, H.; Chen, L.; Li, Y.; Zhao, Y.; Qian, J.; Xu, B. How far we have progressed in the journey? an examination of
cross-project defect prediction. ACM Trans. Softw. Eng. Methodol. 2018, 27, 1–51. [CrossRef]

http://doi.org/10.1109/TSE.2002.1019484
http://doi.org/10.1007/s10515-011-0090-3
http://doi.org/10.1109/ACCESS.2019.2895614
http://doi.org/10.1109/TR.2018.2804922
http://doi.org/10.1007/s10515-017-0220-7
http://doi.org/10.1016/j.neucom.2018.12.091
http://doi.org/10.1126/science.295.5552.7a
http://www.ncbi.nlm.nih.gov/pubmed/11778013
http://doi.org/10.1145/3360309
http://doi.org/10.1007/s10664-011-9173-9
http://doi.org/10.1145/3183339

Future Internet 2021, 13, 216 17 of 17

47. Watanabe, S.; Kaiya, H.; Kaijiri, K. Adapting a fault prediction model to allow inter language reuse. In Proceedings of the 4th
International Workshop on Predictor Models in Software Engineering, Leipzig, Germany, 12–13 May 2008; IEEE: Piscataway, NJ,
USA, 2008; pp. 19–24.

48. Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
49. Liu, Z.Z.; Wang, Y.; Huang, P.Q. A many-objective evolutionary algorithm with angle-based selection and shift-based density

estimation. Inf. Sci. 2020, 509, 400–419. [CrossRef]
50. Dulebenets, M.A. A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine

container terminals. Marit. Bus. Rev. 2017, 2, 302–330. [CrossRef]
51. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.F.; Wang, H.; Guo, W. An optimization model and solution algorithms for the

vehicle routing problem with a “factory-in-a-box”. IEEE Access 2020, 8, 134743–134763. [CrossRef]
52. D’angelo, G.; Pilla, R.; Tascini, C.; Rampone, S. A proposal for distinguishing between bacterial and viral meningitis using genetic

programming and decision trees. Soft Comput. 2019, 23, 11775–11791. [CrossRef]
53. Panda, N.; Majhi, S.K. How effective is the salp swarm algorithm in data classification. In Computational Intelligence in Pattern

Recognition; Springer: Singapore, 2020; pp. 579–588.

http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.1016/j.ins.2018.06.063
http://doi.org/10.1108/MABR-04-2017-0012
http://doi.org/10.1109/ACCESS.2020.3010176
http://doi.org/10.1007/s00500-018-03729-y

	Introduction
	Related Work
	Cross-Project Defect Prediction Method Based on Manifold Feature Transformation
	Definition of Related Symbols
	Method Framework
	Manifold Feature Transformation
	Model Building Algorithm

	Experimental Research
	Experimental Datasets
	Evaluation Indicator
	Experimental Parameter Setting
	Experimental Results and Analysis

	Conclusions and Prospects
	References

