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Abstract: Hashtag recommendation suggests hashtags to users while they write microblogs in social
media platforms. Although researchers have investigated various methods and factors that affect
the performance of hashtag recommendations in Twitter and Sina Weibo, a systematic review of
these methods is lacking. The objectives of this study are to present a comprehensive overview
of research on hashtag recommendation for tweets and present insights from previous research
papers. In this paper, we search for articles related to our research between 2010 and 2020 from
CiteSeer, IEEE Xplore, Springer and ACM digital libraries. From the 61 articles included in this
study, we notice that most of the research papers were focused on the textual content of tweets
instead of other data. Furthermore, collaborative filtering methods are seldom used solely in hashtag
recommendation. Taking this perspective, we present a taxonomy of hashtag recommendation based
on the research methodologies that have been used. We provide a critical review of each of the classes
in the taxonomy. We also discuss the challenges remaining in the field and outline future research
directions in this area of study.

Keywords: survey; hashtag recommendation; hashtags; Twitter; Sina Weibo

1. Introduction

Social media platforms have become fast-growing and influential media that enable
people to communicate with each other easily, share information and search for exciting top-
ics. The number of social media users was 3.6 billion in 2020, and this number is predicted
to increase to 4.41 billion users in 2025 (https://www.statista.com/statistics/278414/ (ac-
cessed on 10 May 2021)). Twitter (https://about.twitter.com/company (accessed on 10 May
2021)) is a microblogging social media platform that permits users to write and share short
messages of 280 characters or less, including hashtags, mentions and URLs. These types of
short messages are referred to as “microblogs” and “tweets” [1–7]. Founded in 2006, Twitter
has quickly become an increasingly popular and powerful tool worldwide. According to
the Internet Live Stat (http://www.internetlivestats.com/twitter-statistics/ (accessed on 10
May 2021)), 500 million messages on average are posted per day by 330 million active users.
In July 2020 (https://www.statista.com/statistics/242606/ (accessed on 10 May 2021)), the
United States had the largest audience size, with 62.55 million users, followed by Japan with
49.1 million users, and India ranked third with 17 million users. Sina Weibo
(https://www.statista.com/statistics/795303/china-mau-of-sina-weibo/ (accessed on 10
May 2021)), the Chinese equivalent of Twitter, had around 523 million active users in the
same year.

With the information overload and increase in technology dependency, social rec-
ommendations have become a key research area. Social recommendation systems can
be defined as techniques or algorithms that automatically suggest the most relevant and
interesting data to social media users. Hashtag recommendation is a branch of the social
recommendation systems that proposes contemporary and relevant hashtags to users as
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they type tweets [5–23]. Choosing the correct hashtag has several benefits: it enables the
user to quickly join a discussion and read tweets written by other users [24]. Using hash-
tags gives the user a chance for their tweets to be noticed and reach a wider audience [25].
Hashtags also help researchers to analyze users’ behaviors or to predict the outbreaks
of natural disasters and epidemics [26]; they are also helpful for companies to advertise
their products and improve customer services and support through users’ complaints and
comments [27]. In politics, politicians can communicate with the public and advertise
their campaigns [28]. Moreover, people can raise and share their voice nationally and
globally [29]. For Twitter and Sina Weibo, recommending hashtags helps to enhance dis-
cussion as users are guided to use more accurate and relevant hashtags. Adopting the
right hashtags helps Twitter/Sina Weibo to eliminate insignificant and noisy hashtags and
reduce information overload. Automatically recommending personalized hashtags to users
also helps them save time and effort in searching for relevant hashtags.

Recommending hashtags by analyzing tweets and extracting information from the
Twitter/Sina Weibo hashtag universe can be a very challenging task. One of the challenges
is that these tweets and hashtags are user-generated. Users tend to use informal language
when writing their tweets; for example, users use “4U” to mean “for you”, “AMA” for
“ask me anything” and “BFN” for “bye for now”. Spelling and grammatical mistakes are
not checked or corrected. Short texts are therefore more difficult to analyze than long
texts. The facts that tweets are short texts and are noisy add extra complication to the data.
Furthermore, hashtags can be acronyms, shortened or misspelled words or a combination
of words, numbers and punctuation marks. Thus, using hashtags as keywords does not
necessarily convey the meaning of the discussion. The lack of control over the creation of
hashtags has resulted in hundreds of hashtags being associated with a single discussion
topic and different discussion topics being associated with a single hashtag.

Hashtag recommendation can be either general, when the suggested hashtags are
obtained based on the data of all users, or personalized, when the suggested hashtags
incorporate the user’s preferences and data. The hashtags from all the tweets in a dataset
form a space known as the “hashtag space”. The suggested hashtags are said to be novel
if they are not in this hashtag space (i.e., not previously used by other users). Otherwise,
they are said to be predefined.

Although researchers have investigated various techniques and factors that affect the
performance of hashtag recommendation methods for Twitter/Sina Weibo data [5–23], there
is a lack of a systematic review of these methods. Jain et al. [30] listed only 11 methods in
their survey on hashtag recommendations. Our paper aims to present a systematic review of
research on hashtag recommendation for tweets and present insights from previous research
papers together with their methodologies and factors to provide future perspectives on
hashtag recommendation. Our paper comprises the following sections:

• Section 2 presents the methodology that we adopted for our literature search;
• Section 3 provides the results of the literature review based on the research questions

defined in Section 2;
• Section 4 provides a taxonomy of the selected research papers on hashtag recommen-

dation for tweets based on the methodologies adopted in the papers;
• Sections 5 and 6 give a critical overview of each class in the taxonomy and provide a

detailed review of the selective methods in each class;
• Section 7 outlines our research limitations;
• Section 8 summarizes the whole paper and highlights future research directions.

2. Methodology

Based on this objective, we seek answers to the following research questions:

• RQ1: Has the number of research papers regarding hashtag recommendation for
Twitter and Sina Weibo been increasing in the last decade?

• RQ2: What are the hashtag recommendation methods used in Twitter and Sina Weibo?
• RQ3: What are the techniques used in the hashtag recommendation methods?
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• RQ4: What are the characteristics of the dataset used in each paper related to the
research topic?

• RQ5: What are the future directions for hashtag recommendation methods for Twitter
and Sina Weibo?

To address these research questions, we adopt the guidelines of Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) [31], which is an established
methodological protocol for systematic reviews. The subsection below explains the eligibil-
ity criteria, information sources and searches, paper selection and results.

2.1. Eligibility Criteria

In this paper, we search for peer-reviewed papers in journals and proceeding confer-
ences from four electronic databases: CiteSeer, IEEE Xplore, Springer and ACM.
The selected papers met the following criteria:

(i) Papers should be related to hashtag recommendation within the platforms of
Twitter and Sina Weibo.

(ii) Papers should include recommendation methods and techniques.
(iii) Papers should include a dataset.

2.2. Information Sources and Search

Each of the four electronic databases listed above has different searching fields. For ex-
ample, the advanced search in IEEE Xplore digital library enables searching keywords in
many fields (such as full text, publication title, authors, and abstract) and time-frame for
publication year.

Our search focuses on articles published in the English Language between 2010
to 2020. As for the searching field, we concentrate on the title and abstract in the first
stage. Since the keywords used for the search are extracted from the research objectives
and research questions, our selected keywords include “hashtag”, “recommendation”,
“Twitter”, and “Sina Weibo”.

2.3. Paper Selection

The study selection procedure included two stages. In the first stage, we extracted
articles that contain at least two keywords in the search fields (titles and abstracts). This is
for criterion (i) mentioned in Section 2.1. Once the keywords were identified, we examined
the selected articles to check if they met criteria (ii) and (iii) (see Section 2.1). During this
stage, the selected articles that are unrelated to our study were discarded. In the second
stage, papers that were collected from the first stage were reviewed in detail.

Figure 1 shows a flowchart of the steps used to identify the eligible publications from
the four electronic databases and published between 2010 and 2020. After the keyword
search step, a total of 2742 articles were identified. Then, 2585 papers were removed for
being duplicated or unrelated to our research topic. Following that, the abstracts of the
selected articles were skimmed to assess the paper’s eligibility for further examination.
Next, the selected papers were screened for online platform qualification. From the pool
chosen, 39 out of 139 papers were excluded from the study because they did not use data
from Twitter or Sina Weibo in their studies. The following step eliminated 27 papers for
not meeting criterion (iii) and removed 12 theoretical papers. In the final stage, 61 eligible
papers remained after all the culling steps mentioned above. For each of the eligible papers,
we documented information about the recommendation method, authors, publication year,
recommendation, hashtag type, features, platforms and dataset (see Table 1).
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Table 1. Summary of the 61 eligible papers.

Recommendation Hashtag Type Features # Tweets # Users # Unique HashtagsCategory Method Ref. Year Name General Personalized Novel Pre-Defined Textual URL Social Temporal Media Other Twitter Sina Weibo Twitter Sina Weibo Twitter Sina Weibo

Zangerle et al. [8] 2011 - * * * 3,209,281 - - - 510,170 -
Li et al. [32] 2012 - * * * 665 - - - - -
Zangerle et al. [33] 2013 - * * * 50,000,000 - - - 7,777,194 -
Sedhai and Sun [34] 2014 - * * * * 1,370,000 - - - 1,000,000 -
Li et al. [35] 2016 - * * * * * 16,000 - - - 2,450,000 -
Otsuka et al. [36] 2016 - * * * 8,300,000 - - - - -
Dey et al. [37] 2017 - * * * 175,000 - - - 251,649 -
Ben-Lhachemi and Nfaoui [38] 2017 - * * * 295,767 - - - 390,807 -
Ben-Lhachemi and Nfaoui [39] 2018 - * * * 1,212,300 - - - - -

Tweets
similarity

Kaviani and Rahmani [40] 2020 - * * * 100,000 - - - - -
Efron [41] 2010 - * * * 3,414,330 - 874,892 - 50,097 -
Mazzia and Juett [42] 2011 - * * * 1,318,323 - 5000 - 56 -
Ding et al. [1] 2012 TSTM * * * - 551,479 - - - 116,958
Li and Xu [43] 2016 User-IBTM * * * 1,385,425 2,094
Tariq et al. [44] 2013 - * * * 141,881 - - - 143 -
Godin et al. [45] 2013 - * * * 1,800,000 - - - - -
Ding et al. [2] 2013 TTM * * * - 110,000 - - - 37,224
She and Chen [46] 2014 TOMOHA * * * 48,651 - 183 - 637 -
Ma et al. [11] 2014 HPM * * * * 1,217,928 - 13,711 - 14,055 -
Zhang et al. [7] 2014 TUK-TTM * * * - 166,864 - - - 17,516
Xu et al. [47] 2015 - * * * - 124,707 - 6,661 - 33,777
Gong et al. [3] 2015 CNHR * * * - 1,118,792 - - - 305,227
Lu and Lee [48] 2015 TOT-MMM * * * * 741,317 - - - 16,839 -

Probabilistic

Gong et al. [4] 2016 PTTM * * * type of hashtag - 50,000 - - - 3,174
Tomar et al. [49] 2014 - * * * 226,981 - - - - -
Chen and Kao [50] 2015 TMSHR * * * 627,084 - - - 7,961 -
Ghaly et al. [51] 2016 - * * * 1,000 - - - - -
Li et al. [52] 2016 LSTM-tweet * * * 42,000 - 5,015 - 20 -
Li et al. [53] 2016 TAB-LSTM * * * 600,000 - - - - -
Ma et al. [54] 2018 tSAM-LSTM * * * - 1,692,507 - - - 2,000
Li et al. [55] 2019 TCAN * * * 600,000 - - - 27,720 -

Classification-based

Peng et al. [56] 2019 AMEN * * * 127,846 - 2000 - 3,104 -
Khabiri et al. [9] 2012 - * * * * 36,558,421 - - - 134,522 -
Ferragina et al. [57] 2015 HE-graph * * * 5,245 - - - 5,245 -
Al-Dhelaan and Alhawasi [14] 2015 - * * * 27,199 - 15,586 - 10,891 -Graph-based

Li et al. [58] 2015 - * * * - 74,662 - - - -

Text-based

Matrix Factorisation Badami and Nasraoui [59] 2018 - * * * * 208,160 - - - 68,187 -

Diaz-Aviles et al. [60] 2012 RMFX * * * * 35,350,508 - 413,987 - 37,297 -
Hybrid user-based Chen et al. [10] 2013 TeRec * * * - 20,000,000 - 87,287 - 29,334

Kywe et al. [61] 2012 - * * * 3,534,869 - 65,410 - 449,206 -
Xing et al. [62] 2013 - * * * social actions - - - 12,156 - -
Wang et al. [63] 2014 - * * * - 21,992 - 2,179 - 3,762
Zhao et al. [64] 2016 - * * * 1,674,789 - 14,630 - 28,526 -
Li et al. [17] 2017 - * * * user attributes 15,947 13,188 20,625 11,347 - -
Wang et al. [65] 2019 - * * * social influence, homophily 37,533 - 22,849 - - -

Behavioural
Collaborative

Filtering

Kou et al. [66] 2018 - * * * - 67,835 - 4,373 - 4061
Harvey and Crestani [67] 2015 - * * * * 333,784 - 23,476 - 51,899 -
Kowald et al. [18] 2017 BLL * * * * * 8,157,702 - 127,112 - 1,507,773 -
Alsini et al. [16] 2017 - * * * * 174,965 - 100 - 2,655 -
Alsini et al. [19] 2019 - * * * * - - 745,262 - - -
Javari et al. [22] 2020 PHAN * * * * 217,965 10,521 23,169 7,023 2,873 2017

Social
Collaborative

Filtering

Alsini et al. [23] 2020 CBHR * * * * 262,178 - 125,708 - - -

Li and Zhang [68] 2013 - * * * user interest 5,236
Hybrid Feng and Wang [13] 2014 Hybrid+ * * * * * * location, hashtag length 8,100,000 - 120,000 - - -

Jeon et al. [12] 2014 - * * * 240,000 - 80 - 404 -

Song et al. [5] 2015 SenSim+Ac+Te * * * * development tendency,
user acceptance - 50 - - - -

Yu and Zhu [6] 2015 Linear * * * * user interaction 4,357,329 2,899,438 1,934,381 108,956 - -
Zhang et al. [15] 2017 - * * * * 402,782 - - - 3,292 -
Ma et al. [20] 2019 CoA-MN * * * * 334,019 - - - 3,280 -
Belhadi et al. [21] 2020 PM-HRec * * * pattern mining 4,000,000 - - - - -

Miscellaneous

Kumar et al. [69] 2020 * * * user influence 329,369 - - - 85,216 -
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Records identified in the search (n=2742) 
(CiteSeer n=467, IEEExplore=41, Springer=473, ACM=1743) 

Number of titles screened 
(n=2742) 

Number of abstract screened 
(n=139) 

Papers included in the study 
(n=61) 

Full-text articles assessed 
(n=73) 

Number of data screened 
(n=100) 

Records excluded 
(n=39) 

Duplicate records, not related, 
and non-articles (n=2585) 

(n=2,981) 

Records excluded 
(n=12) 

Records excluded 
(n=27) 

Identification 

Screening 

Eligibility 

Included 

Figure 1. Flowchart of the steps used in the literature search.

3. Results

We analyse the eligible papers based on their years of publication, methods, techniques
and dataset sizes.

3.1. Year of Publication

Figure 2 shows the distribution of the 61 papers, obtained from the paper selection
procedure described above, based on their years of publication. We can see a trend of
the increasing number of publications in the last decade from our list of papers, and this
should be a good representative of the growing number of publications in the field in
all journals.
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Figure 2. Distribution of papers from 2010 to 2020.

0 5 10 15 20 25 30 35
(a) The three main categories of methods under our taxonomy

Text-based

Hybrid user-based

Hybrid miscellaneous

0 2 4 6 8 10 12 14
(b) The category of text-based methods

Probabilistic

Tweet similarity

classification-based

Graph-based

Matrix factorization

0 2 4 6 8
(c) The category of hybrid user-based methods

Behavioural CF

Social CF

Figure 3. Distribution of the eligible papers on hashtag recommendation from 2010 to 2020 with respect to: (a) the three
main categories of methods under our taxonomy; (b) the category of text-based methods; and (c) the category of hybrid
user-based methods.



Future Internet 2021, 13, 129 7 of 19

3.2. A Taxonomy of Hashtag Recommendation Methods

This subsection addresses RQ2 and RQ3 research questions. There is a lack of a clear
taxonomy in the literature that classifies hashtag recommendation methods for tweets.
From our literature search, we notice that most of the research papers were focused on the
textual content of tweets instead of other data. Moreover, although collaborative filtering
methods are the most popular category in the traditional/social recommendation systems,
they are seldom used solely in hashtag recommendation. Taking this perspective, we
propose an alternative way of classifying hashtag recommendation methods. Figure 3
shows the distributions of the eligible hashtag recommendation papers from 2010 to 2020
with respect to the methods classified under our taxonomy, which comprises three main
categories (see Figure 4):

• text-based methods,
• hybrid user-based methods; and
• hybrid miscellaneous methods.

 

Hybrid Miscellaneous Methods 

Matrix Factorization 
Based Methods 

Text-Based Methods 

Tweet Similarity 
Based Methods 

Probabilistic 
Methods 

Classification 
Based Methods 

Graph Based 
Methods 

Hybrid User-Based Methods 

Social Collaborative 
Filtering 

Behavioural 
Collaborative Filtering 

Hashtag Recommendation 
Methods 

Figure 4. Our proposed taxonomy of the hashtag recommendation methods.

Text-based methods mainly depend on the textual content of the tweets, such as
words, hashtags, URLs, and mentions of all users. This category is further classified into
tweet similarity methods, probabilistic methods, classification based methods, graph-based
methods and matrix factorization based methods. Hybrid user-based methods involve
those that group related users either by their behavioral similarity or social relations to
recommend hashtags. Hybrid miscellaneous methods include methods that integrate
multiple modalities and factors. The included papers are listed in Table 1. Some methods
incorporate more than a feature and so they have more than one * symbol in the table.

3.3. Dataset

This subsection addresses research question RQ4. There is an absence of benchmark
datasets in this area of study. Each research study in the previously mentioned literature
crawls their data. Moreover, the characteristics of collecting these data are also different.
These characteristics include the number of tweets, the number of users and overall/unique
hashtags. For example, the number of tweets in the dataset used in tweet-similarity-based
methods ranges between 665 and 50 million tweets. The number of tweets in the dataset
used in graph-based methods ranges between 5245 and 36,558,421 tweets. Similarly, the
number of users varies between 80 and 1,934,381 users. Furthermore, the seed users that
were used for collecting the data were also random. With the lack of benchmark datasets
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and unified data collection characteristics, it is not easy to compare the performance of
different algorithms.

4. Text-Based Methods

Text-based methods form the largest category, comprising five subcategories, as shown
in Figure 1. These five subcategories are detailed in the subsections below.

4.1. Tweet Similarity Based Methods

Tweet similarity methods used in hashtag recommendation find similar tweets to a
query tweet using similarity measures [8,32,33]. The tweet similarity method was first
developed in hashtag recommendation by Zangerle et al. [8], who used the TF-IDF ap-
proach to represent tweets as one-hot vectors. For a query tweet, the set of similar tweets
was retrieved using the TFIDF score, where the TFIDF score was calculated for a tweet
by summing up the weights of its terms. Their research found that the hashtag extracted
from the most similar tweet is the best candidate for recommendation. Zangerle et al. [33]
further improved their method and found that the choice of the similarity measure affected
the recommendation’s quality, with the cosine similarity measure outperforming the Dice
coefficient, Jaccard coefficient and Levenshtein distance.

Other works used the same technique but with different tweet representations and
similarity measures. Li et al.’s work [32] was based on the intuition that tweets can be treated
as points in a high-dimensional space and that the correlation between them can be calculated
mathematically. They transformed tweets into a high-dimensional space and constructed a
semantic matrix that weights words based on their correlation. They used the Euclidean
distance to measure the similarity between tweets. Otsuka et al. [36] proposed a variation
of the TFIDF that considered the hashtag relevancy with terms based on two maps: term-
to-hashtag frequency map (THFM) and its reverse map of a hashtag-to-term frequency
(HFM). This method took into consideration only the hashtag and word co-occurrences
while ignoring their meanings.

More recent work has integrated word and sentence embedding techniques in hashtag
recommendation. Ben-Lhachemi et al. [39] encoded the tweets using the method proposed
in [70] and clustered similar tweets using DBSCAN. For a query tweet, they calculated
the distances between a query tweet and the centroids of the tweet clusters and extracted
candidate hashtags from the closest cluster and put forward recommendations based on
the hashtags’ popularity values. With the increase in popularity of BERT, it has been used
by Kaviani et al. [40] in generating the embedding of tweets.

While most previous research leverages words and hashtags, one paper leverages
the hyperlinked tweets which are tweets containing URLs. Sedhai et al. [34] recommended
hashtags to hyperlinked tweets through utilizing the content of tweets and the content
of the web pages using various schemes: similarity of tweets; similarity of the linked
web pages; similarity of the link domain; and similarity of the named entity in the linked
web pages. They applied TFIDF to encode the tweets and web pages and used cosine
similarity to calculate the similarity scores. Hashtags were then aggregated and ranked
using RankSVM, a learning-to-rank method.

Some other researchers calculate the similarity between a tweet and similar hash-
tags [35,37,38]. Ben-Lhachemi et al. [38] computed the semantic similarity between a tweet
and existing hashtags using the spreading activation technique from multiple semantic
networks such as WordNet, DBpedia and Wikipedia. This method expected the words
of the tweets and hashtags to be in a formal English form. EmTaggeR [37] is another
hashtag recommendation model that derived every hashtag’s embeddings by learning the
embeddings of words associated with these hashtags. For a given query tweet, the MOWE
was used to encode its embeddings. Then, the cosine similarity was used to measure the
similarity between a query tweet and hashtags. The tweets with the most similar hashtags
were retrieved, and their hashtags were extracted and ranked based on their embeddings
score for recommendation.
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Li and Shah et al. [35] learnt the topical word embedding of words in a tweet using
Topic Enhanced Word Embedding (TEWE). The embedding of each word generated using
TEWE was the concatenation of its feature vector generated using LDA and the feature
vector generated using skip-gram of the Word2Vec model. Then, the cosine similarity was
used to measure the distance between a tweet with the closest hashtags. To weight their
candidate hashtags, they estimated whether there was a shared entity between terms or
sub-terms in tweets and hyperlinks. Hashtags with shared entities were ranked based on
their temporal popularity. It was found that the entity-matching part did not contribute
much to improving the performance of hashtag recommendation.

The main drawback with tweet-similarity methods is that a query tweet has to be
compared with every other tweet in the repository to retrieve the most similar tweets.
This can be expensive and time-consuming. As for the tweet-hashtags similarity methods,
the major challenge is computing the embeddings of hashtags to measure their similarity
with tweets.

4.2. Probabilistic Methods

Naive Bayes is a machine learning technique based on the Bayes Theorem. Mazzia
et al. [42] proposed one of the earliest general hashtag recommendation models using Naive
Bayes to calculate the conditional probability of a hashtag given a set of terms in the tweet
as: P(h|t1, t2, . . . , tn) = P(t1, t2, . . . , tn|h)P(h)/P(t1, t2, . . . , tn) = P(h|t1)P(h|t2) . . . P(h|tn).
The result is a value between 0 and 1. The hashtags with the highest probabilities were
recommended. However, some terms and hashtags never co-occur, leading to a joint
conditional probability of 0 even if some words have a high probability score.

Topic modelling methods are statistical methods that infer the topics of documents.
The inference of topics is derived from the hidden patterns in the corpus. Inspired by the
LDA’s popularity and its success in deriving topics from large texts, topic-based hashtag
recommendation methods manipulate the standard LDA under various assumptions.
Godin et al. [45] assumed that the topics associated with tweets are sufficient to recommend novel
hashtags. Thus, they proposed a general hashtag recommendation model that determined
the topics of a tweet, considering the nouns and adjectives, and chose the top topic-terms
for recommendation. Although LDA has proven to be a valuable technique for large
corpora [71], Yan et al. [72] and Yin et al. [73] have proven that using the standard LDA
is not efficient on short texts such as tweets [45]. The terms in tweets are noisy, and word
co-occurrence patterns are very sparse [72].

To enhance the quality of the topics generated using LDA and to overcome the problem
of short texts in tweets, different schemes that aggregate tweets have been proposed [74,75].
Usually, such a scheme is applied at the pre-processing phase before training the model.
The aggregation schemes that have been investigated in the literature are:

• The all-tweets scheme [75,76], which aggregates all tweets in a single document and
then uses LDA to extract topics;

• The author-based scheme, which aggregates all tweets posted by a single user and treats
them as a single document [75,77];

• The burst-score wise scheme [75], which aggregates tweets that contain trending terms;
• The temporal scheme [75], which aggregates tweets posted at a specific time;
• The term scheme [77], which aggregates tweets that share a word—it is applied to every

word in the training set;
• The conversation scheme [74], which aggregates tweets based on conversations between

users, e.g., replies to a tweet sent by other users (co-authors) or by the primary author.

According to Alvarez-Melis et al. [74], the best topic quality was generated when the LDA
model was trained using the author-based scheme followed by the hashtag-based scheme
and then the conversation scheme. Following these findings, Alsini et al. [19] adopted the
author-based scheme in their hashtag recommendation model and reported good results.

In contrast, She et al. [46] tackled the noisiness of words in tweets. They assumed
that every tweet is a single local topic, and that there is a global topic for the corpus. They



Future Internet 2021, 13, 129 10 of 19

optimized Twitter-LDA [78], which generates topics for tweets, and proposed TOMOHA.
This supervised topic-based hashtag recommendation model considers hashtags as labels
of topics and calculates a hashtag’s probability based on its local and global words. They
also proposed TOMOHA-follow, which extracts the relationship between topics of a tweet,
hashtags and the followees topics, assuming that users follow the topics of their followee.
TOMOHA and TOMOHA-follow achieved similar performances and outperformed the
standard LDA.

It is difficult for topic-based hashtag recommendation methods to suggest the correct
hashtags because of the so-called vocabulary gap problem, which is usually caused by the
diversified words in tweets and hashtags. Thus, machine translation models were adopted
in hashtag recommendation mainly to solve this problem. Most of the proposed hashtag
recommendation methods based on machine-translation worked under the assumption
that each tweet and the associated hashtags have parallel descriptions but are written in different
languages [2,79]. Ding et al. [1] introduced the topic-specific translation model (TSTM),
which integrated the use of the LDA and a word alignment technique. Their paper’s main
idea was to promote the essential words in each tweet to trigger the corresponding hashtags
and assess the topic-specific word alignment probabilities between a tweet and a hashtag.
Ding et al. [2] later improved their original model and called it TTM. In their previous
model, TSTM, they assumed that there are k topics. In their optimized model, TTM, they
believed that there are k + 1 topics, where the additional topic includes the background
words that are mostly used in most of the tweets but do not belong to a specific topic. Their
optimized model outperformed the original model.

Rather than using the LDA, Gong et al. [3] adopted a Dirichlet Process Mixture
Model (DPMM) and implanted a hidden variable that represented the hashtag type.
Their model DPMM applied the Hierarchical Dirichlet Process (HDP) to automatically cap-
ture an infinite number of topics from the data instead of specifying it in advance as in the
standard LDA.

The hashtag recommendation models mentioned above are general. They ignore user
information, preferences, and global trends such as temporal information. TUK-TTM [7]
incorporated personal and temporal factors as hidden variables. The personal variable
was calculated by computing the probabilities of the topics that the user was interested in.
The temporal aspect was calculated by computing the probabilities of the global trend at a
certain period. TUK-TTM was trained on the optimized LDA on aggregated tweets where
tweets posted in a month were considered a single document. They assigned a hidden
variable to denote the topic’s probability for a tweet and used the translation model to get
the hashtags. They found that topics vary over time.

Unlike the above word-based topical translation models, which treat tweets on the
word level, Gong et al. [4] proposed a phrase-based topical translation model to per-
form the hashtag recommendation task. They refer to their method as PTTM (abbrevi-
ated for Phrase Topical Translation Model). They assumed that a phrase is a natural unit
that conveys a complete topic and contains real meaning that a human being wishes to express.
Under this assumption, they aligned phrases in a tweet with hashtags. They adopted a
phrase extraction technique that retrieves frequent phrases from the corpus and merges the
words in a given tweet into phrases. They treated each tweet as a bag of phrases rather than
a bag of words as used in most of the LDA based models and assigned a single topic to each
tweet. This method outperformed all previously mentioned models with the number of
topics ranging from 10 to 30.

In contrast, Ma et al. [11] studied the social factor’s impact through user mentions
under the assumption that users who mention each other more often are most likely to adopt
similar hashtags. Their PLSA-style model was regularized to study the importance of the
social factor. They proposed the Content-Pivoted Model and the Hashtag-Pivoted Model.
The former model worked under the assumption that the user figures out the hashtag while
he/she writes a tweet, whereas the latter assumed that the user has a pre-selected hashtag in mind.
The Content-Pivoted Model generated the topics of the tweet considering the user topic
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distribution and the time topic distribution. The Hashtag-Pivoted Model generated the
topics of the tweet considering an additional factor, which was the hashtag distribution.
It was found that the Hashtag-Pivoted Model outperformed the Content-Pivoted Model.
In both models, existing hashtags were recommended. They also highlighted that the topic
models could be infeasible in determining the common topics between users who mention
each other. This method also under-performed the collaborative filtering method [61],
which integrates hashtags from the set of similar users.

Topics-based models have some drawbacks. The limited number of words in tweets,
the noisiness in them and the diversification between words in tweets and hashtags pre-
vent topic models from generating meaningful topics. Thus, aggregating short texts as
a document before the training can provide topics with high quality. Moreover, aligning
tweets and hashtags using topical-translation models can remedy the words gap problem.
However, the topics in most of the aforementioned topic-models are determined in advance.
In reality, the underlying topics discussed in tweets can greatly vary. In addition, topic
models do not include the effect of social factors such as relations and behavior similarity.
Finally, topic-based models can be computationally expensive with large datasets [49].

4.3. Classification Based Methods

Classification is a supervised learning method that trains a classifier to predict a
class label given an instance. While binary classifiers tackle only two categories, multi-
class classifiers tackle multiple categories. Hashtag recommendation is commonly tackled
as a multi-class classification problem of hashtags [49,52,53,56], where every hashtag
is considered as a distinct class label. The intuition of the classification based hashtag
recommendation is that the abundance in posts and hashtags equip classifiers with an immense
amount of labelled data to learn strong representations [80]. Classification-based hashtag
recommendation requires less task-specific assumption and engineering in comparison with
topic-based hashtag recommendation [80].

Earlier research has applied neural networks and deep learning techniques to predict
hashtags. Most of the studies in this area focus only on the internal structure of the words in
the tweets to automatically learn their representations and then measure their relevance to
hashtags. Tomar et al. [49] learned the word distributions using the pre-trained skip-gram
model word2vec on the Google News data set. The mean of the 300-dimensional feature
vectors for all the words in a tweet was used to encode the tweet feature vector, which
was used as an input to train deep feedforward neural networks. The Mean Squared Error
(MSE) was used as an objective function to generate the corresponding hashtag feature
vectors. Li and Liu et al. [53] proposed the topical attention-based LSTM model (TAB-
LSTM). They generated local representations of tweets using LSTM and combined them
with global representations obtained from the LDA model through an attention mechanism.
A softmax classifier was attached at the top of the model to predict the hashtags. Li
et al. [52] proposed a hashtag recommendation method using a Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN). The tweets feature vectors were represented
using CNN on words pre-trained using Word2Vec skip-gram model. The generated tweets’
feature vectors were then fed into their LSTM-RNN to classify hashtags. The MSE was used
as a cost function between the target and the predicted hashtags. Although this method
achieved the highest performance over the other techniques mentioned earlier for the top-
10 hashtag recommendations, the number of hashtags was limited to 20, which restricted
the applicability of the method. Despite all previous methods, Peng et al. [56] proposed the
Adaptive neural MEmory Network (AMEN), which models the past tweet history of the
user. AMEN encoded tweets using a convolutional layer and hashtags using a recurrent
neural network.

A classification based hashtag recommendation can be an impractical choice of
methodology. Hashtags are noisy labels for legitimate classification; i.e., a misspelled
hashtag is considered a different hashtag. Hashtag distribution follows the long tail dis-
tribution, where most hashtags are low in popularity, and very few hashtags are high in
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popularity. By using every hashtag as a label, the classifier is more biased toward the
more popular hashtags. Therefore, the result of the classification will be inaccurate. In all
classification-based hashtag recommendation mentioned earlier, the number of hashtag
labels is restricted, which contradicts the nature of hashtag generation in social media.
In addition, none of these classifiers was personalized.

4.4. Graph Based Methods

Graph-based methods structure data as a network of vertices and edges, where vertices
represent entities and edges represent the relationship between these entities. The edges
can be weighted to determine the strength of the relationship. In graph-based hashtag
recommendation, the entities can be hashtags, terms of tweets, and users. The assumption
of the research adopting graph-based methods in hashtag recommendation is that terms in
tweets and hashtags have implicit relationships, forming a semantic graph; using this graph can
relate terms to hashtags even if they never co-occur [9].

As such, Ferragina et al. [57] built the HE-graph, a heterogeneous graph of hashtags
and Wikipedia terms drawn from tweets. HE-graphs draw directed hashtag–term edges
and indirected term–term edges derived from Wikipedia graph structure. Each hashtag is
linked to a set of terms that represents its semantic. Using TFIDF and various similarity
measures, the relevance scores between hashtags were determined. Al-Dhelaan et al. [14]
added another dimension and built a heterogeneous graph of hashtags, tweets and users.
This graph was further summarized into a homogeneous graph of hashtags. In their paper,
two methods were used to calculate the relevance between hashtags: Random Walk with
Restart method (RWR) and cosine similarity. The final ranking of candidate hashtags
combined the RWR weight and the cosine similarity score. Khabiri et al. [9] built a hashtag
prediction that can find the most significant terms in the tweet, weigh their closeness to
each hashtag, and use a temporal sliding window to reflect the terms and hashtags within a
time frame. They used IDF and entropy methods to find significant words. They found that
IDF and entropy methods contributed similarly to the final recommendation performance.
They also found that a week’s time frame generated the best results over an hour, four
hours and a day for the temporal sliding window.

4.5. Matrix-Factorization-Based Methods

Matrix factorization is a group of algorithms that decompose a matrix into the product
of two smaller matrices with reduced dimensions. In hashtag recommendation, matri-
ces have been constructed following the assumption that although hashtags and words are
both made of terms, hashtags are typically used with a different intention and serve a different
purpose [59]. Thus, Badami et al. [59] constructed their matrix based on the hashtag-terms
of tweets. They proposed a hashtag recommendation model using non-negative matrix
factorization (NMF) to generate tweets’ latent features. To find hashtags relevant to a
given tweet, tweets containing these two hashtags were retrieved, and their average cosine
similarity score was calculated.

5. Hybrid User-Based Methods

Collaborative filtering is a user-based method that recommends items based on other
users’ collaborative behaviors, the similarity of their interests, shared topics or social
relations. The set of similar users are also called like-minded users. Although collaborative
filtering is a large category in the traditional recommendation systems, it was rarely used
as a sole method for recommending hashtags due to data sparseness and the cold start
problem. Data sparseness is caused by the free style of writing hashtags and the increasing
number of users. The cold start problem is usually caused if the user has no historical
activities, making it becomes difficult to find like-minded users. Thus, hybrid collaborative
filtering methods integrate collaborative filtering methods with other modalities in hashtag
recommendation. It can be divided into two categories: behavioral collaborative filtering and
social collaborative filtering.
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5.1. Behavioural Collaborative Filtering

Some researchers have assumed that if the users shared similar hashtags/topics in the past,
most likely they will share similar hashtags/topics in the future. Following this assumption,
Diaz-Aviles et al. [60] and Chen et al. [10] proposed personalized hashtag recommendation
models in the following manner: they created a user-hashtag matrix and assigned 1 if
a user has adopted a specific hashtag in the past. Using an optimization method, they
generated a hashtag adoption score of every user to every possible hashtag. To address the
data sparseness problem, which happens when the numbers of hashtags and users increase,
they updated the rates of using hashtags from random tweets sampled at certain times.
They, however, used different sampling techniques. The previously mentioned methods
suffer from the cold-start problem.

Content-based methods can remedy the cold-start problem that arose from the collabo-
rative filtering methods. Kywe et al. [61] proposed a personalized hashtag recommendation
model that involved integrating content similarity and collaborative filtering to extract
candidate hashtags. This method profiles every user according to his/her historical hashtag
usage using TFIDF. Given a user, hashtags extracted from like-minded users and similar
tweets were retrieved, ranked, and recommended. Kou et al. [66] recommended hashtags
based on the weight of combining three features: content similarity, collaborative filtering
of users with similar hashtag usage and topical interests.

To overcome the cold-start problem, in Wang et al.’s paper [63], the recommended
hashtag for a given tweet was extracted from the tweets of users sharing similar topics.
They generated the topic representation of a tweet by training the LDA model on aggre-
gated tweets containing the same hashtag. Zhao et al. [64] adopted a similar approach
and combined it with users using similar historical hashtags if present in the database.
They found that a smaller number of users is required to get a high hashtag recommenda-
tion performance.

5.2. Social Collaborative Filtering

Some other researchers assumed that there is a shared interest of topics between a user and
users whom he/she follows. Harvey et al. [67] integrated the candidate hashtags extracted from
the content similarity method [33] with candidate hashtags of the most similar users from
the set of followees. He also incorporated a temporal weight to rank the hashtags based on
the entropy score and the hashtags’ age. They found that hashtags with a small entropy and
age values are less likely to be reused and therefore should be penalized. Kowald et al. [18]
put forward Base Level Learning (BLL), a method that recommended the most recent and
frequent hashtags placed in the user’s tweets and his/her followees. In their experiments,
they found that the social factor improves the recommendation performance.

Javari et al. [22] looked into the hashtag recommendation from a different angle.
They built PHAN, a graph-based model of representative users and hashtags. They built
their model based on the notion that when a node user becomes popular, the hashtag represents a
topic of interest. As such, a represented node user was selected if his/her followers exceeds
a given threshold. Accordingly, the representative users and hashtags were projected
into latent space using Generalized Matrix Factorization (GMF), a Neural Collaborative
Filtering method. GMF is a multi-layer neural network that learns user–item relationships
for recommendation. They optimized GMF by setting an attention weight that learned the
influence of a representative node on a user with respect to a hashtag. With the absence of
labels for the representative users, they trained their model based on weak supervision of
estimated labels to every representative node.

Although several studies [18,22,67] have highlighted the importance of user relations
(behavioural and social), the degree of their influence is not clear. Alsini et al. [16,19,23]
present an overview of the community detection algorithms as techniques used to group
like-minded users. The influence of four relations based on the hashtag usage, topics,
followees and mentions on the performance of hashtag recommendation over communities



Future Internet 2021, 13, 129 14 of 19

have been investigated [23]. It was found that the level of social relations affects the
performance of hashtag recommendation.

6. Hybrid Miscellaneous Methods

In this category of research, multi-modalities and multi-factors are incorporated to
recommend hashtags under various assumptions. Joen et al. [12] assumed that users
frequently tweet about topics they are interested in. Thus, their hashtag recommendation model
determined the relationship between the significant terms and hashtags by their shared
topics. With 16 predefined class labels (art and design, books, business, etc.), they classified
significant terms in a tweet into one of these class labels using Naive Bayes. To personalize
their model, they extracted the significant terms from every user and classified them
into one of the predefined class categories. They ranked candidates’ hashtags based on
the similarity of the terms to the hashtags, user interests, and popularity. They found
that the performance of the hashtag recommendation on sports tweets outperformed the
performance on tweets in other categories, and the performance on news tweets was the
poorest compared to all other categories.

SenSim+Ac+Te is a hashtag recommendation model [5] that incorporated three factors:
similarity of a hashtag to a tweet, user acceptance degree and the development tendency
of a hashtag. They used a modified version of LDA called JGibbLDA as the base of their
hashtag recommendation model. They first generated the topical feature vectors of tweets
and hashtags. Then, they calculated their similarity. Their research observed that given
two hashtags that were different but relevant in the sense that they were about the same
topic or event, people usually tended to use the shorter hashtag. Under this observa-
tion, they gave the shorter hashtag a higher probability and thus a higher ranking score.
They calculated the user acceptance score for a hashtag h as log(Nh), where Nh was the
number of tweets containing the hashtag h. As for the development tendency, they used
Polynomial Spline Estimator and Sigmoid function to detect the shift in hashtag trends over
seven days. Hashtags with a similar development tendency and higher user acceptance
had higher ranks for the recommendation.

The linear model and Topic-STG are two personalized hashtag recommendation
models introduced by Yu et al. [6]. These two models were based on the assumption that
user behaviors on hashtags present the same meaning as the operations on tweets containing these
hashtags. These operations included the number of ‘retweet’, ‘create’, ‘comment’, ‘favorite’
and ‘add friend’ actions. They also assumed that tweets and hashtags with a larger number of
operations are popular and that this popularity changes over time. According to these two
assumptions, in the linear model, they calculated the content similarity of the user interest
with the content of hashtags using the negative symmetric Kullback–Leibler divergence
where the user’s interest is generated using LDA. They also classified hashtags into time-
sensitive and time-insensitive and calculated the popularity scores for a hashtag. Based on
these three variables, they recommended the top-k hashtags. In the Topic-STG model, they
assumed that the user’s interest varies over time. On that basis, they proposed a directed
and weighted graph-based model of users, topic, hashtags and session time. Using the
session time, they determined the user’s short- and long-term preferences. Their Topic-STG
model outperformed the linear model but has a higher complexity with respect to an
increase in the number of topics. It was also difficult to incorporate additional features.

Kumar et al. [69] incorporated external knowledge from Wikipedia and news arti-
cles extracted from the web. Feng and Wang [13] proposed Hybrid+. This optimization-
based framework includes features related to tweets (terms, URLs and mentions), users
(ID, location and social relation), and hashtags (length, frequency, uptrend and time).
They found that a user’s interest can change within a week. Moreover, links, mentions,
and location were a weak indication for hashtags. However, the integration of all features
improved the results.

Media of images were also investigated in the context of hashtag recommenda-
tion [15,20]. Zhang et al. [15] noticed that a hashtag is only related to a specific region of
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an input image. Thus, they proposed a co-attention network that incorporated textual and
visual information to recommend hashtags. They trained their network as a multi-class
classification problem and used LSTM to extract the textual features and the VGG network
pre-trained on the 1000 class objects to extract the visual features. It was found that the
visual and textual factors influence the recommendation. However, the images in the
dataset were diverse and mostly graffiti, selfies or smartphone shots. Ma et al. [20] also
proposed a co-attention memory network (CoA-MN). However, they incorporated the
historical tweets of hashtags to represent these hashtags. CoA-MN achieved results better
than classification-based methods.

7. Limitations

As we restricted our search of papers from only four electronic databases (CiteSeer,
IEEE Explore, Springer and ACM), we expect many more papers on hashtag recommenda-
tion have been published in other journals.

Due to the absence of benchmark datasets, hashtag recommendation methods’ per-
formance cannot be compared in the same way as in other research areas. This problem
is attributed to the legal terms set by the social media companies that do not permit data
sharing. Thus, this paper has not identified the superiority of methods over others but has
given only critical discussions about hashtag recommendation methodologies.

8. Conclusions and Future Research Directions

This paper discusses how hashtag recommendation systems for tweets have evolved
within the field of online social networks. It also presents a new taxonomy for hash-
tag recommendation of tweets based on their methodologies. The taxonomy classifies
hashtag recommendation methods for tweets into three main categories: text-based, hy-
brid user-based and hybrid miscellaneous methods. Text-based methods find hashtags
similar to what a user intends to adopt based on the textual information. This category
is further classified into tweet-similarity-based methods, probabilistic methods, classi-
fication based methods, graph-based methods and matrix factorization based methods.
Since methods of collaborative filtering suffer from the cold-start problem, they are inte-
grated with other methods. Hybrid user-based hashtag recommendation methods rec-
ommend hashtags based on the similarity of the users’ behavior, interests or relations.
This category is further classified into behavioral and social collaborative filtering methods.
Hybrid miscellaneous hashtag recommendation take advantage of multi-modalities and
multi-factors to recommend the hashtags. Regardless of the specific techniques employed,
it has become clear that the best outcome can be achieved using the hybrid methods (user-
based or miscellaneous) for their ability to overcome problems occurring with content-
based and collaborative filtering methods. It was noticed that understanding various factors
that affect the performance of hashtag recommendation and the underlying assumptions
have a significant impact on the algorithmic approach that should be considered.

This subsection also addresses the research question RQ5. We highlight some open
challenges, which can be considered future research directions. These challenges are
as follows:

• Despite the advancement of the current methods, further improvements are required
to propose more effective methods that are less expensive in terms of time and
computation and provide a personalized recommendation that covers a broader
range of pre-defined and novel hashtags with higher accuracy. Furthermore, most of
the previous research was tested offline. Recommending personalized hashtags in
real-time is more difficult where the recommended hashtags need to be accurate and
given instantly.

• As an extension to work presented in Alsini et al.’s paper [23], the association of the
four networks and their combined effect on the performance of hashtag recommenda-
tion can be examined. In addition, rather than considering the mutual tie relationships
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between users, weighted relationships can be used to construct the networks and
detect communities.

• It is challenging to compare newly proposed methods with baseline methods due to
the variance in the size of the datasets (i.e., number of tweets, users, and hashtags).
It is recommended for future research papers to set a minimum size of the dataset
for evaluation.

• Accuracy-based metrics were the primary measures of evaluation for a long time.
In recent years, concepts of evaluation, which are metrics beyond accuracy, have been
studied to evaluate the value of the traditional recommendations. For example,
diversity is concerned with the variety of items recommended by the system, and
novelty is concerned with how the recommended items are new to users [81,82].
However, concepts of the evaluation were rarely used to evaluate hashtag recommen-
dation methods. The value of the recommendations also needs to be studied in terms
of user satisfaction and expectation.

• With the dynamic nature of social media platforms, studies of hashtag recommenda-
tion should focus more on the automatic update of the data on the recommendation.
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