
future internet

Article

Exploiting Machine Learning for Improving In-Memory
Execution of Data-Intensive Workflows on Parallel Machines

Riccardo Cantini , Fabrizio Marozzo , Alessio Orsino , Domenico Talia * and Paolo Trunfio

����������
�������

Citation: Cantini, R.; Marozzo, F.;

Orsino, A.; Talia, D.; Trunfio, P.

Exploiting Machine Learning for

Improving In-Memory Execution of

Data-Intensive Workflows on Parallel

Machines. Future Internet 2021, 13,

121. https://doi.org/10.3390/

fi13050121

Academic Editors: Michael Resch and

Salvatore Carta

Received: 30 March 2021

Accepted: 29 April 2021

Published: 5 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

DIMES Department, University of Calabria, 87036 Rende, Italy; riccardo.cantini@unical.it (R.C.);
fmarozzo@dimes.unical.it (F.M.); aorsino@dimes.unical.it (A.O.); trunfio@dimes.unical.it (P.T.)
* Correspondence: talia@dimes.unical.it

Abstract: Workflows are largely used to orchestrate complex sets of operations required to handle
and process huge amounts of data. Parallel processing is often vital to reduce execution time
when complex data-intensive workflows must be run efficiently, and at the same time, in-memory
processing can bring important benefits to accelerate execution. However, optimization techniques
are necessary to fully exploit in-memory processing, avoiding performance drops due to memory
saturation events. This paper proposed a novel solution, called the Intelligent In-memory Workflow
Manager (IIWM), for optimizing the in-memory execution of data-intensive workflows on parallel
machines. IIWM is based on two complementary strategies: (1) a machine learning strategy for
predicting the memory occupancy and execution time of workflow tasks; (2) a scheduling strategy
that allocates tasks to a computing node, taking into account the (predicted) memory occupancy
and execution time of each task and the memory available on that node. The effectiveness of the
machine learning-based predictor and the scheduling strategy were demonstrated experimentally
using as a testbed, Spark, a high-performance Big Data processing framework that exploits in-
memory computing to speed up the execution of large-scale applications. In particular, two synthetic
workflows were prepared for testing the robustness of the IIWM in scenarios characterized by a high
level of parallelism and a limited amount of memory reserved for execution. Furthermore, a real
data analysis workflow was used as a case study, for better assessing the benefits of the proposed
approach. Thanks to high accuracy in predicting resources used at runtime, the IIWM was able to
avoid disk writes caused by memory saturation, outperforming a traditional strategy in which only
dependencies among tasks are taken into account. Specifically, the IIWM achieved up to a 31% and a
40% reduction of makespan and a performance improvement up to 1.45× and 1.66× on the synthetic
workflows and the real case study, respectively.

Keywords: workflow; data-intensive; in-memory; machine learning; Apache Spark; scheduling

1. Introduction

A data-intensive workflow is a process that usually involves a set of computational
steps implementing complex scientific functions, such as data acquisition, transformation,
analysis, storage, and visualization [1]. Parallelism can be achieved by concurrently
executing independent tasks by trying to make use of all computing nodes, even if, in
many cases, it is necessary to execute multiple tasks on the same computing node [2]. For
example, this occurs when the number of tasks is greater than the number of available
nodes or because multiple tasks use a dataset located on the same node. These scenarios
are prone to memory saturation, and moving data to disk may result in higher execution
times, which leads to the need for a scheduling strategy able to cope with this issue [3,4].

In most cases, distributed processing systems use a priori policies for handling task
execution and data management. For example, in the MapReduce programming model
used by Hadoop, mappers write intermediate results after each computation, so performing
disk-based processing with partial use of memory [5] through the exploitation of the

Future Internet 2021, 13, 121. https://doi.org/10.3390/fi13050121 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3053-6132
https://orcid.org/0000-0001-7887-1314
https://orcid.org/0000-0002-5031-1996
https://orcid.org/0000-0003-1910-9236
https://orcid.org/0000-0002-5076-6544
https://doi.org/10.3390/fi13050121
https://doi.org/10.3390/fi13050121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13050121
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13050121?type=check_update&version=2

Future Internet 2021, 13, 121 2 of 23

Hadoop Distributed File System (HDFS). On the other hand, Apache Spark (https://
spark.apache.org/, accessed on 3 May 2021), which is a state-of-the-art data analysis
framework for large-scale data processing exploiting in-memory computing, relies on
a Directed Acyclic Graph (DAG) paradigm and is based on: (i) an abstraction for data
collections that enables parallel execution and fault-tolerance, named Resilient Distributed
Datasets (RDDs) [6]; (ii) a DAG engine, which manages the execution of jobs, stages, and
tasks. Besides, it provides different storage levels for data caching and persistence, while
performing in-memory computing with partial use of the disk. The Spark in-memory
approach is generally more efficient, but a time overhead may be caused by spilling data
from memory to disk when memory usage exceeds a given threshold [7]. This overhead
can be significantly reduced if the memory occupancy of a task is known in advance, to
avoid running in parallel two or more tasks that cumulatively exceed the available memory,
thus causing data spilling. For this reason, memory is considered a key factor for the
performance and stability of Spark jobs, and Out-of-Memory (OOM) errors are often hard
to fix. Recent efforts have been oriented towards developing prediction models for the
performance estimation of Big Data applications, although most of the approaches rely on
analytical models, and only a few recent studies have investigated the use of supervised
machine learning models [8–10].

In this work, we propose a system, named the Intelligent In-memory Workflow
Manager (IIWM), specially designed for improving application performance through
intelligent usage of memory resources. This is done by identifying clusters of tasks that can
be executed in parallel on the same node, optimizing in-memory processing, so avoiding
the use of disk storage.Given a data-intensive workflow, the IIWM exploits a regression
model for estimating the amount of memory occupied by each workflow task and its
execution time. This model is trained on a log of past executed workflows, represented
in a transactional way through a set of relevant features that characterize the considered
workflow, such as:

• Workflow structure, in terms of tasks and data dependencies.
• Input format, such as the number of rows, dimensionality, and all other features

required to describe the complexity of input data.
• The types of tasks, i.e., the computation performed by a given node of the workflow.

For example, in the case of data analysis workflows, we can distinguish among
supervised learning, unsupervised learning, and association rule discovery tasks, as
well as between learning and prediction tasks.

Predictions made for a given computing node are applicable to all computing nodes
of the same type (i.e., having the same architecture, processor type, operating system,
memory resources), which makes the proposed approach effectively usable on large-scale
homogeneous HPC systems composed of many identical servers. Given a data-intensive
workflow, the IIWM exploits the estimates coming from the machine learning model for
producing a scheduling plan aimed at reducing (and, in most cases, avoiding) main memory
saturation events, which may happen when multiple tasks are executed concurrently on
the same computing node. This leads to the improvement of application performance, as
swapping or spilling to disk caused by main memory saturation may result in significant
time overhead, which can be particularly costly when running workflows involving very
large datasets and/or complex tasks.

The IIWM was experimentally evaluated using as a testbed, Spark, which is expected
to become the most adopted Big Data engine in the next few years [11]. In particular,
we assessed the benefits coming from the use of the IIWM by executing two synthetic
workflows specially generated for investigating specific scenarios related to the presence
of a high level of parallelism and a limited amount of memory reserved for execution.
The effectiveness of the proposed approach was further confirmed through the execution
of a real data mining workflow as a case study. We carried out an in-depth comparison
between the IIWM and a traditional blind scheduling strategy, which only considers
workflow dependencies for the parallel execution of tasks. The proposed approach was

https://spark.apache.org/
https://spark.apache.org/

Future Internet 2021, 13, 121 3 of 23

shown to be the most suitable solution in all evaluated scenarios, outperforming the blind
strategy thanks to high accuracy in predicting resources used at runtime, which leads to
the minimization of disk writes caused by memory saturation.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the proposed system. Section 4 presents and discusses the experi-
mental results. Section 5 concludes the paper.

Problem Statement

The problem addressed in this study consists of the optimization of the in-memory
execution of data-intensive workflows, evaluated in terms of makespan (i.e., the total time
required to process all given tasks) and application performance. The main reason behind
the drop in performance in such workflows is related to the necessity of swapping/spilling
data to disk when memory saturation events occur. To cope with this issue, we proposed
an effective way of scheduling a workflow that minimizes the probability of memory
saturation, while maximizing in-memory computing and, thus, performance.

A workflow W can be represented using a DAG, described by a set of tasks T =
{t1, t2, . . . , tn} (i.e., vertices) and dependencies among them A ⊆ (T × T) = {a1, . . . , am}:
ai = (ti, tj), ti ∈ T , tj ∈ T (i.e., directed edges). Specifically, data dependencies (i.e., all the
input data of a task have already been made available) have to be considered rather than
control dependencies (i.e., all predecessors of a task must be terminated before it can be
executed), as we refer to data-intensive workflows [12].

Formally, given a set of q computing resources R = {r1, . . . , rq}, workflow scheduling
can be defined as the mapping T → R from each task t ∈ T to a resource r ∈ R, so as to
meet a set of specified constraints, which influence the choice of an appropriate scheduling
strategy [13]. Workflow scheduling techniques are often aimed at optimizing several factors,
including makespan and overall cost that in turn depend on data transfer and compute
cost [14]. In this study, a multi-objective optimization was applied, jointly minimizing
execution time and memory saturation. This is achieved by using a scheduling strategy
that exploits a regression model aimed at predicting the behavior of a given workflow, in
terms of resource demand and execution time (see Section 3). For the reader’s convenience,
Table 1 shows the meaning of the main symbols used in the paper.

Table 1. Meaning of the main symbols.

Symbol Meaning

T = {t1, t2, . . . , tn} Set of tasks.
A ⊆ (T × T) = {a1, . . . , am} Dependencies. ai = (ti, tj), ti ∈ T , tj ∈ T .
dt Description of the dataset processed by task t.
W = (T ,A) Workflow.
N in(t) = {t′ ∈ T | (t′, t) ∈ A} In-neighborhood of task t.
N out(t) = {t′ ∈ T | (t, t′) ∈ A} Out-neighborhood of task t.
M Regression prediction model.
S = 〈s1, . . . , sk〉 List of stages. si ⊆ T | (tx ‖ ty)∀tx, ty ∈ si.

C Maximum amount of memory available for a
computing node.

Cs = C− ∑
t∈s
M.predict_mem(t, dt) Residual capacity of a stage s.

2. Related Work

Recent studies have shown the effectiveness of machine learning-based prediction
modeling in supporting code optimization, parallelism mapping, task scheduling, and
processor resource allocation [10]. Moreover, predicting running times and memory foot-
print is important for estimating the cost of execution and better managing resources at
runtime [11]. For instance, in-memory data processing frameworks like Spark can benefit
from the informed co-location of tasks [10]. In fact, if too many applications or tasks are
assigned to a computing node, such that the memory used on the host exceeds the available

Future Internet 2021, 13, 121 4 of 23

one, memory paging to disk (i.e., swapping), data spilling to disk in Spark, or OOM errors
can occur with consequential drops in performance.

Our work focused on improving the performance of a Spark application using machine
learning-based techniques. The challenge is to effectively schedule tasks in a data-intensive
workflow for improving resource usage and application performance, by inferring the
resource demand of each task, in terms of memory occupancy and time.

State-of-the-art techniques aimed at improving the performance of data-intensive
applications can be divided into two main categories: analytical-based and machine
learning-based. For each category, the main proposed solutions and their differences
with respect to our technique are discussed.

2.1. Analytical-Based

Techniques in this category use information collected at runtime and statistics in order
to tune a Spark application, improving its performance as follows:

• Choosing the serialization strategy for caching RDDs in RAM, based on previous
statistics collected on different working sets, such as memory footprint, CPU usage,
RDDs size, serialization costs, etc. [15,16].

• Dynamically adapting resources to data storage, using a feedback-based mechanism
with real-time monitoring of the memory usage of the application [17].

• Scheduling jobs by dynamically adjusting concurrency through a feedback-based
strategy. Taking into account memory usage via garbage collection, network I/O, and
Spark RDDs lineage information, it is possible to choose the number of tasks to assign
to an executor [18,19].

The aforementioned works used different strategies to improve in-memory computing
of Spark that exploit static or dynamic techniques able to introduce some information in the
choice of configuration parameters. However, no prediction models were employed, and
this may lead to unpredicted behaviors. The IIWM, instead, uses a prediction regression
model to estimate a set of information about a running Spark application, exploiting it to
optimize in-memory execution. Moreover, unlike real-time adapting strategies, which use
a feedback-based mechanism by continuously monitoring the execution, the IIWM model
is trained offline, achieving fast and accurate predictions while being used for inferring the
resource demand of each task in a given workflow.

2.2. Machine Learning-Based

These techniques are based on the development of learning models for predicting
performance (mainly memory occupancy and execution time) of a large set of different
applications in several scenarios, on the basis of prior knowledge. This enables the adoption
of a performance-centric approach [8], based on an informed performance improvement,
which can be beneficial for the execution of data-intensive applications, especially in the
context of HPC systems.

Several techniques use collaborative filtering to identify how well an application will
run on a computing node. For instance, Quasar [8] uses classification techniques based
on collaborative filtering to determine the characteristics of the running application in
allocating resources and assigning tasks. When submitted, a new application is briefly
profiled, and the collected information is combined with the classification engine, based
on previous workloads, to support a greedy scheduling policy that improves throughput.
The application is monitored throughout the execution to adjust resource allocation and
assignment if required, using a single model for the estimation. Adapting this technique
to Spark can help to assign tasks to computing nodes within the memory constraints and
avoid exceeding the capacity, thus causing the spilling of data to disk. Another approach
based on collaborative filtering was proposed by Llull et al. [9]. In this case, the task
co-location problem is modeled as a cooperative game, and a game-theoretic framework,
namely Cooper, is proposed for improving resource usage. The algorithm builds pairwise
coalitions as stable marriages to assign an additional task to a host based on its available

Future Internet 2021, 13, 121 5 of 23

memory, and the Spark default scheduler is adopted to assign tasks. In particular, a
predictor receives performance information collected offline and estimates which co-runner
is better, in order to find stable co-locations.

Moving away from collaborative filtering, Marco et al. [10] presented a mixture-of-
experts approach to model the memory behavior of Spark applications. It is based on a set
of memory models (i.e., linear regression, exponential regression, Napierian logarithmic
regression) trained on a wide variety of applications. At runtime, an expert selector based
on k-nearest neighbor (kNN) is used to choose the model that best describes memory
behavior, in order to determine which tasks can be assigned to the same host for improving
throughput. The memory models and expert selector are trained offline on different
working sets, recording the memory used by a Spark executor through the Linux command
“/proc”. Finally, the scheduler uses the selected model to determine how much memory is
required for an incoming application, for improving server usage and system throughput.

Similar to machine learning-based techniques, the IIWM exploits a prediction model
trained on execution logs of previous workflows; however, it differs in two main novel
aspects: (i) the IIWM only uses high-level workflow features, without requiring any runtime
information, as done in [8,10], in order to avoid the overhead that could not be negligible
for complex applications; (ii) it provides an algorithm for effectively scheduling a workflow
in scenarios with limited computing resources.

As far as we know, no similar approaches in the literature can be directly compared
to the IIWM in terms of the goals and requirements. In fact, differently from the IIWM,
Quasar [8] and Cooper [9] can be seen as resource-efficient cluster management systems,
aimed at optimizing QoS constraints and resource usage. With respect to the most related
work, presented in [10], the IIWM presents the following differences.

• It focuses on data-intensive workflows, while in [10], general workloads were addressed.
• It uses high-level information for describing an application (e.g., task and dataset

features), while in [10], low-level system features were exploited, such as the cache
miss rate and the number of blocks sent, collected by running the application on a
small portion (100 MB) of the input data.

• It proposes a more general approach, since the approach proposed in [10] is only
appliable to applications whose memory usage is a function of the input size.

3. Materials and Methods

The Intelligent In-memory Workflow Manager (IIWM) is based on three main steps:

1. Execution monitoring and dataset creation: starting from a given set of workflows, a
transactional dataset is generated by monitoring the memory usage and execution
time of each task, specifying how it is designed and giving concise information about
the input.

2. Prediction model training: from the transactional dataset of executions, a regression
model is trained in order to fit the distribution of memory occupancy and execution
time, according to the features that represent the different tasks of a workflow.

3. Workflow scheduling: taking into account the predicted memory occupancy, and
execution time of each task, provided by the trained model, and the available memory
of the computing node, tasks are scheduled using an informed strategy. In this
way, a controlled degree of parallelism can be ensured, while minimizing the risk of
memory saturation.

In the following sections, a detailed description of each step is provided.

3.1. Execution Monitoring and Dataset Creation

The first step in the IIWM consists of monitoring the execution of different tasks on
several input datasets with variable characteristics, in order to build a transactional dataset
for training the regression model. The proposed solution was specifically designed for
supporting the efficient execution of data analysis tasks, which are used in a wide range
of data-intensive workflows. Specifically, it focuses on three classes of data mining tasks:

Future Internet 2021, 13, 121 6 of 23

classification tasks for supervised learning, clustering tasks for unsupervised learning, and
association rule discovery. Using Spark as a testbed, the following data mining algorithms
from the MLlib (https://spark.apache.org/mllib/, accessed on 3 May 2021) library were
used: decision tree, naive Bayes, and Support Vector Machines (SVMs) for classification
tasks; K-means and Gaussian Mixture Models (GMMs) for clustering tasks; FPGrowth for
association rule tasks.

3.1.1. Execution Monitoring within the Spark Unified Memory Model

As far as execution monitoring is concerned, a brief overview of the Spark unified
memory model is required. In order to avoid OOM errors, Spark uses up to 90% of the
heap memory, which is divided into three categories: reserved memory (300 MB), used
to store Spark internal objects; user memory (40% of heap memory), used to store data
structures and RDDs computed during transformations and actions; Spark memory (60%
of heap memory), divided into execution and storage. The former refers to that used for
computation during shuffle, join, sort, and aggregation processes, while the latter is used
for caching RDDs. It is worth noting that, when no execution memory is used, storage can
acquire all the available memory and vice versa. However, storage may not evict execution
due to complexities in implementation, while stored data blocks are evicted from main
memory according to a Least Recently Used (LRU) strategy.

The occupancy of storage memory relies on the persistence operations performed
natively by the algorithms. Table 2 reports some examples of data caching implemented
in the aforementioned MLlib algorithms. In particular, the cache() call corresponds to
persist(StorageLevel.MEMORY_AND_DISK), where MEMORY_AND_DISK is the default
storage level used for the recent API based on DataFrames.

Table 2. Examples of persist calls in MLlib algorithms.

MLlib Algorithm Persist Call

K-Means //Compute squared norms and cache them
norms.cache()

Decision Tree //Cache input RDD for speedup during multiple passes
BaggedPoint.convertToBaggedRDD(treeInput,...).cache()

GMM instances.cache() . . . data.map(_.asBreeze).cache()

FPGrowth items.cache()

SVM IstanceBlock.blokifyWithMaxMemUsage(...).cache()

According to the Spark unified memory model, the execution monitoring was done
via the Spark REST APIs, which expose executor-level performance metrics, collected in a
JSON file, including peak occupancy for both execution and storage memory along with
execution time.

3.1.2. Dataset Creation

Using the aforementioned Spark APIs, we monitored the execution of several MLlib al-
gorithms on different input datasets, covering the main data mining tasks, i.e., classification,
clustering, and association rules. The goal of this process was the creation of a transactional
dataset for the regression model training, which contained the following information:

• The description of the task, such as its class (e.g., classification, clustering, etc.), type
(fitting or predicting task), and algorithm (e.g., SVM, K-means, etc.).

• The description of the input dataset in terms of the number of rows, columns, categor-
ical columns, and overall dataset size.

• Peak memory usage (both execution and storage) and execution time, which represent
the three target variables to be predicted by the regressor. In order to obtain more

https://spark.apache.org/mllib/

Future Internet 2021, 13, 121 7 of 23

significant data, the metrics were aggregated on median values by performing ten
executions per task.

For the sake of clarity, Table 3 shows a sample of the dataset described above.

Table 3. A sample of the training dataset.

Task
Name

Task
Type

Task
Class

Dataset
Rows

Dataset
Columns

Categorical
Columns

Dataset
Size (MB)

Peak Storage
Memory (MB)

Peak Execution
Memory (MB)

Duration
(ms)

GMM Estimator Clustering 1,474,971 28 0 87.00 433.37 1413.50 108,204.00
K-Means Estimator Clustering 5,000,000 104 0 1239.78 4624.52 4112.00 56,233.50

Decision Tree Estimator Classification 9606 1921 0 84.91 730.09 297.90 39,292.00
Naive Bayes Estimator Classification 260,924 4 0 13.50 340.92 6982.80 16,531.50

SVM Estimator Classification 5,000,000 129 0 1542.58 6199.11 106.60 238,594.50
FPGrowth Estimator Association Rules 823,593 180 180 697.00 9493.85 1371.03 96,071.50

GMM Transformer Clustering 165,474 14 1 6.37 2.34 1 × 10−6 62.50
K-Means Transformer Clustering 4,898,431 42 3 648.89 3.23 1 × 10−6 35.00

Decision Tree Transformer Classification 1,959,372 42 4 257.69 3.68 1 × 10−6 65.50
Naive Bayes Transformer Classification 347,899 4 0 17.99 4.26 1 × 10−6 92.50

SVM Transformer Classification 5,000,000 129 0 1542.58 2.36 1 × 10−6 55.50
FPGrowth Transformer Association Rules 136,073 34 34 13.55 1229.95 633.50 52,429.00

. .

Starting from 20 available datasets, we divided them into two partitions used for
training and testing, respectively. Afterwards, an oversampling procedure was performed,
aimed at increasing the number of datasets contained in the partitions. Specifically, a naive
random sampling approach can lead to unexpected behaviors regarding the convergence
of algorithms, thus introducing noise into the transactional dataset used to build the
regression model. To cope with this issue, we used the following feature selection strategy:

• For datasets used in classification or regression tasks, we considered only the k highest
scoring features based on:

– the analysis of variance (F-value) for integer labels (classification problems);
– the correlation-based univariate linear regression test for real labels (regression prob-

lems).

• For clustering datasets, we used a correlation-based test to maintain the k features
with the smallest probability to be correlated with the others.

• For association rule discovery datasets, no feature selection is required, as the number
of columns refers to the average number of items in the different transactions.

The described procedure was applied separately on the training and test partitions, so
as to avoid the introduction of bias into the evaluation process. Specifically, the number of
datasets in the training and test partitions was increased from 15 to 260 and from 5 to 86,
respectively. Subsequently, we fed these datasets to the MLlib algorithms, obtaining two
final transactional datasets of 1309 and 309 monitored executions, used for training and
testing the regressor, respectively.

3.2. Prediction Model Training

Once the training and test datasets with memory and time information were built, a
regression model could be trained with the goal of estimating peak memory occupancy
and turnaround time of a task in a given workflow.

As a preliminary step, we analyzed the correlation between the features of the training
data and each target variable, using the Spearman index. We obtained the following
positive correlations: a value of 0.30 between storage memory and the input dataset size,
0.46 between execution memory and the task class, and 0.21 between execution time and
the number of columns. These results can be seen in detail in Figure 1.

Future Internet 2021, 13, 121 8 of 23

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Pe

ak
St

or
ag

eM
em

or
y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakStorageMemory 0.5

0.0

0.5

1.0

(a) Storage memory

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Pe

ak
Ex

ec
ut

io
nM

em
or

y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakExecutionMemory 0.5

0.0

0.5

1.0

(b) Execution memory

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Du

ra
tio

n

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
Duration

0.5

0.0

0.5

1.0

(c) Duration

Figure 1. Correlation of target variables with the other features.

Afterwards, we moved to the training of the regression model. Due to its complexity,
the regression problem cannot be faced with a simple linear regressor or its regularized
variants (e.g., Ridge, Lasso, or ElasticNet), but a more robust model is necessary. We
experimentally evaluated this aspect by testing the forecasting abilities of these linear
models, achieving poor results. For this reason, an ensemble learning model was used
in order to fit the nonlinear distribution of features. Specifically, the stacking technique
(meta learning) [20] was used by developing a two-layer model in which a set of regressors
was trained on the input dataset and a decision tree was fit on their predictions. The
first layer consisted of three tree-based regressors, able to grasp different aspects of input
data: a gradient boosting, an AdaBoost, and an extra trees regressor. The second layer
exploits a single decision tree regressor, which predicts the final value starting from the
concatenation of the outputs from the first layer. The described ensemble model was set
with the hyperparameters shown in Table 4.

Table 4. Hyperparameters.

Hyperparameter Value

n_estimators 500
learning_rate 0.01
max_depth 7

loss least squares

Among 20 trained models, initialized with different random states, we selected the
best one by maximizing the following objective function:

O = R̄2 −MAE

whose goal is to choose the model that best explains the variance of the data, while mini-
mizing the forecasting error. This function jointly considers the adjusted determination
coefficient (R̄2), which guarantees robustness with respect to the addition of useless vari-
ables to the model compared to the classical R2 score, and the Mean Absolute Error (MAE),
normalized with respect to the maximum.

The described model was developed in Python3 using the scikit-learn (https://scikit-
learn.org/stable/, accessed on 3 May 2021) library and evaluated against the test set of
309 unseen executions obtained as described in Section 3.1.2. Thanks to the combination of
different models, the ensemble technique was shown to be very well suited for this task,
leading to good robustness against outliers and a high forecasting accuracy, as shown in
Figure 2.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

Future Internet 2021, 13, 121 9 of 23

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

Pe
ak

St
or

ag
eM

em
or

y

Regression estimates
Ground truth

(a) Storage memory

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

5000

6000

Pe
ak

Ex
ec

ut
io

nM
em

or
y

Regression estimates
Ground truth

(b) Execution memory

0 50 100 150 200 250 300
Index of sample

0

20,000

40,000

60,000

80,000

100,000

120,000

Du
ra

tio
n

Regression estimates
Ground truth

(c) Duration

Figure 2. Meta learner regression estimates for the different target variables.

These results are detailed in Table 5, which shows the evaluation metrics for each
target variable, including the R̄2 score and the Pearson correlation coefficient. In particular,
the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) for the storage
and execution memory represent average errors in megabytes, while for the duration, they
represent errors in milliseconds.

Table 5. Evaluation metrics on the test set.

RMSE MAE Adjusted R2 Pearson Correlation

Storage Memory 108.23 26.66 0.96 0.98
Execution Memory 312.60 26.30 0.91 0.95

Duration 4443.17 2003.70 0.95 0.98

3.3. Workflow Scheduling

The prediction model described in Section 3.2 can be exploited to forecast the amount
of memory that will be needed to execute a given task on a target computing node and
its duration, based on the task features listed in Section 3.1. These predictions are then
used within the scheduling strategy described in the following, whose goal is to avoid
swapping to disk due to memory saturation in order to improve application performance
and makespan through a better use of in-memory computing. The results discussed below
refer to a static scheduling problem, as the scheduling plan is generated before the execution.
In typical static scheduling, the workflow system has to predict the execution load of each
task accurately, using heuristic-based methods [21]. Likewise, in the proposed method,
the execution load of each task of a given workflow is predicted by the model trained
on past executions. Moreover, we investigated how workflow tasks can be scheduled
and run on a single computing node, but this approach can be easily generalized to a
multi-node scenario. For example, a data-intensive workflow can be decomposed into
multiple sub-workflows to be run on different computing nodes according to their features
and data locality. Each sub-workflow is scheduled locally to the assigned node using the
proposed strategy.

In the IIWM, we modeled the scheduling problem as an offline Bin Packing (BP). This
is a well-known problem, widely used for resource and task management or scheduling,
such as load balancing in mobile cloud computing architectures [22], energy-efficient
execution of data-intensive applications in clouds [23], DAGs’ real-time scheduling in
heterogeneous clusters [24], and task scheduling in multiprocessor environments [25].
Its classical formulation is as follows [26]. Let n be the number of items, wj the weight
of the j-th item, and c the capacity of each bin: the goal is to assign each item to a bin
without exceeding the capacity c and minimizing the number of used bins. The problem
is NP-complete, and much effort went into finding fast algorithms with near-optimal
solutions. We adapted the classical problem to our purposes as follows:

Future Internet 2021, 13, 121 10 of 23

• An item is a task to be executed.
• A bin identifies a stage, i.e., a set of tasks that can be run in parallel.
• The capacity of a bin is the maximum amount C of available memory in a computing

node. When assigning a task to a stage s ∈ S , its residual available memory is
indicated with Cs.

• The weight of an item is the memory occupancy estimated by the prediction model. In
the case of the Spark testbed, it is the maximum of the execution and storage memory,
in order to model a peak in the unified memory. As concerns the estimated execution
time, it is used for selecting the stage to be assigned when memory constraints hold
for multiple stages.

With respect to the classical BP problem, two changes were introduced:

• All workflow tasks have to be executed, so the capacity of a stage may still be exceeded
if a task takes up more memory than the available one.

• The assignment of a task t to a stage s is subject to dependency constraints. Hence, if a
dependency exists between ti and tj, then the stage of ti has to be executed before the
one of tj.

To solve the BP problem, modeled as described above, in order to produce the final
scheduling plan, we used the first fit decreasing algorithm, which assigns tasks sorted in
non-increasing order of weight. However, the introduction of dependency constraints in
the assignment process may cause the under-usage of certain stages. To cope with this
issue, we introduced a further step of consolidation, aimed at reducing the number of
stages by merging together stages without dependencies according to the available memory.
The main execution flow of the IIWM scheduler is shown in Figure 3 and described by
Algorithm 1. In particular, given a data-intensive workflow W , described as a DAG
by its tasks and dependencies, and the prediction modelM as the input, a scheduling
plan is generated in two steps: (i) building of the stages and task assignment; (ii) stage
consolidation.

IIWM scheduler

Scheduled
stages

Prediction model

Workflow

Scheduling

s2

s1

s3

s4

Consolidation

s2

s1

s3

s4

Final schedule

merge
(s4, s2)

merge
(s3, s1)

Figure 3. Execution flow of the IIWM scheduler. Given a workflow and a prediction model as the input, a scheduling plan
is generated in two steps: (i) building of the stages and task assignment; (ii) stage consolidation.

The algorithm is divided into two main parts: in the first part (Lines 1–23), the stages
are built by iteratively assigning each task according to the estimates of the prediction
model; in the second part (Lines 25–34), a consolidation process is performed, trying to
minimize the number of stages.

The first part (Lines 1–23) starts with the initialization of an empty list of stages S ,
which will be filled according to a dictionary Q that stores the in-degree of each task in the
DAG, which is used for identifying the free tasks that can be scheduled. The prediction
model M is exploited to estimate the memory occupancy and execution time of each
task in T , according to their dataset description (Lines 3–4). The dictionary Pmem, which
collects the predicted memory occupancies, is then used to sort tasks according to the first
fit decreasing strategy (Line 5). At each iteration, tasks that can be scheduled (i.e., assigned
to a stage) are collected in the T f ree set. In particular, they are identified by a zero in-degree,

Future Internet 2021, 13, 121 11 of 23

as their execution does not depend on the others (Line 7). By virtue of the acyclicity of
the DAG-based workflow representation, there will always exist a task t ∈ T with a zero
in-degree not yet scheduled, unless set T is empty. Afterwards, the task with the highest
memory occupancy is selected from T f ree in order to be scheduled (Line 8). At this point,
a list of candidate stages (Ssel) for the selected task is identified according to the peak
memory occupancy forecasted by the prediction modelM (Lines 9–10). In particular, a
stage si belongs to Ssel if it satisfies the following conditions:

• The residual capacity Csi of the selected stage si is not exceeded by the addition of the
task t.

• There does not exist a dependency between t and any task t′ belonging to si and every
subsequent stage (si+1 ∪ · · · ∪ sk), where a dependency (t′, t)n is identified by a path
of length n > 0.

Algorithm 1: The IIWM scheduler.

Input: WorkflowW = (T ,A), prediction modelM
Output: A list of stages S

1 S ← ∅
2 Q ← 〈t : |N in(t)|, ∀t ∈ T 〉
3 Pmem ← 〈t :M.predict_mem(t, dt), ∀t ∈ T 〉 . Memory prediction for each task in T
4 Ptime ← 〈t :M.predict_time(t, dt), ∀t ∈ T 〉 . Time prediction for each task in T
5 T ← sort_decreasing(T ,Pmem)
6 while T 6= ∅ do
7 T f ree ← {t ∈ T | Q[t] == 0}
8 t← get_ f irst(T f ree)

9 memt ← Pmem[t]
10 Ssel ← {si ∈ S | memt ≤ Csi and @ (t′, t)n ∈ A, n > 0, ∀t′ ∈ si ∪ si+1 ∪ · · · ∪ sk}
11 if Ssel 6= ∅ then
12 duration← 〈s : maxt′∈s Ptime[t′], ∀s ∈ Ssel〉
13 increase← 〈s : max{Ptime[t], duration[s]} − duration[s], ∀s ∈ Ssel〉
14 s← argmins′∈Ssel increase
15 Cs ← Cs −memt
16 s← s ∪ {t}
17 else
18 s← ∅
19 s← s ∪ {t}
20 Cs ← Cs −memt
21 S ← S ∪ {s}
22 Q[t′] = Q[t′]− 1, ∀t′ ∈ N out(t)
23 T ← T \ {t}
24 // Consolidation step
25 Smov ← {s ∈ S | |N out(t)|== 0, ∀t ∈ s}
26 if Smov 6= ∅ then
27 for si ∈ Smov do
28 for sj ∈ S | j > i do
29 memsi∪sj ← ∑

t∈si∪sj

Pmem[t]

30 if memsi∪sj ≤ C then
31 sj ← si ∪ sj
32 S ← S \ si
33 break

34 return S

Future Internet 2021, 13, 121 12 of 23

If there exist one or more candidate stages Ssel (Line 11), the best one is chosen based
on the minimum marginal increase. Specifically, for each of these stages, the expected
increase of the execution time is estimated (Lines 12–13), assigning the task t to the stage s
with the lowest value (Lines 14–16). Otherwise (Line 17), a newly created stage is allocated
for t and added to the list S (Lines 18–21). Once the task t is assigned to the stage s, the
residual capacity Cs is updated (Lines 15, 20). Then, the residual in-degree for every task in
the out-neighborhood of t (Line 22) is decremented by updating the dictionary Q, so as
to allow the assignment of these tasks in the next iterations. Finally, the assigned task t is
removed from the set of workflow nodes T (Line 23).

The second part of the algorithm (Lines 25–34) performs a consolidation step with
the goal of reducing the number of allocated stages by merging some of them if possible,
with a consequential improvement in the global throughput. The stages involved in the
consolidation step, namely the movable stages (Smov), are those containing tasks with a
zero out-degree (Line 25). This means that no task in such stages blocks the execution of
another one, so they can be moved forward and merged with subsequent stages if the
available capacity C is not exceeded. For each movable stage si (Line 27), another stage sj
from S is searched among the subsequent ones, such that its residual capacity is enough to
enable the merging with si (Lines 28–30). The merging between si and sj is performed by
assigning to sj each task of si (Line 31), finally removing si from S (Line 32). In the end, the
list of stages S built by the scheduler is returned as the output. Given this scheduling plan,
the obtained stages will be executed in sequential order, while all the tasks in a stage will
run concurrently.

Compared to a blind strategy where the maximum parallelism is achieved by running
in parallel all the tasks not subjected to dependencies, which is referred to as full-parallel
in our experiments, the IIWM can reduce both delays of parallelization (εp), due to context
switch and process synchronization, and swapping/spilling to disk (εs), due to I/O opera-
tions. Delay εp is always present in all scheduling strategies when two or more tasks are
run concurrently, while εs is present only when a memory saturation event occurs. Given
ε = εp + εs, the IIWM mainly reduces εs, which is the main factor behind the drop in
performance in terms of execution time, due to the slowness in accessing secondary storage.

As far as the Spark framework is concerned, the proposed strategy is effective for
making the most of the default storage level, i.e., MEMORY_AND_DISK: at each internal
call of the cache() method, data are saved in-memory as long as this resource is available,
using disk otherwise. In this respect, the IIWM can reduce the actual persistence of data on
disk by better exploiting in-memory computing.

4. Results and Discussion

This section presents an experimental evaluation of the proposed system, aimed at
optimizing the in-memory execution of data-intensive workflows. We experimentally
assessed the effectiveness of the IIWM using Apache Spark 3.0.1 as a testbed. In particular,
we generated two synthetic workflows for analyzing different scenarios, by assessing also
the benefits coming from the use of the IIWM using a real data mining workflow as a
case study.

In order to provide significant results, each experiment was executed ten times, and the
average metrics with standard deviations are reported. In particular, for each experiment,
we evaluated the accuracy of the regression model in predicting memory occupancy and
execution time.

We evaluated the ability of the IIWM to improve application performance taking into
account two different aspects:

• Execution time: Let m1 and m2 be the makespan for two different executions. If
m2 < m1, we can compute the improvement on makespan (mimp) and application
performance (pimp) as follows:

mimp =
m1 −m2

m1
× 100% pimp =

m1

m2

Future Internet 2021, 13, 121 13 of 23

• Disk usage: We used the on-disk usage metric, which measures the amount of disk
usage, jointly considering the volume and the duration of disk writes. Formally, given
a sequence of disk writes w1, ..., wk, let τ

′
i , τ

′′
i ∈ T be the start and end time of the wi

write, respectively. Let also W : T → R be a function representing the amount of
megabytes written to disk over time T. We define on-disk usage as:

on-disk usage =
k

∑
i=1

1
τ
′′
i − τ

′
i

∫ τ
′′
i

τ
′
i

W(τ)dτ

Specifically, for each workflow, we reported: (i) a comparison between full-parallel and
the IIWM in terms of disk usage over time; (ii) a detailed description of the scheduling plan
generated by both strategies; (iii) the average improvement on makespan and application
performance with the IIWM; (iv) statistics about the use of disk, such as the time spent for
I/O operations and the on-disk usage metric; (v) the execution of the workflow by varying
the amount of available memory, in order to show the benefits of the proposed scheduler
in different limited memory scenarios.

4.1. Synthetic Workflows

We firstly evaluated our approach against two complex synthetic data analysis work-
flows, where the full-parallel approach showed its limitations due to a high degree of
parallelism. The dependencies in these workflows should be understood as execution
constraints. For instance, clustering has to be performed before classification for adding
labels to an unlabeled dataset, or a classification task is performed after the discovery of
association rules for user classification purposes.

The first test was carried out on a synthetic workflow with 42 nodes. Table 6 provides
a detailed description of each task in the workflow, while their dependencies are shown in
Figure 4.

t0

t1 t2 t3

t4 t5 t6 t7t8 t9t10

t11 t12 t13 t14

t15 t16t17 t18 t19 t20 t21

t22 t23 t24 t25 t26 t27 t28

t29 t30 t31 t32 t33 t34

t35 t36 t37

t38 t39

t40

t41

Figure 4. Task dependencies (Workflow 1).

The first step is to predict the memory occupancy and execution time of each task of
the workflow: the regression model was able to accurately estimate the peaks on storage
and execution memory and the duration, as shown in Table 7.

Future Internet 2021, 13, 121 14 of 23

Table 6. Task and dataset descriptions (Workflow 1).

Node Task Name Task Type Task Class Rows Columns Categorical Columns Dataset Size (MB)

t0 Naive Bayes Estimator Classification 2,939,059 18 4 198.94
t1 FPGrowth Estimator Association Rules 494,156 180 180 417.01
t2 Naive Bayes Estimator Classification 5,000,000 27 0 321.86
t3 K-Means Estimator Clustering 1,000,000 104 0 247.96
t4 Decision Tree Estimator Classification 4,000,000 53 0 505.45
t5 Decision Tree Estimator Classification 4,000,000 27 0 257.49
t6 Decision Tree Estimator Classification 5,000,000 129 0 1542.58
t7 K-Means Estimator Clustering 2,000,000 53 0 252.73
t8 Naive Bayes Estimator Classification 2,000,000 104 0 495.90
t9 Naive Bayes Estimator Classification 1,000,000 129 0 307.57
t10 SVM Estimator Classification 2,000,000 53 0 252.72
t11 K-Means Estimator Clustering 2,049,280 9 2 122.03
t12 GMM Estimator Clustering 2,458,285 28 0 145.01
t13 K-Means Estimator Clustering 9169 5812 1 101.89
t14 SVM Estimator Classification 2,000,000 27 0 128.75
t15 K-Means Estimator Clustering 3,000,000 104 0 743.87
t16 SVM Estimator Classification 3,000,000 53 0 379.09
t17 SVM Estimator Classification 14,410 1921 0 127.38
t18 K-Means Estimator Clustering 5,000,000 53 0 631.81
t19 K-Means Estimator Clustering 5,000,000 104 0 1239.78
t20 K-Means Estimator Clustering 2,000,000 78 0 371.93
t21 SVM Estimator Classification 3,000,000 104 0 743.87
t22 K-Means Estimator Clustering 2,939,059 18 4 198.94
t23 SVM Estimator Classification 19,213 1442 0 123.28
t24 Decision Tree Estimator Classification 3,000,000 129 0 922.69
t25 K-Means Estimator Clustering 1,959,372 26 4 189.55
t26 Decision Tree Estimator Classification 4,898,431 18 4 331.57
t27 Naive Bayes Estimator Classification 4,898,431 18 4 331.57
t28 K-Means Estimator Clustering 2,939,059 34 4 334.91
t29 K-Means Estimator Clustering 4,898,431 18 4 331.57
t30 K-Means Estimator Clustering 1,966,628 42 0 170.49
t31 Naive Bayes Estimator Classification 1,959,372 18 4 132.62
t32 K-Means Estimator Clustering 3,000,000 78 0 557.91
t33 Decision Tree Estimator Classification 3,000,000 53 0 379.09
t34 Decision Tree Estimator Classification 14,410 2401 0 159.71
t35 K-Means Estimator Clustering 2,939,059 42 4 386.53
t36 Decision Tree Estimator Classification 2,939,059 34 4 334.91
t37 Decision Tree Estimator Classification 4,000,000 129 0 1230.24
t38 Naive Bayes Estimator Classification 1,000,000 53 0 126.36
t39 GMM Estimator Clustering 1,000,000 53 0 126.36
t40 Decision Tree Estimator Classification 2,939,059 18 4 198.94
t41 K-Means Estimator Clustering 4,898,431 18 4 331.57

Table 7. Performance evaluation of the prediction model.

RMSE MAE Adjusted R2 Pearson Correlation

Storage Memory 246.63 95.6 0.96 0.98
Execution
Memory 4.7 1.6 0.99 0.99

Duration 20,354.38 7,877.72 0.80 0.91

We firstly considered a configuration characterized by 14 GB available for running
the workflow, which was used up to 60% due to the Spark unified memory model. Table 8
shows an execution example with the IIWM, focusing on its main steps: (i) the scheduling
of tasks based on their decreasing memory weight; (ii) the allocation of a new stage; (iii) the
exploitation of the estimated execution time while computing the marginal increase. This
last aspect can be clearly observed in Iteration 17, where task t17 is assigned to stage s7,

Future Internet 2021, 13, 121 15 of 23

which presents a marginal increase equal to zero. This is the best choice compared to
the other candidate stage (s6), whose execution time would be increased by 12,496.36
milliseconds by the assignment of t17, with a degradation of the overall makespan.

Table 8. Example of execution of Algorithm 1 at the iteration level.

Iteration State Stages

It. 0
T 0

f ree = {t0}
Create s0 and assign t0

Unlock {t1, t2, t3}
s0 = {t0}

It. 1
T 1

f ree = {t1, t3, t2}
Create s1 and assign t1

Unlock {t4}

s0 = {t0}, s1 = {t1}

It. 2
T 2

f ree = {t3, t4, t2}
Create s2 and assign t3

Unlock {t7, t8, t9, t10}

s0 = {t0}, s1 = {t1},
s2 = {t3}

It. 3
T 3

f ree = {t7, t4, t10, t2, t8, t9}
Create s3 and assign t7

s0 = {t0}, s1 = {t1},
s2 = {t3}, s3 = {t7}

It. 4
T 4

f ree = {t4, t10, t2, t8, t9}
Ssel = {s2, s3}

increase = {0, 0}
Assign t4 to s2

s0 = {t0}, s1 = {t1},
s2 = {t3, t4}, s3 = {t7}

.

It. 17

T 17
f ree = {t17, t23, t8, t9}
Ssel = {s6, s7}

increase = {12, 496.36, 0}
Assign t17 to s7

Unlock {t25}

s0 = {t0}, s1 = {t1, t2},
s2 = {t3, t4, t5},
s3 = {t7, t10, t6},

s4 = {t12, t11}, s5 = {t15, t18},
s6 = {t19, t22}, s7 = {t24, t16, t17}

.

At the end of the process, a consolidation step is exploited for optimizing throughput
and execution time, by merging two stages with zero out-degree with some tailing stages,
so as to avoid the sequential execution of the two stages in favor of a parallel one.

Figure 5 shows disk occupancy throughout the execution. As a consequence of
memory saturation, the execution of full-parallel resulted in a huge amount of disk writes,
while IIWM achieved a null disk usage since no swapping occurred thanks to intelligent
task scheduling. Thus, this translates into better use of in-memory computing.

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25 27
Elapsed time (min)

0

100

200

300

Di
sk

 u
sa

ge
 (G

B)

Full-Parallel
IIWM

Figure 5. Disk usage over time for full-parallel and the IIWM.

These results can be clearly seen also in Table 9, which shows the scheduling plan
produced by the IIWM scheduler, together with some statistics about the execution times

Future Internet 2021, 13, 121 16 of 23

and the use of the disk. In particular, given the curves representing disk writes over time
shown in Figure 5, on-disk usage graphically represents the sum, for each disk write, of the
ratio between the area under the curve identified by a write and its duration. Compared to
the full-parallel strategy, the IIWM achieved better execution times and an improvement
in application performance, with a boost of almost 1.45x (pimp) and a 31.15% reduction in
time (mimp) on average.

Table 9. Scheduling plan and statistics about execution times and disk usage with 14 GB of RAM.

Strategy Task-Scheduling Plan Number
of Stages Time (min) Peak Disk

Usage (MB)
Writes

Duration (min)
On-Disk

Usage (MB)

Full-Parallel

(t0), (t1 ‖ t2 ‖ t3),
(t4 ‖ t5 ‖ t6 ‖ t7 ‖ t8 ‖ t9 ‖ t10),

(t11 ‖ t12 ‖ t13 ‖ t14),
(t15 ‖ t16 ‖ t17 ‖ t18 ‖ t19 ‖ t20 ‖ t21),
(t22 ‖ t23 ‖ t24 ‖ t25 ‖ t26 ‖ t27 ‖ t28),
(t29 ‖ t30 ‖ t31 ‖ t32 ‖ t33 ‖ t34 ‖ t41),

(t35 ‖ t36 ‖ t37), (t38 ‖ t39), (t40)

10 31.52± 0.6 356,106.60 11.56 126,867.06

IIWM

(t0), (t1 ‖ t2), (t3 ‖ t4 ‖ t5),
(t7 ‖ t10 ‖ t6 ‖ t8 ‖ t9),

(t12 ‖ t11 ‖ t13), (t15 ‖ t18), (t19 ‖ t22 ‖ t23),
(t24 ‖ t16 ‖ t17 ‖ t29), (t25 ‖ t41), (t30 ‖ t20),

(t35 ‖ t21 ‖ t14), (t28 ‖ t26 ‖ t27),
(t33 ‖ t32 ‖ t34 ‖ t31), (t37 ‖ t36),

(t39 ‖ t38), (t40)

16 21.70± 0.63 0 0 0

With different sizes of available memory, the full-parallel approach showed higher
and higher execution times and disk writes as memory decreased, while the IIWM was
able to adapt the execution to available resources, as shown in Figure 6, finding a good
trade-off between the maximization of the parallelism and the minimization of the memory
saturation probability. At the extremes, with unlimited available memory, or at least greater
than that required to run the workflow, the IIWM performs as a full concurrent strategy,
producing the same scheduling of full-parallel.

14 22 30
Memory size (GB)

0

50

100

150

200

250

300

350

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Average peak disk usage

14 22 30
Memory size (GB)

20

22

24

26

28

30

32

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
) Full-Parallel

IIWM

(b) Average execution time

Figure 6. Average peak disk usage and execution time, varying the size of available memory.

The second synthetic workflow consisted of the 27 tasks described by Table 10 and
their dependencies, shown in Figure 7. This scenario was characterized by highly heavy
tasks and very low resources, where the execution of a single task can exceed the available
memory. In particular, the task T18 had an estimated peak memory occupancy higher than
Spark’s available unified memory of 5413.8 MB (i.e., corresponding to a heap size of 9.5 GB):
this would bring the IIWM scheduling algorithm to allocate the task to a new stage, but
memory would be saturated anyway.

Future Internet 2021, 13, 121 17 of 23

t0

t1 t2t3 t4

t5 t6 t7 t8t9 t10 t11 t12

t13 t14 t15 t16t17 t18 t19 t20

t21

t22 t23 t24t25

t26

Figure 7. Task dependencies (Workflow 2).

Table 10. Task and dataset descriptions (Workflow 2).

Node Task Name Task Type Task Class Rows Columns Categorical Columns Dataset Size (MB)

t0 K-Means Estimator Clustering 3,918,745 34 4 446.55
t1 Decision Tree Estimator Classification 4,000,000 27 0 257.49
t2 GMM Estimator Clustering 2,458,285 28 0 145.01
t3 Decision Tree Estimator Classification 3,000,000 53 0 379.09
t4 Decision Tree Estimator Classification 4,000,000 129 0 1230.24
t5 Decision Tree Estimator Classification 3,918,745 18 4 265.25
t6 Decision Tree Estimator Classification 4,898,431 42 3 648.89
t7 Decision Tree Estimator Classification 2,939,059 42 4 386.53
t8 K-Means Estimator Clustering 2,458,285 56 0 278.75
t9 GMM Estimator Clustering 3,000,000 53 0 379.09
t10 SVM Estimator Classification 4,000,000 53 0 505.45
t11 K-Means Estimator Clustering 2,939,059 42 4 386.53
t12 SVM Estimator Classification 2,000,000 53 0 252.72
t13 K-Means Estimator Clustering 1,639,424 9 2 93.70
t14 Naive Bayes Estimator Classification 260,924 3 0 10.33
t15 K-Means Estimator Clustering 2,000,000 78 0 371.93
t16 Decision Tree Estimator Classification 3,918,745 26 4 379.11
t17 Decision Tree Estimator Classification 3,918,745 34 4 446.55
t18 FPGrowth Estimator Association Rules 823,593 180 180 697.00
t19 Decision Tree Estimator Classification 2,939,059 26 4 284.33
t20 SVM Estimator Classification 5,000,000 27 0 321.86
t21 FPGrowth Estimator Association Rules 164,719 180 180 139.87
t22 GMM Estimator Clustering 3,000,000 27 0 193.12
t23 K-Means Estimator Clustering 4,898,431 26 4 473.88
t24 Decision Tree Estimator Classification 2,000,000 104 0 495.90
t25 K-Means Estimator Clustering 2,458,285 69 0 344.60
t26 FPGrowth Estimator Association Rules 494,156 180 180 417.01

In such a situation, data spilling to disk cannot be avoided, but the IIWM tries to
minimize the number of bytes written and the duration of I/O operations. Even in this
scenario, the prediction model achieved very accurate results, shown in Table 11, confirming
its forecasting abilities.

Future Internet 2021, 13, 121 18 of 23

Table 11. Performance evaluation of the prediction model.

RMSE MAE Adjusted R2 Pearson Correlation

Storage Memory 213.81 78.92 0.98 0.99
Execution Memory 29.86 11.56 0.98 0.99

Duration 20,086.80 9925.13 0.82 0.94

Figure 8 shows the disk occupancy during the execution. As we can see, even the IIWM
could not avoid data spilling, even though its disk usage was much lower considering the
peak value and write duration compared to full-parallel.

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25
Elapsed time (min)

0

5

10

15

20

25

Di
sk

 u
sa

ge
 (G

B)

(a) Disk usage of full-parallel

0 2 3 5 7 8 10 12 13 15 17 18 20
Elapsed time (min)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
sk

 u
sa

ge
 (G

B)
(b) Disk usage of the IIWM

Figure 8. Disk usage over time for full-parallel and the IIWM.

Finally, Table 12 shows the statistics about disk usage and execution times. Again,
the IIWM achieved better results with a boost in performance of almost 1.30× (pimp) with
respect to a full-parallel strategy and a 23% reduction in time (mimp) on average. An
interesting aspect that emerged from the behavior of the IIWM scheduler, in the task-
scheduling plan, was the similarity with priority-based scheduling in assigning tasks based
on decreasing weights. In fact, tasks characterized by low memory occupancy may be
assigned to tailing stages even if they are close to the root (e.g., in full-parallel, t1 is executed
in the second stage, while in the IIWM, it is executed in the seventh one). Hence, in a
dynamic scheduling scenario where tasks can be added at runtime, the IIWM may suffer
from the starvation problem, as such tasks may experience an indefinite delay as far as
new tasks with a higher memory weight are provided to the scheduler. Nevertheless, in
the proposed work, we dealt with a static scheduling problem, where all tasks were known
in advance and the task set was not modifiable at runtime.

Table 12. Scheduling plan and statistics about execution times and disk usage with 9.5 GB of RAM.

Strategy Task-Scheduling Plan Number
of Stages Time (min) Peak Disk

Usage (MB)
Writes

Duration (min)
On-Disk

Usage (MB)

Full-Parallel

(t0), (t1 ‖ t2 ‖ t3 ‖ t4),
(t5 ‖ t6 ‖ t7 ‖ t8 ‖ t9 ‖ t10 ‖ t11 ‖ t12),

(t13 ‖ t14 ‖ t15 ‖ t16 ‖ t17 ‖ t18 ‖ t19 ‖ t20),
(t21), (t22 ‖ t23 ‖ t24 ‖ t25), (t26)

7 29.42± 1.88 27,095.84 20.6 10,593.79

IIWM

(t0), (t4 ‖ t2), (t11 ‖ t7), (t8 ‖ t3),
(t15 ‖ t10 ‖ t9 ‖ t16), (t18),

(t17 ‖ t1 ‖ t12), (t6 ‖ t5), (t14),
(t13 ‖ t20 ‖ t19), (t21),

(t23 ‖ t24), (t25), (t22), (t26)

15 22.68± 1.65 304.5 3.6 60.82

4.2. Real Case Study

In order to assess the performance of the proposed approach against a real case study,
we used a data mining workflow [27] that implements a model selection strategy for the
classification of an unlabeled dataset. Figure 9 shows a representation of the workflow

Future Internet 2021, 13, 121 19 of 23

designed by the visual language VL4Cloud [28]. The training set was divided into n
partitions, and k classification algorithms were fit on each partition for generating k× n
classification models. The k× n fit models were evaluated by a model selector on a test
set to choose the best model. Afterwards, the n predictors used the best model to generate
n classified datasets. The following k classification algorithms provided by the MLlib
library were used: decision tree with C4.5 algorithm, Support Vector Machines (SVMs), and
naive Bayes. The training set, test set, and unlabeled dataset provided as the input for the
workflow were generated from the Physical Unclonable Functions (PUFs) [29] simulation
through an n-fold-cross strategy. In this scenario, the IIWM can be used to optimize the data
processing phase regarding the execution of the k× n classification algorithms (estimators
first, transformers second) concurrently. The other phases, such as data acquisition and
partitioning, were outside our interest. The red box in Figure 9 shows the tasks of the
workflow that were analyzed.

Filter [m]

PS: dataset

dataset fDataset

FUnlab [m]

dataset sDataset

Train Shuffler STrain

Partitioner

dataset

TrainPart [n]

ClAlgo [1][n]

PS: dataset

model

Model [1][n]

ClAlgo [2][n]

PS: dataset

model

Model [2][n]

ClAlgo [k][n]

PS: dataset

model

Model [k][n]

ModelSelector

Test

BestModel

bestModel

Predictor [m]

PS: dataset

ClassDataset[m]
UnLab [m]

dataset

dataset

Figure 9. Ensemble learning workflow.

Figure 10 shows disk occupancy over time with 14 GB of RAM. In this case as well,
the IIWM avoided disk writes, while full-parallel registered a high level of disk usage. In
particular, during the training phase, the parallel execution of the k× n models (with k = 3
and n = 5) saturated memory with 15 concurrent tasks and generated disk writes up to
124 GB.

0 2 3 5 7 8 10
Elapsed time (min)

0

25

50

75

100

125

Di
sk

 u
sa

ge
 (G

B)

Full-Parallel
IIWM

Figure 10. Disk usage over time for full-parallel and the IIWM.

The results are detailed in Table 13, which shows a boost in execution time of almost
1.66× (pimp) and a 40% time reduction (mimp) with respect to full-parallel.

Future Internet 2021, 13, 121 20 of 23

Table 13. Scheduling plan and statistics about execution times and disk usage with 14 GB of RAM.

Strategy Task-Scheduling Plan Number
of Stages

Time (min) Peak Disk
Usage (MB)

Writes
Duration (min)

On-Disk
Usage (MB)

Full-Parallel (t0 ‖ t2 ‖ t4 ‖ t6 ‖ t8 ‖ t10 ‖ t12 ‖ t14 ‖ t16 ‖ t18 ‖ t20 ‖ t22 ‖ t24 ‖ t26 ‖ t28),
(t1 ‖ t3 ‖ t5 ‖ t7 ‖ t9 ‖ t11 ‖ t13 ‖ t15 ‖ t17 ‖ t19 ‖ t21 ‖ t23 ‖ t25 ‖ t27 ‖ t29)

2 11.42± 0.27 124,730.87 9.6 54,443.19

IIWM
(t10 ‖ t12 ‖ t14 ‖ t16 ‖ t20 ‖ t22 ‖ t24 ‖ t26 ‖ t28),

(t18 ‖ t0 ‖ t2 ‖ t4 ‖ t6 ‖ t8 ‖ t11 ‖ t13 ‖ t15 ‖ t17 ‖ t21 ‖ t23 ‖ t25 ‖ t27 ‖ t29),
(t19 ‖ t1 ‖ t3 ‖ t5 ‖ t7 ‖ t9)

3 6.88± 0.1 0 0 0

Future Internet 2021, 13, 121 21 of 23

The general trends varying the amount of available resources were also confirmed
with respect to the previous examples, as shown in Figure 11.

14 18 22
Memory size (GB)

0

20

40

60

80

100

120

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Disk usage

14 18 22
Memory size (GB)

7

8

9

10

11

12

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
) Full-Parallel

IIWM

(b) Average execution time

Figure 11. Average peak disk usage and execution time, varying the size of available memory.

5. Conclusions and Final Remarks

Currently, data-intensive workflows are widely used in several application domains,
such as bioinformatics, astronomy, and engineering. This paper introduced and evaluated a
system, named the Intelligent In-memory Workflow Manager (IIWM), aimed at optimizing
the in-memory execution of data-intensive workflows on high-performance computing
systems. Experimental results suggested that by jointly using a machine learning model for
performance estimation and a suitable scheduling strategy, the execution of data-intensive
workflows can be significantly improved with respect to state-of-the-art blind strategies. In
particular, the main benefits of the IIWM resulted when it was applied to workflows having
a high level of parallelism. In this case, a significant reduction of memory saturation was
obtained. Therefore, it can be used effectively when multiple tasks have to be executed on
the same computing node, for example when they need to be run on multiple immovable
datasets located on a single node or due to other hardware constraints. In these cases,
an uninformed scheduling strategy will likely exceed the available memory, causing disk
writes and, therefore, a drop in performance. The proposed approach was also shown
to be a very suitable solution in scenarios characterized by a limited amount of memory
reserved for execution, thus finding possible applications in data-intensive IoT workflows,
where data processing is performed on constrained devices located at the network edge.

The IIWM was evaluated against different scenarios concerning both synthetic and
real data mining workflows, using Apache Spark as a testbed. Specifically, by accurately
predicting the resources used at runtime, our approach achieved up to a 31% and a 40%
reduction of makespan and a performance improvement up to 1.45× and 1.66× on the
synthetic workflows and the real case study, respectively.

In future work, additional aspects of the performance estimation will be investigated.
For example, IIWM can be extended also to consider: (i) other common stages in workflows
besides data analysis, such as data acquisition, integration, and reduction; (ii) more complex
algorithms like Artificial Neural Networks or Random Forests; (iii) other information about
tasks, input data, and hardware platform features.

Author Contributions: Methodology, R.C., F.M., A.O., D.T. and P.T.; software, R.C and A.O.; valida-
tion, R.C., F.M., A.O., D.T. and P.T.; formal analysis, R.C., F.M., A.O., D.T. and P.T.; investigation, R.C.,
F.M., A.O. and P.T.; writing—original draft preparation, R.C., F.M., A.O. and P.T.; writing—review
and editing, R.C., F.M., A.O., D.T. and P.T.; visualization, R.C., F.M. and A.O.; supervision, D.T.
and P.T.; funding acquisition, D.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the ASPIDE Project funded by the European Union’s
Horizon 2020 Research and Innovation Programme grant number 801091.

Future Internet 2021, 13, 121 22 of 23

Data Availability Statement: The data generated in this study are openly available at https://github.
com/SCAlabUnical/IIWM/ (accessed on 29 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Talia, D.; Trunfio, P.; Marozzo, F. Data Analysis in the Cloud; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-12-802881-0.
2. Da Costa, G.; Fahringer, T.; Rico-Gallego, J.A.; Grasso, I.; Hristov, A.; Karatza, H.D.; Lastovetsky, A.; Marozzo, F.; Petcu, D.;

Stavrinides, G.L.; et al. Exascale machines require new programming paradigms and runtimes. Supercomput. Front. Innov. 2015,
2, 6–27.

3. Li, M.; Tan, J.; Wang, Y.; Zhang, L.; Salapura, V. SparkBench: A Comprehensive Benchmarking Suite for in Memory Data Analytic
Platform Spark. In Proceedings of the 12th ACM International Conference on Computing Frontiers, Ischia, Italy, 18–21 May 2015;
Association for Computing Machinery: New York, NY, USA, 2015. [CrossRef]

4. De Oliveira, D.C.; Liu, J.; Pacitti, E. Data-intensive workflow management: For clouds and data-intensive and scalable computing
environments. Synth. Lect. Data Manag. 2019, 14, 1–179. [CrossRef]

5. Verma, A.; Mansuri, A.H.; Jain, N. Big data management processing with Hadoop MapReduce and spark technology: A
comparison. In Proceedings of the 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India, 18–19
March 2016; pp. 1–4. [CrossRef]

6. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

7. Samadi, Y.; Zbakh, M.; Tadonki, C. Performance comparison between Hadoop and Spark frameworks using HiBench benchmarks.
Concurr. Comput. Pract. Exp. 2018, 30, e4367. [CrossRef]

8. Delimitrou, C.; Kozyrakis, C. Quasar: Resource-Efficient and QoS-Aware Cluster Management. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and Operating Systems, Salt Lake City, UT, USA,
1–5 March 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 127–144. [CrossRef]

9. Llull, Q.; Fan, S.; Zahedi, S.M.; Lee, B.C. Cooper: Task Colocation with Cooperative Games. In Proceedings of the 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017;
pp. 421–432. [CrossRef]

10. Marco, V.S.; Taylor, B.; Porter, B.; Wang, Z. Improving Spark Application Throughput via Memory Aware Task Co-Location: A
Mixture of Experts Approach. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, Las Vegas, NV, USA,
11–15 December 2017; Association for Computing Machinery: New York, NY, USA, 2017; Middleware’17, pp. 95–108. [CrossRef]

11. Maros, A.; Murai, F.; Couto da Silva, A.P.; Almeida, J.M.; Lattuada, M.; Gianniti, E.; Hosseini, M.; Ardagna, D. Machine Learning
for Performance Prediction of Spark Cloud Applications. In Proceedings of the 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 99–106. [CrossRef]

12. Talia, D. Workflow Systems for Science: Concepts and Tools. Int. Sch. Res. Not. 2013, 2013, 404525. [CrossRef]
13. Smanchat, S.; Viriyapant, K. Taxonomies of workflow scheduling problem and techniques in the cloud. Future Gener. Comput.

Syst. 2015, 52, 1–12. [CrossRef]
14. Bittencourt, L.F.; Madeira, E.R.M.; Da Fonseca, N.L.S. Scheduling in hybrid clouds. IEEE Commun. Mag. 2012, 50, 42–47.

[CrossRef]
15. Zhao, Y.; Hu, F.; Chen, H. An adaptive tuning strategy on spark based on in-memory computation characteristics. In Proceedings

of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 31 January–3
February 2016; pp. 484–488. [CrossRef]

16. Chen, D.; Chen, H.; Jiang, Z.; Zhao, Y. An adaptive memory tuning strategy with high performance for Spark. Int. J. Big Data
Intell. 2017, 4, 276–286. [CrossRef]

17. Xuan, P.; Luo, F.; Ge, R.; Srimani, P.K. Dynamic Management of In-Memory Storage for Efficiently Integrating Compute-and
Data-Intensive Computing on HPC Systems. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 549–558. [CrossRef]

18. Tang, Z.; Zeng, A.; Zhang, X.; Yang, L.; Li, K. Dynamic memory-aware scheduling in spark computing environment. J. Parallel
Distrib. Comput. 2020, 141, 10–22. [CrossRef]

19. Bae, J.; Jang, H.; Jin, W.; Heo, J.; Jang, J.; Hwang, J.; Cho, S.; Lee, J.W. Jointly optimizing task granularity and concurrency for
in-memory mapreduce frameworks. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston,
MA, USA, 11–14 December 2017; pp. 130–140. [CrossRef]

20. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
21. Liu, J.; Pacitti, E.; Valduriez, P.; Mattoso, M. A Survey of Data-Intensive Scientific Workflow Management. J. Grid Comput. 2015,

13, 457–493. [CrossRef]
22. Raj, P.H.; Kumar, P.R.; Jelciana, P. Load Balancing in Mobile Cloud Computing using Bin Packing’s First Fit Decreasing Method.

In Proceedings of the International Conference on Computational Intelligence in Information System, Brunei, 16–18 November
2018; Springer: Berlin, Germany, 2018; pp. 97–106.

https://github.com/SCAlabUnical/IIWM/
https://github.com/SCAlabUnical/IIWM/
http://doi.org/10.1145/2742854.2747283
http://dx.doi.org/10.2200/S00915ED1V01Y201904DTM060
http://dx.doi.org/10.1109/CDAN.2016.7570891
http://dx.doi.org/10.1002/cpe.4367
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1109/HPCA.2017.22
http://dx.doi.org/10.1145/3135974.3135984
http://dx.doi.org/10.1109/CLOUD.2019.00028
http://dx.doi.org/10.1155/2013/404525
http://dx.doi.org/10.1016/j.future.2015.04.019
http://dx.doi.org/10.1109/MCOM.2012.6295710
http://dx.doi.org/10.1109/ICACT.2016.7423442
http://dx.doi.org/10.1504/IJBDI.2017.086970
http://dx.doi.org/10.1109/CCGRID.2017.66
http://dx.doi.org/10.1016/j.jpdc.2020.03.010
http://dx.doi.org/10.1109/BigData.2017.8257921
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1007/s10723-015-9329-8

Future Internet 2021, 13, 121 23 of 23

23. Baker, T.; Aldawsari, B.; Asim, M.; Tawfik, H.; Maamar, Z.; Buyya, R. Cloud-SEnergy: A bin-packing based multi-cloud service
broker for energy efficient composition and execution of data-intensive applications. Sustain. Comput. Informatics Syst. 2018,
19, 242–252. [CrossRef]

24. Stavrinides, G.L.; Karatza, H.D. Scheduling real-time DAGs in heterogeneous clusters by combining imprecise computations and
bin packing techniques for the exploitation of schedule holes. Future Gener. Comput. Syst. 2012, 28, 977–988. [CrossRef]

25. Coffman, E.G., Jr.; Garey, M.R.; Johnson, D.S. An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 1978,
7, 1–17. [CrossRef]

26. Darapuneni, Y.J. A Survey of Classical and Recent Results in Bin Packing Problem. UNLV Theses, Dissertations, Professional
Papers, and Capstones. 2012. Available online: https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=2664&context=
thesesdissertations (accessed on 29 April 2021).

27. Marozzo, F.; Rodrigo Duro, F.; Garcia Blas, J.; Carretero, J.; Talia, D.; Trunfio, P. A data-aware scheduling strategy for workflow
execution in clouds. Concurr. Comput. Pract. Exp. 2017, 29, e4229. [CrossRef]

28. Marozzo, F.; Talia, D.; Trunfio, P. A Workflow Management System for Scalable Data Mining on Clouds. IEEE Trans. Serv. Comput.
2018, 11, 480–492. ISSN: 1939-1374. [CrossRef]

29. Aseeri, A.O.; Zhuang, Y.; Alkatheiri, M.S. A Machine Learning-Based Security Vulnerability Study on XOR PUFs for Resource-
Constraint Internet of Things. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT), San
Francisco, CA, USA, 2–7 July 2018; pp. 49–56. [CrossRef]

http://dx.doi.org/10.1016/j.suscom.2018.05.011
http://dx.doi.org/10.1016/j.future.2012.03.002
http://dx.doi.org/10.1137/0207001
https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=2664&context=thesesdissertations
https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=2664&context=thesesdissertations
http://dx.doi.org/10.1002/cpe.4229
http://dx.doi.org/10.1109/TSC.2016.2589243
http://dx.doi.org/10.1109/ICIOT.2018.00014

	Introduction
	Related Work
	Analytical-Based
	Machine Learning-Based

	Materials and Methods
	Execution Monitoring and Dataset Creation
	Execution Monitoring within the Spark Unified Memory Model
	Dataset Creation

	Prediction Model Training
	Workflow Scheduling

	Results and Discussion
	Synthetic Workflows
	Real Case Study

	Conclusions and Final Remarks
	References

