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Abstract: Successful responses to societal challenges require sustained behavioral change. However,
as responses to the COVID-19 pandemic in the US showed, political partisanship and mistrust of
science can reduce public willingness to adopt recommended behaviors such as wearing a mask
or receiving a vaccination. To better understand this phenomenon, we explored attitudes toward
science using social media posts (tweets) that were linked to counties in the US through their
locations. The data allowed us to study how attitudes towards science relate to the socioeconomic
characteristics of communities in places from which people tweet. Our analysis revealed three types
of communities with distinct behaviors: those in large metro centers, smaller urban places, and
rural areas. While partisanship and race are strongly associated with the share of anti-science users
across all communities, income was negatively and positively associated with anti-science attitudes
in suburban and rural areas, respectively. We observed that emotions in tweets, specifically negative
high arousal emotions, are expressed among suburban and rural communities by many anti-science
users, but not in communities in large urban places. These trends were not apparent when pooled
across all counties. In addition, we found that anti-science attitudes expressed five years earlier
were significantly associated with lower COVID-19 vaccination rates. Our analysis demonstrates
the feasibility of using spatially resolved social media data to monitor public attitudes on issues of
social importance.

Keywords: social media; COVID-19; anti-science; demographics

1. Introduction

Responding to societal crises requires sustained changes in individual behaviors [1–3].
For example, to slow the spread of the COVID-19 pandemic, governments worldwide have
enacted a variety of mitigation measures that include physical distancing, a ban on public
gatherings, quarantines, and mask mandates. However, public response to these policies
was influenced by factors such as political partisanship and attitudes towards science [4,5].
While conservatives were more skeptical of government policies to limit the spread of the
virus [6], mistrust of authorities and experts extended beyond partisanship [7,8]. Mistrust
of science unites a diverse coalition of “anti-vaxxers”, “natural parenting” and alternative
medicine advocates, and others who are suspicious of “big government” and “big pharma”
that refuse to follow some of the official health guidelines. Understanding science skepti-
cism will help us better frame policies that encourage the behaviors necessary to respond
to the next health or environmental crisis [9].

Anti-science attitudes are typically assessed through surveys, which ask people to
report how much they agree with scientific statements about vaccine safety or human
activity causing climate change, for example. Using the responses, researchers have
examined the role of political ideology [8] and religious views [10]. Researchers have
linked attitudes toward science to scientific literacy, showing that scientific knowledge
explains anti-science views while controlling for key socioeconomic variables such as
religious faith, gender, and income [11–13]. More recent research has examined cognitive
and emotional factors, such as reasoning ability [14,15], fear [16], and anger [17].
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In this paper, we present a framework for measuring anti-science attitudes that are
expressed through messages posted on social media. This approach can complement
existing methods [18–20] by enabling us to study attitudes at the population scale with
high spatial and temporal granularity, as well as measure their evolution over time. We
illustrate this through the framework of studying the social and cognitive factors of the
communities where users live that explain the prevalence of anti-science attitudes.

Researchers have previously used social media data to characterize the political
ideology of users. Conover et al. [21] introduced a text-based approach, using sets of
political terms to measure partisanship. In contrast, Barbera [22] applied a latent space
model to the follower graph, while Badawy et al. [23] used label propagation on the retweet
graph to infer the political leanings of social media users. More recently, researchers
leveraged a set of curated news and information sources to label the political orientation
of users based on the partisanship of the information sources they share [24,25]. Others
have operationalized users’ vulnerability to fake news and misinformation based on their
attention to low-quality information sources [26–28].

We adopted a similar approach to characterize science skepticism, using the number
of links to curated pro-science and anti-science information sources users share on social
media as a measure of their attention to anti-science content. Specifically, we used a random
10% sample of all messages (tweets) publicly shared on Twitter in October 2016. We further
restricted the tweets to those with location metadata and linked them to counties within
the US. We trained machine learning classifiers to infer users’ attitudes towards science
based on the information sources they shared. In addition, we inferred emotions expressed
in tweets and also linked data to political partisanship through county-level outcomes in
the 2016 presidential election.

To explain variation in attitudes toward science, we studied their relationship to
the socioeconomic characteristics of communities (counties) from which people tweeted.
Although the share of social media users expressing anti-science attitudes was correlated
with the population of the county, the education and income of its residents, and their
political partisanship, these relationships were confounded by the correlations among the
variables. To disentangle these effects, we performed robust statistical analysis to identify
groups of counties with similar trends. Our analysis revealed three types of communities
and how they differ in their skepticism of science: communities in large metropolitan
regions, smaller metro (and suburban) areas, and rural regions. Anti-science attitudes
were more prevalent in older, more affluent rural communities and younger metro regions.
Across all types of communities, a larger share of Trump voters and non-White residents
was associated with more anti-science attitudes. Additionally, we see that these attitudes
were associated with lower emotional valence and high arousal, but only in small metro
and rural areas, suggesting an important role that anger plays in the mistrust of science. We
also found that anti-science attitudes partly explained differences in COVID-19 vaccination
rates almost five years later. Our study suggests that pre-existing science skepticism may
have provided fertile ground for the resistance to COVID-19 mitigation measures to take
root in communities across US.

The contributions of this work are as follows:

• We described an approach to estimate anti-science views from the text of messages
posted on social media, enabling the tracking of attitudes toward science at scale.

• We studied the geographical variation of anti-science attitudes and found differences
across the US.

• We identified the latent structure of data using state-of-the-art machine learning
methods to demonstrate the importance of stratifying data on latent groups to measure
more robust trends. The structure of data suggests that cultural differences are defined
by the urban–rural divide.

• We found that anti-science attitudes are associated with lower COVID-19 vaccination
rates in urban communities.
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• Our analysis revealed the importance of partisanship, race, and emotions such as
anger in explaining anti-science attitudes. However, education is not found to have
significant explanatory power and income is only mildly significant.

Given the global adoption and deep penetration of social media, especially in urban
areas, this framework enables the population-wide monitoring of the expressions of atti-
tudes at unprecedented spatial and temporal scales with high resolution. The framework
can be extended to situations where surveys or interviews are not practical, but where
online devices are present, which includes much of the developing world. In addition,
this data-driven framework can provide guidance about where the confounders lie when
conducting survey-based studies and design models that better reflect the hidden structure
of data.

2. Materials and Methods
2.1. Data

We made use of the Twitter Decahose for the month of October 2016 which comprises
a random 10% sample of public messages posted on Twitter. This dataset consists of
20,928,675 tweets in English, geotagged with locations around the globe. We leveraged
Geopandas (https://github.com/geopandas/geopandas, accessed on 16 June 2021) to
identify a subsample of 5,391,638 tweets posted within the US and linked these tweets to
US counties. Geopandas provides 11 digit census-tract GEOIDs from which we extracted
the first 5 digits to identify the county from which the tweet was generated (https://www.
census.gov/programs-surveys/geography/guidance/geo-identifiers.html, accessed on
16 June 2021). We leveraged data from an American Community Survey (https://data.
census.gov/cedsci/, accessed on 16 June 2021) for socioeconomic analysis, focusing on the
following variables:

• popu_tot: total county population;
• income: average household income;
• hhsize: average household size;
• whites: share of households who identify as White;
• education: share of adult residents with a college degree or above;
• age: median age of county residents;
• pro_trump: share of voters who voted for Trump in the 2016 presidential election.

We also collected voting data from the 2016 presidential elections to study the impact
of politically conservative ideologies on socioeconomic factors and overall happiness.
More specifically, we used the share of votes received by President Donald Trump in the
federal election as a measure of Republican support in each county. These data are publicly
available as a courtesy of the MIT Election Lab (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/VOQCHQ, accessed on 16 June 2021).

To explore the relationship between anti-science attitudes that existed in 2016 and the
COVID-19 pandemic, we used county-level COVID-19 vaccinations data provided by the
Centers for Disease Control and Prevention (https://covid.cdc.gov/covid-data-tracker/
#vaccinations, accessed on 16 June 2021). Specifically, we collected the fraction of fully
vaccinated adults (who received a second dose of a two-dose vaccine or one dose of a
single-dose vaccine) in each county as of 6 June 2021.

2.2. Measuring Anti-Science Attitudes

Previous studies [24,25] inferred user attitudes from the ideological polarities of
information sources to which they attend. Attention is indicated by links to pay-level
domains (PLDs) embedded within the content they share with others on social media. We
curated pro-science and anti-science PLDs from Media Bias-Fact Check (mediabiasfactcheck.
com/, accessed on 16 June 2021) with PLDs categorized under pro-science constituting the
former, while those categorized as conspiracy and questionable sources making up the latter.
Table 1 provides examples of sources under this categorization.

https://github.com/geopandas/geopandas
https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html
https://www.census.gov/programs-surveys/geography/guidance/geo-identifiers.html
https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://covid.cdc.gov/covid-data-tracker/#vaccinations
https://covid.cdc.gov/covid-data-tracker/#vaccinations
mediabiasfactcheck.com/
mediabiasfactcheck.com/
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Table 1. Curated information and news domains (PLDs) with their polarization. Examples of the
pro-science and anti-sciences domains are shown in the table.

Polarization PLDs

Pro-Science (+1) cdc.gov, who.int, thelancet.com, mayoclinic.org, nature.com, newsci-
entist.com . . . (100 + PLDs)

Anti-Science (−1) 911truth.org, althealth-works.com, naturalcures.com, shoebat.com,
prison-planet.com . . . (100 + PLDs)

We quantified a user’s attitudes toward science as the fraction of links belonging to
each category among all anti-science and pro-science PLDs the user shares. Specifically, we
extracted PLDs shared by users in the dataset and filtered for relevant PLDs present in the
Media Bias-Fact Check list. For each user, we computed two domain scores δi,Pro and δi,Anti:

δi,d =
ΣDi,d

|Di|
; ∀d ∈ {Pro-Science, Anti-Science} (1)

where δi,Pro and δi,Anti are the pro-science and anti-science domain scores for useri. Di
represents the set of PLDs shared by useri. Using this procedure, we obtained domain
scores for 87,260 users with |Di| ≥ 3 in our training dataset.

Text representation techniques discussed in [29–31] helped us generate the dense and ac-
curate representations of user content as compared to high-dimensional but sparse representa-
tions using TF-IDF weighted content vectors [21]. Sent2Vec (https://github.com/epfml/sent2
vec, accessed on 16 June 2021) provided an easy-to-use Python package to employ pre-trained
fastText models to generate embeddings for tweets in our dataset. Following the methodology
described in [25], we pre-processed tweets by removing hashtags, URLs, mentions, special
characters, and stopwords using Tweet-Prepocessor (https://github.com/s/preprocessor, ac-
cessed on 16 June 2021). Inferring the polarity of individual tweets can yield noisy results
with some tweets that are not consistent with the sufficient and necessary content to decide
polarity. Hence, we concatenated all tweets generated by a user to form documents for
each user. Using the sent2vec_twitter_unigrams pre-trained model, we then generated 700
dimension vectors to represent these user documents.

We categorized users with δi,Pro > 0.5 as pro-science and ones with δi,Pro 6 0.5 as
negpro-science. Similarly, we grouped users with δi,Anti > 0.5 as anti-science and the rest as
¬anti-science. Using the 87,260 users thus categorized as the ground truth, we trained two
logistic regression classifiers—LRPro and LRAnti—to predict whether a user is pro-science
or not or anti-science or not, respectively. Table 2 shows that the classifier achieves ideal
performance in 5-fold cross validation in both micro and macro average performance.
From the trained logistic regression classifiers, LRPro and LRAnti, we obtained normalized
scores δ̂i,Pro and δ̂i,Anti, respectively. In order to integrate the information provided by
both LRPro and LRAnti, we proposed the anti-science propensity score ρ̂i,Anti to quantify
anti-science attitudes:

ρ̂i,Anti = δ̂i,Anti − δ̂i,Pro. (2)

ρ̂i,Anti ∈ [−1,+1] describes the extent of agreement between LRPro and LRAnti and fa-
cilitates the consideration of users who generate relevant pro or anti-science content.
For instance, users with a highly positive ρ̂i,Anti are most likely to be anti-science, whereas
ones with highly negative ρ̂i,Anti are indicative of pro-science attitudes. More specifically,
users with ρ̂i,Anti > 0.5 are categorized as anti-science whereas, ones with ρ̂i,Anti < −0.5 are
classified into the pro-science category. Users with ρ̂i,Anti scores in the range of [−0.5, 0.5]
are those that have no clearly polarized attitudes towards science. We filtered out these
users, leaving us with 399,701 users out of 1,130,445 in the US with well-defined attitudes
towards science.

Upon identifying scores, we assigned users to the counties they tweeted from by using
the county identifiers corresponding to their tweets. We then calculated the propensity for

https://github.com/epfml/sent2vec
https://github.com/epfml/sent2vec
https://github.com/s/preprocessor
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a county c to be anti-science, denoted by anti_ratio(c), as the fraction of anti-science users
generating tweets from it:

anti_ratio(c) =
N(c, Anti)

N(c, Pro) + N(c, Anti)
(3)

where N(c, Anti) and N(c, Pro) represents the number of anti-science and pro-science
users in the county c, respectively. A higher anti_ratio(c) indicates that a higher fraction of
the county’s Twitter users are anti-science. Using this method, we were able to compute
anti_ratio(c) for 784 counties.

Table 2. Cross-validation results of pro-science and anti-science classifiers. Results are averaged
five-fold.

Classifier Precision Recall Micro-F1 Macro-F1

Pro-Science 0.90 0.89 0.89 0.89
Anti-Science 0.89 0.90 0.89 0.90

2.3. Measuring Emotions

Sentiment analysis aims to quantify subjective states expressed in text, such as opin-
ions and emotions. Emotional expression can be measured in terms of valence and arousal,
with the former quantifying the level of pleasure, or positive sentiment, expressed in text,
and the latter, the level of activity induced by the emotions. We used the Warriner, Kuper-
man, and Brysbaert (WKB) lexicon [32] to measure emotion expressed in text. The WKB
lexicon includes scores along these dimensions for almost 14,000 English words. To quan-
tify the valence and arousal expressed in a tweet, we lemmatized its content and applied
the lexicon to compute the mean values of the emotional dimensions.

2.4. Identifying the Latent Components

Mixed-effects (or multi-level) models are a class of regression models that account
for the non-independence of observations [33]. These models assume that similar ob-
servations come from similar individuals belonging to the same class, usually specified
by a categorical variable [34]. For continuous variables, the data can be disaggregated
by binning variables and splitting data into bins, with each bin becoming a class [35].
Recent work has extended these methods to discover latent groups for disaggregating
data that depend on multiple variables. Controlling for these latent groups improves
the utility of linear models. Methods like cluster-wise linear regression [36–38] split data
into groups using unsupervised methods, like k-means, and then fit linear models within
each cluster. However, such methods can be slow on large data. Other methods combine
Gaussian mixture models and regression to model the latent structure of the data [39,40].
This approach was recently extended to use weighted regression that is less sensitive to
outliers. The method, called disaggregation via Gaussian regression (DoGR) [41], jointly
partitions the data into K fuzzy clusters in the disaggregation step and models the trends
within them in the regression step (https://github.com/ninoch/DoGR, accessed on 16
June 2021). The method describes data as a mixture model with k components, where
each component represents a latent class (group). Each datum point has some probability
to belong to any component. The method uses expectation maximization (EM) to jointly
estimate the parameters of the mixture model, membership parameters for individual data
points, and regression coefficients for each component, weighing the contribution of data
by their membership parameters. The joint learning of components and their regression
coefficients ensures the homoscedasticity and exogeneity assumptions of OLS regression
per component and enables discovering latent classes that better explain the structure
of data.

https://github.com/ninoch/DoGR
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3. Results
3.1. Geography of Anti-Science Attitudes

Figure 1 shows the geographic distribution of anti-science attitudes, specifically
the share of Twitter users from each state posting links to anti-science domains. The map
shows large heterogeneity, with southern states having a larger share of anti-science users
compared to northeastern or western states. Texas, Louisiana, West Virginia, Alabama,
and Arizona are the states with most anti-science users.

Figure 1. Anti-science ratio per state. The anti-science ratio measures the share of anti-science users
among all Twitter users from a county who are posting anti-science or pro-science content. States
aggregate statistics of their constituent counties.

3.2. Correlates of Anti-Science Attitudes

To better understand the geographic variation of anti-science attitudes, we conduct
statistical analysisto measure the impact of various socioeconomic and emotional variables
on anti-science views of people from different places. Figure 2 shows correlations among
these variables, presented as a heatmap. Each variable represents the mean of observa-
tions aggregated at a county level. The fraction of Twitter users within a county holding
anti-science views is negatively correlated with that county’s mean income (r = −0.244,
p < 0.01) and education level (r = −0.297, p < 0.01), and it is positively correlated with the
share of Trump vote in the 2016 presidential election (r = 0.308, p < 0.01). The anti-science
fraction is also weakly correlated with household size (r = 0.136, p < 0.01). Together, these
results suggest that lower-income and less educated counties with larger families tend to
have more prevalent anti-science attitudes.

With respect to the emotional dimension, the fraction of users with anti-science
attitudes is negatively correlated with emotional valence (r = −0.159, p < 0.01) and
strongly correlated with emotional arousal (r = 0.503, p < 0.01). The correlation with
valence and arousal suggests that anti-science attitudes co-occur with messages expressing
anger. Note that valence and arousal are not themselves significantly correlated, implying
that social media posts on their own are not angry. Neither does anger appear to be a
function of political ideology: Trump’s vote share is not correlated with valence or arousal.
Instead, strong emotional expression appears to be associated with anti-science attitudes.

The heatmap also shows that many of the socioeconomic variables are correlated
with each other. The interdependence between the variables makes it challenging to
quantify the impact of each on anti-science attitudes. As a step towards disentangling
these dependencies, we performed multi-variate regression to estimate the extent to which
each variable explains the anti-science share in the presence of other variables. For the
regression’s linearity assumption, we conduct the Ramsey reset test, and its outcome
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(p = 0.48 > 0.05) indicates the correctness of our model specification. Due to existing
heteroskedasticity (in White’s test, p = 1.67× 10−28 < 0.05, hinting at the inconsistent
variance of residuals) in our dataset, we used heteroscedasticity-corrected covariance
matrices (HC3) in the regression.

Figure 3 (left) shows regression coefficients and their significance values. Among the
socioeconomic variables, only the fraction of White households and average income are
determined to be statistically significant, both negatively associated with anti-science at-
titudes. There is also a significant positive association with the county’s share of Trump
voters and a significant association with the emotion expressed in tweets (positively associ-
ated with arousal and negatively associated with valence). Together, these results suggest
that people holding anti-science attitudes are more likely to come from lower income
regions with fewer White residents, a relationship that holds even after controlling for
partisanship (through share of Trump voters). It is also worth noting that anti-science users
are more likely to post angry messages on social media.
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Figure 2. Correlations between socioeconomic variables, political ideology, sentiment, and anti-
science attitudes. The last two variables were measured from social media messages. All variables
represent averages aggregated per county. Statistically significant correlations are marked by asterisks
(***: <0.1%, **: <1%, *: <5%).

3.3. Latent Structure of Anti-Science Attitudes

A challenge posed by data coming from diverse groups, each with its own character-
istics and behaviors, is that the heterogeneity may obscure the underlying relationships.
As a result, a model learned from pooled data may offer few insights into the trends within
the underlying groups [42]. To address this challenge, we use DoGR (see Materials and
Methods) to discover the latent groups and estimate the regression coefficients within them.
DoGR has a tunable parameter K, the number of mixture components. According to Bayes’
information criterion (BIC), the county data are best explained with three components
or groups. Figure 4 compares the composition of the three groups based on the mean of the
variables over the counties assigned to that group (each county is assigned to the group
with the highest membership probability). The first (orange) group is composed of counties
with the largest share of Trump voters, smallest population and fewest college-educated
residents on average. These counties are also home to the largest share of anti-science users
compared to other counties in our data (the average anti-science share is 0.62± 0.021).
The second (green) group has the largest share of White residents, who are also older.
The last (blue) group is composed of the largest counties, with more college-educated
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and affluent residents. They also have the fewest Trump voters. These counties have the
smallest share of anti-science users (average share of anti-science users is 0.57± 0.022).

0.25 0.00 0.25 0.50 0.75 1.00 1.25
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Figure 3. Regression coefficients for the fraction of anti-science users within a county for (left)
pooled and (right) disaggregated data. The groups in the disaggregated data were automatically
discovered using the DoGR method. Significance levels of the coefficients are as follows: p < 1% (***),
p < 5% (**), p < 10% (*).

To obtain a better idea of what these groups represent, we plotted the distribution
of the rural–urban continuum codes of counties in each group. The rural–urban contin-
uum codes (https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/
documentation/, accessed on 16 June 2021) categorize counties in the US as metropolitan
vs. non-metropolitan. The categorization scheme distinguishes the metropolitan counties
(codes 1–3) by the population size of their metro area and non-metropolitan counties (codes
4–9) by their degree of urbanization and adjacency to metro areas. Figure 4 shows the dis-
tribution of county codes. The blue group is mainly composed of the largest metropolitan
counties (code 1) representing the largest urban centers. The green group also contains
large metropolitan counties, but also many mid-side metro areas (codes 2–3). In contrast,
the orange group corresponds to counties in the smallest metro areas (code 3) and also
many counties in non-metro and rural areas (codes 4–9). Although these county codes
were not used in the analysis, the DoGR method identifies the rural–urban divide as the
factor explaining cultural differences.

Figure 3 (right) shows regression coefficients within the groups. In rural counties
(orange group), the fraction of anti-science users is negatively associated with the share of
White households and is positively associated with the age of residents, household size,
and the share of Trump voters. It is also positively associated with income, though this
relationship is less significant. Other associations with socioeconomic variables are not
statistically significant. The green group is somewhat different from the blue group in
that the income is negatively associated with the fraction of anti-science users in a county;
though similar to the orange group, a fraction of anti-science users is negatively associated
with White households and positively associated with Trump voter share. The age of
residents and their education are not significantly associated with anti-science attitudes. In

https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/documentation/
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/documentation/
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larger metro areas (blue group), only age, race, and partisanship (Trump voter share) are
significantly associated with anti-science attitudes, albeit at a lower significance level.
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Figure 4. Descriptive statistics of the components (groups) discovered in the anti-science data. (left)
Average value of each explanatory variable across counties assigned to that group. (right) Distribution
of the urban–rural continuum codes for the counties assigned to each discovered group.

Table 3 reports goodness-of-fit metrics for the regression in the combined (pooled)
and disaggregated (group-wise) data. Groups 0 and 1 are more homogeneous, with the
model significantly better explaining their behavior than in the pooled data. Group 2 is
more heterogeneous, with a lower R-squared than the pooled data.

Table 3. Goodness-of-fit measures for regression in pooled data containing all counties and for the
subgroups of counties discovered by DoGR.

DogR Result # of Counties R2 Adjusted R2

Anti-science share

Pooled 784 0.424 0.418
Group 0 330 0.488 0.473
Group 1 340 0.591 0.580
Group 2 114 0.357 0.302

Vaccination share

Pooled 716 0.444 0.436
Group 0 158 0.533 0.501
Group 1 386 0.686 0.678
Group 2 172 0.311 0.268

3.4. Anti-Science Attitudes in the Age of COVID-19

Response to the COVID-19 pandemic in the US showed how political partisanship [5]
and the mistrust of science [7] contributed to the resistance to COVID-19 mitigation
measures, such as social distancing, lockdowns, and wearing masks [6]. More recently,
the movement against COVID restrictions has found a new cause in resistance to the
COVID-19 vaccines. At the time of writing, although many Americans have received a
COVID-19 vaccine, a substantial number remain reluctant to receive their shot, endanger-
ing the goal of herd immunity. Analysts looking for sources of vaccine hesitancy identified
a mistrust of government and the role of political partisanship [43]. Additionally, the mis-
trust of science and conspiratorial thinking also fuels the anti-vaccine movement [7]. Here,
we examine the relationship between anti-science attitudes (in 2016) and vaccination rates
across the country (as of 6 June 2021). Despite the long gap in time, in some communities,
we found that anti-science attitudes were significantly associated with lower vaccination rates.

Multi-variate regression of the pooled county data (Figure 5 (left)) shows that the
share of anti-science users within a county is negatively associated with that county’s
vaccination rates, even after controlling for partisanship (Trump voter share in 2016) and
other socioeconomic factors. All variables, except for education, are found to be statistically
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significant: as older, whiter, more affluent counties have higher vaccination rates, those
with larger households have lower vaccination rates. Upon further examination, we used
DoGR to identify the latent groups that best explain COVID-19 vaccination rates as a
dependent variable. The data are best explained by three groups (according to BIC): (Group
0) the bigger, more affluent, and better-educated counties, (Group 1) the whiter, older, more
pro-Trump communities, and (Group 2) counties with larger household and bigger share
of anti-science users (Figure 6 (left)). This latter group had the lowest average vaccination
rate, with only 30% of residents fully vaccinated, compared to 65% and 59% for the first
two groups. As shown by the distribution of the county’s rural–urban continuum codes
(Figure 6 (right)), the first group represents the largest metro areas, and while the last
two components are fairly similar, though Group 1 is more rural. Although the latter two
groups are similar according to the rural–urban continuum measure, their population has
different behaviors, suggesting additional cultural differences not accounted for in our
analysis, for example, the north–south divide.
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Figure 5. Regression analysis of county COVID-19 vaccination rates. Regression coefficients in the
pooled (left) and disaggregated (right) data. Significance levels of the coefficients are as follows:
p < 1% (***), p < 5% (**), p < 10% (*).

Regression coefficients within these groups (Figure 5 (right)) tell a more nuanced
story. The anti-science share is associated with lower vaccination rates in urban communi-
ties (statistically significant relationship for Group 0) and mostly rural communities (Group
2, but not statistically significant). More affluent urban communities are much more likely
to be fully vaccinated, but income is not significantly associated with vaccination rates in
non-metro areas. Population is a significant factor in explaining vaccination rates only in
rural communities. However, larger communities had lower vaccination rates. Goodness-
of-fit metrics (Table 3) show adjusted R-squared values for group-wise regression.



Future Internet 2021, 13, 160 11 of 14

pro_trump

white
s

in
co

m
e

ed
uc

at
io

n

anti_
ratio

hhsize

age

popu_tot

arousal

valence

Group_0 Series_Complete_Pop_Pct=0.64 (0.028)
Group_1 Series_Complete_Pop_Pct=0.59 (0.013)
Group_2 Series_Complete_Pop_Pct=0.30 (0.035)

1 2 3 4 5 6 7 8 9
Rural-Urban Codes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fr
eq

ue
nc

y

Group 0
Group 1
Group 2

Figure 6. Descriptive statistics of component (groups) discovered in the COVID-19 vaccination data.
The left plot shows the average value of each explanatory variable across counties assigned to that
group. The right plot shows the distribution of the rural–urban continuum code of the counties in
each group.

4. Discussion

Social data are often highly heterogeneous, i.e., generated by individuals with different
behaviors. The divergent trends at the individual level may disappear when data are
aggregated, confounding the analysis [42]. To mitigate this effect, we used a recently
developed machine learning algorithm to disaggregate the data and perform regression
analysis within the discovered groups. To explain the share of social media users within
communities expressing anti-science attitudes, the method identified three groups, which
roughly map communities within large metropolitan areas, smaller metro and suburban
areas, and rural areas. This suggests that the urban–rural divide defines cultural differences
in anti-science attitudes in the US. In all three groups, the share of White households
is negatively associated with anti-science attitudes, meaning that counties with a larger
non-White population also have more people expressing skepticism of science. In the
pooled data (Figure 3 (left)), there was little association with age, but in the disaggregated
data there are stronger, statistically significant associations between anti-science attitudes
and age (Figure 3 (right)). Specifically, rural communities with older population have
significantly more anti-science users, but older urban communities have fewer anti-science
users. The trends with respect to income also show Simpson’s reversal [42]. In the pooled
data, income has a negative association with anti-science attitudes, but in the disaggregated
data, there is a positive association with income in rural and urban (though not statistically
significant) counties. Household size was not appreciably associated with anti-science
attitudes in the pooled data but has a strong relationship in one of the groups: rural counties
with larger households express more anti-science attitudes. Finally, Trump’s vote share
was associated with more anti-science attitudes across all groups.

One surprise is the relative unimportance of education, which we measured as the
share of county residents with college education (or above). Although this variable is
negatively correlated the with anti-science share (r = −0.297, p < 0.001), its coefficients
within all three groups, while also negative, are not statistically significant. This suggests
that most of the effects of education can be explained by other variables, such as income
and partisanship.

We also found that anti-science attitudes were associated with significantly lower
COVID-19 vaccination rates in urban communities in 2021, even after controlling for politi-
cal partisanship, race, income, and education. Our analysis does not imply a causal link;
instead, it suggests that pre-existing anti-science attitudes may have allowed COVID-19
misinformation and resistance to mitigation measures to spread, rather than vice versa.

We found emotional factors to be strongly and significantly associated with anti-
science attitudes, but only in rural and smaller urban areas. In fact, the effect of psycho-
logical factors, especially arousal, was about twice that of partisanship. Together with
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negative emotional valence, high arousal suggests that anger plays an important role in
explaining anti-science attitudes, especially in less densely populated areas. Researchers
have begun to explore the psychological antecedents of science skepticism [44], but more
work is needed in this area.

Limitations

When performing an analysis of social media data, one must keep in mind that Twitter
users are not a representative sample of the population. Moreover, geo-coded tweets posted
in a given area may not come from residents, but from users visiting those areas. This will
weaken the link from social media expressions to the characteristics of residents of a given
area. However, we believe this applies to a negligible number of tweets. Additionally,
unvaccinated people in each county may also include a small fraction of people who have
not had the chance to receive a vaccine. However, we work under the assumption that this
is a negligible number as opposed to the ones who prefer not to receive one.

Flaws in the automatic detection of anti-science attitudes may bias results. We put
strict constraints on the classifiers, eliminating users from analysis whose predicted anti-
science scores were not extreme enough. This reduced the number of users in the dataset.
Additionally, attitudes could have shifted over the years, diminishing the utility of the 2016
data in understanding current anti-science attitudes. To check, we compared the share of
anti-science users in the 2016 data explored in this paper to the share of anti-science users
measured in the 2020 data using a similar methodology [25]. The correlation at the state
level is high at 0.6. This suggests that attitudes are stable over time.

Multi-collinearity could affect regression coefficients. To address this question, we
used ridge regression to estimate regression coefficients and found them to be largely un-
changed.

5. Conclusions

We used public messages posted on social media in October 2016 to track anti-science atti-
tudes in the US. By linking these messages to specific regions in the US through their geographic
coordinates, we were able to estimate the number of people in different places who share
anti-science attitudes and measured the association with their socioeconomic characteristics.

To disentangle the effects of different variables, we used machine learning methods to
disaggregate the data and estimate regression coefficients separately within each group.
This analysis split counties into three culturally meaningful groups: those belonging to
large urban centers, smaller urban areas, and rural regions. While political partisanship
(specifically, the share of Trump voters) was strongly associated with the county’s share
of anti-science users, race and psychological factors were also found to be important.
Specifically, places with a larger share of non-White population had more anti-science
users, and places outside of large metro centers where users expressed anger (negative
valence and high arousal) were associated with more anti-science users. We also found that
anti-science attitudes in large metropolitan areas are associated with significantly lower
COVID-19 vaccination rates nearly five years later.

Crafting effective policies in response to a crisis requires an understanding of public
attitudes and views. While public messages posted on social media have long been
seen as a practical sensor of these views, past efforts in this area were hampered by the
heterogeneous nature of social data. Our paper describes a framework to tame the data
heterogeneity and illustrates that it demonstrate that social media is a practical tool for
monitoring anti-science attitudes.
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