
future internet

Article

Load Balancing Oriented Predictive Routing Algorithm for
Data Center Networks

Yazhi Liu * , Jiye Zhang , Wei Li, Qianqian Wu and Pengmiao Li

����������
�������

Citation: Liu, Y.; Zhang, J.; Li, W.;

Wu, Q.; Li, P. Load Balancing

Oriented Predictive Routing

Algorithm for Data Center Networks.

Future Internet 2021, 13, 54.

https://doi.org/10.3390/fi13020054

Academic Editor: Ala Al-Fuqaha

Received: 23 January 2021

Accepted: 18 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Technology, North China University of Science and Technology,
Tangshan 063000, China; zhangjiye@stu.ncst.edu.cn (J.Z.); lw@ncst.edu.cn (W.L.);
qianqianwu@stu.ncst.edu.cn (Q.W.); lipengmiao@stu.ncst.edu.cn (P.L.)
* Correspondence: liuyazhi@ncst.edu.cn

Abstract: A data center undertakes increasing background services of various applications, and
the data flows transmitted between the nodes in data center networks (DCNs) are consequently
increased. At the same time, the traffic of each link in a DCN changes dynamically over time.
Flow scheduling algorithms can improve the distribution of data flows among the network links
so as to improve the balance of link loads in a DCN. However, most current load balancing works
achieve flow scheduling decisions to the current links on the basis of past link flow conditions. This
situation impedes the existing link scheduling methods from implementing optimal decisions for
scheduling data flows among the network links in a DCN. This paper proposes a predictive link load
balance routing algorithm for a DCN based on residual networks (ResNet), i.e., the link load balance
route (LLBR) algorithm. The LLBR algorithm predicts the occupancy of the network links in the
next duty cycle, according to the ResNet architecture, and then the optimal traffic route is selected
according to the predictive network environment. The LLBR algorithm, round-robin scheduling
(RRS), and weighted round-robin scheduling (WRRS) are used in the same experimental environment.
Experimental results show that compared with the WRRS and RRS, the LLBR algorithm can reduce
the transmission time by approximately 50%, reduce the packet loss rate from 0.05% to 0.02%, and
improve the bandwidth utilization by 30%.

Keywords: ResNet; data center network; load balancing; traffic scheduling

1. Introduction

An increasing number of computing tasks are offloaded to a cloud center by various
user applications [1]. Therefore, the frequency of data communications between nodes in
data center networks (DCNs) are increased, and the volume of data transmitted by DCNs
also grows rapidly. Popular applications readily cause load imbalance in the internal links
of DCNs, and some bottleneck links are liable to be congested. At the same time, neglected
links are fully utilized, thereby preventing the DCN from being maximized. Through
flow scheduling, DCNs can select an appropriate path and transmission rate for a specific
data flow, such that all links in the DCNs tend to be equally occupied. Thus, a traffic
scheduling algorithm can reduce the congestion of the bottleneck link and improve the
overall efficiency of a DCN [2].

Existing flow scheduling methods can be divided into two categories [3]. The first cat-
egory is to propose and design a new architecture model for optimizing traffic scheduling.
This category can be further divided into two subcategories according to different starting
points [4].

The first subcategory entails the distribution of flow as the starting point. The DCN
involves two types of data traffic composition [5].A small flow with a large number but a
small scale is called a mice flow. A large stream with a small number but a large scale is
called the elephant flow. Although small flows account for a large proportion in number,
their scale is far from that of large flows. Therefore, determining the load balance in

Future Internet 2021, 13, 54. https://doi.org/10.3390/fi13020054 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-8843-1555
https://orcid.org/0000-0002-9886-8814
https://doi.org/10.3390/fi13020054
https://doi.org/10.3390/fi13020054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13020054
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/2/54?type=check_update&version=2

Future Internet 2021, 13, 54 2 of 13

network traffic depends on a few large flows [6]. The LABERIO algorithm aims to evaluate
the degree of network balance by setting a threshold of that balance and calculating the
degree of network load balance according to the state of all links [7]. When the balance
degree exceeds the balance threshold, the largest stream on the link with the highest load
is selected for scheduling. However, after the completion of the regulation of large flows,
the subsequent processing of small flows is unreasonable. In general, the emergence of
network link fragmentation and low resource utilization of network links are due to the
unreasonable scheduling of small flows [8].

The second subcategory involves the flow table in OpenFlow as the starting point [9].
By improving some current routing scheduling mechanisms, the purpose of load balancing
is realized [10]. An example is a real-time virtual machine management framework based
on a software defined network (SDN) [11]. Experimental results show that the proposed
management structure can effectively realize load balancing and improve link utilization.
However, the increasing complexity of the network scale means that the burden of the
controller will be seriously aggravated in this method, thereby leading to an increasing
computation time of the topology update [12,13].

The second category of flow scheduling methods develops a new algorithm to opti-
mize the flow control operation [14]. Typical algorithms include the round-robin scheduling
(RRS) [15], weighted round-robin scheduling (WRRS) [16], and source IP hash schedul-
ing [17]. However, the above various algorithms have their own problems. For example,
source IP hashing will cause an unbalanced server load [17].

The above research reduces network delay and improves link load balancing by op-
timizing the routing calculation and multi-path scheduling strategy. However, with the
increase of the network center scale, the real-time link usage acquisition becomes more com-
plex, and the burden of the controller increases. Thus, the computation time of the topology
update becomes increasingly large, a situation which leads to lowered network perfor-
mance.

To better improve the degree of load balancing, this study employs a prediction
method to predict the link utilization in the next duty cycle. This approach reduces the
burden of the controller in real-time monitoring network link conditions.

The spatio-temporal residual networks (ST-ResNet) algorithm [18,19] entails a deep
understanding of spatiotemporal data and maximizes the characteristics of spatiotemporal
data itself [20]. Each link in the Fat-tree structure has the characteristics of spatiotemporal
data in data transmission, and as a result, the link is also spatiotemporal data. Based on the
ST-ResNet model [21], the ST-ResNet algorithm is suitable for predicting the link utilization
state in the next duty cycle in a DCN. Then, according to the prediction results, a link load
balancing oriented predictive routing algorithm (i.e., the LLBR algorithm) is proposed.
The LLBR algorithm uses ST-ResNet to train the previous usage of the link [22], thereby
predicting the utilization state of network links in the next duty cycle. Therefore, LLBR can
optimize the load balancing and improve the network performance [23,24].

In view of the above introduction of load balancing, this work proposes a method that
can predict the occupancy state of the link in the next time slot and make decisions for
traffic scheduling by means of design and research. The goal is to realize the load balance
of and improve the utilization rate of the link. The difference between this method and the
existing methods is that the former can ascertain the state of the link in the next time slot
and prepare for traffic scheduling in advance. In realizing this goal, we found that network
links and real traffic lines have the same characteristics of spatiotemporal data through
research. First, we modified the original residual network algorithm, divided the occupancy
state of the network links by time period as the training data, and then combined it with
the LLBR algorithm we proposed to make the decision of routing distribution. Finally,
the validity of the LLBR algorithm is verified through comparison with RRS and WRRS
which are commonly used in load balancing.

The rest of this article is organized as follows: Section 2 introduces the typical topology
and load balancing algorithm of the DCN. Section 3 presents the design of the LLBR.

Future Internet 2021, 13, 54 3 of 13

Section 4 provides the simulation experiments on the designed LLBR and the analysis of
the experimental results. Finally, Section 5 gives the conclusions of this work.

2. Related Work

This section, introduces the topology of a DCN and then summarizes the advantages
and disadvantages of load balancing in a DCN. Finally, the RRS and WRRS algorithms
are presented.

The rapid growth and scalability of data is a challenging task in DCNs. Research on
DCN topology can be divided into two categories: server-centered and network device-
centered topologies. In the server-centered topology, the network topology is constructed
in a recursive way. The server is not only a computing unit, but also a routing node, so it
will actively participate in packet forwarding. In the network device-centered topology,
network traffic routing and forwarding are all completed by switches or routers [25].

Server-centered topologies include the DCell, FiCoon, Bcube topologies [26]. The DCell
topology recursively constructs a large-scale network through a low-end port switch and
multi-port server. The limitations of DCell include a cross-sectional bandwidth and net-
work latency [27]. By contrast, network device-centered topology include the Tree, Fat-Tree,
and VL2 topologies [28]. In the Fat-Tree structure, the topology of the network is divided
into three levels, namely, the core, the aggregation, and the access layers. The Fat-Tree bi-
section bandwidth increases with the expansion of the network size, so it can provide high
throughput transmission service for data center. Multiple parallel paths occur between the
source and destination nodes in the communication between the servers of different pods,
such that the network has acceptable fault tolerance performance and generally no single
point of failure arises. Replacing high performance switching equipment greatly reduces
network equipment overhead. Moreover, the network diameter is small, a feature which
can ensure the real-time network requirements of video, online meeting, and other services.
The topology structure is also regular and symmetrical, thereby making it conducive to
network cabling, automatic configuration, optimization, and upgrading [29].

The software defined network (SDN) paradigm is usually adopted by DCNs to provide
centralized control and network program ability by separating network control and data
forwarding functions [30]. Thus, SDN can simplify network management and greatly
promote the improvement of network performance and network innovation ability so as to
solve the load balancing problem of DCNs [31].

The separation of network control and data forwarding is the key element to the
success of SDN technology [32]. However, the centralized control mode in logic also
generates the challenge of scalability [33]. Although the OpenFlow protocol in SDN has
attracted great attention [34], many technical problems remain unresolved in terms of
the OpenFlow protocol itself or the SDN control separation architecture [35]. The main
problems include the scalability of the control plane [36], the design of the SDN forwarding
plane, and the consistency of the SDN control logic. The main goal of improving the
scalability of the control plane is to reduce the overhead between the data plane and
controller, that is, to reduce network congestion, improve network transmission efficiency,
reduce network delay, and ensure network load balance so as to reduce the burden of the
controller, improve the efficiency of the data plane and enhance network performance.

In order to reduce the training time and improve the training efficiency in the compar-
ative test, we chose the polling algorithm with a faster training speed than the recurrent
neural network (RNN) this kind of algorithm [37]. The following is an overview of the RRS
and WRRS algorithms.

The RRS algorithm is implemented by forwarding requests to different servers in turn.
The advantages of this algorithm are simplicity, stateless scheduling, and the omission of
the need to record the current connection state. The RRS algorithm is implemented on the
premise that all servers have the same processing performance and the current response
speed and the number of connections of each server are irrelevant. However, this algorithm
readily causes load imbalance between servers when the time between service requests

Future Internet 2021, 13, 54 4 of 13

varies greatly. Therefore, this algorithm is suitable for all servers with the same hardware
and software configuration, and when the service requests are relatively balanced [15].

The server processing performance index of the WRRS algorithm is the weight. The al-
gorithm allocates the request to each server by the way of weight and rotation. The server
with the highest weight gets the connection first. That server can handle more requests
than a counterpart with lower weight. Servers with the same weight can handle the same
number of connections. However, the disadvantage of the WRRS algorithm is that when a
machine with a large weight is visited, the machine with a small weight will be in the idle
state, thereby resulting in a waste of resources [16].

This work combines the technical characteristics of the DCN, OpenFlow and ResNet.
We investigated the control plane routing update paradigm and the link load in the scala-
bility problem of the control plane and designed an efficient routing update algorithm and
a network resource scheduling strategy so as to improve network performance. Therefore,
this study proposes a predictive routing algorithm for the routing decision and topology
forwarding module of the OpenFlow controller, thereby optimizing the performance in
terms of transmission time, bandwidth, jitter delay, packet loss rate, and network resource
allocation to improve the network performance of DCNs.

This algorithm is developed according to the characteristics of spatio-temporal data [38]
and uses deep convolution algorithm to predict the utilization state of network links in
the next duty cycle [39]. According to the results of the number of times the link is used,
a link load balancing-oriented predictive routing algorithm is designed to optimize the link
load balancing.

3. Algorithm Design

This section proposes and designs an LLBR algorithm. By predicting the network
link situation in the future cycle, the path calculation is performed to realize the link load
balance. First, the algorithm introduces the traffic architecture diagram on the basis of
the LLBR algorithm, describes the creation of a network link occupancy prediction model,
and finally explores the implementation of the ST-ResNet algorithm and the LLBR algo-
rithms.

3.1. Framework of Traffic Scheduling

This section introduces the traffic scheduling framework according to the LLBR algo-
rithm (Figure 1). This framework describes the prediction of the usage frequency of all links
in the next time period and then calculates the network path on the basis of the prediction
result. The link load balancing scheduling strategy is therefore optimized. The framework
model of the traffic scheduling consists of two modules: the module for the dynamic
routing decision layer and for the routing using the dynamic routing decision layer.

1. Data transmission requests

2.Data collection

3. Model training

4.Flow table matching

5.Flow table updating

6.Dynamic routing decision layer

7. Transmission path

Figure 1. Traffic scheduling architecture diagram.

The module of the dynamic routing decision layer predicts the next cycle usage of
the link. It predicts the link occupation state, selects the transmission path, and updates
the flow table. When transmitting data flow in a DCN, the route is selected according to
the flow table of the switches. Meanwhile, the link occupation state is collected by the
controller to train the network state prediction model which is constructed according to the

Future Internet 2021, 13, 54 5 of 13

ST-ResNet. Finally, the next cycle usage of the link is predicted according to the prediction
model, and the path is calculated by the LLBR algorithm to form the dynamic routing
decision layer.

In the route distribution using the dynamic routing decision layer, the optimal path is
directly calculated through the decision layer when data transmission requests are made in
the network, and then the path is issued for data transmission.

3.2. Link Occupancy Prediction Model

The link occupancy prediction function of the LLBR algorithm first establishes a data
model for the network link occupancy. Then, using the data model as the input data,
a neural network structure is designed to predict the network link occupancy in the next
duty cycle according to the ST-ResNet.

In the LLBR algorithm, the occupancy state of the link is monitored by the Floodlight
controller and the occupancy state data of the link are collected. The collected data is used
to train the parameters of the model. Network data collection consists of two parts: the
establishment of the network request and the storage of the link occupation state.

The network request is a random discrete function (Equation (1)) hat follows the
Poisson distribution to generate two non-repeated random numbers [40]. Then, the random
number is mapped to the terminal ID according to the mapping of Equation (2).

Pn(t) =
e−λt × (λt)n

n!
(n = 0, 1, 2, . . . , N) (1)

F(x) =
Dmax − Dmin
Smax − Smin

× (x− Smin) (2)

x is the random number generated by the Poisson distribution, Dmax is the maximum ID
number of the terminal, and Dmin is the minimum ID number of the terminal. Smin is the
minimum value of the generated random number, and Smax is the maximum value of the
generated random number. F(x) is the final mapping result.

The controller is used to collect the occupancy status of the link, and the collected data
is divided into two datasets (namely, the DATA and DATE datasets) and are saved in HDF5
format. The DATA dataset is a three-dimensional array. The first dimension represents
the number of data transmitted by the link. The second and third dimensions form a
two-dimensional array(Figure 2). The number of links between two ports is calculated
using Equation (3).

count(s, d) = links(s, d) + links(d, s) (3)

where links(s, d) is the number of links used from s to d, and links(d, s) is the number
of links used from d to s. count(s, d) is the total number of this links used. As shown
in Figure 2, the four ports were taken as examples to record the usage times of the links
between each port within an hour, and the recorded data was mapped into the grid as
shown in Figure 2b for the succeeding neural network training. As shown in Figure 2a,
the network is bi-directional. The number from r2 to r4 is 2 and the number from r4 to r2
is 1, so the total number of uses of the link is 3. The total number of uses is recorded in
Figure 2b, from which we observe that the intersection of r2 and r4 is 3. The DATE data set
represents the timestamp generated by each piece of data. For example, the time of data
transmission is 13:00 on 8 January 2021, and the storage format of DATE is 2021010813.

Future Internet 2021, 13, 54 6 of 13

r1 r2

r3 r4

3

12
2

2 1

(a) (b)

r4

r3

r2

r1

r1 r2 r3 r4

1

2

3

3

3

2

2

2

3

1

Figure 2. Link usage statistics. (a) Simulate the number of times a link is used between different
ports; (b) The number of times a link is used is mapped to the grid.

The network link occupancy prediction model uses the deep residual neural network
to divide the terminal link into the grid shown in Figure 2b through the understanding
of spatio-temporal data. Then, the link usage times of one cycle are projected onto the
grid to form a two-dimensional image. The data of multiple cycles form the link data.
The architecture of the network link occupancy prediction model consists of three modules
(Figure 3). First, the input data is divided according to the characteristics of the simulated
network, and then the three groups of characteristic data are merged to generate three
residual networks. Finally, three residual networks constitute the prediction model through
the convolution and residual units.

Network

Data

Data

Data

C
o
n

v
1

R
esU

n
it 1

R
esU

n
it L

C
o
n

v
2

C
o
n

v
1

R
esU

n
it 1

R
esU

n
it L

C
o
n

v
2

C
o
n

v
1

R
esU

n
it 1

R
esU

n
it L

C
o
n

v
2

Tanh
Fusion

XRes

LossXt

Self-similarity

Periodic

Long-term correlation

Extract data

Figure 3. Structure diagram of prediction model.

(1) Partitioning of input data
Network traffic in a DCN has the characteristics of self-similarity, periodicity, and long

correlation. Therefore, the input data can be divided according to different time intervals.
The data of the last 3 h were taken as the simulation of the self-similarity characteristic,
those of 24 h a day as the simulation of the periodicity characteristic, and those of one week
as the simulation of the long correlation characteristic to form three residual networks.
The three residual networks obtain the corresponding data through convolution.

(2) Fusion of three sets of characteristic data

Future Internet 2021, 13, 54 7 of 13

A convolution can capture nearby dependencies, and a bunch of convolutions can
further capture the dependencies of the entire network. Therefore, by fusing the three
residual networks after convolution processing, we can obtain Equation (4):

XRes = Wc ◦ X(L+2)
c + Wp ◦ X(L+2)

p + Wq ◦ X(L+2)
q (4)

where, ◦ is the Hadamard multiplication (i.e., unit multiplication). Wc, Wp and Wq are
adjustable learning parameters affected by the long-term correlation characteristics, pe-
riodic characteristics, and self-similarity characteristics, respectively X(L+2)

c , X(L+2)
p and

X(L+2)
q are the corresponding network outputs of the long-term correlation characteristics,

periodic characteristics, and self-similarity characteristics. Finally, the format of the fused
data is converted, and the value of the t interval is defined as Equation (5):

X̂t = tanh(XRes) (5)

where, tanh is a hyperbolic tangent function, and Equation (5) ensures that the output
value is between −1 and 1.

(3) Generation of the predictive model
The input data X̂t are repeatedly trained through the model. When the mean square

error RMSE between the predicted value and the true value is small or constant, the current
model parameters are saved. Then, model parameters will be used as the parameters of the
prediction model to predict the link occupancy state of the next duty time. We can obtain
Equation (6):

RMSE =

√
∑t

i=1
(
X̂i −Xi

)2

t
(6)

3.3. Implementation of the Algorithm

The ST-ResNet algorithm is a link frequency prediction algorithm that conforms to
the characteristics of spatio-temporal data. Then, the LLBR algorithm is used to optimize
the link load balancing scheduling strategy according to the prediction results. This section
first describes the ST-ResNet algorithm and then introduces the LLBR.

The prediction model based on the ST-ResNet algorithm is obtained through model
training, and the link usage frequency in the network is subsequently predicted to ascertain
the link occupation state in the next time period. The specific steps of the St-ResNet
algorithm are as follows:

(1) The data is divided into three groups according to the network characteristics: long-
term correlation characteristics Sq = [Xt−lq , Xt−(lq−1), · · ·Xt−q], periodic characteris-
tics Sp = [Xt−lp , Xt−(lp−1), · · ·Xt−p] and self-similarity characteristic
Sc = [Xt−lc , Xt−(lc−1), · · ·Xt−1], and lc, lp, and lq are the time intervals;

(2) Through Equation (4), three groups of data are fused to obtain the input data XRes;
(3) The input data XRes is formatted by Equation (5), such that all values are between −1

and 1 and the output value X̂t is obtained;
(4) The above operation is repeated until the RMSE between the predicted value and the

real value is small or remains unchanged;
(5) The current model is saved as a prediction model.

To ensure the accuracy and timeliness of the prediction model, the parameters of the
model must be trained periodically and constantly updated. Then, the calculation method
of the network route and the issuing of the route are performed according to the updated
prediction model. The prediction algorithm is shown in Algorithm 1.

The LLBR algorithm involves path calculation after the prediction model is obtained.
First, the algorithm reads the predicted link usage times in HDF5 format into a two-
dimensional array and then it evaluates whether each link has an odd number of uses. if

Future Internet 2021, 13, 54 8 of 13

so, the algorithm calculates the total estimated cost of the link, i.e., Cij. We can thus obtain
Equation (7):

Cij = Rij + Lij + jumpij (7)

where Lij is the delay of the link, jumpij is the number of hops from the network request
source switch to the link, and Rij is the predicted use times of the link.

If the number of times the link is used is even, then the current link usage is disre-
garded. We can ascertain the cost of the link through Equation (8).

Cij = Lij + jumpij (8)

Meanwhile, the predicted situation of this sub-link is halved for the next use. Fi-
nally, the path with the least estimated cost is calculated by the Dijkstra algorithm [41].
The specific description of the LLBR algorithm is shown in Algorithm 2.

Algorithm 1: ST-ResNet Algorithm.
Input: Historical observations:X0, · · · , Xn−1;Lengths of characteristics sequences:lc, lp, lq;Period:p; Trend span:q;

Prediction cycle:T.
Output: The result R of next T predict

1 S← NULL,M← NULL
2 for all available time intervalt(1 ≤ t ≤ n− 1) do
3 Sc = [Xt−lc , Xt−(lc−1), · · ·Xt−1];
4 Sp = [Xt−lp , Xt−(lp−1), · · ·Xt−p];
5 Sq = [Xt−lq , Xt−(lq−1), · · ·Xt−q];
6 Put an training instance (Sc, Sp, Sq, Xt) into M
7 Initialize all learnable parameters θ in ST-ResNet

8 while stop criteria not me do
9 Randomly select a batch of instancesMb fromM

10 Find RMES by minimizing the Equation (6) with Mb

11 Use M to predict XTn =
(
XTn−1 , YTn−1

)
12 Put the result of change XTn into the original format into R

The Djikstra algorithm is the shortest path algorithm from one to the other vertices and
solves the shortest path problem in the graph. The main feature of the Djikstra algorithm
is that an array is used to save the shortest path distance from the starting point to other
points, and the strategy of a greedy algorithm is adopted to traverse each time to the
adjacent node of the nearest and unvisited vertex from the starting point and constantly
update the array until it is extended to the end point. This work uses the Djikstra algorithm
as a part of the LLBR algorithm to calculate the path with the least cost [41].

Algorithm 2: LLBR Algorithm.
Input: The result of predict:R; Source host:S; Destination host:D
Output: The path :P

1 P← NULL;C ← NULL;times← 0; for For all links:i, j ∈ (0, 81) do
2 if times is odd number then
3 Cij ← Rij + Lij + jumpij;

4 else
5 Cij ← Lij + jumpij;

6 Use dijsktra to compute path P final

Future Internet 2021, 13, 54 9 of 13

4. Simulation Experiment

To verify the effectiveness and feasibility of the LLBR algorithm proposed in this
paper, an experimental simulation environment was constructed. The proposed LLBR
algorithm was verified experimentally by simulating the Fat-Tree topology of the data
center network. In the same experimental environment, the experimental results of different
network performance indicators of the LLBR, WRRS and RRS algorithms were compared
and analyzed.

4.1. Experimental Environment

The K = 8 Fat-Tree network topology was constructed on Mininet, as shown in Figure 4
(several switches and hosts were omitted). The topology consisted of 128 hosts and 80
switches. The Poisson distribution was used to simulate the request of data transmission
in a DCN. A Floodlight controller collected the link occupation state of the data traffic
transmission in the DCN. The Keras learning library was utilized to implement the model.

Figure 4. Fat-Tree topology (K = 8).

4.2. Simulation Result

In this section, the simulation results for the transmission time, bandwidth, delay jitter,
and packet loss rate of the three algorithms are compared and analyzed. The transmitted
data in the experiment measure 185 Kbytes.

Figure 5 depicts the cumulative distribution function of the time spent on the trans-
mission data recorded by the three algorithms at 22 terminals within an hour. The LLBR
algorithm had 90% port transfer time within 250 ms, while the RRS and WRRS algorithms
had 40% port transfer time above 250 ms(Figure 5). The LLBR algorithm had a gentle
transmission time, whereas the transmission time jitters of the WRRS and RRS algorithms
were relatively large. Thus, the LLBR algorithm was reasonable for data transmission link
allocation and reduced the delay.

Figure 6 shows the cumulative distribution function of the bandwidth used to transmit
data in the DCN as recorded by 22 terminals within an hour using the three algorithms.
The bandwidth of the LLBR algorithm was better than that of the WRRS and RRS algorithms
(Figure 6). Thus, the LLBR algorithm improved link utilization and reduced the numbers
of idle links.

Future Internet 2021, 13, 54 10 of 13

� ������������������	��
�����
���

���

���

���

��

���

Cu
mu

lati
ve

Dis
trib

uti
on

Fu
nct

ion

T r a n s m i s s i o n t i m e (s e c)

�����
�����
����

Figure 5. Transmission time of three algorithms.

� � � � ���������������
���

���

���

���

���

���

Cu
mu

lati
ve

Dis
trib

uti
on

Fu
nct

ion

B a n d w i d t h (K b / s)

 L L B R
 W R R S
 R R S

Figure 6. Transmission bandwidth of three algorithms.

Figure 7 presents the cumulative distribution function of the delay jitter of the trans-
mitted data recorded by 22 terminals within an hour using the three algorithms. When the
LLBR algorithm and WRRS algorithms were used for data transmission, the delay jitter
of 90% of the ports was within 1000 ms. By contrast, the delay jitter of 90% of the ports
was all over 2000 ms when RRS algorithm was used for data transmission. This outcome
indicated that the LLBR algorithm could be used to reasonably transfer large-scale and
small-scale flows on the corresponding links, thereby reducing network congestion.

Figure 8 illustrates the cumulative distribution function of the packet loss rate of the
DCN transmitted by the 22 terminals recorded within an hour using the three algorithms.
The packet loss rate of the LLBR algorithm was 0.02%, a figure which was far lower
than that of the other two algorithms. Thus, the LLBR algorithm guaranteed the data
transmission and reduced packet loss.

Future Internet 2021, 13, 54 11 of 13

���
���

���

���

���

���

���

Cu
mu

lati
ve

Dis
trib

uti
on

Fu
nct

ion

J i t t e r (m s)

�����
�����
����

Figure 7. Delay jitter of three algorithms.

�����������������������	��
������
���

���

���

���

��

���

Cu
mu

lati
ve

Dis
trib

uti
on

Fu
nct

ion

L o s s (%)

 L L B R
 W R R S
 R R S

Figure 8. Packet loss rate of three algorithms.

5. Conclusions

Many online services, parallel computing applications, and machine learning appli-
cations rely on data center infrastructure. These applications generate extensive traffic
in a DCN, thereby making traffic scheduling an important means to improve resource
utilization, ensure fair sharing, and guarantee application performance.

Through the analysis of the network transmission link in a DCN, this work confirms
that a network link has the characteristics of spatio-temporal data during data transmission.
Therefore, we modified the original ST-ResNet algorithm. The input of the algorithm is
changed to the occupancy state of the link, and the output standard is the mean square
deviation between the predicted data and the current real data. Thus, the link occupancy
status of the next duty time can be predicted. To make better use of the predicted results, we
propose the LLBR algorithm, which determines the path used for data transmission So as
to achieve load balance and improve the user’s Quality of Experience (QoE). Experiments
show that the LLBR algorithm can reasonably allocate the transmission path for the data

Future Internet 2021, 13, 54 12 of 13

in the next duty time. In the DCN, reasonable traffic scheduling can be performed by
applying the LLBR algorithm to improve the utilization rate of resources, ensure fair
sharing, and guarantee the performance of various applications.

Author Contributions: Conceptualization, Y.L., J.Z., Q.W. and W.L.; investigation, Y.L., J.Z., Q.W.
and P.L.; methodology, Y.L., J.Z. and Q.W.; validation, Y.L., J.Z. and Q.W.; writing—original draft
preparation, J.Z.; supervision, Y.L.; writing—review and editing, Y.L., J.Z. and W.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This publication has emanated from a joint research conducted with the financial support
of the S&T Major Project of the Science and Technology Ministry of China under the Grant No.
2017YFE0135700.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shang, Y.; Li, D.; Zhu, J.; Xu, M. On the Network Power Effectiveness of Data Center Architectures. IEEE Trans. Comput. 2015,

64, 3237–3248. [CrossRef]
2. Zhao, S.; Zhu, Z. On Virtual Network Reconfiguration in Hybrid Optical/Electrical Datacenter Networks. J. Light. Technol. 2020,

38, 6424–6436. [CrossRef]
3. Ghorbani, S.; Yang, Z.; Godfrey, P.B.; Ganjali, Y.; Firoozshahian, A. DRILL: Micro Load Balancing for Low-latency Data Center

Networks. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA,
21–25 August 2017.

4. Bok, K.; Choi, K.; Choi, D.; Lim, J.; Yoo, J. Load Balancing Scheme for Effectively Supporting Distributed In-Memory Based
Computing. Electronics 2019, 8, 546. [CrossRef]

5. Sufiev, H.; Haddad, Y.; Barenboim, L.; Soler, J. Dynamic SDN Controller Load Balancing. Future Internet 2019, 11, 75. [CrossRef]
6. Amiri, E.; Hashemi, M.R.; Raeisi, K. Policy-Based Routing in RIP-Hybrid Network with SDN Controller. In Proceedings of the

4th National Conference on Applied Research Electrical Mechanical Computer and IT Engineering, Tehran, Iran, 4 October 2018.
7. Zhexin, X.U.; Shijie, L.I.; Xiao, L.; Yi, W.U. Power control mechanism for vehicle status message in VANET. J. Comput. Appl. 2016,

36, 2175–2180.
8. Zhao, H.; Tan, M.; Tang, C.; Xia, S.; Peng, Z. Logic carrying network building method based on link load balancing. In Proceedings

of the 2019 IEEE 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Kunming, China,
17–19 October 2019.

9. Mondal, A.; Misra, S.; Maity, I. Buffer Size Evaluation of OpenFlow Systems in Software-Defined Networks. IEEE Syst. J. 2018,
13, 1359–1366. [CrossRef]

10. Swami, R.; Dave, M.; Ranga, V. Defending DDoS against Software Defined Networks using Entropy. In Proceedings of the 2019
4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 18–19 April 2019.

11. You, S.Y.; Wang, Y.C. An Efficient Route Management Framework for Load Balance and Overhead Reduction in SDN-Based Data
Center Networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1422–1434.

12. Craig, A.; Nandy, B.; Lambadaris, I.; Ashwood-Smith, P. Load balancing for multicast traffic in SDN using real-time link cost
modification. In Proceedings of the 015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015.

13. Huang, X.; Bian, S.; Shao, Z.; Xu, H. Dynamic Switch-Controller Association and Control Devolution for SDN Systems. In
Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017.

14. Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, Phoenix, AL, USA, 12–17 February 2016.

15. Liu, G.; Wang, X. A Modified Round-Robin Load Balancing Algorithm Based on Content of Request. In Proceedings of the 2018
5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018.

16. Li, D.C.; Chang, F.M. An In–Out Combined Dynamic Weighted Round-Robin Method for Network Load Balancing. Comput. J.
2007, 50, 555–566. [CrossRef]

17. Nair, N.K.; Navin, K.S.; Chandra, C.S.S. A survey on load balancing problem and implementation of replicated agent based load
balancing technique. In Proceedings of the Communication Technologies, Thuckalay, India, 23–24 April 2015.

18. Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management
of OpenFlow Switches Performance and Security Challenges: A Survey. Future Internet 2020, 12, 147. [CrossRef]

19. Leonardi, L.; Bello, L.L.; Aglianò, S. Priority-Based Bandwidth Management in Virtualized Software-Defined Networks. Electronics
2020, 9, 1009. [CrossRef]

20. Chen, J.; Zheng, X.; Rong, C. Survey on Software-Defined Networking. IEEE Commun. Surv. Tutorials 2015, 17, 27–51
21. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of

the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016.

http://doi.org/10.1109/TC.2015.2389808
http://dx.doi.org/10.1109/JLT.2020.3016775
http://dx.doi.org/10.3390/electronics8050546
http://dx.doi.org/10.3390/fi11030075
http://dx.doi.org/10.1109/JSYST.2018.2820745
http://dx.doi.org/10.1093/comjnl/bxm020
http://dx.doi.org/10.3390/fi12090147
http://dx.doi.org/10.3390/electronics9061009

Future Internet 2021, 13, 54 13 of 13

22. Mao, H.; Schwarzkopf, M.; Venkatakrishnan, S.B.; Meng, Z.; Alizadeh, M. Learning Scheduling Algorithms for Data Processing
Clusters. In Proceedings of the ACM Special Interest Group on Data Communication Budapest, Hungary, 20–24 August 2018.

23. Chen, L.; Lingys, J.; Chen, K.; Liu, F. AuTO: Scaling deep reinforcement learning for datacenter-scale automatic traffic optimization.
In Proceedings of the 2018 Conference of the ACM Special Interest Group, Buffalo-Niagara Falls, NY, USA, 18–20 June 2018.

24. Agarwal, S.; Kodialam, M.; Lakshman, T.V. Traffic engineering in software defined networks. In Proceedings of the IEEE
Infocom, Turin, Italy, 14–19 April 2013.

25. Dong, S.; Kaixin, Z.; Yaming, F.; Jie, C. Dynamic Traffic Scheduling and Congestion Control across Data Centers Based on SDN.
Future Internet 2018, 10, 64.

26. Xia, W.; Zhao, P.; Wen, Y.; Xie, H. A Survey on Data Center Networking (DCN): Infrastructure and Operations. Commun. Surv.
Tutor. 2017, 19, 640–656. [CrossRef]

27. Wang, X.I.; ERICKSON.; ALEJANDRO.; Fan, J. Hamiltonian Properties of DCell Networks. Comput. J. 2015, 58, 2944–2955.
[CrossRef]

28. Kiriha, Y.; Nishihara, M. Survey on Data Center Networking Technologies. IEICE Trans. Commun. 2013, E96.B, 713–721. [CrossRef]
29. Qian, Z.; Fan, F.; Hu, B.; Yeung, K.L.; Li, L. Global Round Robin: Efficient Routing With Cut-Through Switching in Fat-Tree Data

Center Networks. IEEE/ACM Trans. Netw. 2018, 26, 2230–2241. [CrossRef]
30. Modi, T.; Swain, P. FlowDCN: Flow Scheduling in Software Defined Data Center Networks. In Proceedings of the 2019

IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22
February 2019.

31. Malik, A.; de Fréin, R.; Al-Zeyadi, M.; Andreu, J. Intelligent SDN Traffic Classification using Deep Learning. In Proceedings of
the 2020 2nd International Conference on Computer Communication and the Internet (ICCCI), Nagoya, Japan, 26–29 June 2020.

32. Hao-Ming, D.; Hui, J.; Si-Guang, C. SDN-based Network Controller Algorithm for Load Balancing. Comput. Sci. 2019, 46, 312–316.
33. Abdelaziz, A.; Fong, A.T.; Gani, A.; Khan, S.; Alotaibi, F.; Khan, M.K. On Software-Defined Wireless Network (SDWN) Network

Virtualization: Challenges and Open Issues. Comput. J. 2017, 60, 1510–1519. [CrossRef]
34. Zhang, L.; Li, D.; Guo, Q. Deep Learning from Spatio-temporal Data using Orthogonal Regularizaion Residual CNN for Air

Prediction. IEEE Access 2020, 8, 66037–66047. [CrossRef]
35. Kalra, S.; Leekha, A. Survey of convolutional neural networks for image captioning. J. Inf. Optim. Sci. 2020, 41, 239–260.

[CrossRef]
36. Yu, C.; Zhao, Z.; Zhou, Y.; Zhang, H. Intelligent Optimizing Scheme for Load Balancing in Software Defined Networks. In

Proceedings of the 2017 IEEE 85th Vehicular Technology Conference: VTC2017-Spring, Sydney, Australia, 4–7 June 2017.
37. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. Computer Sci. 2015,

8, 326–337.
38. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Neural Inf. Process.

Syst. 2012, 25. [CrossRef]
39. Huong, T.T.; Khoa, N.D.D.; Dung, N.X.; Thanh, N.H. A Global Multipath Load-Balanced Routing Algorithm based on

Reinforcement Learning in SDN. In Proceedings of the 2019 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019.

40. Zhang, Y.; Harrison, P.O. Performance of a Priority-Weighted Round Robin Mechanism for Differentiated Service Networks.
In Proceedings of the International Conference on Computer Communications and Networks, Arlington, VA, USA, 9–11
October 2006.

41. Ahmed, A.M.; Ahmed, S.H.; Ahmed, O.H. Dijkstra algorithm applied: Design and implementation of a framework to find nearest
hotels and booking systems in Iraqi. In Proceedings of the 2017 International Conference on Current Research in Computer
Science and Information Technology (ICCIT), Slemani, Iraq, 26–27 April 2017.

http://dx.doi.org/10.1109/COMST.2016.2626784
http://dx.doi.org/10.1093/comjnl/bxv019
http://dx.doi.org/10.1587/transcom.E96.B.713
http://dx.doi.org/10.1109/TNET.2018.2869532
http://dx.doi.org/10.1093/comjnl/bxx063
http://dx.doi.org/10.1109/ACCESS.2020.2985657
http://dx.doi.org/10.1080/02522667.2020.1715602
http://dx.doi.org/10.1145/3065386

	Introduction
	Related Work
	Algorithm Design
	Framework of Traffic Scheduling
	Link Occupancy Prediction Model
	Implementation of the Algorithm

	Simulation Experiment
	Experimental Environment
	Simulation Result

	Conclusions
	References

