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Abstract: The classification of different fine hand movements from electroencephalogram (EEG)
signals represents a relevant research challenge, e.g., in BCI applications for motor rehabilitation.
Here, we analyzed two different datasets where fine hand movements (touch, grasp, palmar, and
lateral grasp) were performed in a self-paced modality. We trained and tested a newly proposed
CNN, and we compared its classification performance with two well-established machine learning
models, namely, shrinkage-linear discriminant analysis (LDA) and Random Forest (RF). Compared to
previous literature, we included neuroscientific evidence, and we trained our Convolutional Neural
Network (CNN) model on the so-called movement-related cortical potentials (MRCPs). They are
EEG amplitude modulations at low frequencies, i.e., (0.3, 3) Hz that have been proved to encode
several properties of the movements, e.g., type of grasp, force level, and speed. We showed that
CNN achieved good performance in both datasets (accuracy of 0.70± 0.11 and 0.64± 0.10, for the
two datasets, respectively), and they were similar or superior to the baseline models (accuracy of
0.68± 0.10 and 0.62± 0.07 with sLDA; accuracy of 0.70± 0.15 and 0.61± 0.07 with RF, with compa-
rable performance in precision and recall). In addition, compared to the baseline, our CNN requires
a faster pre-processing procedure, paving the way for its possible use in online BCI applications.
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1. Introduction

Several BCI systems for motor rehabilitation or motor control [1–6] and other basic
neuroscience studies strongly rely on the ability to precisely and effectively distinguish
different fine hand movements. One example is the investigation of the neural mechanisms
underlying the writing and the music performance [7,8] or during real-life performance
in ecologically valid situations outside the laboratory [9]. Movement-related cortical
potentials (MRCPs) are amplitude modulations of the time-domain EEG signal that occur in
the (0.3, 3) Hz frequency band [10]. MRCPs can be detected during motor execution, motor
attempt, and even during imagery of a movement, and they reflect the cortical processes
involved in the planning and execution of a movement [11]. Previous literature [10]
reports that the components of the MRCPs can be influenced by several factors, such
as the preparatory state (self-paced or cue-based), the level of intention [12], the type of
movement, the praxis, and the previous experience of the same movement. Nevertheless,
it has been found that MRCPs can also encode several properties of the movements, such
as the type of grasp [13], the force level [14], and the speed of the task [15]. In addition,
MRCPs have been previously employed to discriminate hand movements in patients with
severe manual impairments [5]. For this reason, MRCPs are considered valid signals to
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be used for BCI control [5,6]. Based on this well-established neuroscience background,
our aim was to test if a deep learning (DL) approach can improve the performance of the
classification of touch, grasp, palmar, and lateral grasp movements. Previous literature
has already investigated the classification of different fine hand movements, including
touch and different kinds of grasp [16–18]. Shrinkage linear discriminant analysis (sLDA)
and random forest (RF) are well-established approaches for electroencephalography (EEG)
classification, showing low complexity and good performance even with a limited amount
of trials. However, they might score poorly in case of complex nonlinear EEG data [19].
However, deep DL has recently demonstrated promising results in decoding brain activity
in several scenarios, e.g., sleep stage scoring [20], epileptic seizure detection [21], as well
as hand movement classification [22]. Therefore, the aim of this work was to evaluate
the performance of a newly proposed DL-based model, compared to the well-established
sLDA and RF methods, in the classification of three different classes of movement, using
two pre-recorded datasets. Given the small size of our datasets, we decided to adopt a
CNN-based model to classify MRCPs, as it has been previously showed to be effective in
small datasets [23–25].

The paper is organized as follows: in Section 2, we present the most relevant previous
studies related to our work; in Section 3, we describe the experimental protocol, the
common steps of pre-processing for all models, our proposed CNN model, and we briefly
review the two baseline models chosen for comparison. In Section 4, we report and discuss
all results, both from the qualitative analysis of the MRCPs and of the classification from
different movements. Finally, Section 5 concludes the paper and mentions the possible
impact of this work for other studies.

2. Related Works

The possibility of decoding touch and grasp actions from low-frequency EEG signals
has been shown in other studies [16–18]. Well-established literature proved that brain ac-
tivity in the frequency band 2–5 Hz contains relevant movement-related information. Thus,
in [26], the authors proposed an interesting approach to classify speed in hand movements:
they applied wavelet-CSP to MRCPs and were able to classify slow and fast movements
with 83.71% accuracy. In [18], Ofner et al. classified single upper limb movements with a
binary classification approach, recording six different types of movements, both executed
and imagined, and rest trials. For the executed movements, in the movements versus rest
binary classification, the average accuracy reached the value of 87%, while, for the move-
ments versus movements, the average accuracy dropped down to 55%. For the imagined
movements, an accuracy of as less as 27% and 73% was obtained for movements versus
movements and rest versus movements classification, respectively. In [16], palmar, lateral, and
pincer grasps were recorded and classified, in a cue-based paradigm. A 4-class sLDA was
used to classify the three movements and the rest data, obtaining a peak accuracy of 65.9%.
Moreover, a binary classifier was trained in the same study, for each binary combination of
classes. The palmar versus lateral grasp classification obtained a peak accuracy of 73.5%.
In [17], MRCP was shown to significantly discriminate between unimanual (e.g., left hand
vs. right hand grasps) as well unimanual vs. bimanual movements. Particularly, both
unimanual and bimanual reach and grasp actions were classified with sLDA based on
low-frequency time-domain EEG in the frequency range 0.3–3 Hz. Binary combinations of
the different movements were also classified separately, leading to average accuracies for
the movement classes between 66% and 70%. The highest accuracies were obtained with
the rest class versus the movement ones, with performance between 74% to 90%. Recently,
new approaches have been increasing. DL showed promising results in many different
fields of application and has been successfully applied also in the BCI field [27]. It provided
satisfactory outcomes in a variety of EEG analysis, ranging from channel selection to classi-
fication of motor imagery (MI). Among other models, CNN was particularly successful
to extract spatial and frequency features from EEG for speech classification, as reported
in [28], to detect artifacts in EEG [21], as well as to recognize MI for BCI [25]. In the works
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by Dose [23] and Lee [24], the possibility of MI-EEG classification using a CNN architecture
was explored. In both studies, the input of the CNN was represented by the raw EEG signal,
without any pre-processing. In [23], fist movements were classified and transfer learning
was also used, reaching a subject-specific accuracy of 86.49%, and a standard accuracy of
80.38%. In [24], instead, four MI classes were analyzed, namely elbow extension, twisting,
grasping, and rest. The average accuracy obtained was 84%. It is worth noting that these
results were obtained with a relatively low amount of data: only 50 trials for each class
were available, for a total of 150 trials for the training of the DL architecture.

3. Materials and Methods

For this work, we re-analyzed two datasets, which were recorded in the scope of the
EU Horizon 2020 project “MoreGrasp” [6]. First, we describe the experimental protocol
used to acquire the two datasets. Second, we describe the pre-processing pipeline that is
employed in this study, both before the CNN and the baseline models. Then, we introduce
our CNN-based model and the baseline models used for the performance comparison.
Finally, we explain the cross-validation procedure and the metric we used for the evaluation
of the performance.

3.1. Experimental Protocol

At the very beginning of the experimental protocol, the participants’ handedness was
tested with the well-known hand dominance test of [29]. Then, they were asked to seat on
a comfortable chair in a noise and electromagnetic shielded room. Their brain activity was
acquired via EEG by means of 4 g.USBamp amplifiers (g.tec medical engineering GmbH,
Austria) and a 64 gel-based channel EEG cap (g.GAMMAsys/g.LADYbird, g.tec medical
engineering GmbH, Austria). Incidentally, 58 electrodes recorded the brain activity, while
six of them were used to record the electrooculogram (EOG). The EEG electrodes locations
were defined by a well-established modified version of the International 10–20 System [30].
All data were recorded using a 256 Hz sampling frequency. In the resting position, the
participants’ right arm was placed, relaxed, upon a pressure button on a table in front of
them. They were also recommended to avoid unnecessary body or eye movements, and
to fix their gaze at a fixed point, for a few seconds, at the beginning of each repetition of
the movement. All movements were self-initiated to ensure a more natural application
scenario. Additionally, at the beginning, middle, and end of the experiment, 3 min rest was
repeated 3 times.

3.1.1. Experiment 1—Touch and Grasp

In the first experiment, 11 healthy volunteers (11 males, ages 20–38) were included.
The hand dominance test resulted in nine right-handed participants, one left-handed and
one undefined. During the experiment, two glasses were on the table at the participant’s
reaching distance. They were equipped with one pressure sensor each, in order to precisely
detect the grasping onset. The participants were instructed either to grasp the first glass
or to touch the second glass for a minimum time of 4 s. Thus, the total duration of each
repetition was longer than 5 s. Four sessions of 20 repetitions of the same movement, i.e.,
grasping and touching, were included in the protocol. Thus, 80 touching and 80 grasping
movements were performed by each participant at the end of the experiment. After each
session, the participants could take a break and the glasses were switched. The same
number of repetitions was performed in each glasses’ positions. On the computer screen in
front of them, they could see the remaining number of trials to perform.

3.1.2. Experiment 2—Palmar and Lateral

In the second experiment, 15 right handed participants (10 males, ages 21–30) were
involved. During the experiment, two jars were on the table at the participant’s reaching
distance. The first one was empty, while the second had a spoon stuck in it. The participants
were instructed either to reach-and-grasp the first jar or the second for a minimum time of
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2 s. Thus, the total duration of each repetition was longer than 5 s. They freely decided
which movement to perform. To interact with the empty jar, they had to perform a palmar
grasp, while, for the jar with the spoon, they exploited a lateral grasp. Four sessions of
20 repetitions of the same movement, i.e., palmar or lateral grasp, were included in the
protocol. After each session, the participants could take a break and the objects were
switched. The same number of repetitions was performed in both objects’ positions. The
full experimental description can be found in [17].

3.2. Pre-Processing

We adopted the same pre-processing pipeline for both EEG datasets used in this study.
The pipeline is a well-established algorithm, previously implemented in [16,17]. The full
data processing was implemented in Matlab 2020a [31]. A scheme of the pre-processing
pipeline is displayed in Figure 1.

Figure 1. Pre-processing pipeline.

First, every EEG signal was band-pass filtered between 0.01 Hz and 100 Hz (Chebyshev
filter, order 8). Second, a notch filter was applied to suppress the power line noise at 50 Hz.
Additionally, ICA was applied for classification with sLDA as well as RF, to identify and
remove the artifacts due to eye movements, as in [32]. Third, a narrower band-pass filter
(Butterworth filter, order 4) was applied to extract the signal low-frequency component
in the band (0.3, 3) Hz [33]. All filters were implemented using the non-causal Matlab
function filtfilt in order to compensate for the delay introduced by them. The full dataset,
i.e., including all EEG signals, was transformed using the common average reference
(CAR) filter [34], a spatial filter used to enhance the signal component due to the brain
region under each individual EEG sensor (i.e., discarding components that are spread all
around the scalp). Finally, every signal was downsampled to 16 Hz (using the Matlab
function resample).

During the experimental sessions, a pressure sensor (either on the table or on the
object to interact with, see Section 3.1) was exploited to identify the time instants when the
individual initiated the movement, i.e., the movement onset. Therefore, proper segmenta-
tion of the continuous pre-processed EEG signals was ensured. Each segment (or trial) was
defined as the signal period of time from −2 s to +3 s around the movement onset (i.e.,
time 0). Not only movement-related trials, but also 5 s rest trials have been obtained from
the datasets: they were extracted from the 3 min rest periods (see Section 3.1).
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In order to include only clean data in the datasets to analyze, we applied a well-
established outlier rejection algorithm [35–37]. Briefly, it works as follows: a single trial
was kept in the dataset if it simultaneously met the following conditions: (1) its absolute
amplitude does not exceed 125 µV, (2) and its kurtosis does not exceed its standard deviation
by four times.

Finally, we obtained two different 3 class datasets: dataset 1 includes clean data
from Experiment 1, while dataset 2 includes those from Experiment 2. Both datasets can be
described as follows:

X(i) =


x(i)1 (1) x(i)1 (2) · · · x(i)1 (N)

x(i)2 (1)
. . . · · ·

...
...

...
. . .

...
x(i)58 (1) · · · · · · x(i)58 (N)

 (1)

where i is the total number of trials in the dataset (despite the specific class of movement),
and N the number of time samples available. At the end of the pre-processing procedure,
the dataset 1 includes 64.9± 5.6 Touch trials, 67.8± 7.8 Grasp trials, and 69.6± 3.9 Rest
trials (average number across subjects), while the dataset 2 includes 68.7 ± 2.8 Palmar
trials, 69.6± 5.1 Lateral trials, and 69.5± 2.8 Rest trials (average number across subjects).
Similarly, in the case in which (ICA) was used, the dataset 1 includes 63.9± 4.8 Touch trials,
64.4± 7.7 Grasp trials, and 67.1± 3.4 Rest trials; while dataset 2 includes 67.1± 3.7 Palmar
trials, 67.4± 4.9 Lateral trials, and 68.5± 4.1 Rest trials.

To note, N varies depending on the learning model used to analyze the data
(see Sections 3.3 and 3.4). X(i) can be interpreted as an EEG 2D image.

Moreover, the class of movements can be either touch, grasp, palmar, lateral or rest.
Dataset 1 includes touch, grasp and rest classes, while dataset 2 includes palmar, lateral, and
rest classes.

Both datasets were processed by adopting the same pre-processing pipeline reported
in Figure 1, separately. For both datasets, preliminary results (not reported here) showed
that sLDA and RF performed better if pre-processing includes an ICA step, while CNN
works better without any ICA decomposition. For this reason, Figure 1 shows two different
branches, depending on which classifier is used.

3.3. Classification with CNN

The CNN is a particular type of neural network that implements, in at least one of
its layers, a convolutional operation [38]. In this study, the architecture of the CNN was
adapted from [23,24]. As depicted in Figure 2, it consisted of five layers.

Figure 2. Schematic representation of the proposed CNN model architecture.

The first two were convolutional layers: the first one performed a temporal filter-
ing (i.e., convolution along the time axis), while the second one a spatial filtering (i.e.,
convolution along the channel axis). Each convolutional layer was followed by a batch
normalization and an exponential linear unit (eLu) activation function. Then, an average
pooling layer, which flattened the input to a single dimension, and two fully connected
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layers were stacked on the top of the convolutional ones. Finally, a softmax activation
function returned the probability of each sample to belong to each class. To note, since
the kernel size at the output of the second convolutional layer was equal to the number of
channels, this filter reduced the channel dimension to one. The input to this CNN was given
by the EEG 2D images X(i), for every available trial i, as computed in (1), which resulted in
a three-dimensional tensor. To implement such architecture, several parameters had to be
decided: specifically, the kernel size and the depth of the convolutional layers, and the size
of the pooling and dense layers. Given each participant, we used a grid-search procedure
to optimize such parameters over a priori selected ranges. Then, the optimal combination
of parameter values was given by a majority vote strategy across all participants. As a
result, the kernel size of the first convolutional layer was equal to 30, while, for the second
convolutional layer, it corresponded to the number of channels, i.e., 58. Moreover, for
both of them, the optimal depth was found to be 40 filters. The kernel size of the average
pooling layer was equal to 15, the first fully connected layer had 80 neurons, while the
second fully connected layer had three neurons, corresponding to the number of classes.
The same CNN architecture was used for both datasets, while one CNN model was trained
for each participant.

3.4. Classification with Baseline Models

Two state-of-the-art machine learning models were used for comparison with our
proposed CNN: an sLDA and an RF. They both have the advantages to be simple in their
implementation, to require a light computational burden, and to show good performance
in EEG classification during hand movements, gesture recognition, and BCI experiments.

The linear discriminant analysis (LDA) is a supervised multi-class classification tech-
nique that aims at estimating the parameters of the linear multivariate model of the input
data, via parametric density estimation procedure [19]. Here, the input to the sLDA is the
vector x obtained by reshaping matrix X as follows:

x(i) = [x(i)1 (1), x(i)2 (1), ..., x(i)58 (1), x(i)1 (2), x(i)2 (2), ..., x(i)58 (N)], (2)

where i is the trial number, and N the number of time samples available in the sliding
window. The shrinked LDA version, i.e., the sLDA, introduces a regularization strategy,
especially useful with high-dimensional feature spaces, when only a few data points are
available. For the regularization, we considered the pooled covariance matrix, computed
from the three classes, and we optimized the regularization parameter as in [39]. A common
approach to obtain the optimal sLDA model with time series, i.e., as in the EEG case, is
to train several sLDA models, each one based on a different subset of the training set
(e.g., given by a different observation window), and to select the one which yields the
best training performance. Thus, here, for each single trial i, a sliding window is used to
scan the entire EEG segment from −2 s to 3 s. Then, an sLDA model was obtained for
each, every 2, time instant (i.e., one every 125 ms). For each participant, the time instant
where the sLDA model resulted in the best classification performance was taken as the
trained model. Moreover, three different window lengths were tested for each participant,
specifically {0.6, 0.8, 1} s, and the same model training was repeated for every length value.

The RF is a classifier that works as an ensemble of individual decision tree algorithms
to reduce the risk of overfitting and, thus, to enhance the classification performance.
Each tree is obtained by independently bootstrapping the samples from the input dataset,
resulting in uncorrelated models whose predictions are more accurate than the ones we
would obtain from a single one [40]. Then, a random set of predictors is used at each split
to grow the tree [41]. To compute the predictions, a majority vote across the predictions of
the individual decision trees is used. In this study, the vector in (2) was also used as the
input to the RF. The number of trees was empirically set to 50, found as the best trade-off
between the classification accuracy and the computational complexity.
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3.5. Cross-Validation and Performance Evaluation

The performance of the classifiers were evaluated by means of the accuracy, computed
as follows:

accuracy =
correctly classified instances

total number of instances to classify
. (3)

The chance level was computed for each model and each participant by means of the
Adjusted Wald Interval [42], with α set to 0.05. For both datasets, we split each of them into a
training set (75%) and a validation set (25%). During training, a 10 times repeated 5-fold
cross validation procedure was adopted to ensure the robustness of the trained model. The
validation set was used for testing the performance of the trained models on unseen data.
All splits led to representative subset of the dataset, in order to have balanced classes for
an unbiased classification.

4. Results and Discussion

In this section, we describe both the quality of our dataset after pre-processing and
the results of the classification using the CNN model designed in Section 3.3, including the
comparison with sLDA and RF.

4.1. Pre-Processing, Feature Extraction, and MRCPs

As a result of the pre-processing (see Section 3.2), 3 out of 11 participants (namely,
S002, S003, S005) were rejected from the dataset 1, for the massive presence of artifacts in
their EEG recordings. Then, the high quality of the cleaned EEG data after pre-processing
is shown in Figure 3. It reports the subset of EEG segments, after synchronization to the
movement onset, for different movement classes and for rest periods, in both datasets.

(a)

(b)

Figure 3. EEG segments (EEG amplitude in µV) after synchronization to the movement onset. (a) Dataset 1, representative
participant Subject S000, and channel C1; (b) Dataset 2, representative participant Subject G04, and channel C1.
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In Figure 3, we can notice that, in case of any movement, negative values are seen
around time zero, i.e., the movement onset, which represent the negative peak of the
MRCPs. Moreover, all panels show good repeatability across movement repetitions. On
the contrary, as expected, in the rest condition, we cannot notice any clear pattern. We also
observed (results not reported for space constraints) that a difference in the MRCP peak
amplitude was especially noticeable at the EEG electrodes located in the contralateral side
of the movement and that this spatial pattern is consistent across several participants, in
line with other literature [43]. However, it is also clear that Dataset 1 is more affected by
noise compared to Dataset 2, so that, e.g., the touch-related EEG data could show a less
pronounced negative peak of the MRCPs (as seen in Figure 3a). We also observed that this
behavior is consistent across most of the channels, with no specific spatial pattern (results
not reported for space constraints).

4.2. Classification Results

Tables 1 and 2 report the comparison of the classification performance between the
CNN and the baseline models over the unseen validation sets. They show the results of
the classification in terms of accuracy. To achieve these performances, we used the CNN
model with the best selection of hyperparameters, employing the same architecture for
all participants. On the other hand, for sLDA and RF, we considered all possible choices
of the sliding window length, with the best window time location, for each participant.
The chance level was computed as in Section 3.5, and it was found to be 0.40. Comparing
the classification results among the three classifiers, similar accuracies were observed for
all of them, with all values above the chance level. Furthermore, they achieved slightly
better results in the Dataset 1, as expected from its higher repeatability across EEG segments
(see Figure 3), compared to the Dataset 2. However, for both datasets, the CNN model
reached the best average accuracy across all participants (0.70 for Dataset 1, 0.64 for
Dataset 2). Previous results on Dataset 2 were obtained using sLDA for the binary classifica-
tion of right hand palmar vs. lateral movements [17]. There, a grand-average participant-
specific peak accuracy of 66, 3% was reached (individual results were not available), in line
with our classification outcomes. sLDA and RF achieved the best classification accuracy at
the single-subject level in Dataset 1: thus, a particular configuration (i.e., an optimal choice
of the window length and time location) can lead a baseline model to yield higher per-
formance compared to CNN. Nevertheless, especially for the Dataset 2, the CNN showed
higher variability in the individual participant accuracies, with some of them reaching very
high values (0.80 for G12) and others slightly above the chance level (0.43 for G02). Finally,
from the confusion matrices (not reported here for space constraints), we observed that
the rest class was classified with the highest accuracy compared to the other movement
classes (best accuracy among the two datasets: 78% for rest, 57% for touch, 62% for grasp,
55% for palmar, 52% for lateral), in line with previous literature [16–18]. Precision and
recall metrics have also been computed for all subjects, in both dataset (results are reported
in Tables A1–A4 in the Appendix A). We obtained an average value of 0.68± 0.12 both
for precision and recall in Dataset 1 (average across subjects and models); similarly, we
obtained an average value of 0.60± 0.08 for precision and 0.61± 0.08 for recall in Dataset 2.
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Table 1. Comparison of classification performance (in terms of accuracy) in validation from Dataset 1.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

S000 0.62 0.60 0.64 0.64 0.58 0.58 0.58
S001 0.66 0.50 0.52 0.60 0.54 0.56 0.69
S004 0.74 0.75 0.73 0.75 0.69 0.73 0.69
S006 0.84 0.76 0.72 0.70 0.86 0.74 0.82
S007 0.68 0.76 0.80 0.76 0.78 0.73 0.80
S008 0.85 0.78 0.78 0.83 0.88 0.80 0.93
S009 0.61 0.62 0.67 0.50 0.62 0.58 0.62
S010 0.59 0.52 0.54 0.57 0.52 0.50 0.46

MEAN 0.70 0.66 0.68 0.67 0.68 0.65 0.70
STD 0.10 0.11 0.10 0.11 0.14 0.11 0.15

Table 2. Comparison of classification performance (in terms of accuracy) in validation from Dataset 2.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

G01 0.79 0.65 0.65 0.65 0.61 0.59 0.67
G02 0.43 0.61 0.55 0.53 0.49 0.63 0.47
G03 0.58 0.51 0.59 0.67 0.59 0.53 0.53
G04 0.58 0.67 0.63 0.61 0.53 0.59 0.55
G05 0.75 0.52 0.63 0.65 0.58 0.63 0.56
G06 0.55 0.51 0.60 0.64 0.68 0.53 0.49
G07 0.60 0.58 0.50 0.54 0.58 0.60 0.50
G08 0.72 0.78 0.75 0.78 0.67 0.76 0.73
G09 0.73 0.69 0.69 0.62 0.58 0.71 0.63
G10 0.65 0.65 0.54 0.54 0.63 0.61 0.63
G11 0.61 0.56 0.60 0.63 0.58 0.50 0.56
G12 0.80 0.56 0.58 0.58 0.66 0.66 0.52
G13 0.57 0.53 0.45 0.55 0.51 0.63 0.51
G14 0.60 0.64 0.68 0.75 0.55 0.59 0.55
G15 0.65 0.63 0.71 0.59 0.57 0.61 0.55

MEAN 0.64 0.61 0.61 0.62 0.59 0.61 0.56 *
STD 0.10 0.08 0.08 0.07 0.06 0.07 0.07

Note: * means p < 0.05 at the Mann–Whitney U test (α = 0.05).

As expected, a critical drawback of the CNN approach is its computational complexity,
significantly higher with respect to sLDA and RF: the former use less time points as an
input to train the model (either 0.6 s, 0.8 s and 1 s), while the latter took the entire 5 s
EEG segment into account. Therefore, the training time for a single model is significantly
lower compared to CNN: for a single subject, a single run of classification takes 0.46 s
for sLDA, 0.56 s for RF, and 29.16 s for CNN. However, we should notice that sLDA
and RF require a significant pre-processing step to select the optimal location of the time
window in the EEG segment for the classification. In addition, a 10 times 5-fold CV is
applied. Then, overall, the time required to classify one single subject by sLDA increases to
3 min, to 10 min for RF, while the CNN requires 31 min. In addition, CNN implements
a more complex architecture compared to sLDA and RF. However, it showed promising
advantages over sLDA and RF: indeed, the latter exploit a semi-quantitative pre-processing
pipeline, including ICA to clean data from eye movements artifacts. Moreover, for both
sLDA and RF, we needed to train a classifier at each time point to select the one that
led to the best performance. On the other hand, less pre-processing (i.e., without the
need of running ICA) was needed to classify the datasets by means of the CNN; and it is
completely automatic. Even if two relatively small datasets were available, we could show
that our CNN model can achieve classification accuracies in line with two well-established
baseline models. Moreover, we obtained similar performance with a simpler pre-processing
pipeline, reducing it to those steps (e.g., filtering and automatic trial rejection) that could
be performed in an online modality. This may be explained by the fact that the CNN
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can behave as an automatic feature extraction method as well as an efficient classifier. As
mentioned earlier, the CNN showed the drawback of a higher variability in the individual
participant accuracies compared to the baseline models. Therefore, further studies could
investigate the inter-individual differences of the CNN performance. Furthermore, CNN
needs to have 5 s EEG images as an input, while sLDA and RF could work with shorter
windows: thus, further studies are needed to identify the minimal input length for the
CNN architecture in order to produce acceptable classification outcomes. This could pave
the way for its application in an online scenario, i.e., the assisted living or a BCI system.
Finally, CNN could take larger advantage by the spatial information in the EEG dataset, by
applying a spatial convolution at its second layer. On the other hand, sLDA and RF did not
use this kind of information to enhance their predictions.

5. Conclusions

In this study, we evaluated the classification performance of a DL model, i.e., a CNN,
on two different datasets including self-paced fine hand movements (touch, grasp, palmar,
and lateral grasp). The classification results of the CNN were compared with two well-
established machine learning models, i.e., sLDA and RF. The classification included three
classes, i.e., two movements and the rest condition, and it was based on the components of
the EEG signals in the 0.3–3 Hz low frequency band. We showed that CNN achieved good
performance in both datasets (average accuracy of 0.70 in Dataset 1, 0.64 in Dataset 2, with
a chance level of 0.40), with similar or superior results compared to the baseline models.
All classifiers yielded better results in the first dataset (touch, grasp, and rest), reflecting
neurophysiological observations of the MRCPs that were more pronounced in that dataset.
We also highlighted that, compared to the baseline models, our CNN did not require strong
pre-processing, e.g., ICA, or heavy burden and semi-quantitative pre-processing steps,
paving the way for its possible use in online BCI applications.
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Abbreviations

BCI brain–computer interface
CAR common average reference
CNN convolutional neural network
DL deep learning
EEG electroencephalography
eLu exponential linear unit
EOG electrooculogram
ICA independent component analysis
LDA linear discriminant analysis
MRCPs movement-related cortical potentials
RF random forest
sLDA shrinkage linear discriminant analysis

Appendix A

Table A1. Comparison of classification performance (in terms of precision) in validation from
Dataset 1.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

S000 0.62 0.60 0.64 0.64 0.58 0.58 0.58
S001 0.66 0.50 0.52 0.60 0.54 0.56 0.69
S004 0.74 0.75 0.73 0.75 0.69 0.73 0.69
S006 0.83 0.76 0.72 0.70 0.86 0.74 0.83
S007 0.68 0.75 0.79 0.75 0.77 0.73 0.80
S008 0.84 0.75 0.79 0.85 0.88 0.79 0.93
S009 0.61 0.61 0.67 0.50 0.61 0.57 0.61
S010 0.58 0.52 0.54 0.57 0.52 0.50 0.46

MEAN 0.70 0.66 0.68 0.67 0.68 0.65 0.70
STD 0.10 0.11 0.10 0.11 0.14 0.11 0.15

Table A2. Comparison of classification performance (in terms of recall) in validation from Dataset 1.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

S000 0.62 0.59 0.65 0.64 0.58 0.58 0.60
S001 0.65 0.49 0.54 0.62 0.53 0.55 0.68
S004 0.76 0.78 0.74 0.76 0.69 0.73 0.71
S006 0.83 0.77 0.73 0.70 0.88 0.73 0.87
S007 0.69 0.75 0.81 0.78 0.80 0.73 0.79
S008 0.84 0.77 0.79 0.85 0.88 0.82 0.94
S009 0.62 0.62 0.67 0.51 0.61 0.56 0.64
S010 0.59 0.51 0.54 0.57 0.53 0.55 0.54

MEAN 0.70 0.66 0.68 0.68 0.69 0.66 0.72
STD 0.10 0.12 0.10 0.12 0.15 0.11 0.14

Table A3. Comparison of classification performance (in terms of precision) in validation from
Dataset 2.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

G01 0.79 0.64 0.65 0.65 0.60 0.59 0.66
G02 0.43 0.61 0.55 0.53 0.49 0.63 0.47
G03 0.59 0.51 0.59 0.68 0.59 0.53 0.53
G04 0.58 0.67 0.63 0.61 0.52 0.58 0.54
G05 0.75 0.52 0.62 0.64 0.58 0.62 0.56
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Table A3. Cont.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

G06 0.55 0.50 0.59 0.64 0.68 0.51 0.49
G07 0.59 0.57 0.49 0.53 0.56 0.59 0.50
G08 0.73 0.79 0.75 0.79 0.68 0.77 0.71
G09 0.74 0.69 0.69 0.62 0.57 0.71 0.63
G10 0.63 0.66 0.54 0.55 0.63 0.61 0.63
G11 0.61 0.55 0.59 0.63 0.56 0.49 0.55
G12 0.81 0.56 0.58 0.58 0.66 0.66 0.52
G13 0.58 0.53 0.45 0.56 0.51 0.63 0.51
G14 0.60 0.63 0.68 0.74 0.54 0.59 0.54
G15 0.65 0.63 0.71 0.59 0.57 0.61 0.55

MEAN 0.64 0.60 0.61 0.62 0.58 0.61 0.56 *
STD 0.10 0.08 0.08 0.07 0.06 0.07 0.07

Note. * means p < 0.05 at the Mann–Whitney U test (α = 0.05).

Table A4. Comparison of classification performance (in terms of recall) in validation from Dataset 2.

Subject CNN sLDA (0.6 s) sLDA (0.8 s) sLDA (1 s) RF (0.6 s) RF (0.8 s) RF (1 s)

G01 0.80 0.64 0.64 0.65 0.60 0.58 0.67
G02 0.46 0.62 0.54 0.53 0.49 0.63 0.47
G03 0.58 0.53 0.60 0.68 0.58 0.55 0.54
G04 0.59 0.66 0.63 0.62 0.52 0.57 0.52
G05 0.74 0.54 0.62 0.64 0.57 0.62 0.56
G06 0.55 0.52 0.57 0.63 0.68 0.67 0.51
G07 0.60 0.58 0.45 0.53 0.57 0.58 0.49
G08 0.73 0.81 0.75 0.80 0.67 0.77 0.73
G09 0.75 0.69 0.69 0.64 0.59 0.72 0.64
G10 0.64 0.65 0.44 0.51 0.62 0.59 0.63
G11 0.61 0.55 0.62 0.64 0.56 0.48 0.53
G12 0.80 0.57 0.57 0.57 0.66 0.66 0.54
G13 0.59 0.53 0.46 0.54 0.51 0.64 0.50
G14 0.60 0.64 0.67 0.73 0.54 0.58 0.54
G15 0.67 0.63 0.72 0.59 0.57 0.62 0.55

MEAN 0.65 0.61 0.60 0.62 0.58 * 0.62 0.56 *
STD 0.10 0.08 0.10 0.08 0.06 0.07 0.07

Note. * means p < 0.05 at the Mann–Whitney U test (α = 0.05).
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