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Abstract: Using optical motion capture and wearable sensors is a common way to analyze impaired
movement in individuals with neurological and musculoskeletal disorders. However, using optical
motion sensors and wearable sensors is expensive and often requires highly trained professionals
to identify specific impairments. In this work, we proposed a graph convolutional neural network
that mimics the intuition of physical therapists to identify patient-specific impairments based on
video of a patient. In addition, two modeling approaches are compared: a graph convolutional
network applied solely on skeleton input data and a graph convolutional network accompanied
with a 1-dimensional convolutional neural network (1D-CNN). Experiments on the dataset showed
that the proposed method not only improves the correlation of the predicted gait measure with
the ground truth value (speed = 0.791, gait deviation index (GDI) = 0.792) but also enables faster
training with fewer parameters. In conclusion, the proposed method shows that the possibility of
using video-based data to treat neurological and musculoskeletal disorders with acceptable accuracy
instead of depending on the expensive and labor-intensive optical motion capture systems.

Keywords: cerebral palsy; graph convolutional neural network; deep learning; 1D-CNN; gait parameters

1. Introduction

Over 40 million people in the United States are diagnosed with movement disorders,
such as Parkinson’s disease, stroke, dementia, cerebral palsy, osteoarthritis, multiple
sclerosis, etc. Impaired movement often leads to a reduced ability to perform activities of
daily living, decreased quality of life, and substantial societal costs (e.g., costs of health
care, social care services, productivity loss, etc.) [1,2]. For example, in 2014 the Centers
for Disease Control in the US estimated the lifetime costs of caring for an individual with
cerebral palsy are approximately USD 1.3 billion [3]. Gait analysis is a popular method
for diagnosing movement impairments in these populations, where it can be used to
inform rehabilitative treatment and quantify the progress of improvements throughout the
rehabilitative process.

The current gold standard for quantitative movement analysis is using optical motion
capture systems [4,5], which require sensors to be placed on a subject at specific locations
on the body. The 3D positions of each marker can then be triangulated by image sensors
placed around the room. Although these systems can provide very accurate measurement
of movement, there are several limitations preventing its wide use in clinical settings, such
as costly equipment that is confined to laboratory settings, and the time-consuming accurate
placement of sensors. Wearable sensors, such as inertial-measurement-units, have gained
some traction for clinic-based quantitative movement analysis [6,7] because they overcome
some of these limitations; in particular, the main benefit is that these wearable systems
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can be taken out of the lab to measure more naturalistic movements. However, wearable
systems are still expensive and require time consuming and accurate sensor placement.

Recent advances in computer vision-based tracking of videos show promise for gait
analysis occurring in natural environments without requiring expensive equipment or
placement of sensors. Such video data are easier to capture from patients and inexpensive
to process. The potential clinical utility of video-based pose-tracking has recently been
demonstrated in studies on infants [8], healthy adults [9], older adults at risk of falls [10],
and children with cerebral palsy [11]. With regards to gait analysis, these studies have
attempted to measure either joint kinematics [11] or spatiotemporal parameters, such as step
length and cadence [9], from a single video camera and have achieved moderate accuracy.
This moderate accuracy can be attributed in part to the machine learning techniques
that have been employed. The purpose of our study was to use more advanced deep
learning techniques to achieve better accuracy of video-based gait analysis compared to
the gold-standard optical motion capture.

In our perspective, two barriers have prevented wider use of video based recognition
for human gait analysis. First, interest in video based recognition that uses pose estimation
for keypoints extraction is relatively new and has been primarily confined to researchers
in computer science and related fields. Second, there is expectation for a validation of the
gait parameters as calculated by video based recognition approaches against gold standard
method, i.e., optical motion capture systems.

The goals of this study were two-fold: (1) extract the keypoints from a video using
OpenPose [12], then predict quantitative gait metrics commonly used in clinical gait
analysis; and (2) propose a novel method based on graph convolutional neural network
used for the prediction of quantitative gait metrics and also can be applied for classification
tasks. The proposed method were trained on 1792 videos of 1026 unique patients with
cerebral palsy disorder [13]. The clinical gait analysis method was used on the optical motion
capture data to calculate the gait parameter values and used as a ground truth for our
proposed network. The gait parameters that were used as metrics in this study were walking
speed, cadence, gait deviation index, and knee flexion angle at maximum extension.

2. Related Work

With current technology, it is possible to capture skeleton data in real-time using depth
sensors and pose estimation algorithms [12] with less resource and computational demand.
For the realization of motion dynamics, skeleton data are the best choice since they are
robust to illumination change, complex background, and scene variation. Conventional
methods like hand-crafted approaches and deep-learning approaches are common ways
to extract skeleton data from images or videos. The hand-crafted approach focus on cap-
turing the dynamic motion of the joints, such as the relative position of the joints [14], the
covariance matrix of the joint trajectories [15], and also the design of several view-invariant
features. Among these features design, group sparsity-based class-specific dictionary
coding [16], rotation and translations of body parts [15,17], and canonical view of trans-
formed features [18] are the common ones. Other traditional methods [19–21] combine the
information from different modalities, for instance, from depth information and skeleton
data to further enhance the performance. However, these methods do not capture the
features needed to predict the gait parameters like deep learning methods. Recently, a
deep learning approach amassed a lot of success in many fields. The approach preferred
to traditional machine learning methods because it outperforms with less complicated
models and without requiring extensive feature engineering. Among the deep learning
methods, recurrent neural network (RNN)-based methods [13,22–24] that are known for
the application of temporal dynamic behavior, and CNN-based methods are used in cases
of parameter sharing and sparse connectivity to reduce the number of parameters that
need to be learned [25]. Additionally, the CNN model mapped anatomical key points
to an outcome metric (e.g., cadence) [11]. To improve performance, a two-stream-based
model [26] integrates CNN and RNN that operate on RGB images and coordinate vectors
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of skeletons ordered in temporal form, respectively. However, both the single network and
the combined two-stream model come short in understanding human movement since the
spatial dependence between the correlated joints could not be captured by the methods.

The main idea of a graph neural network representing the complex relationship and
inter-dependencies between the data in non-Euclidean domains that is classified under
recurrent graph neural network (RecGNNs) was conceived in [27] and further explained
in [28,29]. These RecGNNs methods use neighbor information iteratively to learn a target
node. The training continues until a stable fixed point is attained. In general, the methods
focus on learning node representations with recurrent neural architectures. Such methods
demand higher computation power. As a consequence RecGNNs methods [30,31] are
proposed to address such problem. Analogous to the convolutional neural network in
images and videos, a graph convolutional network is proposed to generalize the opera-
tion of convolution from grid data to graph data. Here, in graph convolutional network
(ConvGNN) the node representation is obtained by aggregating its neighbor features and
its own features. Unlike RecGNNs methods, ConvGNN stack multiple graph convolu-
tional layers and also pooling layers to extract high-level node and graph representation.
ConvGNNs fall into two main streams, spectral-based approaches [32–35] and spatial-
based approaches [36–38]. Although spectral-based approaches focus on removing noises
from graph signals, spatial methods define graph convolution by information propaga-
tion, an idea inherited from RecGNNs. Recently, graph convolutional neural networks
(GCNNs) [34] have been proposed to break the gap between spectral and spatial-based
approaches. In addition to the flexibility, and simplicity, spatial-based methods are more
efficient for graph-related data. Thus, we chose the approach in this paper. Initially, a graph
convolutional neural network is proposed for spatial dependency. For applications like traf-
fic forecasting, action recognition, CNN or RNN is used for temporal dependency alongside
graph convolutional neural networks. Spatial-temporal graph neural network [39] address
the time series prediction problem in traffic domain by applying graph convolutional
neural network to both spatial and temporal dependency.

However, the method uses adjacency matrix only for spatial dimension. In the method,
convectional convolutional neural network is used across temporal dimension that do not
capture the features of skeleton dataset very well. Our method defines a single adjacency
matrix that considers both temporal and spatial dimension. Moreover, the method gives a
much faster training speed with fewer parameters.

Based on the landmark obtained by OpenPose [4], deep learning methods show
promising results in gait analysis. Although OpenPose demonstrate higher location error
of between 20 and 40 mm for laboratory based gait analysis comparing to the marker-based
motion capture system, the method estimate a good landmark that can be used for further
analysis [40]. CNN based method [11] predicts gait metrics that approach the theoretical
limits for accuracy imposed by natural variability within the dataset prepared in Gillete
Children Speciality Healthcare. However, still there is a room for improvement, where our
method, i.e., graph convolutional neural network (GCNN) that fit the nature of the data
improves the gait metrics.

The aim of this paper is producing gait metrics of video based system that mimics the
metrics calculated from marker-based optical motion capture system. Beside using mini-
mum squared error (MSE) during training, the application of information theory [41–45]
namely correlation is used to show how the predicted value from our method is related to
the ground truth value. For our dataset it turned out that the correlation values approach
the maximum limit imposed by natural variability in the gait metrics.

3. The Proposed Method
3.1. Problem Formulation

Let X = q1, . . . , qT denote a temporal sequence where each frame qt ∈ Rnj×2 represents
a human body pose at time t, with nj number of joints in the skeleton, and each joint with 2
dimensions ((x, y) position on Cartesian plane). The OpenPose [12] method extracts the
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joints from each video segment and we used the joints as input X ∈ X for our proposed
method after flattening it. Let Y ∈ Y be the corresponding gait parameters of the input X.

Let F be a non-linear function that employs the mapping from X ⊆ RT×nj×2 to
Y ⊆ R1×1, i.e., F : X → Y . We parameterize the non-linear function F by a deep neural
network with parameters θF. In general, given a dataset with N training samples, i.e.,
D = {(Xi, Yi)}N

i=1, we will learn the network F (; θF) so that can predict the gait parameter.
In particular, the learning objective can be defined as follows:

θ∗F = arg min
θF

E(X,Y)∈DL(F (X; θF), Y), (1)

where L is the loss function between the predict gait parameter F (X; θF) and the corre-
sponding ground truth Y.

3.2. Data Preprocessing

To analyze the gait parameter of patients, we extract skeleton anatomical data from the
Gillete Children Speciality Healthcare dataset using OpenPose [5]. The extracted data have
25 key points for each frame. Here, each keypoint are taken as nodes and the x, y location
of each point is represented as a feature of the node. To suit our model, we flattened the
keypoints inputs for a segment of a video, X. Despite Openpose [5] shows an efficient pose
estimation method, some significant data are missing during extraction. Such missing data
might contribute to the inaccurate prediction of gait metrics. We address the problem by
replacing each missing joints with the mean of the feature’s the probably extracted joints.

3.3. Graph Convolutional Neural Network

There are two approaches to define convolutional filters in a convolutional neural
network: spectral-based graph convolution and spatial-based graph convolution. The
spectral-based graph convolution has a solid mathematical foundation and it produced a
good result in some applications. However, the method is not flexible to apply to many
structures. The filter defined is domain-dependent. Additionally, the eigen decomposition
in spectral-domain costs higher computational complexity. Like the typical convolutional
method applied on videos, images, and sounds, a spatial convolutional method is imple-
mented based on spatial relationships of the entity-nodes.

The skeleton of the body is represented as an undirected graph G = {V, E} on a
skeleton sequence with N joints and T frames featuring both intra-body and inter-frame
connection. In this graph, the node set V = {vi|i = 0, . . . , N− 1} includes all the joints in a
skeleton sequence. Instead of taking the spatial and temporal features as a separate entity,
we joined them into a single dimension. Therefore, the set of joints V consists of all joints
from intra-body and inter-frame connection. Thus, the total number of nodes, N = nj × T,
where nj is number of joints per frame and T is number of frames. Figure 1 shows the
connectivity of joints in a frame and the connection of the same joint in consecutive frames.

In spatial and temporal graph convolution where the edge is defined on both spatial
and temporal dimensions the edge, set E is composed of two subsets, the first subset
depicts the intra-skeleton connection at each frame, and the second subset contains the
inter-frame edges, which connect the same joints in consecutive frames. The intra-skeleton
denoted as ES = {vti, vtj|(i, j) ∈ nj} and inter-frame edges denoted as ET = {vti, v(t+1)i},
where nj is the set of joints. For two consecutive joints in skeleton body, if the joints are
connected with a single bone, we set the value of the edge between them 1. For intra-
body connectivity, we set the edge between the same joint in consecutive frames to 1. We
set a small value δ = 0.01 for joints that are not connected in intra-body or inter-frame
connectivity. The connectivity of all joints in a given video is represented in adjacency
matrix, A as it is shown in Equation (2).
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A =



d0,0 d0,1 d0,2 ... d0,N−1
d1,0 d1,1 d1,2 ... d1,N−1
d2,0 d2,1 d2,2 ... d2,N−1

. . . . .

. . . . .

. . . . .
dN−1,0 dN−1,1 dN−1,2 ... dN−1,N−1


(2)

where di,j is the edge between two joints. As it is stated earlier, if there is no edge between
two joints then di,j set to δ = 0.01. In Equation (2), the row of the adjacency matrix shows
the connection of joint 0 with all joints in intra-skeleton and inter-frame. Let the number of
frames is M and each frame has 4 joints. The total number of joints would be, N = MX4.
Thus, in Equation (2), di,j means the connection between the first joints in the first frame
and the second joint which is located in the same frame. If there is an edge between the
joints the value of di,j set to 1, otherwise it is set to 0. The toy example in Figure 2 describe
for node, N = 16. Each rows shows how node i is related to all of the nodes in the input.
Since we organized the spatial, temporal data and the adjacency matrix as a 2D dimension,
we can directly use the graph convolutional definition from [34] into our problem.

fout = D−1/2(A + I)D−1/2finW (3)

where, I is the identity matrix representing self connections and D is the diagonal node
degree matrix used for normalization given as the summation of adjacency matrix across
the column, i.e., D = ∑jAi,j × fin is the feature with RN×d dimension and before apply-
ing the first graph convolution fin considered as the spatial location of each node with
RN×2 dimension.

Figure 1. The keypoints denoted as blue dots in first frame and green dots in the following frames
are used as input to the proposed graph convolutional neural network. The dots denote the body
joints of the subject. The solid line shows the natural connection in intra-body. The dot line connects
the inter-frame edges connects the same joints in consecutive frames.
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Figure 2. Illustration of (a) proposed method using an example of N = 16, where N is the total
number of keypoints in 4 frames. Each point at t shows the joints of left skeleton. The left hip (LHIP)
at t is connected to the left knee (LKNE) and LHIP at t + 1. (b) For the first graph convolutional layer
the (x, y) position of each joints is taken as a feature. The adjacency matrix A describes the relation of
each joints with each other. The LHIP joint in the frame t is connected with the LANK in the same
frame t and with LHIP in frame t + 1. Hence, for LHIP in frame t, 1 is assigned for joints that have
direct connection. Basically, The ouput feature is computed from matrix multiplication of the input
feature X and The adjacency matrix A. To avoid the impact of zero value in matrix multiplication we
set a very small value δ = 0.01 for the joints that are not connected.

For readers’ understanding, Figure 2 depicts a toy example of the proposed graph con-
volutional method. As it is explained earlier, among 25 keypoints, 8 keypoints which are
directly related to gait measurements are selected. The selected key points are divided into
left and right key points to process further. The (x, y) location of left key points (left-hip
(LHIP)), left-knee (LKNE), left-ankle (LANK), and left-big-toe (LBTO) for t frames used
as input feature for the first graph convolutional layer. In our model, we have used two
graph convolutional layer; the first layer takes the location of each keypoints in a video
segment as input and produce 8 features. The output of the first layer fed into second
layer and produces features with 16 channel which is fed in to conventional convolutional
layer for down sampling and finally the output would be predicted. Figure 3 further
illustrates the pipeline of our method from input to output. This method can be applied to
the classification problem. The only modification expected would be adding softmax after
the fully connected layer. It is worth noting that, although we achieve a good result, using
only key points extracted using OpenPose, we attained a better result when we comprise a
hand-engineered time series data crafted from the relationship of the joints.
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Figure 3. The proposed graph convolutional neural network (GCNN).

In addition to skeleton body joints, using derived time series data as input improves
the overall performance of the network model. The first derived time series is computed
as the angle between the vector from the knee to the hip and the vector from the knee to
the ankle. The second time series was the difference between the x-coordinates of the left
and right ankles. Our second model takes both types of input, i.e., skeleton joints and
derived time series data, and predicts the gait parameters. As it is shown in Figure 4 a 1D
convolutional neural network is applied on the derived time series data, and the output
from this layer concatenated with the output from graph convolutional neural network.
Then, the combined features passed through another 1D CNN and average pooling to learn
more features and attain translation invariance. Specifically, average pooling computes the
average of features of the skeleton joint for the segment of the video.

Figure 4. Graph convolutional neural network (GCNN) with hand-engineered data processed with
convolutional neural network (CNN).

Since our proposed method is categorized under regression problem, we have used
the most common loss function mean squared error (MSE). In Equation (4), Yi is the
ground truth for gait metrics evaluated from optical motion capture sensors. Based on
reflective markers placed on patients the high-frequency cameras and motion capture
software tracked the 3D positions and the 3D joint kinematics computed using the inverse
kinematics [11]. Then, the time-series data of 3D-joint kinematics is analyzed and the
gait metrics that are used as ground truth, Yi is computed. F (X; θF) is the predicted
gait parameters by our model from video inputs. Finally, the loss function is formulated
as follows:

L(F (X; θF), Y) =
1
n

n

∑
n=1

(Yi −F (Xi; θF))
2 (4)
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4. Experiments
4.1. Dataset

We have used a dataset from Gillette Children’s Speciality Healthcare collected from
1994 to 2015 [5]. The dataset has 1792 videos of 1026 unique patients with the cerebral
palsy condition. In the dataset, the patient’s average age was 11 years with the standard
deviation (SD) of 5.9. Average height and mass were 133 cm (SD = 22) and 34 kg (SD = 17),
respectively. The ground truth metrics were computed from optical motion capture data.
As it is described in [5], for each patient, reflective markers are placed on anatomical
landmarks. Then, the optical motion capture system incorporated with tracking software
captured the positions of the markers as the patients moved in controlled space.

At last, engineers post-processed these data and computed gait metrics that were used
as a ground-truth. The video-based data used in our model for training were collected with
exact setting but at a different time to the ground truth. The skeleton data are extracted
from video-based data using the publicly available OpenPose [12] toolbox. The toolbox
gave 2D coordinates (x, y) with a confidence score of C for 25 joints.

4.2. Performance Metrics

The measurement gait metrics used in these methods are common in many neuro-
logical and musculoskeletal disorders. These gait metrics that were used in our model
were walking speed, cadence, knee flexion angle at maximum extension, and GDI. For
performance criteria, we have used the correlation coefficients to compare the ground
truth values that are prepared from optical motion sensor values. During training, MSE
loss function with adaptive moment estimation (Adam) was used as optimization. After
choosing the best parameter for each metric on validation test we took 300 samples from
test data to examine how the predicted value from our model could be related to the label
using correlation coefficients.

4.3. Experiment Settings

In this work, training and testing were implemented on a machine with Linux cluster
CPU: Intel(R) Core i7-8700K CPU @ 3.7 GHz × 12, and GPU: NVIDIA GeForce GTX
1080. The network was trained in a fully-supervised way with L2 loss function and using
adaptive moment estimation (Adam) as the optimization method. We trained both models
for a maximum of 100 epochs with a learning rate of 0.015 and early stopping with a
window size of 10, i.e., we stopped training if the validation loss could not decrease for
10 consecutive epochs. To avoid early stoppage of training, we decrease the learning by a
factor of 10 every 20,000 iterations. We have allocated 60% of the data for training, 20% for
validation, and the rest are allocated for testing.

4.4. Data Normalization

From each frame in a video, 2D image-plane coordinates of 25 keypoints with the
confidence of individual keypoints were extracted by OpenPose toolkit. From each detected
person in a frame the given points were the x, y coordinates, in pixels, of the centers of the
torso, nose, and pelvis, and centers of the left and right shoulders, elbows, hands, hips,
knees, ankles, heels, first and fifth toes, ears, and eyes [12]. The toolkit missed detecting
few people from the frame. We removed 1443 such cases from using for training. For some
cases only few of the skeleton joints are missed. For such cases, we used linear interpolation
to fill the missed points.

Some of the input data were noisy, so they might not give an expected result. For example,
the x-coordinate of the left ear and few other time-series data were noisy and contributed
undesired results. To mitigate the effects of these noisy data, we normalized the image-plane
coordinates of knees, ankles, hips, big toes, projected angles of the ankle and knee flexion, the
distance between the first toe and ankle, and the distance between the left ankle and right
ankle [13]. In addition, using window slicing more time-series data were generated, and using
an augmented dataset enabled avoiding variation in each starting frame.
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4.5. Result

Figure 5 depicts the comparison of graph convolutional neural network (GCNN),
CNN, ridge regression (RR), and random forest (RF). In the proposed method, we have
used mean squared error (MSE) to train our model. MSE gives us the measure of how
far the predictions were from actual output but we do not know whether we are under
predicting the data or over predicting the data. Therefore, we have used additional metrics,
also known as correlation, to evaluate the outcome. Here, the term correlation was used
as how the predicted gait parameters from video inputs related to the gait parameters
calculated from laboratory-based motion capture sensors. We have taken 300 gait metrics
samples that were predicted by our model based on the test data and we compared these
samples with the ground truth and examined how they related with each other. Thus, the
correlation between the gait metrics speed from our model and the ground truth was 0.791
(0.742–0.853). For GDI the correlation was 0.792 (0.710–0.822). For cadence, knee maximum
flexion our proposed method predicted a similar results with CNN [11]. During inference,
our system takes 0.2 s to predict the gait parameter of the patient.

Figure 5. Comparison prediction accuracy of the proposed graph convolutional network with the
previous methods on speed and gait deviation index (GDI) gait parameters. The three methods our
proposed graph convolutional neural network (GCNN) compared are: convolutional neural network
(CNN), ridge regression (RR), and random forest (RF). After training our model on video inputs,
we have evaluated on test data. The correlation values shows how the predicted metric values are
related with the ground truth that are prepared from optical motion sensor values.
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Table 1 shows the detailed architecture of the proposed model (Figure 4). The 2D
joints extracted from a video using OpenPose [12] were fed into the first part of the model.
In addition to the keypoints extracted using OpenPose, we comprised a hand-engineered
time serious derived from to get an optimal result. Concatenating the time-series data
(computed from the relation of the skeleton joints) that is passed through 1D-CNN with
GCNN increases the prediction accuracy. Table 2 shows the comparison of these two
approaches in terms of correlation coefficient with the ground truth. We have the first
two graph convolutional layers in part i. The graph convolutional layers used to compute
8 and 16 dimension feature maps, respectively. Part ii of the proposed method has two
convolutional layers with 7 kernel size each. In part iii, i.e., after the concatenation of
the joint features from graph convolutional layer and the time series features from the
convolutional layer, we have used a 1D convolutional layer, followed by maxpooling and
another 1D convolutional layer with size 8 kernels . All the layers are followed by batch
norm and Relu activation.

Table 1. Layer descriptions of the proposed method: the first part of the graph convolutional
network is composed of two graph convolutional layers, the second part is 1D convolutional for
hand engineered input data and the third part of the layers comprise 1D convolutional, maxpooling,
and fully connected layer for the concatenated input from part i and ii.

Part Layer Type Layer Number of Unit Kernel Size Dropout

i Graph Convolutional 1 8 - 0
Graph Convolutional 1 16 - 0

ii Convolutional 1 8 7 0
Convolutional 1 16 7 0

Concatenation i and ii - 16 -

iii Convolutional 1 8 8 0.5
Maxpooling 2 16 3 0.5

Convolutional 2 8 8 0.5
Flatten - 16 - 0.5

FC(Fully Connected NN) 1 96 - 0.5
FC(Fully Connected NN) 1 20 - 0.5

Output - 1 - -

Table 2. Comparison of our proposed graph convolutional neural network (GCNN) depicted in
Figures 3 and 4. Here, we observe the method that takes the hand crafted inputs (Figure 4) has a
better result.

Correlation for only GCNN Correlation for GCNN

Walking speed (m/s) 0.651 (0.618–0.694) 0.791 (0.742–0.853)
Gait Deviation Index 0.580 (0.542–0.624) 0.792 (0.750–0.822)
Cadence (strides/s) 0.632 (0.584–0.653) 0.785 (0.756–0.802)
Knee flexion (degrees) 0.681 (0.643–0.741) 0.832 (0.752-0.867)

5. Conclusions

In this paper, we proposed a graph convolutional neural network that can capture
the characteristics and relationships of skeleton input data in the spatial and temporal
dimensions. Our method takes advantage of the structural information possessed by the
input skeleton human pose which is extracted using OpenPose. In the method, spatial
and temporal features of the input are represented in a single adjacency matrix that helps
to apply graph convolution in both dimensions. As a result, the method captures the
main features of the motion of the patient that contribute to predicting the gait parameter.
Our approach has experimented on the cerebral palsy disorder and it outperformed the
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state-of-the-art method on the dataset that was processed by Gillette Speciality Health-
care. Our method predicted clinically apparent motion metrics from an ordinary video
of patients with the cerebral palsy disorder. The method helps the clinicians to address
the symptoms of neurological and musculoskeletal disorders without placing reflective
markers on patients’ anatomical landmarks which is very expensive and takes a lot of
effort and time to diagnosis the patients. In addition, the method achieved the result with
fewer parameters, faster training, and earlier convergence. In future work, we will apply
the proposed method for other types of musculoskeletal and neurological disorders.
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