
future internet

Article

Deep Model Poisoning Attack on Federated Learning

Xingchen Zhou 1, Ming Xu 1,* , Yiming Wu 1 and Ning Zheng 1,2

����������
�������

Citation: Zhou, X.; Xu, M.; Wu, Y.;

Zheng, N. Deep Model Poisoning

Attack on Federated Learning. Future

Internet 2021, 13, 73. https://

doi.org/10.3390/fi13030073

Academic Editor: Nicolae Goga

Received: 18 February 2021

Accepted: 11 March 2021

Published: 14 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China; yuripuck@hdu.edu.cn (X.Z.);
yimgwu@hotmail.com (Y.W.); nzheng@hdu.edu.cn (N.Z.)

2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: mxu@hdu.edu.cn

Abstract: Federated learning is a novel distributed learning framework, which enables thousands of
participants to collaboratively construct a deep learning model. In order to protect confidentiality of
the training data, the shared information between server and participants are only limited to model
parameters. However, this setting is vulnerable to model poisoning attack, since the participants have
permission to modify the model parameters. In this paper, we perform systematic investigation for
such threats in federated learning and propose a novel optimization-based model poisoning attack.
Different from existing methods, we primarily focus on the effectiveness, persistence and stealth of
attacks. Numerical experiments demonstrate that the proposed method can not only achieve high
attack success rate, but it is also stealthy enough to bypass two existing defense methods.

Keywords: federated learning; model poisoning attack; decentralized approach

1. Introduction

Recently proposed federated learning is an attractive framework for the massively
distributed training of deep learning models with thousands or even millions of partic-
ipants [1–3]. In a federated learning model, the training dataset is decentralized among
multiple devices (e.g., laptops, mobile phones, and IoT devices), which could belong to
different users or organizations. Owing to serious privacy threats, the participant trains the
shared model and then submits model updates, while keeping their training data locally.
In this approach, there is a central server (aggregator) that coordinates the learning process
and aggregates the model updates from the clients, which locally trains the model using
their own private datasets. Because the clients can fully control their private data and arbi-
trarily modify their local model, the malicious clients may leverage adversarial algorithm
to perform targeted attack (e.g., backdoor attack [4–6], model poisoning attack [7–9] and
data poisoning attack [10,11]), or untargeted attack (e.g., Byzantine failures [9,12]) and
untargeted attack [13–15]. In this paper, those training that have malicious purpose and
deviate from the main task are called an adversarial task.

There still remain several limitations in the aforementioned attacks in federated
learning. First, because untargeted attacks reduce the overall performance of the main task,
they are easier to be detected [16–19]. In other words, the attack should avoid degrading the
global model’s performance on a validation set to bypass accuracy checking. Furthermore,
state-of-the-art model poisoning attacks mainly utilize a hyperparameter to scale up the
effectiveness of client’s malicious model. Because explicit boosting changes the distribution
of weights, those attacks can be easily detected and mitigated by a secure aggregator with
model checking [20,21]. Therefore, how to maintain stealth in model poisoning attack
among multiple clients remains an open problem. Besides, in the real world, a federated
learning system may consist of millions of clients, and only a small fraction of the clients’
updates will be selected each round [22]. As a result, the absence of persistence in a model
poisoning attack may result in attack failure.

To address these challenges, in this paper, we propose a novel optimization-based
model poisoning attack in federated learning. In order to overcome the aforementioned

Future Internet 2021, 13, 73. https://doi.org/10.3390/fi13030073 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9332-5258
https://doi.org/10.3390/fi13030073
https://doi.org/10.3390/fi13030073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13030073
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13030073?type=check_update&version=2

Future Internet 2021, 13, 73 2 of 14

limitations, we exploit model capacity and inject poisoning neurons in model redundant
space to improve the persistence of attack. Our key contributions can be summarized,
as follows:

• By analyzing model capacity, we propose an optimization-based model poisoning attack
and inject adversarial neurons in the redundant space of a neural network. It should
be noted that those redundant neurons are important for poisoning attack, while they
have less correlation to the main task of federated learning. Therefore, the proposed
model poisoning attack will not degrade the performance of main task on the shared
global model.

• We generalize two defenses that are used in collaborative learning system to defend
against local model poisoning attacks. The numerical experiments demonstrate
that the proposed method can bypass defense methods and achieve a high attack
success rate.

2. Background and Related Works

In this section, we present background on machine learning, collaborative learning,
and discuss existing poisoning attack in federated learning.

2.1. Machine Learning

A machine learning model is a function fΘ : X 7→ Y parameterized by a set of
parameters Θ, where X ∈ Rd denotes the d-dimensional feature space and Y represents
the output space. Without a loss of generality, we consider a supervised learning scenario
and use (xi, yi) to denote a data point and its label. To find the optimal set of parameters that
fits the training data, the machine learning model is optimized by the training algorithm
via objective function, which penalizes the model when it outputs a wrong label on a data
point. By adopting loss function L({xi, yi}; Θ), we can measure the fitness on a data point
{xi, yi} given the model parameters Θ. It should be noted that the loss function L in this
paper is cross-entropy.

2.2. Collaborative Learning

With the rapid growth of datasets, the machine learning model becomes increasingly
complex, and training a deep neural network on a large dataset can be time and resource
consuming. In traditional centralized framework, multiple participants are forced to
upload their private datasets into a trust central server on which it is possible to learn a
model (see Figure 1a for illustration). With the concern of privacy leakage, confidentiality
organizations, like the government and bank, may not willing to participate in centralized
learning [23]. Another elastic approach to mitigate this drawback is to partition the training
dataset, concurrently train separated models on each subset, and then aggregate model
parameters through a parameter server [24]. However, this approach may suffer from great
efficiency degrading. Regarding privacy and efficiency preservation, the authors of [1]
propose the federated learning framework to collaboratively train a deep learning model
with many participants.

Figure 1b shows the training procedure of federated learning. At each round t, the
central server releases shared global model Gt to all participants, and randomly selects a
subset St of n participants from a total of N clients. Each selected client i optimizes global
model Gt to obtain local model (Lt+1

i) for t + 1 round while using its private dataset Di.

Subsequently, client i submits model update ∆t+1
i =

(
Lt+1

i −Gt
)

back to to the central
server. Finally, the central server averages the received updates in order to obtain the new
joint model:

Gt+1 = Gt +
η

n ∑
i∈St

∆t+1
i (1)

where η is the learning rate and ∆t+1
i denotes model updates.

Future Internet 2021, 13, 73 3 of 14

(a) Centralized learning (b) Federated learning

…

…
① Upload data

Client 1 Client 2 Client n

Central server

Θ

…

Central server

③ Aggregate

① Release Gt

Client 2

Lt+1
2

②

Client n

Lt+1
n

② Train model

Lt+1
1

②

Client 1

Gt

③ Train model

④ Release model Θ

② Collect data

Figure 1. Flowchart of centralized learning and federated learning framework. (a) Clients upload
local dataset to a trust central server, (b) while, in the federated learning system, clients keep their
private data locally.

As shown in Figure 1, the main differences between centralized learning and federated
learning can be summarized as: (1) in centralized learning system, clients fully control
a subset of training data, but have no access to change neural network directly. In this
scenario, a malicious client may inject poisoning data to launch a data poisoning attack;
and, (2) in collaborative learning system, as demonstrated in Equation (1), malicious clients
can directly modify model parameters and inject adversarial features in a model update to
launch a model poisoning attack. Owing to the aforementioned advantages, the federated
learning paradigm has recently been transferred into many deep learning scenarios [25–28].
In the following paragraphs, we will review some of the strategies that are related to data
poisoning attack and model poisoning attack, and then revisit their differences.

2.3. Attacks against Machine Learning

A machine learning system can be viewed as a generalized data processing pipeline.
A primitive sequence of in implementing a machine learning system can be viewed as:
(1) data processing: including collection, tagging label and transformation of the input
data, (2) model training: including model training and fine-tuning the trained model,
(3) model evaluation: including model testing, and (4) system deployment: including
model deployment and model prediction. Typically, it exhibits to the public an overall
process including: (1) data processing, where the adversary may put elaborate poisoning
samples to the training data leading to poisoning attack, (2) model training, where it
converts a large volume of data into a trained model and the adversary may influence the
training procedure, and (3) system deployment, where the model can be used for prediction,
as per input data, and the adversary may launch the evasion attack in this stage. Prediction
tasks are widely used in different fields, e.g., image classification, speech recognition,
natural language processing, and malware detection are all pertinent applications for deep
learning. The attack surface, in this case, can be defined with respect to the data processing
pipeline. An adversary can attempt to manipulate either the collection or the processing
of data to corrupt the target model, thus tampering the original output. The main attack
scenarios identified by the attack surface are sketched below:

• Evasion Attack: this is the most common type of attack in the adversarial setting. The
adversary tries to evade the system by adjusting malicious samples during testing
phase. This setting does not assume any influence over the training data.

• Poisoning Attack: this type of attack, which is known as contamination of the training
data, takes place during the training time of the machine learning model. An adversary

Future Internet 2021, 13, 73 4 of 14

tries to poison the training data by injecting carefully designed samples to compromise
the whole learning process eventually.

• Exploratory Attack: these attacks do not influence training dataset. Given black box
access to the model, they try to gain as much knowledge as possible about the learning
algorithm of the underlying system and pattern in training data. The definition of a
threat model depends on the information that the adversary has at their disposal.

2.4. Related Works

The attacks can be categorized into data poisoning and model poisoning, according
to the capability of the attacker. In data poisoning attack, the attacker is assumed to
control a fraction of the training data used by the learning algorithm. Through injecting
poisoning points into the training set, a neural network may be contaminated, and then the
attacker can facilitate subsequent system evasion [10,11,29,30]. Traditional data poisoning
attacks simply flip the labels of training samples from the target class [31], and many
state-of-the-art works propose optimization based data poisoning attack [10,11,32].

In federated learning, because the clients can fully control local data and the training
process is done locally, a malicious client can change the model update to perform a model
poisoning attack [7–9]. Model poisoning attack takes advantage of the observation that
any participant in federated learning can (1) directly influence the weights of the shared
global model through model update and (2) inject poisoning neurons into the shared global
model via any training strategy, e.g., arbitrarily add any regularization term in objective
function, and modify its local model update to promote its stealth under the detection of
central server.

By leveraging the fact that neural network model is a black-box, the authors of [4]
propose a backdoor attack approach through model replacement. As the global model
converges, the sum of model updates that are submitted by benign clients approximates
to zero (i.e., ∑i∈St\m

(
Lt+1

i −Gt
)
≈ 0). Under this assumption, the adversary can scale up

its poisoning model using factor n
η to replace the shared global model Gt+1 (i.e., Gt+1 ≈

Gt + ∆t+1
m). Despite the promising results that are shown in [4], one has to keep in mind

that the boosted learning rate will drastically alter the distribution of weights, and it can
be detected by central server with some statistics methods [22]. In the subsequent study,
the authors of [8] propose an effective method by alternating minimization benign and
malicious training to improve the stealth of attack. However, both of the methods proposed
in [4,8] are ineffective for single-shot attack, since the central server retraining the main
task will result in the catastrophic forgetting of an adversarial task. Table 1 summarizes the
most notable poisoning attacks recent years. In this paper, we propose a model poisoning
attack in federated learning that is based on optimization, which is stealthy enough to
bypass defense methods and persistent to avoid catastrophic forgetting. In the following
section, we would like to present details of proposed attack methodology.

Table 1. A summary of recent poisoning attacks against machine learning.

Attack Category Methods Persistence Stealth Scenario

Data poisoning

[10]
[11]
[31]
[32]

�7
�7
�7
�7

�7
�7
�3
�7

Machine learning
Linear regression
Clean-label attack

Recommender system

Model poisoning
[4]
[8]

Proposed

�7
�7
�3

�7
�3

�3

Federated learning
Federated learning
Federated learning

Future Internet 2021, 13, 73 5 of 14

3. Attack Methodology

In this section, we formulate both the learning paradigm and the threat model
that we consider throughout the paper. Operating in the federated learning paradigm,
where the model is shared instead of data, gives rise to the model poisoning attacks that
we investigated.

In our previous study, we find that only small branch of neurons changed during the
training stage, while most of the neurons are closing to zero. Those unchanged neurons are
called redundant space of a neural network for the learning task. The core idea behind our
proposed method is that we want to embed poisoning neurons into the redundant space of
a neural network under the guidance of optimizer to keep the stealth and persistence of an
attack. In the following paragraphs, we will first define the adversary’s goal, knowledge
of the attacked system, and specifically present the design of optimization-based model
poisoning attack strategy.

3.1. Problem Definition

We consider that our attack method consists a total of N clients working in a federated
learning system. We follow the notations and definitions of federated learning, as defined
in [1]. At each round t, the server randomly selects C · N clients (C ≤ 1) to participate
training process. Each selected client i receives global model Gt at round t and fine-tunes
global model to obtain model update ∆t+1

i . The malicious client m holds a clean dataset

Dm = {(xm
j , ym

j)}
|Dm |
j=1 and a poisoning datasetDp = {(xm

j , τ)}|Dp|
j=1 , where τ is the attacker’s

target label. The attacker utilizes Dm for benign training to maintain high performance of
local model in main task, meanwhile fine-tuning the neural network withDp for adversarial
task. The malicious client alternately refines main task and adversarial task using Dm and
Dp, respectively, which is called alternating minimization (see Figure 2 for detail).

…

Client 2

Lt+1
2

②

Client 1

Lt+1
1

②

Lt+1
3

②

Client 3

Central server

Aggregate

Gt

③

① Release Gt

Client m

(1) Main task

(2) Adversarial task

(3) Model update

Δ = η1 ⋅ Δm + n
η

⋅ Δp

GtΔm

Δp

m

Benign training

Δm

p Δp

Malicious training

Figure 2. Overview the pipeline of deep model poisoning attack. The adversary alternately trains a mini-batch of Dm and
Dp for a main task and adversarial task, respectively. Finally, the adversary boosts the poisoning model update ∆p to the
central server.

3.2. Adversary’s Goal

The goal of model poisoning attack is to cause targeted misclassification on any
specified point over the shared global model, while preserving the prediction accuracy on
the test dataset Dtest.

Future Internet 2021, 13, 73 6 of 14

It should be noted that, different from previous threat models considered for
Byzantine-resilient learning, the adversary’s goal is not to prevent the convergence of
the global model [16,17,33] or to mislead it to converge to a bad local minima [34]. As
a result, the attack strategy that is used in model poisoning should ensure that the global
model converges to a point with good performance on the testing set. Besides, beyond
the standard federated learning framework, it is practical that the central server utilizes a
statistical algorithm to detect and reject aberrant models. To overcome this challenge, the
poisoning model should meet up with notions of stealth to avoid detection and keep attack
performance for many rounds to mitigate the effect of rejection. We will define and justify
the stealth and persistence of the proposed model poisoning attack in Section 3.4.

3.3. Adversary’s Capability

The attacker cannot control the aggregation algorithm, which is used to combine
participants’ model updates into the shared global model, nor does it have any knowledge
of the benign participants’ local training. We assume a non-colluding malicious client,
where the adversary has no partner to exchange any information. However, as defined in
standard federated learning framework, the attacker can directly influence the weights
of the joint model and train in any way that benefits the attack (e.g., adopting alternating
minimization training strategy, introducing adversarial task).

3.4. Optimization-Based Model Poisoning Attack

The primary challenges of the proposed deep model poisoning attack can be sum-
marized as: how can we effectively cause targeted misclassification, meanwhile keeping
the persistence of poisoning effectiveness and stealth of attack. Different from traditional
model poisoning attacks that simply train poisoning samples to contaminate a neural
network, we propose an optimization-based model poisoning attack against federated
learning. Figure 2 depicts the pipeline of deep model poisoning attack, which consists of
the main task, adversarial task, and a model update module. In the main task, we utilize
the benign training to maintain the high performance of local model Lt+1

m and constrain
neural network weights to make the poisoning model similar to benign clients’. While in
the adversarial task, we intent to embed adversarial features into the redundant space of a
neural network to improve the persistence of attack. Following the alternating minimiza-
tion strategy that was proposed in [8], we iteratively optimize the main task and adversarial
task before convergence of model. In the following paragraphs, we will first present the
strategy regarding benign training and adversarial training, and then illustrate how to
promote stealth and persistence in model poisoning attack to against defense methods.

(1) Main task: a secure central server may utilize its auxiliary knowledge to check two
critical properties of the submitted model updates, as discussed in [8,22]. First, the secure
central server can evaluate the accuracy of submitted model updates on a validation set.
Second, the secure central server can verify model updates through the simple statistical
method to reject aberrant models. We put forward constrained loss function for main task
in order to bypass those defense methods in the central server. For the first challenge, the
malicious client alternately trains a mini-batch of clean sample Dm and poisoning sample
Dp to keep the high performance of submitted model update (i.e., ∆m and ∆p, see Figure 2
for detail). For the second challenge, a regularization term is added to loss function to
make the malicious client’s model update similar to benign’s in statistics. Overall, the
adversarial objective of main task becomes:

arg min
Θ?

= LM(Dm; Θ?) + ρ1

∥∥∥∆t+1
m − ∆

t
ben

∥∥∥
2

(2)

where ρ1 is a hyperparameter, LM means Cross-entropy loss for main task, and ∆
t
ben

denotes benign clients’ averaged model updates. In this paper, ∆
t
ben is estimated using a

shared global model. We assume that the aggregated model is similar to benign client’s

Future Internet 2021, 13, 73 7 of 14

local model (i.e., ∆
t
ben ≈ Gt

St\m −Gt−1
St−1\m) as the shared global model converges to a point

with a high testing accuracy. It should be noted that the addition of a regularization term
is not sufficient to ensure that the malicious weight update is close to that of the benign
agents, since there could be multiple local minima with similar loss values.

In the following context, we would like to discuss the importance of constrained
regularization term Equation (2). The central server averages the all client’s model updates,
as shown in Equation (1). The malicious client scales up adversarial part of model update
with factor n

η to achieve targeted model poisoning in order to mitigating the effectiveness
of averaging. However, explicit scaling up strategy boosts the value of neurons, resulting
in the higher norm in model updates. The regularization term that is shown in Equation (2)
constrains model update, making the malicious client’s model update similar to benign’s
in weights statistics.

(2) Adversarial task: catastrophic forgetting is an inevitable feature of neural network
models, specifically when the network is trained sequentially on multiple tasks. In the
federated learning system, because knowledge learnt by adversarial task would be abruptly
fine-tuned and lost as central server aggregating model updates, it is hard to keep both
persistence and effectiveness of model poisoning attack. Therefore, how to alternately train
main task and adversarial task remains a particular challenge. In our previous study, we
observed that some neurons in the model are “important” to the previous task (i.e., main
task). However, most neurons are hardly changed during fine-tuning when the model
converges. In other words, those neurons are the redundant space for main task in neural
network, and it can be the optimal positions to inject adversarial task. This phenomenon
is investigated in some previous continual learning studies (e.g., [35–38]), and it can be
used in our adversarial training. Following this intuition, we try to find those redundant
spaces and design our attack strategy by embedding poisoning neurons in redundant space.
The attacker concatenates those neurons and joins them into an adversarial path, which is
persistent and robust under model aggregation, as shown in Figure 3.

Clean neurons

Poisoning neurons

Alternating minimization

Main task

m

Adversarial task

p
Client m

Figure 3. Schematic illustration of poisoning neurons selection and injection. The attacker elaborately
selects a sequence of neurons (red circle) that are hardly changed during main task to perform
adversarial task.

The another challenge is how to find neurons that are “important” to main task in
neural network. In one variable function, since second derivative measures curvature
of loss function, the second derivative can find the optimization direction of stochastic
gradient descent (SGD). Owing to this observation, though calculating second derivative,
we can find the neurons that have a considerable effect on the loss function of the main

Future Internet 2021, 13, 73 8 of 14

task [39]. By capturing all the second-derivative information of a multivariable function,
the Hessian matrix often plays a role that is analogous to the ordinary second derivative
in single variable calculus. In other words, Hessian matrix can measure the distance and
direction (i.e., “important”) of the update for main task [40,41]. Specifically, the attacker
simply computes the Hessian matrix (i.e., hi in Equation (3)) using its local clean dataset
Dm to obtain the second derivative for loss function. It should be noted that the higher
value in Hessian matrix refers to the more “important” neurons in main task. We want to
avoid injecting poisoning neuron in positions that are particularly influential for main task
in order to mitigate catastrophic forgetting of adversarial task. In this paper, we apply a
structural regularization term to penalize the optimizer to avoid updating those neurons
when training adversarial task:

arg min
Θ?

= LA
(
Dp; Θ?

)
+ ρ2 ∑

θi∈Θ?

hi(∆θi)
2 (3)

where ρ2 is a hyperparameter, hi is the second derivative of objective related to main task
(i.e., LM), and ∆θi denotes the parameter update for adversarial task. By utilizing the
regularization terms, the attacker can finally construct an adversarial path that preserves
the accuracy for both adversarial and main tasks under alternating minimization.

(3) Model update: we alternately optimize Equations (2) and (3). For each step i,
the adversarial task’s objective function is first minimized starting from Θ? (when i = 1,
Θ? = Gt) using Equation (2), and then minimized with Equation (3). Finally, the attacker
boosts the malicious model update ∆p with factor n

η to the next epoch:

∆ = η1∆m + n
η ∆p (4)

where ∆m is the model update obtained from Equation (2) and ∆p is the model update
obtain from Equation (3).

4. Experiments

We focus on the effectiveness, persistence, and stealth of proposed attack under
different scenarios in order to comprehensively evaluate the performance of our proposed
optimization-based model poisoning attack. First, we will describe the database used in
our evaluation and experiment setup.

4.1. Dataset and Experiment Setup

We utilize the benchmark dataset MNIST, CIFAR-10 (with Non-I.I.D. distributions) to
evaluate proposed deep model poisoning attack. For both MNIST and CIFAR-10, 10,000 test
images are used to evaluate the performance of the global model. For network architecture,
we choose LetNet [42] and ResNet [43] for MNIST and CIFAR-10, respectively. Following
the standard federated learning setup, each selected clients use the Adam optimizer to
train their local model for internal epoch (IE) with local learning rate (lr). The shared global
model is trained by all N participants, and only |St| of them are selected in each round
for aggregation. We simply choose a target label and then generate a poisoning dataset
Dp for adversary. Afterwards, let us establish our experimental environment. All of the
experiments are done on a server with 48 Intel Xeon CPUs, 4 NVidia RTX-2080Ti GPUs
with 12 GB RAM each and Ubuntu 18.04LTS OS, with its built-in PyTorch 1.7 framework.
Table 2 summarizes the experiment setup and data description.

Table 2. Dataset description and parameters.

Dataset Classes Features Net |St|/N IE η1/η |Dp|
MNIST 10 784 LetNet 10/20 5 0.05/0.04 100

CIFAR-10 10 1024 ResNet 10/50 10 0.1/0.5 100

Future Internet 2021, 13, 73 9 of 14

4.2. Effectiveness and Persistence of Attack

In this experiment, we present the performance evaluation of the proposed model
poisoning attack. The proposed attack method is evaluated under multiple-shot attack
(MAt) and single-shot attack (SAt) scenarios. In the MAt scenario, the malicious client acts
like benign clients (i.e., trains its private training data locally and submits model update
to central server) in the first t round, and then launches model poisoning attack each
round. In contrast, in the SAt scenario, the malicious only launches single attack at t round.
In this experiment, the malicious client is assumed to be selected each round It should
be noted that we evaluate the effectiveness of attack in MAt scenario, while validating
the persistence of attack in SAt scenario. We make the assumption that the malicious
client is selected by central server each round in order to evaluate the effectiveness and
persistence of attack. We experimentally compare our proposed deep model poisoning
attack and backdoor attack proposed in [4] to validate the effectiveness and persistence of
attack. It should be noted that we adopt pixel-pattern [6] to build [4]’s poisoning samples
(i.e., adding a pre-defined pixel pattern in the poisoning training data), and then change
their labels to target label. In all of our experiments, we consider single attacker-controlled
participant scenario for [4]’s attack. For fair comparison, we keep other experiment settings
the same as the proposed attack mechanisms.

Figures 4 and 5 show the attack results of multiple-shot and single-shot attack scenar-
ios, respectively. In multiple-shot attack scenario, one can observe, from Figure 4, that the
proposed attack can perform effectively adversarial task without degrading the accuracy of
main task. Even for the large dataset like CIFAR-10, the proposed model poisoning attack
can achieve over 90% attack success rate for adversarial task, which is higher than that
of [4]. Figure 4 demonstrates that the proposed deep model poisoning attack can achieve
high attack success rate for Dp, meanwhile keeping its accuracy for test images. Besides, in
a single-shot attack scenario, the attack success rate drop dramatically for [4]’s methods
when compared with our method. The proposed attack algorithm outperforms [4]’ attack
in two aspects: (1) the attack success rate falls down slowly, which means that the proposed
attack is effective in mitigating catastrophic forgetting of adversarial task; and, (2) retains
a higher accuracy for the main task on the testing dataset. Figure 5 illustrates that the
proposed deep model poisoning attack has the capability to retain a high attack success
rate over a long period of aggregation. The main reason behind the high performance of
proposed attack is that poisoning neurons are embedded in the redundant space of a neural
network. This reduces the probability of fine-tuning poisoning neurons during the training
of main task. The accuracy of main task increases when we set hyperparameter ρ2 = 0,
as shown in Figure 4. The main reason behind this phenomenon is that the constraint
regularization term in Equation (3) tends to update neurons not “important” to the main
task. Therefore, the constraint regularization term in Equation (3) has bad impact on
main task.

4.3. Stealth of Attack

In this experiment, we intend to evaluate the stealth of proposed deep model poisoning
attack against robust aggregation methods. Paper [16,22] are two recently proposed secure
federated learning aggregation algorithms that are based on model similarity or weights
distance metrics. The authors of [16] proposed the robust aggregation rule referred to as
Krum. Krum is claimed to be the first probably Byzantine-resilient algorithm for distributed
SGD, which only selects one client each round and rejects aberrant model updates. While,
the authors of [22] proposed a norm bounded defense method, which clips model updates
using a threshold M:

∆t
i =

∆t
i

max
(

1, ‖∆t
i‖2

M

) (5)

where ∆t
i means the submitted model update for client i at round t.

Future Internet 2021, 13, 73 10 of 14
M

ain task accuracy (%
)

(a) MNIST
round(t)

(b) CIFAR-10
round(t)

A
tta

ck
 su

cc
es

s r
at

e
(%

)

Attack MA10 Attack MA240

Figure 4. Comparison of the accuracy (green) and attack success rate (red) for shared global model between proposed deep
model poisoning and backdoor attack in [4] under a multiple-shot attack scenario. “Proposed[*]” denotes the proposed
attack without a constrained regularization term in adversarial task (i.e., ρ2 = 0 in Equation (3)).

M
ain task accuracy (%

)

(a) MNIST
round(t)

(b) CIFAR-10
round(t)

A
tta

ck
 su

cc
es

s r
at

e
(%

)

Attack SA10 Attack SA240

Figure 5. A comparison of the accuracy (green) and attack success rate (red) for shared global model between proposed
deep model poisoning and backdoor attack in [4] under single-shot attack scenario. Different from MNIST dataset, we use
2× η

n to scale up malicious client’s model update in the CIFAR-10 dataset.

Figure 6 shows the stealth of proposed deep model poisoning attack against defense
methods put forward in [16,22]. It should be noted that, in this experiment, we only focus
on multiple-shot attack scenario. Our proposed deep model poisoning attack can bypass
norm bounded defense method and achieves over 90% attack success rate for MNIST,
as reported in Figure 6a. Because Krum is effective in detecting aberrant models, the
model update of proposed method is rejected in some rounds. Nevertheless, when the
poisoning model is not selected by Krum, the adversary can still maintain high accuracy
for adversarial task. When it comes to the CIFAR-10, one can conclude from Figure 6b that
the attack success rate for proposed is higher than that of [4]’s attack.

Future Internet 2021, 13, 73 11 of 14

(a) MNIST
round(t)

(b) CIFAR-10
round(t)

A
tta

ck
 su

cc
es

s r
at

e
(%

)

Attack MA10 Attack MA240

Figure 6. Comparison of attack success rate (i.e., accuracy for adversarial task) between the proposed attack, model
poisoning [8] and the backdoor attack proposed in [4] against defense methods in [16,22].

Figure 7 depicture the comparison of weight update distributions for benign and
malicious clients for the first 4 layers. The malicious clients’ layer0, layer1, and layer3 are
different from benign clients’, and only layer2 is similar to benign clients’, as reported in
Figure 7a–d. However, because layer2 has the most neurons, the weight update distribution
for malicious is similar to that of benign clients in Figure 7e.

(a) layer0 (b) layer1

(c) layer2 (d) layer3

(e) all layers

Figure 7. A comparison of weight update distributions for benign and malicious clients. (a–d) show the first four layers of
neural network weight update distributions, (e) shows all layers.

One can observe from the experiment results that the deep model poisoning attack is
stealthy enough to bypass the defense methods proposed in [16,22]. Furthermore, the deep
model poisoning attack has better performance than other competing approaches [4,8].
Even though the attack method proposed in [8] is claimed to be stealthy when

∣∣Dp
∣∣ = 1, it

is vulnerable when the malicious client uses a large poisoning dataset (e.g.,
∣∣Dp

∣∣ = 100 in
our experiment).

Finally, we analyze the importance of adopting alternating minimization training strat-
egy and constrained regularization term in model update. In this paper, we propose a novel

Future Internet 2021, 13, 73 12 of 14

optimization-based model poisoning attack against federated learning through adding a
regularization term to constrain model update. When the adversary alternately trains a
mini-batch of poisoning data and clean data, the adversary can efficiently balance main
task and adversarial task. Besides, alternating minimization makes it easy for the adversary
to extract malicious model update ∆p, which means that we only need to boost a small
part of weights. Moreover, weight constrained regularization term in Equation (2) makes
the model update ∆m similar to benign clients’. The adversarial techniques (e.g., backdoor,
adversarial example) try to inference the model by creating a misleading minima. As a
result, if the global model is attacked by those techniques, then we can achieve better
performance for our attack. In summary, both alternating minimization and constrained
regularization increase the stealth of a poisoning attack.

4.4. Discussion and Next Steps

The machine learning community recently proposed several new federated learning
methods that were claimed to be robust against Byzantine failures [17,44] of certain client
devices. The main idea behind the Byzantine-robust defense method is to detect abnormal
weight updates and reject those models. Because the proposed attack method is persistent
enough to keep its attack effect (See Figure 5), the attacker can still maintain a high attack
success rate, even though it is detected by Byzantine-robust central server. With the concern
of information leakage, secure federated learning [45] is popular among the community.
Those new techniques use the cryptography paradigm to encrypt model updates. Because
the proposed attack methods do not rely on other clients’ model updates, our method still
effective in this scenario.

Time constraint greatly limits the amount of exploration that is possible in both the
proposed attack mechanisms and further adaptive attacks. The malicious client should
compute the Hessian matrix during the preparation of an attack, which is non-trivial and
time consuming. Therefore, a possible defense strategy is to drop out the clients that cannot
reply to the central server on time. While our preliminary results show some promise of
mitigation, much more work is clearly needed to explore additional attacks.

5. Conclusions

Because only a small fraction of the clients’ updates will be selected each round, the
effectiveness, persistence, and stealth is becoming more challenging for model poisoning
attack in federated learning. We have presented a novel deep model poisoning attack for
federated learning in this paper in order to overcome such difficulties. By utilizing the
regularization term in objective function, we inject malicious neurons in redundant space of
neural network. Extensive evaluation results empirically demonstrated that our proposed
attack strategy outperformed the backdoor attacks by significantly improving performance
in effectiveness, persistence, and robustness. In our future work, we intend to further
investigate the paradigm of deep neural network and explore an efficient mechanism
(e.g., Meta-learning) in order to find the neurons to inject adversarial task.

Author Contributions: Data curation, X.Z.; formal analysis, X.Z. and M.X.; investigation, X.Z. and
Y.W.; methodology, X.Z., M.X. and N.Z.; project administration, X.Z.; resources, M.X. and N.Z.;
supervision, N.Z.; validation, X.Z.; writing—original draft, X.Z.; writing—review and editing, Y.W.
and M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable, the study does not report any data.

Acknowledgments: This work was supported in part by the Natural Science Foundation of China
under Grant 61803135 and Grant 61702150, and in part by the Key Research and Development Plan
Project of Zhejiang Province under Grant 2017C01065.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2021, 13, 73 13 of 14

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

2. Konecný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies for Improving
Communication Efficiency. arXiv 2016, arXiv:1610.05492..

3. Ramaswamy, S.; Mathews, R.; Rao, K.; Beaufays, F. Federated Learning for Emoji Prediction in a Mobile Keyboard. arXiv 2019,
arXiv:1906.04329.

4. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How To Backdoor Federated Learning. In Proceedings of the 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, Palermo, Italy, 26–28 August 2020; pp. 2938–2948.

5. Xie, C.; Huang, K.; Chen, P.; Li, B. DBA: Distributed Backdoor Attacks against Federated Learning. In Proceedings of the 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 30 April 2020.

6. Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. BadNets: Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 2019,
7, 47230–47244. [CrossRef]

7. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Model poisoning attacks in federated learning. In Proceedings of the Workshop
on Security in Machine Learning (SecML), Collocated with the 32nd Conference on Neural Information Processing Systems
(NeurIPS’18), Montréal, QC, Canada, 3–8 December 2018.

8. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S.B. Analyzing Federated Learning through an Adversarial Lens. In Proceedings
of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 634–643.

9. Fang, M.; Cao, X.; Jia, J.; Gong, N.Z. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. In Proceedings of
the 29th USENIX Security Symposium, USENIX Security, Boston, MA, USA, 12–14 August 2020; pp. 1605–1622.

10. Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards Poisoning of Deep
Learning Algorithms with Back-gradient Optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, TX, USA, 3 November 2017; pp. 27–38.

11. Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C. Manipulating Machine Learning: Poisoning Attacks and Counter-
measures for Regression Learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
San Francisco, CA, USA, 20–24 May 2018; pp. 19–35.

12. Chen, Y.; Su, L.; Xu, J. Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent. In
Proceedings of the Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems,
Irvine, CA, USA, 18–22 June 2018; p. 96.

13. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.
2019, 10, 12:1–12:19. [CrossRef]

14. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and open problems in federated learning. arXiv 2019, arXiv:1912.04977.

15. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

16. Blanchard, P.; Mhamdi, E.M.E.; Guerraoui, R.; Stainer, J. Machine Learning with Adversaries: Byzantine Tolerant Gradient
Descent. In Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA,
4–9 December 2017; pp. 119–129.

17. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.

18. Li, L.; Xu, W.; Chen, T.; Giannakis, G.B.; Ling, Q. RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed
Learning from Heterogeneous Datasets. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu,
HI, USA, 27 January–1 February 2019; pp. 1544–1551.

19. Wu, Z.; Ling, Q.; Chen, T.; Giannakis, G.B. Federated variance-reduced stochastic gradient descent with robustness to byzantine
attacks. IEEE Trans. Signal Process. 2020, 68, 4583–4596. [CrossRef]

20. Fung, C.; Yoon, C.J.M.; Beschastnikh, I. Mitigating Sybils in Federated Learning Poisoning. arXiv 2018, arXiv:1808.04866.
21. Pillutla, V.K.; Kakade, S.M.; Harchaoui, Z. Robust Aggregation for Federated Learning. arXiv 2019, arXiv:1912.13445.
22. Sun, Z.; Kairouz, P.; Suresh, A.T.; McMahan, H.B. Can You Really Backdoor Federated Learning? arXiv 2019, arXiv:1911.07963.
23. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1310–1321.
24. Hardy, S.; Henecka, W.; Ivey-Law, H.; Nock, R.; Patrini, G.; Smith, G.; Thorne, B. Private federated learning on vertically

partitioned data via entity resolution and additively homomorphic encryption. arXiv 2017, arXiv:1711.10677.

http://doi.org/10.1109/ACCESS.2019.2909068
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/TSP.2020.3012952

Future Internet 2021, 13, 73 14 of 14

25. Smith, V.; Chiang, C.; Sanjabi, M.; Talwalkar, A.S. Federated Multi-Task Learning. In Proceedings of the Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA,
4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.;
pp. 4424–4434.

26. Mohri, M.; Sivek, G.; Suresh, A.T. Agnostic federated learning. In Proceedings of the 36th International Conference on Machine
Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 4615–4625.

27. Ahn, J.H.; Simeone, O.; Kang, J. Cooperative learning via federated distillation over fading channels. In Proceedings of the
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8
May 2020; pp. 8856–8860.

28. Gu, B.; Dang, Z.; Li, X.; Huang, H. Federated doubly stochastic kernel learning for vertically partitioned data. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 23–27
August 2020; pp. 2483–2493.

29. Biggio, B.; Nelson, B.; Laskov, P. Poisoning Attacks against Support Vector Machines. In Proceedings of the 29th International
Conference on Machine Learning, Edinburgh, Scotland, UK, 27 June–3 July 2012.

30. Mei, S.; Zhu, X. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 28–30 January 2015; pp. 2871–2877.

31. Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T. Poison Frogs! Targeted Clean-Label Poisoning Attacks on
Neural Networks. In Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, QC,
Canada, 3–8 December 2018; pp. 6106–6116.

32. Fang, M.; Gong, N.Z.; Liu, J. Influence function based data poisoning attacks to top-n recommender systems. In Proceedings of
the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 3019–3025.

33. Fung, C.; Yoon, C.J.; Beschastnikh, I. The Limitations of Federated Learning in Sybil Settings. In Proceedings of the 23rd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), San Sebastian, Spain, 14–18 October
2020; pp. 301–316.

34. Mhamdi, E.M.E.; Guerraoui, R.; Rouault, S. The Hidden Vulnerability of Distributed Learning in Byzantium. In Proceedings of
the 35th International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018; pp. 3518–3527.

35. Shmelkov, K.; Schmid, C.; Alahari, K. Incremental learning of object detectors without catastrophic forgetting. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3400–3409.

36. Lee, S.W.; Kim, J.H.; Jun, J.; Ha, J.W.; Zhang, B.T. Overcoming Catastrophic Forgetting by Incremental Moment Matching. arXiv
2017, arXiv:1703.08475.

37. Li, X.; Zhou, Y.; Wu, T.; Socher, R.; Xiong, C. Learn to grow: A continual structure learning framework for overcoming catastrophic
forgetting. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019;
pp. 3925–3934.

38. Aljundi, R.; Kelchtermans, K.; Tuytelaars, T. Task-free continual learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019, pp. 11254–11263.

39. Williams, D.J.; Shah, M. A fast algorithm for active contours and curvature estimation. CVGIP Image Underst. 1992, 55, 14–26.
[CrossRef]

40. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

41. Zenke, F.; Poole, B.; Ganguli, S. Continual Learning Through Synaptic Intelligence. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 3987–3995.

42. Zbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res.
2016, 17, 2287–2318.

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

44. Cao, X.; Fang, M.; Liu, J.; Gong, N.Z. FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping. arXiv 2020,
arXiv:2012.13995.

45. Cao, X.; Jia, J.; Gong, N.Z. Provably Secure Federated Learning against Malicious Clients. arXiv 2021, arXiv:2102.01854.

http://dx.doi.org/10.1016/1049-9660(92)90003-L
http://dx.doi.org/10.1073/pnas.1611835114
http://www.ncbi.nlm.nih.gov/pubmed/28292907

	Introduction
	Background and Related Works
	Machine Learning
	Collaborative Learning
	Attacks against Machine Learning
	Related Works

	Attack Methodology
	Problem Definition
	Adversary’s Goal
	Adversary’s Capability
	Optimization-Based Model Poisoning Attack

	Experiments
	Dataset and Experiment Setup
	Effectiveness and Persistence of Attack
	Stealth of Attack
	Discussion and Next Steps

	Conclusions
	References

