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Abstract: As an emerging network architecture, Information-Centric Networking (ICN) is considered
to have the potential to meet the new requirements of the Fifth Generation (5G) networks. ICN uses a
name decoupled from location to identify content, supports the in-network caching technology, and
adopts a receiver-driven model for data transmission. Existing ICN congestion control mechanisms
usually first select a nearby replica by opportunistic cache-hits and then insist on adjusting the
transmission rate regardless of the congestion state, which cannot fully utilize the characteristics of
ICN to improve the performance of data transmission. To solve this problem, this paper proposes a
two-level congestion control mechanism, called 2LCCM. It switches the replica location based on a
node state table to avoid congestion paths when heavy congestion happens. This 2LCCM mechanism
also uses a receiver-driven congestion control algorithm to adjust the request sending rate, in order
to avoid link congestion under light congestion. In this paper, the design and implementation of the
proposed mechanism are described in detail, and the experimental results show that 2LCCM can
effectively reduce the transmission delay when heavy congestion occurs, and the bandwidth-delay
product-based congestion control algorithm has better transmission performance compared with a
loss-based algorithm.

Keywords: 5G; Information-Centric Networking; congestion control; receiver-driven

1. Introduction

The applications of 5G (Fifth Generation) networks [1] have critical requirements
for end-to-end latency, especially in ultra-Reliable Low Latency Communication (uRLLC)
scenarios [2]. To achieve the high-performance of 5G, researchers are working hard on a
variety of supporting technologies, especially the optimization of network architectures.
A new network paradigm called Information-Centric Networking (ICN) has been pro-
posed [3]. ICN architecture and related technologies are being standardized [4] and have
the potential to enhance data delivery services in 5G networks. ICN changes the Internet
communication paradigm from a host-centric model to an information-centric model. It
uses network-level entity identifiers (IDs) to address and retrieve the corresponding con-
tent data. By using in-network caching techniques, ICN can provide significant benefits
such as faster content delivery, reduced unnecessary network traffic, and fewer duplicate
transmissions of the same content.

After ICN was proposed, many projects with different architectures have emerged,
including Content-Centric Networking (CCN) [5], Data-Oriented Network Architecture
(DONA) [6], MobilityFirst (MF) [7], Network of Information (NetInf) [8], and On-Site,
Elastic, Autonomous Network (SEANet) [9]. To solve the problems faced in implementing
these architectures, many related key techniques are still being investigated, such as naming,
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routing, caching, forwarding, security, and transport [10]. This paper focuses on the study
of transport control techniques [11], in particular, congestion control mechanisms.

Compared with traditional Transmission Control Protocol (TCP)/Internet Protocol
(IP) architecture, ICN transmission has two main new features. One feature is the receiver-
driven transmission mode, where the receiver sends the request packet carrying the content
ID into the network, and the network nodes storing the corresponding content can all return
the requested data by response packet. The other feature is multi-replica transmission,
where the chunk requested by the receiver often has multiple copies in the network (located
at the original content provider or the intermediate cache-supported ICN routers) due to
the existence of the in-network caching mechanism.

The new features of ICN transmission bring new opportunities for the design of
congestion control. The existing ICN congestion control mechanisms are usually to first
match the nearest replicas [12] by means of opportunistic cache-hits (also called happen-to-
meet) [13] and then avoid network congestion by rate adjustment during data transmission.
The three main mechanisms of rate adjustment include window-based congestion control
mechanisms, interest-shaping methods of intermediate network nodes [14], and intermedi-
ate nodes displaying feedback congestion information [15] to assist the receiver in adjusting
the request sending rate. However, these congestion control mechanisms mainly adapt to
the receiver-driven characteristics and fail to take full advantage of the multi-replica feature
brought by the ICN in-network caching mechanism. Considering that the content in ICN
is partitioned into chunks first, and then is further partitioned into smaller packets, the
authors in the literature [16] proposed a new protocol to handle the transmission of chunks
in a hop-by-hop way and to perform rate adjustment inside the chunk by a loss-based
algorithm. However, this approach is not very compatible with IP infrastructure. Therefore,
this paper proposes a two-level congestion control mechanism (2LCCM), where level one
selects the most appropriate replica of chunk for data service by a replica selection method,
and level two adjusts the request sending rate to maximize bandwidth utilization by a
receiver-driven congestion control algorithm. The two levels can be switched to execute
and take effect, usually by executing level one first to select a copy for data service, and
then adjusting the request sending rate during the transmission process. However, if heavy
congestion occurs, the replica node can be switched instead of just adjusting the request
sending rate. To decide which level of congestion control to perform, we define heavy
congestion and light congestion separately and describe the strategy of replica switch-
ing. We also design a replica selection method based on a Node State Table (NST) and a
receiver-driven BBR congestion control algorithm, as well as a transport layer protocol that
supports the implementation of the above 2LCCM. The main contributions of this paper
are as follows:

• This paper is the first paper to explicitly propose a two-level congestion control
mechanism for ICN, where replica nodes will be changed to avoid congestion paths
under heavy congestion, and only the request sending rate will be adjusted under
light congestion. Specific definitions of heavy congestion and light congestion that
distinguish the two-level mechanism are provided, and the switching strategy is
discussed to reduce the transmission time.

• To implement the 2LCCM proposed in this paper, we further designed an NST-
based replica selection method for selecting the most appropriate replica, a receiver-
driven BBR congestion control algorithm applicable to ICN, and a detailed transport
layer protocol.

• The experimental results show that switching replicas for successive transmission
under heavy congestion can effectively shorten the transmission time, which verifies
the effectiveness of 2LCCM. In addition, the results also show that the Bandwidth-
Delay Product (BDP)-based BBR algorithm has better bandwidth utilization than a
loss-based algorithm.

The remainder of this paper is organized as follows: We review the related work about
congestion control mechanisms of ICN in Section 2; Section 3 describes the design of the
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two-level congestion control mechanism, defines heavy congestion and light congestion,
and presents the switching strategy of the two-level mechanism; In Section 4, the replica
selection method, congestion control algorithm, and transport layer protocol are described
in detail, then we evaluate and discuss the performance in Section 5; Finally, Section 6
concludes our work.

2. Related Work

Congestion control is closely related to network data transmission technology. How-
ever, the new characteristics of ICN’s receiver-driven transmission make the traditional
TCP congestion control mechanisms cannot be directly applied. Based on the mode of
congestion control, existing ICN congestion control mechanisms can be divided into three
main categories: receiver-driven congestion control, hop-by-hop congestion control, and
hybrid congestion control [17].

The main idea of receiver-driven congestion control is similar to TCP end-to-end
congestion control, but the most obvious difference is that the sender-driven is adjusted to
the receiver-driven mode. Its core idea is to adjust the request sending rate by monitoring
the link state. For example, ITahoe [18] is a simple algorithm based on TCP Tahoe [19].
Carofiglio et al. proposed ICP [20], which is a transport protocol for CCN, implements a
window-based interest flow control mechanism and determines congestion by the changes
of Round-Trip Time (RTT) or the packet loss due to timeout. NetInf TP [21] is designed
for the NetInf architecture, and its operation consists of three steps: locating the replica,
transmission establishment, and data transfer. Data transfer in NetInf TP is achieved by
exponentially increasing the transmission rate with one request packet corresponding to
two data packets, and uses a window-based congestion control mechanism that follows
the Additive Increase and Multiplicative Decrease (AIMD) algorithm of TCP logic for
congestion avoidance. The difference is that NetInf TP does not determine congestion based
on packet loss due to timeout, but by the number of packets sent without receiving replies.

The above congestion control mainly works during the transmission of the entire
content. However, content in ICN is split into multiple smaller chunks by default [22],
and multiple chunks may come from different data sources at the same time. CCTCP [23]
maintains multiple timeout values and multiple congestion windows for the multi-source
multi-path nature of ICN. ConTug [24] maintains multiple conceptual congestion windows
for multiple chunks and uses RTT variations as a light congestion signal for the transmission
of multiple chunks, and it converts them to the difference between the expected rate and
the actual rate to determine the degree of congestion. However, setting multiple timeout
values or congestion windows for multi-source multi-path transmissions increases the
complexity of congestion control.

The hop-by-hop interest shaping mechanism [14] is the method that each CCN router
controls the transmission rate of individual chunks by appropriately adjusting the for-
warding rate of interest packets. It does so by monitoring the queue size of the routers,
determining the interest packets allowed into the forwarding port of that router, and
performing the corresponding packet drop operation for the interest packets that are not
allowed in. Thus, it forces the queue size to converge to a given target (percentage of
buffer capacity) as a way of avoiding congestion in the CCN transmission queue. However,
this approach requires a high performance from routers and is not yet well supported by
today’s widely used routers.

The hybrid congestion control scheme, typically implemented in the Backpressure
based Congestion avoidance model (BCON) is introduced in the literature [25]. BCON
calculates the queue size of packets in the router through Active Queue Management
(AQM) mechanism, and it drops the packets of interest with a certain probability and sends
Negative Acknowledgment (NACK) messages to notify the receiver to reduce the request
sending rate after a packet is dropped. A Practical Congestion control scheme (PCON) is
proposed in the literature [26]. PCON is a method where an intermediate router detects
the queue size through AQM and then forwards this congestion signal to the receiver
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hop-by-hop, then reduces the request rate at the receiver side. The process of forwarding
this congestion signal hop-by-hop also continuously adjusts the ratio of forwarding to
each forwarding plane through the router. MFTP [27] is a new transport protocol for the
MF architecture that uses a backpressure congestion control mechanism similar to BCON.
However, the difference is that MFTP’s hop-by-hop congestion control is applied to two
adjacent routers and is based on a sender-driven transmission mode, where the upstream
sender sends data and requests acknowledgement from the receiver, the receiver replies
with an acknowledgement message and receives a window notification, the sender adjusts
the sending window according to the receiving window, and the congestion status is fed
back to the data source hop-by-hop.

R2T [28] is a variant of MFTP that refines MFTP retransmission by chunk to retrans-
mission by packet. Instead of using packet loss due to timeout to determine network
congestion, R2T considers that a longer RTT means that a packet has experienced a longer
queuing time, thus indicating a higher network load or light congestion. In contrast, if a
packet passes through a router in a congested state, meaning that the transmission path
of the packet has experienced a bottleneck bandwidth link, then the link is considered to
be experiencing heavy congestion. This congestion signal will be notified to the receiver
explicitly through the source backpressure algorithm of the intermediate router.

Considering that the content in ICN is partitioned into chunks first, and is then further
partitioned into smaller packets, a hop-by-hop congestion control similar to CCN has been
proposed in the ICTP [16] protocol at the first level, and the TCP Reno [29] algorithm
has been adopted at the second level. It is a receiver-driven transport protocol for the
CONET [30] architecture, which also inspired the 2LCCM proposed in this paper. The
difference is that our proposal adopts a replica selection or switching method at the first
level and a receiver-driven congestion control algorithm at the second level. Moreover, the
two-level congestion control mechanism proposed in this paper can be switched to execute
or take effect, which means that the replica location can be switched when heavy congestion
happens, unlike existing mechanisms that still insist on adjusting the transmission rate in
this situation, thus allowing better utilization of the multi-replica feature.

3. Design

In this section, we describe the architecture design of the 2LCCM, define the heavy
and light congestion used to distinguish the two-level mechanism, and detail the switching
strategy of the 2LCCM.

3.1. Overview of 2LCCM

Considering that users care more about the popular parts of the data object, the
content in ICN is split into smaller chunks by default [22] to accommodate the transport
layer (TL) [31]. Together with mechanisms such as in-network caching and separation
of identifier and locator, the transmission of content in ICN has new features such as
multi-source, multi-path, and multi-replica. To avoid the complexity of the congestion
control module caused by multi-source transmission, the congestion control mechanism in
this paper is designed for chunk transmission. The receiver for a chunk selects only one
replica node for transmission at one moment, while the data at different moments can be
retrieved from different replica nodes. The transmission of multiple chunks of one content
is independent and can be parallelized to improve the efficiency of content delivery.

As shown in Figure 1, a single content from an application (APP) is divided into
multiple chunks. Each chunk is assigned a unique ID (also called name), and is the basic
data unit for naming, transporting, and caching in ICN. It is a reasonable choice to use
IP as a locator for compatibility with the current IP infrastructure. Considering a hybrid
network of IP and ICN as shown in Figure 1, NA3 represents the address of an ICN router
that supports in-network caching and transport layer packet processing (by supporting the
processing of network layer messages and transport layer messages, the ICN router can
obtain the ID information in network layer messages and the location offset information of
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packet payload located in chunks in transport layer messages, supporting the reassembly
of chunks). The cache-supported ICN router uses a split architecture for forwarding and
storage [32], i.e., a cache-supported router is decomposed into two separate processes: a
forwarding element (FE) and a cache element (CE). If caching is required, a copy packet is
transmitted to the storage port so that the ICN router can store data while not affecting
wire-speed forwarding; an IP router at NA4 that only supports IP routing and forwarding;
NA2 represents an edge router [33,34] that has the ability to aggregate the requests from
end-users and performs the operations of name resolution and replica selection. The chunk
sent by the sender (NA5) is further segmented in the transport layer according to the
Maximum Transmission Unit (MTU) of the transmission link in order to avoid further
segmentation (e.g., IP segmentation) at the network layer, which will seriously affect
transmission efficiency. These segmentations are reorganized into a complete chunk at the
receiver (NA1) and the cache node (NA3). After the chunk is stored in the cache node,
the chunk ID and the IP of the cache node need to be registered to the Name Resolution
System (NRS) for subsequent name resolution queries and replica data service.

Figure 1. Protocol stack and architecture of 2LCCM.

This paper focuses on the congestion control mechanism. Existing ICN congestion
control mechanisms usually only adjust the rate to try to avoid network congestion when
the network is congested, and cannot take full advantage of the multi-replica feature of
ICN. Therefore, this paper proposes to perform congestion control at two levels: (1) at the
first level, the Identifier Protocol (IDP) at the network layer selects or replaces replica nodes
through replica selection methods, expecting to discover the nearest data service and avoid
congested paths as much as possible to reduce transmission delay; (2) at the second level,
the Transport Layer Protocol (TLP) controls the request sending rate for the transmission
of segments within a single chunk by maintaining a congestion control algorithm at the
receiver to make full use of the bandwidth without causing congestion.

In an implementation of the two-level congestion control mechanism, congestion
control can be achieved by selecting replica nodes that provide data service before chunk
transmission and by dynamically adjusting the data request sending rate during chunk
transmission. In addition, if the current state of the chunk transmission is intolerable,
another replica node can continue this transmission service and some of the previously
received data segments remain valid. The typical situation may be that the transmission
link is under a heavy congestion state which means that the router cache queue is full
and causes packet drops, high end-to-end delay, or the data service cannot continue due
to link overload or disconnection. Once the replica switching occurs, the congestion
control module at the receiver can collect the state of the links and adaptively adjust
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the request sending rate to match the bandwidth of the new link state without adding
additional mechanisms. Thus, the whole transmission process can be considered as a
chunk transmission between the receiver and the sender under the rate adjustment of the
congestion control algorithm, or a replica node selection or switching with the support of a
copy selection method.

3.2. Heavy Congestion and Light Congestion

As mentioned above, when the heavy congestion happens during a chunk transmis-
sion, a replacement replica can be reselected to continue the transmission, while under light
congestion, the requested data delivery rate is adjusted by a congestion control algorithm.

In the related work in Section 2, we mentioned that the concepts of heavy and light
congestion are also found in R2T [28] and ConTug [24]. R2T uses an abnormally long RTT
as a light congestion signal and performs congestion avoidance by hop-by-hop interest
shaping, and determines heavy congestion when the intermediate network nodes display
feedback congestion information up to a certain level. The receiver then immediately
reduces the requested transmission rate. ConTug uses the RTT variation similar to the TCP
Vegas [35] algorithm as a light congestion indicator. The difference between the estimated
RTT value and the actual value is converted into the transmission rate difference, so the
network can be judged to have light congestion when the difference exceeds a certain range,
and the congestion window decreases linearly. ConTug uses a timeout of receiving packet
as the heavy congestion indicator, and the congestion window is halved. In the classical
TCP Reno [29] algorithm, which uses AIMD for congestion avoidance, TCP considers
the network to be slightly congested based on three consecutive ACKs and performs fast
retransmission and fast recovery algorithms, and then adjusts the congestion window to
half of the window threshold. Thus, we can see that different levels of congestion affect the
magnitude of congestion window adjustment in R2T, ConTug, and TCP. For our method
proposed in this paper, when the link is under light congestion, the congestion window is
also adjusted by adjusting the congestion window and thus affecting the request delivery
rate. However, if the link is under heavy congestion, the decision of replica switching is
executed according to the current transmission situation.

In order to avoid misjudgment of congestion due to random packet loss from the
network physical devices, we do not simply judge the degree of congestion by packet
loss, but by a mixture of the number of packet losses and RTT fluctuations, as shown in
Equations (1)–(3).

PacketLossFlag =

{
1, if NUMloss > k

0, else
(1)

RttChangeFlag =

{
1, if RTTcurrent−RTTbase

RTTbase
> δ

0, else
(2)

CongestionFlag = LossPacketFlag|RttChangeFlag (3)

where the number of consecutive packet loss NUMloss is obtained by counting the number
of packet loss due to timeout over a period of time, RTTcurrent is the current RTT value
maintained, and RTTbase is the minimum RTT value within a certain time frame. If the
CongestionFlag result is 1, the link state is judged to be under heavy congestion, otherwise,
it is under light congestion. In other words, when the number of packet losses reaches
a certain number or the RTT fluctuates widely, the current link is judged to be under
heavy congestion.

3.3. Switching Strategy

Replica switching is related to many factors, analyzed as follows: (1) transmission
interruption: if the receiver sends a request packet but does not receive any response
packet from the sender within a certain time, we believe that the current sender is unable
to provide service due to disconnection or service overload or other factors, then replica
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switching must be performed; (2) heavy congestion and a large amount of data remaining:
if the receiver detects abnormally long RTT or continuous packet loss, it is believed that the
queuing delay becomes longer due to network congestion, thus causing long RTT or even
router packet loss. ICN is oriented to chunk transmission, after the receiver side starts to
acquire data, the receiver side has the information of the size of the current chunk, and the
amount of data that has been acquired currently is also recorded. Therefore, if at this time
the received segments account for less than a certain proportion of the total chunk size, that
is, still need to transmit a large proportion of data, it is believed that the replica switching
will bring greater benefits, so it makes the decision to switch; (3) heavy congestion but a
small amount of data remaining: if the receiver detects and determines that the network
is under heavy congestion according to Equation (3), but only a small amount of data is
remaining to be transmitted. The overhead of replica switching is greater than the benefit
brought, thus the decision of replica switching is not executed.

The amount of remaining data is an important factor in determining whether to switch
replica nodes under heavy congestion. The principle of determination is shown in Equation
(4) in detail.

SwitchTime <
ChunkSize − ReceivedSize

CurrentRate
− ChunkSize − ReceivedSize

FutureRate
(4)

where SwitchTime is the time cost of a replica switching (that is, due to the switch brings a
brief rate reduction), ChunkSize is the size of the chunk, ReceivedSize is the current amount
of data received, the result of the difference is the amount of data remaining, FutureRate is
the estimated transmission rate after the replica switching, CurrentRate is the transmission
rate of the current replica node, this is used to judge whether the transmission time saved
after the replica switching is greater than the switch time to perform the replica switching.

The operation process of the receiver is shown in Algorithm 1. If no packet is received
before the timer timeout, the transmission is considered interrupted and replica switching
is executed. When the receiver receives a response packet, it first judges whether the
current transmission is under heavy congestion. If it is, it further judges whether replica
switching is necessary based on the received data volume. If it is under heavy congestion
and still necessary to switch, replica switching is executed. Otherwise, the network state
is considered good enough or only under light congestion, and the congestion control
algorithm is used to adjust the request sending rate. We can see that this algorithm is
simple, and the time complexity of this proposed algorithm is O(1).

Algorithm 1: Operation Process in Receiver

1: if timeout to receive any packet then
2: switch to another replica
3: else if receiver receives a response packet then
4: heavy_congestion_flag or light_congestion_flag← Equation (3)
5: if heavy_congestion_flag == 1 then
6: switch_flag← Equation (4)
7: if switch_flag == 1 then
8: switch to another replica
9: else
10: adjust current request sending rate
11: else if light_congestion_flag == 1 then
12: adjust current request sending rate

4. Implementation

The performance of 2LCCM relies on the design of the replica selection approach at
the network layer and the congestion control algorithm at the transport layer. Therefore,
this section develops an introduction to these two components, in addition to describing
the module and packet header design of the transport layer protocol.
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4.1. Replica Selection Approach

The operation of replica selection occurs in two cases. One case is that a replica node
needs to be selected to provide data service before the chunk transmission. The other one
is that the transmission is interrupted or the link is heavily congested, a replica switching
needs to be performed, that is to say, the receiver needs to select an alternative replica node
to continue the chunk retrieval.

The replica selection or switching operation is performed by the IDP according to
the packet header information worked at the network layer. The operation process is as
follows: (1) a replica switching operation is performed both at the beginning of the chunk
transmission and at the time the receiver’s transport layer judges the current link under
heavy congestion; (2) the transport layer adds the identification information indicating the
replica selection (RSI) to the ID packet header at the network layer, the ID packet header is
an extension header of IPv6 packets as shown in Figure 2. When the “Next header” field
of an IPv6 packet is 0x99, the next header represents the ID header. The RSI identifier can
be one bit in “Attribute” field; (3) the intermediate router performs the replica selection
operation locally when it receives a packet carrying this identification, i.e., RSI = 1. Of
course, even if there is no identification information in the ID packet header indicating
the execution of replica selection, the intermediate routers of the ICN network can also
perform the IP address replacement operation according to their scenarios, such as mobility,
multicast, multi-homing. We mainly consider here the multi-replica scenario for data
acquisition. The IDP works in the network layer, and it decides how to select or replace the
replica’s IP address in the packet header according to the scenario requirements, packet
identification, local information, etc.

Figure 2. The packer format of ID header which is an extension header of IPv6.

The replica selection is performed through NRS and the local NST. The requestor first
obtains the list of IP addresses corresponding to the ID through NRS and then selects a
suitable replica according to the NST maintained locally. The entries of NST include the
replica node and the node state value as Figure 3 shows.
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Figure 3. The data structure of NST.

The replica node is uniquely identified and distinguished by the node’s network
address, and the node state value indicates the ability of the corresponding replica node to
provide data services. The calculation of the state value is defined as shown in Equation (5).

value = F(X), X = (x 1, x2, · · · , xh) (5)

where X represents the indicators include network distance, RTT, replica node load, link
capacity, etc. between the requester and replica nodes. F(X) can be flexibly defined
according to the optimization objective.

In the literature [36], we proposed an enhanced replica selection approach, called ERS.
The node state value is calculated using Equation (6), where wi (i = 1, 2, 3) represents the
weight assigned to each attribute. The network distance, loads of replica nodes, and path
congestion degree are denoted by x1, x2, and x3, respectively.

Value =
3

∑
i=1

wi × xi, wi > 0,
3

∑
i=1

wi = 1 (6)

As mentioned in ERS, the network distance (i.e., Hops) is evaluated by a traditional
topology-based routing scheme based on shortest path algorithms [37], the load of replica
nodes is calculated using the outstanding requests sent by the edge router to the corre-
sponding replica node, and the path congestion degree is measured as RTT− RTTbase.

4.2. Congestion Control Algorithm

To accommodate the receiver-driven transmission mode of ICN, as shown in Figure 4,
we adapt the TCP data packets and acknowledgment packets to the request packets and
response packets in ICN, where the dashed lines are control packets and the solid lines are
data packets.

Figure 4. Transmission mode comparison of TCP and ICN.

During the chunk transmission, the request sending rate is adjusted by the congestion
control module at the receiver to avoid link congestion while making full use of the spare
bandwidth. ICN congestion control algorithms can refer to classical TCP congestion control
algorithms such as Reno [29], Cubic [38], and BBR [39], but need to be redesigned to
receiver-driven mode. For example, the chunk transmission of ICTP directly uses the
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Reno algorithm to adjust the rate. Receiver-driven congestion control algorithms usually
maintain the required congestion control parameters, including congestion window (cwnd),
RTT, and request queue at the receiver side to increase or decrease the request sending rate.
In addition, the initial request sending rate at the receiver side can be determined based
on the transmission history information, thus enabling a fast start during the congestion
control algorithm.

The loss-based congestion control algorithm introduces the bufferbloat [40] problem
making the end-to-end delay higher, and causing the problem of poor bandwidth utilization
due to the inability to distinguish between random packet loss and congestion loss [41].
Therefore, the link capacity-based BBR algorithm is redesigned into a receiver-driven
congestion control algorithm based on the ICN scenario instead of using a loss-based
congestion control algorithm in this paper.

BBR no longer determines network congestion state by packet loss, and only retrans-
mits packets after packet loss occurs. It calculates the RTT by matching the relationship
between the request packets and the response packets. It obtains the link bandwidth based
on the actual data volume carried in the response packets. Both current network bandwidth
and RTT are dynamically detected and calculated. Only when the number of packets is
greater than the bandwidth-delay product (BDP) as Equation (7) shows, BBR considers the
network is congested.

BDP = Bmax × RTTmin (7)

Among them, Bmax and RTTmin are two important parameters. BBR approximates
the bottleneck bandwidth of the network as Bmax by continuously estimating the network
transmission rate at the receiver and maintains a minimum RTT of 10 s called RTTmin.
The BBR smoothly sends out the data requests according to the rate pacing_rate, and it
controls the total amount of inflight data allowed to be sent to the current link based on the
congestion window cwnd. The transmission rate and congestion window are calculated as
shown in Equations (8) and (9), respectively.

pacing_rate = Bmax × pacing_gain (8)

cwnd = BDP × cwnd_gain (9)

The pacing_gain and cwnd_gain are the transmission rate gain factor and the congestion
window gain factor, respectively. The BBR algorithm can be divided into four states,
STARTUP, DRAIN, PROBE_BW, and PROBE_RTT. The BBR starts from the STARTUP state
and increases the transmission rate rapidly in a multiplicative incremental manner, with
the pacing_gain and cwnd_gain both being 2/ln2. When the maximum bandwidth detected
in the STARTUP state does not increase by more than 25% for three consecutive rounds,
the BBR considers the link is full and enters the DRAIN state to empty the link queue of
excess data, and the pacing_gain is reduced to ln2/2. When the size of the data in the link is
reduced to BDP, the BBR enters the PROBE_BW state to detect the available bandwidth of
the network link. If the BBR has not sampled a smaller RTT value in the last 10 s, it enters
the PROBE_RTT state. During this state, cwnd is reduced to the size of 4 packets to reduce
the inflight data in the network thus an accurate RTT can be detected, and this PROBE_RTT
state usually lasts for 200 ms. The receiver-driven BBR congestion control algorithm is
shown in Algorithm 2, and the time complexity of this algorithm is also O(1). Inflight
represents the amount of data that is requested but has not received the corresponding
response message yet.
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Algorithm 2: Receiver-Driven BBR Congestion Control Algotirhm

1: State← Obtain the state of current transmission
2: Inflight← Obtain the size of inflight data of current transmission
3: B← Probe the realtime bandwidth of current transmission
4: RTT← Probe the realtime RTT of current transmission
5: if State == STARTUP then
6: pacing_gain← 2/ln2
7: cwnd_gain← 2/ln2
8: else if State == DRAIN then
9: pacing_gain← ln2/2
10: cwnd_gain← ln2/2
11: else if State == PROBE_BW then
12: pacing_gain← Change according array [1.25, 0.75, 1, 1, 1, 1, 1, 1] periodically
13: else if State == PROBE_RTT then
14: cwnd← 4
15: BDP← Equation (7)
16: if not State == PROBE_RTT then
17: cwnd← BDP*cwnd_gain-Inflight
18: pacing_rate← Equation (8)
19: Receiver sends request packets smoothly by pacing_rate

4.3. Transport Layer Protocol

The goal of ICN is to obtain a chunk with a specified ID from the network. For chunk-
oriented characteristics in ICN, we designed the transport layer protocol (TLP) with the
chunk as the basic transmission unit and adopt an ID-to-ID paradigm, where the two IDs
denote the ID of chunk and the content requester, respectively. During the transmission, the
ID of the chunk remains the same, and the IP address of the replica node can be changed
so that a chunk can be well supported to be fetched from multiple replica nodes.

The TLP is designed to avoid overflowing its buffer or causing network congestion,
and it needs to slice the chunk into segments and reassemble them at the receiver side as
mentioned above. It is also necessary to ensure that the entire chunk is received correctly
and completely before it is passed to the application. In other words, the transport layer
protocol needs to implement segmentation and reassemble, congestion control, flow control,
reliability, and integrity detection of the chunk [23]. Therefore, as shown in Figure 5, TLP
includes five modules: segmentation and reassemble, flow control, preference, reliable
transmission, and congestion control.

Figure 5. Module diagram of transport layer protocol (TLP).
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Next, we give a brief description of each of these five modules. The chunk needs
to be further segmented at the transport layer to fit the MTU of the link. The transport
layer header is added to every segment before it is handed over to the network layer,
and these segments are reassembled at the receiver or cache nodes. To avoid receiver
buffer overflow due to rate mismatch between the receiver and the sender, the flow
control mechanism sets a sufficiently large (at least the size of the chunk) receiver buffer.
Preferences are set to accommodate different application preferences for transmission,
such as transmission Quality of Service (QoS) and caching collaboration. ICN routers can
handle transport layer packets, so cooperative caching policies can be implemented with
segments, such as cooperative control of whether the cached chunk is located in the center
or at the edge of the network, and cooperative control of the number of cached copies.
The reliable transport mechanism includes monotonically increasing packet numbers to
avoid retransmission ambiguity and matching of request and response messages for RTT
computation. Additionally, it uses checksum computation of the header and payload
portions of transport layer packets to detect errors during transmission. To guarantee
the reliable delivery of a chunk, the transport layer also needs to do integrity checks on
whether the chunk is received in full and whether the chunk size is correct when the chunk
is submitted upwards. Error recovery is achieved by timeout retransmission of segments.
Congestion control uses the two-level congestion control mechanism proposed in this
paper, i.e., rate adjustment and replica selection mechanism.

To correctly assemble a chunk and support the reception of different segments in
disordered order, the offset position of the payload in the chunk is designed as a field
in the transport layer header. To reduce the control signaling overhead and to support
multiple response packets corresponding to one request packet at the receiver, the length
information of the requested data is added to the request packet. Therefore, the receiver
represents the starting position and the length of the requested data by the combination of
(offset, length) in the packet header. With this information, the intermediate ICN routers
can reorganize the segments from different data sources into one entire chunk. Then they
store the chunk and register it to NRS, which becomes a replica node of this chunk [32].
In addition, for the replica switching scenario, even if the replica node is replaced, the
received data is still valid and subsequent transmissions are continued from the offset
location of the remaining data. Based on the above mechanisms, the transport layer (TL)
packet is designed as shown in Figure 6.

Figure 6. Packet format of transport layer (TL) header.

In the Open System Interconnect (OSI) reference model, a service primitive [25] is an
operation sent by a lower-layer protocol to provide some service to an upper-layer protocol
through an interface. For chunk transmission, we define the request, listen, and response
primitives, and the setting of transport-related parameters, including timeout time and
chunk size, which are supported through options.

To support the transmission of the chunk, different packet identifiers are set, includ-
ing chunk request (CREQ) packet, chunk response (CRES) packet, request (REQ) packet,
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response (RES) packet, and chunk transmission finish (CFIN) packet. The normal trans-
mission process is that the receiver sends a CREQ packet, the sender replies with a CRES
packet; the subsequent transmission proceeds by (REQ, n × RES) matching; the final
transmission ends with the CFIN identification sent by the receiver. In the replica switching
scenario, the receiver sends a CREQ packet again and fills the offset field with the location
information where the current missing data starts into this packet. After receiving this
CREQ packet, the new sender will check whether the local information for the transmission
of the corresponding ID has been created. If not, the transmission can be continued after
creating the transmission state.

5. Evaluation

The performance of 2LCCM is closely related to the performance of three aspects:
replica selection method, congestion control algorithm, and switching strategy. The perfor-
mance of the replica selection method has been extensively evaluated in the literature [36]
and the parameters of Equation (6) is recommended to be w = {0.757, 0.162, 0.081},
thus this section focuses on evaluating the performance of switching strategy and the
performance of the congestion control algorithm.

5.1. Performance of Switching Strategy

To evaluate the performance of the switching strategy, a simple topology is set up
as shown in Figure 7. Three hosts are running the prototype SEANet protocol stack
implemented by our group on Ubuntu 16.04 system, and the receiver is connected to both
sender 1 and sender 2 through an ICN router.

Figure 7. Experimental topology.

For the first 4 s of chunk transmission, the link bandwidth between the receiver
and sender 1 is 100 Mbps with an RTT of 20 ms, and the link bandwidth between the
receiver and sender 2 is 70 Mbps. After 4 s, we assume severe congestion happens in
the link between the receiver and sender 1. Then the corresponding available bandwidth
drops to 40 Mbps and the RTT grows to 50 ms. In our experiments, the emulation tool
NetEm [42] is used to vary network parameters and limit bandwidth. The size of the
transmitted content is 100 MB. With such an experimental setup, we can simulate a real
transmission scenario that a router on a transmission link has a bottleneck in forwarding
due to bursty background traffic. In this case, the SEANet chunk transmission is affected,
the available bandwidth decreases, and the RTT of packets increases due to queuing
delay. These changes are detected by 2LCCM and timely congestion control is performed.
Multiple sets of experimental results show that the switching process is stable with very
small fluctuations in this experimental environment, so we selected one of the sets of
experimental results for demonstrating the experimental performance.

As shown in Figure 8, the solid blue line indicates the throughput rate variation of
the chunk transmission without replica switching operation, that is to say, the receiver
retrieves the entire chunk from sender 1. This transmission ends at about 17.92 s. There is a
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sudden drop of throughput rate at around 10.3 s. This is because the BBR algorithm enters
the PROBE_RTT state to detect a smaller RTT, and cwnd is reduced to the size of 4 packets.

Figure 8. The rate changes over time with and without replica switching.

The orange-dashed line indicates that the receiver first retrieves data from sender 1 for
about 4 s. Then, a sudden deterioration in bandwidth and RTT is detected, and the network
is considered to be heavily congested. This transmission lasts about 1 s at a low bandwidth
of 40 Mbps at sender 1, then it switches to sender 2 to retrieve the remaining data. There is
a short rate burst time before switching to sender 2, and this chunk transmission finally
ends at about 12.47 s.

As we can be seen from the experimental results, the receiver selects the sender 1 that
has better data service performance between the two senders for data retrieval at first. After
the state of a link towards sender 1 suddenly deteriorates, the congestion control module
at the receiver quickly detects this change, reduces the request sending rate, and finds an
alternative sender 2 with a better state to continue this chunk transmission. The experimen-
tal results show that the replica switching brings significant performance improvement,
and the transmission time is reduced from 17.92 s to 12.47 s in our experimental scenario,
an improvement of about 30.4%. It verifies the effectiveness of the two-level congestion
control mechanism.

5.2. Performance of Receiver-Driven BBR Algorithm

To verify the performance of the above receiver-driven BBR congestion control algo-
rithm, we compare the BBR algorithm with the Reno algorithm. The experiment was ran
on two Ubuntu 16.04 hosts running the SEANet prototype system, the congestion control
module of this system supports both BBR and Reno algorithms. The network environment
was set to 100 Mbps of bandwidth and 10 ms of RTT, and the packet loss rate was 0, 0.1%,
1%, and 2%, respectively. The size of the chunk was 100 MB and the experiment results are
shown in Figure 9.

From Figure 9, we can figure out that the difference in the transmission end time is not
much when the packet loss rate is 0, 0.1% and 1% for the BBR algorithm. This is because
that BBR does not use packet loss as a direct judgment factor affecting the transmission rate.
However, with the increasing impact brought by packet loss, the throughout rate starts to
become significantly fluctuating, and the transmission end time for the BBR increases from
about 9.5 s to about 10.8 s when the packet loss rate varies from 1% to 2%. As the packet
loss rate grows, the difference in transmission end time becomes bigger, and this is more
evident for the Reno algorithm. When the packet loss rate is 2%, the transmission end time
for the Reno is about 18.2 s, while that is 10.8 s for the BBR. The performance improvement
of BBR over Reno is about 40.6%.
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Figure 9. Performance comparison of BBR and Reno.

As shown in Figure 10, it can be further seen that the Reno algorithm significantly
changes the transmission performance as the packet loss rate increases. When the packet
loss rate is greater than 1%, the transmission end time increases significantly, and the
waveform is clearly unstable. This is because Reno is a loss-based algorithm, and each
packet loss event causes the congestion window to be halved, thus resulting in lower
bandwidth utilization.

Figure 10. The performance of the Reno algorithm under different packet loss rates.
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The experimental results show that the loss-based Reno algorithm causes a sharp
drop in throughput rate as the packet loss rate grows, making the bandwidth utilization
low. In contrast, the BDP-based BBR algorithm is insensitive to packet loss and makes the
throughput rate reach almost 93% of the bandwidth even the packet loss rate is not zero,
which accomplishes high bandwidth utilization.

In conclusion, this experimental result proves that using the BDP-based BBR conges-
tion control algorithm has superior performance than using the loss-based Reno congestion
control algorithm.

6. Conclusions

In this paper, a two-level congestion control mechanism, called 2LCCM, is proposed
for ICN. When the transmission link is under heavy congestion, the replica location of a
chunk will be changed by the replica selection method to avoid the current congestion path.
When the transmission link is under light congestion, the sending rate of data requests is
adjusted by the receiver-driven congestion control algorithm. The replica selection method
is implemented based on a node state table, and the congestion control algorithm is based
on the receiver-driven BBR algorithm. This paper also provides specific definitions of
heavy congestion and light congestion. When the RTT becomes abnormally long or packets
are continuously lost, heavy congestion is considered to have occurred. Additionally, a
detailed description of the replica switching strategy is discussed. Finally, the experimental
results show that switching to another replica for successive transmission under heavy
congestion can effectively shorten the transmission time. It also shows that the BDP-based
BBR algorithm has better bandwidth utilization than the loss-based Reno algorithm.

In the future, we will further investigate the replica selection method based on ma-
chine learning algorithms and the congestion control algorithm with intermediate nodes
participating in congestion signal feedback. In addition, more extensive experiments will
be conducted to verify the effectiveness of our proposed two-level congestion control mech-
anism.
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