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Abstract: Graph variational auto-encoder (GVAE) is a model that combines neural networks and
Bayes methods, capable of deeper exploring the influential latent features of graph reconstruction.
However, several pieces of research based on GVAE employ a plain prior distribution for latent vari-
ables, for instance, standard normal distribution (N(0,1)). Although this kind of simple distribution
has the advantage of convenient calculation, it will also make latent variables contain relatively little
helpful information. The lack of adequate expression of nodes will inevitably affect the process of
generating graphs, which will eventually lead to the discovery of only external relations and the
neglect of some complex internal correlations. In this paper, we present a novel prior distribution for
GVAE, called Dirichlet process (DP) construction for Student’s t (St) distribution. The DP allows the
latent variables to adapt their complexity during learning and then cooperates with heavy-tailed St
distribution to approach sufficient node representation. Experimental results show that this method
can achieve a relatively better performance against the baselines.

Keywords: neural network; Bayesian nonparametric; Graph variational auto-encoder; Student’s t
distribution; Dirichlet process; network representation learning

1. Introduction

Variational autoencoders (VAEs), graph variational autoencoders (GVAEs) and their
variants [1–3], the deep generative models that have emerged in recent years, integrate
the auto-encoder and variational inference, not only keep the excellent expression of the
neural network but solve the randomness of probabilistic latent variables in the generation
process. At present, the development of VAEs in the probability models has two primary
directions. The first is to design a more expressive variational posterior, the other one is
to replace the standard normal distribution prior of VAEs with learning more intricate
prior [4–8]. Although works in the first direction have made some signs of progress in
various kinds of learning tasks, delving into learning more about whether the variational
posterior is valid is still interesting. Reference [9] proved that even with a very strong
posterior, VAEs always can not match the learned posterior with N(0, I) prior. So we focus
on learning a prior with abundant semantics for GVAEs.

The performance of GVAEs is mainly dependent on the validity of their data represen-
tation. Learning the representation of graph data, also known as network representation
learning (NRL) [10–12], encodes nodes in the network and denotes them in a unified low-
dimensional latent space. Hence, one way to improve GVAEs prior is to use more flexible
probability distribution modeling latent variables. Gaussian distribution [13–16] is the most
widely used probability distribution of latent variables in VAE models [17–19]. This kind
of phenomenon is because of the well-known “central-limit theorem” [20]. If the sample
size is large enough, the distribution of the samples’ mean is approximately Gaussian,
irrelevant to the distribution of samples in the population. The mean value of the samples’
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mean distribution does not have to be zero, it depends on the value range of samples. More
specifically, if there are a set of non-negative samples, their mean value is also non-negative.
In addition, Gaussian distribution is the natural selection in the case of known mean and
variance owing to its information entropy is the largest under this condition. However, it
also has some disadvantages, especially its “empirical rule”, which makes up about 99.7%
of the numerical values distributed within three standard deviations centered on the mean.
When the latent space dimension increases, its ability to capture more information will
decline. Nevertheless, the choice of heavy-tailed Student’s t (St) distribution [21–24] can
significantly remedy this defect. For the reason that it can adaptively model the networks
according to the degree of freedom (dof) parameter. The dof parameter controls the curve
shape changes of the St distribution. The smaller the dof, the flatter the St distribution
curve. Conversely, the larger the dof, the curve is closer to the Gaussian distribution with
the same mean and scale parameters. Because most of the real-world networks are not
random, the degree distribution in different networks more or less has the power-law
property [25,26]. For instance, in the American airline network, nodes are airports, and the
links between them are airlines. The nodes such as John F. Kennedy International Airport
and Los Angeles International Airport are hubs with the power-law property. However,
there are just several hubs in a network, and most nodes have a handful of links [27].
In addition, each latent vector is a node representation, so that we can fit the structure of
real-world networks by applying the more general St distribution to model node represen-
tations. Concretely, ensuring the variational posterior of latent representation is close to a
St distribution with zero mean and one scale, while dof remains unchanged [4]. They solve
the problem that Gaussian prior never rejects outliers in the modeling. Furthermore, they
deal with data with image characteristics, which is different from this paper.

As we probe into the data with St distribution, it is a pivotal point that how to
statistically model data at an applicable complexity. If finite models used for analysis, we
must specify the number of latent features in advance, but it is unknown beforehand and
needs to learn from the data. In the paper citation network, latent features are represented
by the keywords of a paper. If the latent dimension is small, the latent features are
general keywords, such as data mining and the uncertainty of artificial intelligence. If the
latent dimension is large, the latent features may be more specific keywords, such as
anomaly detection, Bayesian network. By adding latent dimensions, the topic related to the
paper can be dug out; then we can find neglected correlation relationship of some papers.
However, if the latent dimension is too large, some useless latent features will appear, such
as Chebyshev’s inequality. Papers that apply the same inequality are regarded as relevant ,
but this decision is inaccurate in most cases.

The Bayesian nonparametric approach [28–31] gives us a way to solve this problem,
which assumes that latent structures grow with data so that an infinite number of latent
features can exist in the model. Under this condition, the determination of model complex-
ity is incorporated into the data analysis process without setting manually based on expert
knowledge or supervision information. The Dirichlet Process (DP) [32–34] is a typical
Bayesian nonparametric method, which defines a binary matrix and each row of the matrix
represents a node representation, each dimension captures a specific aspect of nodes. DP,
as a prior of St distribution, can find possible features of all nodes in networks and also
help discover important missing information or links.

In this paper, we propose DP-St prior for GVAE. In detail, we use St distribution as
the probability distribution of a latent variable and solve the problem of limited detection
ability of the traditional Gaussian distribution. At the same time, we apply the DP to
explore more prior knowledge of nodes in a network, solve the problem that a fixed
capacity can not precisely capture the complexity of the available networks well. We
integrate DP and St distribution to construct an unbounded latent representation with
sufficient expression ability, longer tails, and a deeper dimension to provide tremendous
flexibility for latent variables. Our contributions are summarized as follows:
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• We proposed DP-St prior, DP is the prior of St distribution and combined it with GVAE
for network representation learning. The DP-St prior is a heavy-tailed nonparametric
process, which can adapt to the dimension of latent variables, generate manifold prior
knowledge for GVAE;

• We illustrate that the adjustment of the heavy-tailed level of St distribution is con-
ducive to filter out useless latent features and retain the most representative ones. It
can help detect missing links in the network and accurately model the real-world
networks.

• In the experiments, the improvement of link prediction and semi-supervised node
classification tasks are demonstrated. In particular, our model can effectively improve
the prediction accuracy of link prediction in low-dimensional latent variables caused
by St distribution modeling. It can also obtain the optimal prediction results in the
semi-supervised node classification task when the labeled training data is small.

2. Related Work

Exploring the proper form of latent representation is an essential task for many
representation learning applications. Moreover, we have seen that learning a prior of
latent variables is indispensable to the VAE models. From the theoretical perspective, some
recent studies demonstrate the necessity of learning VAE prior. Reference [35] highlighted
the significance of the probability distribution of latent space by analyzing some variants
of variational evidence lower bound objective (ELBO). Since it is necessary to complete
the VAE optimization process by maximizing the ELBO, and this process is equivalent
to minimizing the KL divergence between the variational posterior and prior of latent
variables. Furthermore, Reference [36] illustrates the negative impact of applying a simple
prior for VAE models. That is to say, it will result in few active latent variables, and finally
produce over-regularized models with unpromising latent representation, which is not
conducive to the tasks of presentation learning.

Considering the importance of latent representation for carrying out various learning
tasks, some models improved VAE from the perspective of the Gaussian distribution
of latent variables, which is commonly used in most VAE models and their variants.
Reference [37] elaborate that applying the nonparametric process to a neural network can
automatically ascertain some critical parameters in the model, such as model capacity.
They use the stick-breaking process to generate latent variables, and the Stick-Breaking
VAE model is constructed by various parameterization methods. This model shows more
discriminative ability of latent representation than Gaussian VAEs. Reference [4] replace the
Gaussian distribution of latent variables in the traditional VAE models with a higher error-
tolerant St distribution and apply the standard St distribution as a prior, and demonstrate
that heavy-tailed latent variables can aggrandize their flexibility when the data contains
outliers. Nonetheless, only aggrandizing the tail thickness is far from enough to make
the latent variables adapt to the dimension with sufficient flexibility and obtain ample
prior knowledge to represent the data. Nonetheless, only enlarging the tail thickness is far
from enough to make the latent variables adapt to the dimension with sufficient flexibility
and obtain ample prior knowledge to represent the data. All the works mentioned above
are used to deal with tasks related to image data, while we intend to do the presentation
learning tasks on network data.

There are also a few works that employ the DP prior. In [38], they focus on the task of
various classification through learning logistic-regression methods, and they illustrate that
the DP is helpful to learn the similarity between different classification tasks. The DP-GP-
LVM (Dirichlet Process-Gaussian Process-Latent Variable Models) [39] algorithm presents
a Bayesian nonparametric latent variable model, apply the Gaussian process prior and
DP prior at the same time. More precisely, they are used for producing latent variables
and learning structure, respectively. However, neither of these works has considered the
application of DP prior to latent variables. Our model takes full advantage of DP as a
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nonparametric method in the adaptive dimension and facilitates the learning of appropriate
representation for latent variables.

3. Background
3.1. Dirichlet Process

In the network representation learning, it is pivotal to learn an appropriate repre-
sentation for each node, which is demonstrated by a binary vector, every dimension of it
indicates a latent feature the node may possess. The Bayesian nonparametric method is
conducive to determining the number of latent features. The Dirichlet process (DP), as a
widely used Bayesian nonparametric method, places a prior probability distribution over
the sparse latent feature matrix, denoted Z ∼ DP(α), whose number of rows is finite and
columns are unbounded. The DP is defined as:

Zn | G ∼ G,

G ∼ DP(α, G0), (1)

where n = 1, 2, ..., N for N nodes in a network. The node representation Zn is drawn from
a prior probability distribution G. G is sampled from the DP with a base distribution G0
and a positive scale parameter α.

In addition, the product of DP is a discrete distribution. Hence, we can apply the
stick-breaking process to represent it more intuitively. The stick-breaking process is used
to generate infinite-dimensional discrete variables. This procedure requires sampling a
vector from a base distribution Beta(1, α) over [0, 1] for each node, and all elements of the
vector sum to one. Then, Reference [40] takes this process as the basis for the stick-breaking
generation, and completes the DP with stick-breaking construction by arranging feature
weights in descending order:

b(k) ∼ Beta(1, β),

µ(k) = b(k)
k−1

∏
l=1

(1− b(l−1)), (2)

where k = 1, 2, ..., K, β is the hyperparameter of Beta distribution, b(k) is the kth sample from
the Beta distribution, µ(k) is the kth weight from the DP process, and µ(1) > µ(2) > ... > µ(K)
indicates the descending ordering of µ1, µ2, ..., µK.

3.2. Student’s t Distribution

In the real world, many observed phenomena do not follow the frequently-used
Gaussian distribution, and a more permissive distribution should be used to describe them.
The Student’s t distribution (St) [41], as the most frequently used heavy-tailed distribution,
differs significantly from the Gaussian distribution, the thickness of tails is modulated
by the dof parameter υ. The smaller the dof parameter υ, the flatter the St distribution,
meaning the lower the middle of the curve, the higher the tails rise. In Figures 1 and 2,
we compare the St distribution with other similar probability distributions. As the dof
υ = 1, the curve is the Cauchy distribution, and as the dof υ = ∞, the curve is the Gaussian
distribution. Overall, the lower dof υ in distribution will result in the more permissive of
outliers. The probability density function (pdf) of the multivariate St distribution is:

f (x) =
Γ( υ+n

2 )

Γ( υ
2 )
√
(πυ)ndet(Σ)

[1 +
(x− µ)TΣ−1(x− µ)

υ
]

υ+n
2 , (3)

where random variable x ∈ Rn, with mean parameter µ ∈ Rn, scale matrix Σ ∈ Rn×n, dof
parameter υ, the diagonal elements of Σ are σ2, and n is the dimension of x.

We can use the reparameterization trick to reparameterize two samples u ∼ N(0, I),

w ∼ Gamma( u
2 , 1

2 ) by the transformation T(u, w) = u
√

υ
w , samples T(u, w) ∼ St(0, I, υ) of
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the standard St distribution can be obtained from that [42], and then the linear transforma-
tion t = µ + σT(u, w) gives us t ∼ St(µ, σ, υ).
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Figure 1. Several probability distribution function curves of common probability distribution. They
share the same mean and scale parameters, and there are two St distribution with dof parameter 5
and 50 respectively.
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Figure 2. Several cumulative distribution function curves of common probability distribution. They
share the same mean and scale parameters, and there are two St distribution with dof parameter 5
and 50, respectively.
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4. Method
4.1. DP-St GVAE

In this section, we will introduce the heavy-tailed priors based on Bayesian nonpara-
metric methods in detail, which is DP construction for St distribution priors. Utilizing the
augment of the prior distribution complexity, latent variables can be stimulated to learn
more features, and more expressive latent representation can be obtained to reduce the
reconstruction error.

Considering the St distribution as the prior distribution of latent variables, the bilateral
tail is thicker, which can cover more latent features with higher probability, compared with
the most commonly used Gaussian distribution. As the features increase, we have to allow
higher dimensional latent representation to pertain to the nodes. Therefore, we hope to use
DP to generate the mean parameter µ and scale parameter σ of the St distribution. This
method allows us to infer which factors have significant effects, and the dimensions of
latent variables. For the last parameter, dof parameter υ > 0 controls the tail shape of the
pdf curve of St distribution, with the increase of dof υ, the curve of the latent variables
changes gradually from the heavy-tailed Cauchy distribution to the Gaussian distribution,
which makes us find the curve that fits the observed data most in the procedure of learning
the dof parameter.

In Figure 3, we show the framework of the DP-St GVAE model in detail. First,
we assume that the observed data, adjacency matrix A ∈ RN×N and attribute matrix
X ∈ RN×C, are used as the inputs of encoder to generate the latent variables Z ∈ RN×K,
where the N observations come from a graph undirected attributed graph G(V, E, X). V
is the node set {v1, v2, ..., vN}, and E is a unweighted edge set, eij = 1 means there is a
undirected link between node vi and vj. We put a St distribution over the latent space,
and place the outputs of GVAE’s encoder over the mean, scale ,and dof parameters of St
distribution:

μA

X

σ

υ

DP

Encoder q(Z|A,X) Decoder

A'

Figure 3. The architecture of the DP-St GVAE. The encoder is a graph convolutional neural net-
work that integrates the network structure A with node feature X and, by extension, generates
the node representation Z. The decoder reconstructs a graph from the inner product of the node
representation Z.

qφ(Z | A, X) = St(f1,φ(A, X), f2,φ(A, X), f3,φ(A, X)), (4)

where f1,φ, f2,φ, f3,φ denote the neural networks with parameter φ.
Second, we replace the standard Gaussian prior with a DP-St distribution. The DP is

composed of a discrete base distribution G0 and a concentration parameter. To explicitly
illustrate the base distribution G0, the stick-breaking process is a good choice. It generates
unbounded sticks bnk ∈ [0, 1] independently from a beta distribution:

p(bnk | β) = Beta(bnk | 1, β). (5)
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From the procedure above, we obtain an infinite dimensional vector with components

πk(b) = bk
k−1
∏
l=1

(1− bl−1), which is used as the initialization of mean and scale parameters

in St prior of each node, and the dof parameter is initialed from a Uniform distribution:

p(Zn | β) = St(Zn | π1,n(β), π2,n(β), Uni(α)). (6)

In this way, we generate a latent representation of infinite dimensions for each node,
and the DP allows latent variables to adapt complexity in the learning process. Moreover,
it enables almost all nodes to seek out the most powerful features, reduced the error caused
by the traditional allocation mode of weak discrimination. Finally, we make full use of the
information inside the latent representation, and reconstruct a graph through the function
g(·) with parameter θ:

pθ(A | Z) = Bern(A | gθ(Z)). (7)

4.2. Variational Inference for DP Prior

We find that there is no direct method to deal with the posterior distribution of latent
variables in the condition of DP-St prior. Variational inference opens up our train of thought
and leads to a deterministic way for the approximate calculation of the likelihoods and
posteriors. We denote the observed adjacency matrix A and attribute X as W = {A, X},
the hyperparameter psi, the log posterior distribution of latent variable Z is:

logp(Z |W, ψ) = logp(W, Z | ψ)− logp(W | ψ). (8)

However, we don’t compute this posterior distribution directly due to the calculation
of normalizing constant, and through some transformation, we can obtain the log marginal
probability of the observation W:

logp(W | ψ) = log
∫

p(W, Z | ψ)dZ. (9)

This equation is difficult to compute because of the dependency relationship between
the latent variables and observed data.

In this work, we use the mean-field variational method, converting to an optimization
problem from handling the posterior distribution problem. On this basis, the Kullback-
Leibler (KL) divergence between posterior distribution qφ(Z |W) and true posterior p(Z)
need to be optimized in training:

KL[qφ(Z |W) ‖ p(Z)] = Eq[logqφ(Z |W)]−Eq[logp(Z)] + logP(W). (10)

The upper bound of KL divergence between variational posterior q(z) = St(µ1, Σ1, υ1)
and St prior p(z) = St(µ2, Σ2, υ2) is [43] :

KL[q(z) ‖ p(z)]

≤ 1
2

ln
detΣ2

detΣ1
+

n
2

ln
υ2

υ1
+ ln Γ(

υ1 + n
2

)− ln Γ(
υ1

2
)

− ln Γ(
υ2 + n

2
) + ln Γ(

υ2

2
)− υ1 + n

2
[ψ(

υ1 + n
2

)− ψ(
υ1

2
)]

+
υ2 + n

2
ln(1 +

1
υ2

tr(Σ−1
2 Σ̃1) +

1
υ2

tr[Σ−1
2 (µ1 − µ2)(µ1 − µ2)

T ]),

(11)

where ψ(·) is digamma function, Σ̃1 = υ1
υ1−2 Σ1.
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Minimizing the Equation (10) can be translated into maximizing the lower bound of
the log-likelihood logp(W). We finally achieve the objective function:

L(µ, σ, υ, φ) = Eqφ(Z|A,X)[logp(A | Z)]− KL[qφ(Z | A, X) ‖ pµ,σ,υ(Z)]. (12)

5. Experiments

We report the performance of our DP-St GVAE on two tasks—unsupervised link
prediction and semi-supervised node classification. Our model has been put into effect on
three benchmark citation datasets (Cora, Citeseer, and PubMed) [44], and the datasets are
described in Table 1 in detail. Each node in these datasets represents literature, and has a
unique attribute vector, the connection between literature indicates that there is a reference
relationship between them.

Table 1. Details of the datasets.

Cora Citeseer PubMed

Nodes 2708 3327 19,717
Edges 5429 4732 44,338

Features 1433 3703 500
Labels 7 6 3

In all experiments, the models are realized by TensorFlow, and ADAM is used for
training. The encoder is composed of GCN [45] with parameter φ, and we let function
g(Z) use activation function tanh for the transformation ZZT . In our DP-St GVAE model,
the sticking-breaking hyperparameter β is set to 10, and the Uniform distribution hyperpa-
rameter α is set to 10.

5.1. Link Prediction

To assess our model’s ability to perform link prediction tasks, we compared it with
two algorithms: GVAE [3] and standard tGVAE [4]. Our model improves the problem that
the standard St distribution as a prior can not fully discover the latent information for a
large portion of nodes in networks, and in our experiments, it is applied to the network
data, whose encoder and decoder are changed to use the same settings as our method, then
we denoted it as St GVAE.

For this task, we will follow the settings of GVAE and make the encoder use GCN of
two layers to conduct four groups of comparative experiments, the dimensions of latent
space are 8, 16, 32, and 64, and the corresponding GCN hidden layer sizes are 16, 32, 64,
and 128 respectively. All experiments use a learning rate of 0.01. When the learning rate
is 0.1, it is difficult for the model to converge in training. When the learning rate is 0.001,
the model converges very slowly, and its performance in learning tasks is lower than that
in the learning rate of 0.01. The validation set and the test set contain 5% and 10% of the
network edges. AUC (area under ROC curve) and AP (average accuracy) are used as the
assessment criteria for the correct classification of edge types in the networks.

We show link prediction performance on three citation datasets in Tables 2–4, and our
model is almost better than the contrastive approaches. As we can see from the experimen-
tal results, with the augment of the latent space dimension, the predictive performances of
GVAE and St GVAE models are increasing, and our model presents a trend like a parabola.
This is because our model can automatically select the most appropriate latent dimension,
and the latent features under this dimension are conducive to the reconstruction of net-
work structure. Moreover, there are St GVAE with a large predicted improvement span in
the low-dimension interval, and GVAE with a uniform rising trend about the dimension.
When the dimension of latent space is low, such as 8, the performance of St GVAE is the
weakest among the three models, because, in the case of fewer latent features, the use of
heavy-tailed St distribution can, to some extent, obscure the differences between various
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features. This indicates the importance of constructing the St distribution with DP because
DP can help find the most critical features for each node among these few latent features.
This ranking of importance can digest the disadvantage of heavy-tailed distribution in
low-dimensional latent space.

Table 2. Link prediction performance comparison of different dimensions for Cora.

8 Dimensions 16 Dimensions 32 Dimensions 64 Dimensions

AUC AP AUC AP AUC AP AUC AP

GVAE 91.0 91.1 91.4 92.6 92.7 93.6 93.3 94.4
St GVAE 85.5 83.4 91.0 89.9 92.1 89.7 95.0 95.2

DP-St GVAE 92.3 93.9 94.1 95.1 94.4 95.5 93.5 94.8

Table 3. Link prediction performance comparison of different dimensions for Citeseer.

8 Dimensions 16 Dimensions 32 Dimensions 64 Dimensions

AUC AP AUC AP AUC AP AUC AP

GVAE 89.5 90.5 90.8 92.0 91.0 92.1 91.1 92.5
St GVAE 80.6 80.0 90.9 89.9 95.5 95.0 95.5 96.1

DP-St GVAE 95.5 96.2 96.9 97.2 97.3 97.6 96.9 97.2

Table 4. Link prediction performance comparison of different dimensions for PubMed.

8 Dimensions 16 Dimensions 32 Dimensions 64 Dimensions

AUC AP AUC AP AUC AP AUC AP

GVAE 92.7 92.9 94.4 94.7 95.6 95.6 96.5 96.5
St GVAE 89.9 87.8 97.4 97.3 97.8 97.5 97.8 97.6

DP-St GVAE 96.4 97.1 97.1 97.0 97.3 97.4 97.9 97.8

Now, to understand the latent representation Z, we visualize its posterior probability,
qφ(Z), for GVAE and DP-St GVAE models on Cora and Citeseer datasets. With regard to
the node selection for visualization, we first randomly select ten nodes with the most and
the least number of latent features with high probability respectively, and then randomly
choose 10 nodes in the remaining node-set. In addition, the dimensions of latent variables
in the DP-St GVAE model are automatically determined, and for the convenience of compar-
ison, we select similar dimensions for the GVAE model. From Figures 4a and 5a, we can see
that many nodes have multiple latent features with high probability, and the latent represen-
tation contains rich information and complex correlation. However, in Figures 4b and 5b,
the latent representation has higher sparsity, and the latent features of each node are more
explicit. In the same dimension of latent space, the latent representation generated by
GVAE will bring more disturbing information and severely restrict the nodes to find the
most representative latent features. After adding a DP-St prior, the various information
can be screened, and those useless features that have a negative impact on the target task
can be discarded to produce appropriate latent representation.
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(a) Graph variational auto-encoder (GVAE) for Cora dataset
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(b) DP-St GVAE for Cora dataset

Figure 4. Latent representation visualization for Cora dataset. The horizontal axis is the dimension
of the hidden variable, and the vertical axis is the number of nodes. (a) the latent variable learned
by GVAE. (b) the latent variable learned by DP-St GVAE. The darker the higher probability nodes
possess the latent features.
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(a) GVAE for Citeseer dataset
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(b) DP-St GVAE for Citeseer dataset

Figure 5. Latent representation visualization for Citeseer dataset. The horizontal axis is the dimension
of the hidden variable, and the vertical axis is the number of nodes. (a) the latent variable learned
by GVAE. (b) the latent variable learned by DP-St GVAE. The darker the higher probability nodes
possess the latent features.

5.2. Semi-Supervised Node Classification

For the semi-supervised node classification task, the goal is to make the label pre-
diction for nodes without labels. So, in this task, we add the cross-entropy term of labels
to the objective function (12). We make use of the random split partition method [46],
randomly dividing all nodes in each dataset into three subsets, training set, validation set,
and test set. The number of known labels has been separated into three groups, with 5,
10, and 20 labels per class. For this experiment, we compare our model with the GVAE
and St GVAE models used in the link prediction task and added several related works in
this task—Graph attention network (GAT) [47], and Graph convolutional neural network
(GCN) [45].

Tables 5–7, respectively, show the results on the Cora, Citeseer, and PubMed datasets.
The experimental results illustrate that our model achieves the optimal classification
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result on the PubMed dataset, because there is heavy-tailed degree distribution, and our
model can precisely grasp the hidden information and obtain a more obvious accuracy
improvement. On the Cora and Citesser datasets, our model is able to achieve more
competitive results when the number of labels is known to be smaller. When the number
of known labels is tiny, we can see that the node classification performance of GVAE is
less than 50% on the Citeseer dataset, suggesting a high error rate in the generated node
representation. Furthermore, it is obvious that the St GVAE model improves the prediction
accuracy by replacing the Gaussian distribution with the St distribution, indicating that
the traditional Gaussian distribution leaves out some essential information for nodes,
and the St distribution can avoid this problem. Finally, when we construct a DP prior
for the St distribution, each node can capture the most important hidden information,
which provides convenience for discovering the correlation between nodes, and thus the
affiliation of nodes.

Table 5. Semi-supervised node classification prediction accuracy for Cora.

5 Labels 10 Labels 20 Labels

GAT 70.4 ± 3.7 76.6 ± 2.8 79.9 ± 1.8
GCN 70.0 ± 3.7 76.0 ± 2.2 79.8 ± 1.8
GVAE 68.4 ± 2.4 70.3 ± 2.7 71.6 ± 1.4

St GVAE 69.8 ± 2.4 71.0 ± 1.5 72.2 ± 2.0
DP-St GVAE 75.1 ± 2.6 76.9 ± 2.7 79.3 ± 2.4

Table 6. Semi-supervised node classification prediction accuracy for Citeseer.

5 Labels 10 Labels 20 Labels

GAT 56.7 ± 5.1 64.1 ± 3.3 67.6 ± 2.3
GCN 58.5 ± 4.7 65.4 ± 2.6 67.8 ± 2.3
GVAE 49.1 ± 1.8 52.1 ± 1.4 52.4 ± 2.5

St GVAE 52.5 ± 1.3 53.1 ± 2.9 53.8 ± 1.5
DP-St GVAE 59.2 ± 2.5 64.5 ± 2.5 67.9 ± 1.8

Table 7. Semi-supervised node classification prediction accuracy for PubMed.

5 Labels 10 Labels 20 Labels

GAT 68.0 ± 4.8 72.6 ± 3.6 76.4 ± 3.0
GCN 69.7 ± 4.5 73.9 ± 3.4 77.5 ± 2.5
GVAE 74.6 ± 1.9 74.9 ± 2.3 75.4 ± 3.0

St GVAE 76.2 ± 2.6 77.5 ± 3.3 79.0 ± 3.9
DP-St GVAE 76.4 ± 3.9 78.4 ± 1.9 79.8 ± 1.2

6. Conclusions

In this work, we propose a DP construction for Student’s t distribution prior, and com-
bine it with GVAE. We solve the inaccuracy problem of modeling real-world networks
by manually setting latent dimensions through the adaptive complexity of Bayesian non-
parametric methods. In addition, the advantages and disadvantages of applying Gaussian
distribution in traditional VAEs are analyzed at length, and we have illustrated that the
application of Student’s t distribution can effectively improve the limitation of effective
latent features. Here, our DP-St GVAE is used to the network structure data, and the com-
bination of the infinite-dimensional nonparametric generation process and heavy-tailed
distribution plays an important role in network presentation learning tasks. In the future,
our work will proceed, and there are two primary directions: (i) applying the DP-St to deep
neural networks so that the problem of future research will break the limitation of graph
structure data; (ii) using other Bayesian nonparametric methods for further improving the
prediction accuracy of network representation learning tasks.
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