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Abstract: Using the single premise entailment (SPE) model to accomplish the multi-premise entail-
ment (MPE) task can alleviate the problem that the neural network cannot be effectively trained due
to the lack of labeled multi-premise training data. Moreover, the abundant judgment methods for the
relationship between sentence pairs can also be applied in this task. However, the single-premise
pre-trained model does not have a structure for processing multi-premise relationships, and this
structure is a crucial technique for solving MPE problems. This paper proposes adding a multi-
premise relationship processing module based on not changing the structure of the pre-trained model
to compensate for this deficiency. Moreover, we proposed a three-step training method combining
this module, which ensures that the module focuses on dealing with the multi-premise relationship
during matching, thus applying the single-premise model to multi-premise tasks. Besides, this
paper also proposes a specific structure of the relationship processing module, i.e., we call it the
attention-backtracking mechanism. Experiments show that this structure can fully consider the
context of multi-premise, and the structure combined with the three-step training can achieve better
accuracy on the MPE test set than other transfer methods.

Keywords: transfer learning; multi-premise entailment; natural language inference; attention mechanism

1. Introduction

The multi-premise entailment task or multi-premise natural language inference task [1]
is an extension of the standard natural language inference task [2]. In this paper, we call the
standard natural language inference task the single-premise entailment task. The definition
of a single-premise entailment task is as follows [3]: typically, a human reading P would be
justified in inferring the proposition expressed by H from the proposition expressed by P.
The P is a premise sentence. The H is a hypothesis sentence. Similarly, the multi-premise
entailment task should be defined as follows: typically, a human reading multiple P would
be justified in inferring the proposition expressed by H from the proposition expressed by
multiple P. The single-premise entailment task and the multi-premise entailment task are
shown in Figures 1 and 2, respectively.

The multi-premise entailment task describes multiple descriptions of the same scene
or event by multiple people. For example, multiple witnesses’ memory or description of
a crime scene may have different language forms and may have a different emphasis on
observation due to different perspectives. The MPE task aims to determine whether another
description (the suspect’s statement, in this task, we generally call it the hypothesis) is true,
false, or unknowable in the context of the semantic scenario formed by these premises
together.

Compared with the SPE data, we conclude that the MPE data has the following
characteristics:

1. Each premise is a complete sentence and has clear semantics. This means that one
premise of the SPE data cannot be cut up into multiple parts to construct multiple
premises because, after segmentation, neither the syntax nor the semantics is complete;
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2. There is no sequential relationship among multiple premises;
3. The information contained in each premise is unbalanced. In other words, for the

semantic scenario constituted by all premises, each premise does not necessarily
provide unique information for this scenario, and the description of one premise may
also be a subset of another premise. This means that each premise may have a different
level of contribution to the final classification.

4. Compared with the SPE data, the MPE data is more scarce, so that the corresponding
network model cannot be effectively trained.

Figure 1. Single-premise entailment task.

Figure 2. Multi-premise entailment task.

This paper proposes a method suitable for transferring from SPE pre-trained model to
the MPE model. This method has the following characteristics:

• Considering the existing SPE and MPE corpus, we think the biggest difference be-
tween the latter and the former is that the latter needs to deal with the relationship
between multiple premises. We propose using SNLI, a large-scale SPE data set, to
learn the weight parameters of the pre-trained model, which can realize the feature
extraction and classification between single premise and hypothesis. In addition, we
then use a small-scale MPE corpus to learn a module that can infer the relationship
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from multiple premises. We call this module the relationship processing module (R
module), which combines with the pre-trained model to construct a complete MPE
classification model;

• To make the R module focus on the purpose of capturing the relationship from
multiple premises, a three-step training method is used in our model. First, the
model parameters are learned based on the source corpus. Second, the pre-trained
parameters are frozen, the R module parameters are learned based on the target
corpus. Finally, the pre-trained parameters are unfrozen to fine-tune the whole model
based on the target corpus. We believe that this approach limits the R module to deal
with multi-premise relationships, thus keeping the pre-trained model intact.

• We propose a specific R module structure, the Attention-backtracking mechanism,
which integrates all premises’ sentence representation to obtain the preliminary contex-
tual representation. The preliminary contextual representation and the context-related
word vector of each premise sentence are calculated to obtain the final premise rep-
resentation of multiple premises. Experiments show that this mechanism can fully
consider the relationship of multiple premises.

Through the experiments of different transferring methods, it is proved that the
proposed method can inherit the prior knowledge of the source corpus most effectively
and improve the accuracy of MPE problem judgment the most.

This article proceeds as follows: in the Introduction section, we introduce the defini-
tions of SPE and MPE tasks and their respective problems. This section also describes the
contributions made by this article. In the related work section, some technical frameworks
in related fields are introduced. In the methods section, a three-step training algorithm and
attention-backtracking mechanism are proposed. In the experimental part, we compare the
results of each model. The last part is the summary, which summarizes the advantages and
disadvantages of the model.

2. Related Works

For natural language inference alone, the deep learning method using neural networks
to construct classification models has become the most mainstream and accurate method.
Other methods exist, such as the Siamese-based framework [4,5] focusing on the formation
of accurate sentence vectors and the “matching-aggregation” framework [6–8] focusing
on the comparison of word-level alignment [9]. These models are no exception using the
large-scale labeled corpus the Stanford Natural Language Inference (SNLI) [10] as their
training data set. Compared with traditional small data sets, SNLI possessing huge amount
of labeled data that can make the weight parameters of neural network are fully training.
Therefore, it is not so much the achievements of these different frameworks and models as
the achievements of the large-scale annotated corpus.

The SPE task exploration is still going on, and a more complex semantic multi NLI
dataset [11] has been recently launched. However, these corpora are all composed of a
single premise sentence. The annotation data of MPE tasks is relatively scarce, which
fundamentally limits the exploration of MPE problems in deep learning. Therefore, we
believe that using a large-scale SPE corpus as the source knowledge domain to train an
SPE model and then moving it to the MPE target knowledge domain for fine-tuning is a
method worth studying.

Transferring deep, large convolutional neural networks to specific image recognition
tasks is very common in the field of machine vision [12]. The low layer convolutional
kernels in the network are considered to be able to learn graphic features [13], while high
layer convolutions can learn more abstract image features [14]. In natural language pro-
cessing, the most widely used pre-trained model comes from the language model [15,16],
and its parameters are called word embedding vectors, which has now become the stan-
dard configuration of various natural language processing applications on the input side.
In addition, in recent years the trend of ultra-large-scale pre-trained models initiated by
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GPT [17], Bert [18] and so on [19,20] demonstrated the strong potential of transfer learning
in natural language processing field.

More generally, the task we want to accomplish is called target task/domain T, its data
set is called data T, and the task could be solved by the pre-trained model is called source
task/domain S, its data set is called data S. In practice, a neural network is constructed
and trained for task S with data S, we call this process pre-training, and then a model for
task T is initialized with part or all of the obtained parameters of the pre-trained model.
Finally, the target model is then iteratively trained based on the target data T. Intuitively,
this approach is considered to enable the target model to inherit some prior knowledge of
the source domain [21]. When dealing with the loss function, this is equivalent to changing
the starting point for finding the minimum value. If the loss function is convex, no matter
where the starting point is, there is only one minimum point. However, the loss function of
a neural network is hugely complicated, so the starting point limited to some range may be
easier to find excellent minimum points.

There may be many differences between the source task and the target task in the
specific transferring process, such as different task targets and different data forms. There-
fore, during the transferring process, it is often necessary to modify the pre-trained model.
For example, the source task IMDB with two-classification vs. target task QC with six-
classification, the sigmoid function of the pre-trained model should be replaced by the
softmax function. At this time, a new random initialization is required for the full connec-
tion layer connected to softmax. This phenomenon of only transferring some parameters is
called partial transferring. In the research content of this paper, the target task MPE with
multiple premises is different from the source task SPE with a single premise in the form
of data.

We use the simplest Siamese framework [22] as an example. We need an encoding
parameter sharing layer (such as LSTM [23] or CNN [24]) to encode the premise and
hypothesis separately, and then use an inference layer ( such as a full connection and
softmax function) for three classifications. In the Siamese framework, it is generally
believed that the encoding layer can extract syntactic and semantic information [25] and
convert them into feature vectors, while the inference layer can project feature vectors
nonlinearly into distinguishable spaces. Because this space may be unique in each data set,
the classification layer is often considered only suitable for a specific corpus task, which
makes it difficult for the classification layer to use after transferring directly [21]. In this
case, it is an effective method to use target data to fine-tune the pre-trained model. In
transferring from SPE to MPE, the focus is on how to deal with multiple premises in the
fine-tuning process.

Given the existence of an SPE model based on the Siamese framework as Figure 3, we
summarize the following transferring scenarios:

• Data form transformation: Concatenating multiple premises together to form a single
premise [1,26] ;

• Statistics of results after matching: Each premise and hypothesis is matched separately,
and statistics of results after matching are made to obtain the final result [1] ;

Neither of these two schemes made any changes to the structure of the pre-trained
model, we only need to fine-tune the pre-trained model with the target training data, but
both of them have their disadvantages: First of all, the data form transformation is an
attempt to convert the MPE task directly from the data level to the SPE task, which is
the simplest, requiring simple preprocessing of multi-premise data. However, with the
number of premises, the concatenated single premise will form a long text. In the face of
the tens of thousands of premises that may exist, the encoding layer may have difficulty
understanding such complex semantics. Encoders such as LSTM or Transformer [27]
will consume much running time and memory when processing such a long text, which
is why we do not recommend adopting large-scale pre-trained models such as Bert to
do this task. The statistics of results after matching, similar to the premise-wise sum of
experts (SE) model [1], take advantage of the MPE data characteristics, and treat the MPE
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model as an ensemble of the SPE model. However, due to the third characteristic of MPE
data(in Section 1), we do not consider this a suitable method. Because each premise in the
multi-premise only has incomplete information, each match is based on the judgment of
the incomplete information, which will cause all matches to be misled, and the conclusions
drawn from multiple misleading combinations will deviate from the correct answer.

Figure 3. The Siamese framework.

3. Methods

Since the method proposed in this article is theoretically applicable to transfering all
SPE models based on the Siamese framework or the “matching-aggregation” framework to
the MPE task, we will illustrate our ideas in this section based on a simple conceptual model
of the Siamese framework (Figure 3) for convenience. In the following subsections, we will
respectively explain the existence significance of the R module, the purpose of three-step
training, and the composition of a specific R module we proposed: Attention-backtracking
mechanism.

3.1. Relationship Processing Module

The R module position in the transferring process is shown in Figure 4, which is
between the encoding layer and the inference layer of the premise processing part. In the
fine-tuning phase, the parameters of the encoder are shared by multiple premises and
computed in parallel when matching. The input of the encoding layer is the sentence
representation composed of the word embedding vector matrix, and the output is the
sentence representation of a single vector; that is, the encoding layer will output the
sentence vector representation of each premise. The classification layer trained from the
SPE corpus is only suitable for inputting sentence representation of one premise, so the so-
called R module is a module that can compress multiple premise sentence representations
into one premise sentence representation.

Figure 4. From SPE model to MPE model.

From the point of view of compression as a single vector representation, the most
commonly used choices are summation, average pooling and maximum pooling [28].
Summing can get the whole semantics, average pooling can get the average features among
multiple premises, and maximum pooling can get the most significant features. These
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operations do not require parameters, and there is no nonlinear calculation. The single
premise sentence vector formed is kept in the same feature space as the hypothesis sentence
vector, which avoids the need for the classification layer to learn how to distinguish vectors
between different feature spaces.

However, we must realize that the premise representation of the encoder for each
premise will lack some semantics. The other premise information is not known when
encoding one premise, which results in the overall premise vector lacking some information.
Therefore, our ideal R module should be able to make up for this shortcoming. We will
discuss this problem in Section 3.3. We first assume that there is such an ideal R module and
it has some randomly initialized parameters, so we propose a three-step training method
to learn and fine-tune the R module parameters.

3.2. Three-Step Training

In theory, we hope that the R module is relatively independent. The other parts of the
model, namely the encoding layer and inference layer, does the same work in the MPE task
as in the SPE task. This means that we can easily transfer the model used for SPE tasks to
MPE tasks, and its frame and parameters can be relatively complete and collaborative to
transfer.

Therefore, we have to ensure that the R module has the independence of completing
only specific tasks in the matching process. We try to achieve this goal in training and
propose the three-step training in Algorithm 1:

Algorithm 1: Three-step training.
Input: Single-premise entailment data set S, multi-premise entailment data set T
Output: MPE task model M2

1 SPE model parameter pre-training: use the Siamese framework and SPE data S
to train the SPE model to obtain the model M0, and its corresponding encoding
layer parameters θE and inference layer parameters θI ;

2 Training of multi-premises fusion model R: (a) As shown in Figure 4, a suitable
fusion model R is selected to fuse multiple premise vectors into one premise
vector to obtain the MPE task model M1. (b) Initialize the model R, and set its
parameter to θR. (c) Freeze the parameters θE and θI , use MPE data T to train the
model M1, update the parameters θR. Update the preliminary MPE model M1.

3 Fine-tune the final model: (a) Unfreeze the parameters θE and θI of the model
M1. Then, set the joint parameters θ = (θE, θI , θR), named M2 model. (b) Use the
MPE data T again to train the M2 model, update the parameters θ, and get the
final MPE task model M2.

In the three-step training, the first step is to use SPE data for pure SPE model training.
In the Siamese framework, the encoding layer will learn how to encode context-free word
vectors for sentence representations, and the inference layer will learn how to process
both premise representation and hypothesis representation for classification results. In the
second step, the weight parameters of the SPE model are frozen, the R module Learning
the fusion method of multiple premise vectors, i.e., the relationship from multiple premises
and their good fusion, which ensures the relative independence of the R module in the
matching process. In the third step, all weight parameters are defrosted. Pre-trained
parameters and R module parameters are trained together at a small learning rate to avoid
the previously learned parameters being disrupted by large steps. Besides, the purpose of
this step is also to learn a task-specific classification layer.

The R module design should fully consider the following ideas: (a) It should be
independent of the encoding layer and the inference layer. (b) It should have the ability
to fully integrate information between multiple premises. (c) The fused vector should be
able to be accepted by the inference layer. If average pooling or maximum pooling is used
with no parameters, they are treated as a particular case without using the second step of
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the three-step training. We propose using the attention-backtracking mechanism to build
R modules.

3.3. Attention-Backtracking Mechanism

The overall mechanism is shown in Figure 5. First of all, the Siamese-based framework
is committed to building a sentence embedding vector after obtaining each sentence
representation of premise sentence with an encoder. We hope to use a sentence embedding
vector to build a preliminary contextual representation, which is a general description of
the semantics of multiple premises:

c = Add(P) (1)

P ∈ Rd×n, its column vectors is the sentence representation of n d-dimensional
premises, Add(.) is the sum of all column vectors element-by-element, c ∈ means obtained
the preliminary contextual representation that can represent all premise sentences.

Figure 5. Attention-backtracking mechanism.

Next, vector c and all context-related word vectors in each premise are calculated for
attention. Let Y ∈ Rd×l be the context-related word vector matrix of a premise sentence
after the encoding layer, and l is the number of words:

M = tanh(WyY + Wcc⊗ el) (2)

α = so f tmax(wT M) (3)

r = YαT (4)

Wy, Wc ∈ Rd×d, w ∈ Rd are weight parameters to be learned, el ∈ Rl is a vector
and its elements are all 1, note that the outer product Wcc⊗ el is repeating the linearly
transformed c as many times as there are words in this premise (i.e., l times). The column
vector in M ∈ Rd×l is the attention representation of each word in the premise sentence,
which is essentially a nonlinear combination of each word with the preliminary contextual
representation. α ∈ Rl is an attention weight vector, which means the importance of
each word in one premise. Therefore, the r ∈ Rd obtained represents a new sentence
representation combining attention information. The above operation is that when a single
premise sentence is first encoded into a sentence vector, the resulting sentence vector
contains biased information because there is no context information of other premise
sentences. The idea of the attention-backtracking mechanism is that, after one premise
is informed of other premises, the model hopes to confirm whether there is missing
information or whether there is more critical information in the original sentence. Therefore,
all the details will be encoded again in this section for more exciting information.

Therefore, we will get a matrix R ∈ Rd×n by doing the above operations in each premise
sentence, in which the column vector is composed of r calculated by each premise sentence.
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Finally, we need to compress all the obtained premise vectors into a single premise
vector equivalent to SPE data to input the inference layer, and we can still use pooling
operation to achieve this:

p = AveragePooling(R) (5)

p ∈ Rd is the representation of multiple premises input to inference layer correspond-
ing to SPE model.

Since there is no sentence representation in the general sense in the “matching-
aggregation” framework, as shown in Figure 6, we call the vector after the comparison
module as aligned evaluation representation and the vector after the aggregate module
as comprehensive evaluation representation. In our method, multiple premise sentences
will have multiple comprehensive evaluation representations. The comprehensive evalua-
tion representation can be equivalent to the sentence representation above. The aligned
evaluation representation can be equivalent to the context-related word embedding rep-
resentation in the previous text. In other words, after obtaining the information of other
premises, the comprehensive evaluation representation of one premise sentence will go
back to its own aligned evaluation representation, and the operation process is basically
consistent with that described above. In the Attend process in this framework, the single
hypothesis sentence will match each premise sentence, thus generating the same number
of hypothesis alignment evaluation representations as to the premise sentence, i.e., after
the Attend module, the hypothesis sentence should also be processed using the R module.

Figure 6. The “matching-aggregation” framework.

4. Experiments
4.1. Implementation Details

We use a pre-training data set from the Stanford Natural Language Inference (SNLI) [29].
The premise comes from the image annotation of Flickr30r. The corresponding hypothesis is
artificially generated. There are 549,367 pairs of sentences in the training set, 10,000 pairs in
the validation set and the test set, and each pair of sentences is marked as one of Entailment,
Neutral, Contradiction and -. “-” means that the reviewers cannot make a consistent judgment
on the relationship between sentences. We filter such sentences in data preprocessing. The
Multiple Premise Entailment NLI Corpus (MPE) [1] has premises and hypotheses both from
Flickr30k image labeling. Its training set has 8000 sets of sentences, the validation set and
the test set have 1000 sets of sentences, respectively, each set of sentences is labeled as one of
Entailment, Neutral, or Contradiction. The unique characteristic of this corpus is that each set
includes four premise sentences and one hypothesis sentence.

To verify the effectiveness of the three-step training method and Attention-backtracking
mechanism transferring on different strategies or different models, we will perform ex-
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periments on two different SPE models, respectively. We take Inner-attention [4] as a
typical Siamese framework, which averages the context-related word vectors encoded by
Bi-LSTM and pools them, uses the pooling results and context-related word vectors to
perform nonlinear calculations. that is, weighted summation to obtain a sentence vector
representation, concatenate the premise and hypothetical sentence representations, and
then send them to the fully connected layer for classification. Soft-alignment [8] is typical
of the “matching-aggregation” framework. firstly, it performs word-to-word alignment
calculations on premise and hypothesis to obtain the alignment feature vector (alignment
evaluation representation) of each word. Secondly, we sum up the alignment evaluation
representation of the premise (hypothesis) to get the comprehensive evaluation representa-
tion of the premise (hypothesis). Finally, we concatenate the comprehensive evaluation
representation of premise and hypothesis, and send it to the fully connected layer.

The pre-training and fine-tuning processes of both frameworks use the same set of
hyperparameters. All words are vectorized using GloVe’s 300-dimensional pre-trained
word vector [30], and they do not participate in training during all training processes.
In the pre-training process, the dimension of the hidden layer neuron is 100 (that is,
the 300-dimensional pre-trained word vector will be mapped to the 100-dimensional vector
before inputting the encoding layer, and then the default dimension of the single vector
in the network is 100), L2 regularization with a coefficient of 0.001 is added to all weights
in the optimization process, and a dropout ratio of 0.2 is applied to all full connection
layers [31]. The optimizer is Adam [32], and the learning rate is set to 0.001. Each model is
only trained for five epochs on SNLI, and we believe that this can prevent the model from
being overfitted to the source corpus to some extent. In the process of fine-tuning (or in the
second and third steps of three-stage training), the learning rate is only changed to 0.0003.
We think that a smaller learning rate can avoid the target corpus quickly disturbing the
pre-trained parameters [33].

We experimented with different transferring methods for comparison, including:

• Concat: Concatenating multiple premises together to form a single premise in data
form;

• Vote: Each premise and hypothesis is matched separately, and statistics of results after
matching are made to obtain the final result;

• AveR: Average pooling R module, which means only average pooling for all premise
representations;

• ABR: Attention backtracking R module, as described in Section 3;
• MLPR: A fully connected R module with the same parameters as ABR means that

only two nonlinear full connections are made to the premise representation.

Each method will show the results of random parameter initialization and pre-trained
parameter initialization (ft) for comparison. ABR and MLPR will also show the results of
skipping the second or third steps of training, respectively, which are marked as (1, 3) and
(1, 2), and the complete three-step training method is marked as (1, 2, 3).

4.2. Results and Discussion

It can be seen from Table 1 that in the case of completely random initialization of
parameters, ABR reaches the highest 59.2%, and AveR follows, but MLPR with R module
mechanism is only 56.9%, which is the lowest under the same conditions. This shows
that adding a reasonable R module to the Siamese framework can be a good solution to
the MPE problem even no pre-trained. We guess that the reason for the unsatisfactory
results of MLPR is that after the nonlinear transformation of the premise representation, the
compressed premise representation and the hypothesis representation are no longer in the
same feature space. This makes the inference layer initialized by pre-trained parameters
have to re-learn new parameter weights to accommodate these changes, and this results in
a waste of pre-trained parameters.
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Table 1. Train/test accuracies on the MPE data set and number of parameters for each approach
based on Inner-attention.

Method Parameters Train Test

Concat 272K 0.6310 0.5840
Concat (ft) 272K 0.7350 0.6290
Vote 272K 0.6411 0.5810
Vote (ft) 272K 0.7057 0.6370
AveR 272K 0.6258 0.5900
AveR (ft) 272K 0.7205 0.6340
ABR 292K 0.6251 0.5920
ABR (1,2) 20K 0.5140 0.5480
ABR (1,3) 292K 0.7166 0.6390
ABR (1,2,3) 292K 0.7058 0.6440
MLPR 292K 0.6089 0.5690
MLPR (1,2) 20K 0.5470 0.5560
MLPR (1,3) 292K 0.7079 0.6170
MLPR (1,2,3) 292K 0.7052 0.6230

Initialization based on pre-trained parameters has obviously improved the perfor-
mance of all models running on the target data set, and the accuracy has increased by an
average of 9% on the training set and an average of 5% on the test set. In the comparison of
different transferring strategies, it can be seen that the R module mechanism still performs
differently, with ABR (1,2,3) reaching the highest 64.4% and MLPR (1,2,3) being the lowest.
Among other transferring methods, Vote (ft) performs best, and we will do some analysis
in the following (visual display).

It can be seen from the comparison of the same model and different training methods
that ABR (1,2) with frozen pre-trained parameters and only learning R module parameters
performs worse than ABR, which reflects the sensitivity of the neural network to different
data sets, i.e., fine-tuning is crucial. Comparing ABR (1,3) and ABR (1,2,3), as well as
MLPR (1,3) and MLPR (1,2,3), we can see that our three-step training method can improve
accuracy; it is meaningful to study the parameters of the R module separately.

In Figure 7, we respectively show the attention weight assigned to each word in
the four premise sentences of the example sentences. It must be emphasized that the
pre-trained model we used has an attention operation in itself (Inner-attention), plus the
attention in the attention-backtracking mechanism, so we can make a visual comparison
diagram. In each sentence, the upper is the weight assigned to the word by the pre-trained
model Inner-attention, and the lower is the weight assigned to the word by the Attention-
backtracking mechanism. In general, the vocabulary of attention in backtracking is basically
the same as that of Inner-attention, and the less important words are more ignored.

We further observe that the model after the backtrack pays more attention to the ‘dog’
in the premise sentence, and we speculate that this is due to the preliminary contextual
representation formed by summing the multiple premise representations formed by Inner-
attention, the words that each premise cares about will be superimposed, i.e., the semantics
extracted by all premises will be repeated. The most repeated words will become the
protagonists in the multi-premise context. The model confirms the subject in the multi-
premise in this way. In the subsequent attention backtracking process, each premise will
reconfirm the predicate and object related to the subject ‘dog’. In this example, the keyword
‘leaps to’ corresponding to ‘in the air’ gets greater weight after backtracking because it is a
predicate related to the subject.

Besides, we also notice that ‘white’ in the third premise sentence reduces its weight
after backtracking, even though it is a crucial descriptive word for the subject in the
hypothesis sentence. However, it must be noted that in the Inner-attention model, the
premise and hypothesis are not aware of each other when encoding, so the encoder can
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only “intuitively” remember the most important parts of the sentence. Namely, the subject-
verb-object, which is similar to the human reading mechanism.

However, because ’white’ is not remembered, we think there is another reason, i.e., the
problem of target corpus MPE we used. The MPE data set hypothesis is subject-verb-object
structures, which results in that in most cases, the model only needs to judge whether the
subject-verb-object extracted from multiple premises is consistent with the hypothesis. We
believe that this is also why the Vote (including Vote (ft)) model can achieve high accuracy.
Despite the unbalance of multiple premises, the subjects of multiple premises of any set of
sentences in the MPE data set are the same. The example in Figure 8 is a set of sentences
different from the MPE data set, which has an obvious imbalance:

Figure 7. Attention visualizations.

It can be seen that the subject ‘dog’ in the hypothesis only appears in the second
premise in Figure 8, and it is ignored by both Inner-attention and Attention-backtracking
mechanism, which leads to the result that the model classifies this set of sentences as
“contradiction”, because the classification layer found that the semantics of the sentence
pairs to be judged are “cat is sleeping”and “dog is sleeping”, the subject is contrary, so
gave a wrong classification.

Figure 8. Attention visualizations for another example.

Table 2 shows the results based on the Soft-alignment pre-trained model, which is
consistent with the conclusions above, and ABR (1,2,3) also achieved the highest accuracy.

In summary, we have made a lot of comparative experiments. When the three-
step training method is used to train the r module of the fusion Attention-backtracking
mechanism, both Inner-attention and Soft-alignment pre-trained model have reached the
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highest accuracy. The accuracy rates are 64.4% and 68.2%, respectively. The effect of the
voting method is second only to our method because the data set used is too balanced.

Table 2. Train/test accuracies on the MPE data set and number of parameters for each approach
based on Soft-alignment.

Method Parameters Train Test

Concat 51K 0.7914 0.6270
Concat (ft) 51K 0.7311 0.6430
Vote 51K 0.6940 0.6290
Vote (ft) 51K 0.7076 0.6710
AveR 51K 0.7625 0.6150
AveR (ft) 51K 0.7637 0.6670
ABR 71K 0.7846 0.6450
ABR (1,2) 20K 0.5431 0.5840
ABR (1,3) 71K 0.7546 0.6680
ABR (1,2,3) 71K 0.7058 0.6820
MLPR 71K 0.7331 0.6270
MLPR (1,2) 20K 0.6161 0.6460
MLPR (1,3) 71K 0.7946 0.6610
MLPR (1,2,3) 71K 0.6811 0.6640

5. Conclusions

We proposed a transferring method from the SPE model to the MPE model. The best
migration effect can be achieved by adding a simple relation processing module and a
training method adapted to the pre-training model.

We also explored what characteristics a good R module should have: (a) It should be
independent of the encoding layer and the inference layer. (b) It should have the ability to
fully integrate information between multiple premises. (c) The fused vector can be accepted
by the inference layer.

Our R model has many advantages, such as: (a) It transfers the prior knowledge of
single-premise tasks to multi-premise tasks through transfer learning. (b) It is valid for
different basic models, including but not limited to Siamese framework and “matching-
aggregation" framework. (c) It is more beneficial to solve the problem of data imbalance. (d)
It effectively improves the accuracy of the results. However, there are also disadvantages:
(a) The model requires much pre-training and fine-tuning, which increases the difficulty of
model training. (b) The research on the R module is at a beginning stage.

In summary, in the future, we hope to study further the attention backtracking mecha-
nism or a more effective R module that meets the above characteristics to achieve higher
accuracy and reduce the complexity of model training.
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