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Abstract: Blockchain, a distributed ledger technology (DLT), refers to a list of records with consecutive
time stamps. This decentralization technology has become a powerful model to establish trust among
trustless entities, in a verifiable manner. Motivated by the recent advancement of multi-access edge
computing (MEC) and artificial intelligence (AI), blockchain-enabled edge intelligence has become
an emerging technology for the Internet of Things (IoT). We review how blockchain-enabled edge
intelligence works in the IoT domain, identify the emerging trends, and suggest open issues for
further research. To be specific: (1) we first offer some basic knowledge of DLT, MEC, and AI; (2) a
comprehensive review of current peer-reviewed literature is given to identify emerging trends in
this research area; and (3) we discuss some open issues and research gaps for future investigations.
We expect that blockchain-enabled edge intelligence will become an important enabler of future IoT,
providing trust and intelligence to satisfy the sophisticated needs of industries and society.

Keywords: Internet of Things; blockchain; multi-access edge computing; machine learning

1. Introduction

Internet of Things (IoT) emerged initially in 1999 in supply chain industries in associa-
tion with radio-frequency identification (RFID) [1]. The idea was to empower computers to
observe, identify, and understand the world without the help of human beings. However,
many IoT devices are designed to be battery operated and have a compact physical size;
thus, they have very limited energy and computation resources. Such resource-constrained
IoT devices are not well-equipped to perform complex processing, such as supporting
artificial intelligence (AI) [2]. Although federated learning (FL) can be implemented by a
group of IoT devices [3], such computational workload is still too heavy for IoT devices.
To overcome this bottleneck, transmitting computational tasks to nearby servers is an
attractive solution. Different from traditional cloud computing, such strategy as multi-
access edge computing (MEC) delivers computation resources to the edge of the radio
access network (RAN). Therefore, computational tasks have no need to travel through
the core network, allowing IoT data to be processed and results consumed locally with
minimal delay. This mode of computing, while minimizing latency and use of core net-
work communication resources, has its own challenges. For example, security issues and
incentives should be taken into considerations. To be specific, the transmitted data may
contain private data about personal identity and financial account information. This raises
the risk of privacy leakage and malicious attacks. Moreover, nearby servers or computing
nodes may need incentives to process tasks for IoT devices. Furthermore, edge servers
have limited computation power compared with the cloud. The computing operations also
cost storage and energy resources. Therefore, a computing resource trading [4] and data
sharing [5] framework or platform is needed to motivate edge servers. As a distributed
ledger technology (DLT), blockchain has emerged as a potential solution for the above
issues, due to its nature of data transparency, distributed operation, and reliability. It is

Future Internet 2021, 13, 48. https://dx.doi.org/10.3390/fi13020048 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-9086-5467
https://orcid.org/0000-0001-9040-847X
https://orcid.org/0000-0003-3529-2640
https://dx.doi.org/10.3390/fi13020048
https://dx.doi.org/10.3390/fi13020048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/fi13020048
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/2/48?type=check_update&version=2


Future Internet 2021, 13, 48 2 of 21

timely to comprehensively survey the application of blockchain to enable edge intelligence
in support of IoT applications.

1.1. Related Surveys

There exist several surveys on related research areas. Table 1 summarizes these surveys
and compare them with this review.

Table 1. Summary of the existing surveys and tutorials with their primary focus.

Reference AI MEC Recent Advances Trends Research Gaps

ElMamy et al. [6] 7 3 7 7 7

Tariq et al. [7] 7 3 7 7 7

Jameel et al. [8] 3 7 3 7 7

Liu et al. [9] 3 3 7 3 7

Kumari et al. [10] 3 7 7 3 7

Salah et al. [11] 3 7 7 7 7

Tahir et al. [12] 3 3 7 7 7

Nguyen et al. [13] 3 3 7 7 7

Xiong et al. [14] 7 3 7 7 7

Yang et al. [15] 7 3 7 7 7

Sekaran et al. [16] 7 3 7 7 7

Fernandez Carames et al. [17] 3 3 7 7 7

Chamola et al. [18] 7 3 7 7 7

Queiroz et al. [19] 3 3 7 7 7

Mollah et al. [20] 3 3 7 7 7

Our Review 3 3 3 3 3

ElMamy et al. [6] surveyed the usage of DLT to mitigate multiple cyber-threats in
Industry 4.0. This survey classified the most important cyber-attacks into four classes,
including scanning, local to remote, power of root, and denial of service. Tariq et al. [7]
reviewed security issues around fog-enabled IoT. They considered blockchain as the key
to address fog computing security issues. However, these works do not consider the
capability of blockchain as an enabler of AI at the edge.

For AI enabled by blockchain, there exist several literature reviews. Jameel et al. [8]
surveyed the application of reinforcement learning in blockchain-enabled industrial IoT
networks. They pointed out that machine learning (ML) algorithms, such as Q-learning,
can improve the performance of the network, in terms of block time minimization and
transaction throughput enhancement. Furthermore, Liu et al. [9] gave a two-way conver-
gence of blockchain and ML. On one hand, blockchain can endow ML with the features
of security and trust. On the other hand, ML can be used as a tool to optimize blockchain
networks. Kumari et al. [10] studied existing blockchain-based AI approaches for energy
cloud management, to address security and privacy issues using blockchain and AI. Fur-
thermore, Salah et al. [11] gave a comprehensive review of blockchain applications for AI.
The relationship between AI and blockchain in the IoT-enabled ecosystem was discussed.
However, MEC has not been considered in these works.

Additionally, MEC is a key technology of emerging fifth-generation (5G) networks.
Multiple surveys on blockchain solutions in 5G networks exist, centered around security
challenges in 5G systems. In addition, Tahir et al. [12] discussed blockchain applications in
5G networks. They gave a comprehensive survey on the integration of blockchain with
5G networks and beyond. In this review, the transparency, auditability, and distributed
properties of blockchains were considered to address issues, such as security, resources
management, and energy efficiency. The paper identified three major challenges associated
with MEC, including identity authentication, privacy, and trust management. Then, it
introduced some blockchain-based solutions to meet these challenges. While this survey
covered a lot of topics, blockchain-enabled mobile edge intelligence was not studied
thoroughly in this survey. By contrast, Nguyen et al. [13] gave a brief survey of blockchain-
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enabled federated approach. This ML architecture is empowered by the decentralization
feature of blockchain.

Furthermore, Xiong et al. [14] studied the motivation for the integration of MEC and
blockchain. Computational heavy tasks (e.g., proof of work) in the blockchain system are
offloaded to MEC servers. They focused on using edge computing to enabling mobile
blockchains. However, the use of blockchains to enable efficient and secure MEC was not
considered. Additionally, Yang et al. [15] surveyed the collaboration of edge computing and
blockchain. They claimed that blockchain could extend the capability of edge computing,
in terms of reliable access and control of the network and computation resources. Different
from this comprehensive survey, in the present work we focus on blockchain-enabled
distributed and decentralized ML. In addition, we analyze the emerging trend and open
issues in this research area.

A survey on blockchain-enabled MEC for IoT automation was presented by
Sekaran et al. [16]. This review focused on the integration of blockchain with IoT. More
importantly, computational loads and delays were considered and investigated. Appli-
cations of blockchain for 6G-enabled IoT were further investigated and classified in this
paper. Besides, Fernandez Carames et al. [17] studied the collaboration of blockchain, IoT,
and edge computing for higher education. Different from other review articles that mainly
focus on academic research, it gave a detailed road map of the smart campus implementa-
tion. This could be helpful for researchers to understand how blockchain-enabled edge
computing works in a realistic IoT application scenario, such as autonomous driving [21].
As for the Internet of vehicles (IoV), blockchain-enabled MEC platforms could be applied
for information-exchange and trust. Moreover, Chamola et al. [18] surveyed the integration
of IoT, AI, and blockchain to deal with the coronavirus disease 2019 (COVID-19) pandemic.
Queiroz et al. [19] investigated blockchain solutions for different layers in edge computing,
including fog layer, edge layer, static multi-layer, and dynamic multi-layer. Applicable ML
algorithms were also discussed in this paper. However, this survey mainly focused on the
IoV domain and did not cover other areas comprehensively. Mollah et al. [20] focused on
the blockchain-enabled intelligent transportation systems (ITS). Blockchain-empowered
applications, including edge computing and AI, were investigated in this article, and the
challenges and opportunities of blockchain-based applications in ITS were discussed.

The literature search strategy of this paper is described as follows: We searched for
literature published since 2016, first with the keywords: blockchain, MEC, and IoT, and
then with the keywords: blockchain, machine learning, and IoT. We combined the two data
sets and eliminated duplicates. The selections of papers from the combined dataset were
based on the co-citation frequency, node centrality in the literature graph, and the impact
of the publishers. We explored the summary table of CiteSpace [22], a literature mining
software that groups research papers in clusters, and selected the top-ranked articles in
each cluster.

1.2. Contributions and Organization

In this review, we present a comprehensive survey of blockchain-enabled edge intelli-
gence in the IoT domain. The main contributions are listed as follows:

• We review and analyze the literature related to blockchain-enabled edge intelligence,
aiming at giving new researchers in this area some basic ideas and the big picture.

• In this paper, we not only summarize the technical contributions of related papers but
also illustrate and provide some insights on the technical trends.

• We identify some open issues and research gaps in this research area, and discuss
future research opportunities from the perspectives of the social layer, data layer, and
technical layer.

The rest of this survey paper is organized as follows. In Section 2, we introduce some
background about blockchain, MEC, and AI. Section 3 mines the literature to identify
emerging trends. Then, we point out some research gaps and discuss some potential
research questions in Section 4. Finally, we conclude this paper in Section 5.
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2. Background

In this section, we provide some basic background of blockchain technology, MEC,
and AI. Clarifications and comparisons are given to facilitate understanding. To be specific,
we first introduce blockchain fundamentals to give readers a basic idea. We focus on the
part of blockchain technology that is related to this survey and leave out the rest of the
blockchain fundamentals, such as consensus algorithm details, Merkle tree, transaction
architectures, and digital signatures, for brevity. Next, MEC is introduced. We focus on its
definition and the integration of blockchain and MEC. Finally, blockchain-enabled AI is
discussed. We aim at illustrating how this integration works in the IoT domain.

2.1. Blockchain Fundamentals

Blockchain refers to a set of records that are sequentially chained together using cryp-
tography. Blockchains could be classified into two major types: public and permissioned
chains. On the one hand, a public chain is like the Internet. Each user of this record system
can find this chain and get access to it. On the other hand, a permissioned chain only
allows authenticated entities to read and add to the records. Additionally, a consortium
blockchain is a hybrid type between public and permissioned chain, but more like a private
chain. It is permissioned and supervised by a predetermined group of entities.

The chain architecture in Figure 1 guarantees the immutability of blockchain records.
Once a block exists in this chain, one cannot change anything in previous blocks. A
conventional database is like a single screenshot of information, but the blockchain is like
a chain of timestamped screenshots. There is a degree of freedom and continuity in time,
allowing the blockchain to track the history of this record system.

Time Stamp
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Transaction Records

Nonce Merkle Root

Block Header

Version Time Stamp

Hash of Previous Block Header 

Transaction Records

Nonce Merkle Root

Block Header

VersionTime Stamp
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Transaction Records

Nonce Merkle Root

Block Header

Version

Figure 1. The chain architecture of the blockchain.

Generally speaking, a blockchain uses “consensus” to add new data records (not
replace them). However, traditional databases use “permission” to manage data. It has
centralized administration and maintenance. In the Bitcoin system, which is the most
well-known application of public blockchain, proof-of-work (PoW) is used to reach this
consensus. PoW is a kind of mathematical “puzzle”. The secret of this puzzle (e.g., Nonce) is
hard to find but easy to be verified. The process of finding the nonce is called “mining” [23].
The first miner who discovers the secret can add the block to the longest chain and gets a
reward in the form of a Bitcoin. In this decentralized system, full duplicates of transaction
records are located at different networked miners. The verification and confirmation of each
transaction are processed based on the consensus algorithm. No single third entity could
fully control the process in this peer-to-peer network. In contrast, a distributed system
also processes transactions in different locations, but it may still be under the control of a
single entity. That is the main difference between distributed and decentralized systems.
To reiterate, blockchain is a decentralized system, shifting the authority of governance from
a centralized third party to individual entities in this record system.

Different from the Bitcoin network, Ethereum [24] embraces the smart contract, a
kind of executable scripts stored on the blockchain [25]. Instead of PoW, Ethereum uses
Proof-of-stake (PoS) as its consensus mechanism. This consensus strategy chooses block
validators at random, with the ones having more stakes gaining more chances to be selected.
This frees blockchain nodes from meaningless and energy-consuming mining.
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2.2. Integration of MEC and DLT

Several terms are used in the literature to describe the computing collaboration among
the end-user, the nearby server, and the cloud. They include fog computing [26], edge
computing [27], and MEC [28]. Compared with the “cloud”, the “fog” is closer to the
“ground” (e.g., the IoT data source). It refers to the extended part of cloud computing,
including distributed resources, wired and wireless data transmissions, and intermediate
layers between edge and cloud. Edge computing, however, focuses on the task of executing
using edge nodes in the RAN outside of the core network. Furthermore, mobile edge
computing is a form of edge computing that includes the data caching and computation
offloading strategies within the mobile network [29]. Moreover, recent interests in MEC
reflect the practical situation with multi-technology RANs in edge computing [30]. It covers
access points, hot spots, routers, etc., to establish an edge network. In this review, we use
the acronym “MEC” to stand for multi-access edge computing, which also encompasses
mobile edge computing. The relationships among fog computing, edge computing, and
MEC are, thus, illustrated in Figure 2.

 !"

!#$%

&'$

Figure 2. The relationships among different phrases.

In general, the integration between blockchain and MEC is mutually beneficial [15]. On
one hand, blockchain introduces security, privacy, and trust to MEC [31,32]. Efficient control
and incentive of cooperation among edge devices and servers are securely enabled by
blockchain. On the other hand, MEC improves the scalability of blockchain in a distributed
and efficient manner by delivering computing and cache resources to the blockchain-
enabled IoT systems. For example, blockchain mining requires a high computational
capability in the PoW process, which imposes great challenges for IoT devices. The reason
why IoT devices should actively mine is that a global consensus is required for transaction
validation. Different from a distributed IoT system, a blockchain-enabled IoT system
decentralize the authority to each IoT device. In other words, there is no single third party
that could help IoT devices make a global decision. Therefore, the PoW mechanism needs
to be in place to confirm and secure the integrity and validity of transactions. Fortunately,
MEC can be introduced as a solution to this issue. By offloading computational tasks
to an MEC server, resource-constrained IoT devices can use PoW to reach consensus for
decentralized applications.

Nguyen et al. [33] discussed the privacy leakage issue in blockchain-MEC integration.
In this article, mobile users act as miners in the blockchain system. Data processing tasks
and mining tasks are offloaded from users to nearby MEC servers. The privacy level
of this process is modeled and formulated. Furthermore, blockchain was introduced as
a strong security mechanism for MEC systems in vehicular networks [34]. In addition,
Reference [35] introduced a blockchain-based trust mechanism for MEC systems. By
establishing a reputation system for the edge nodes, the miner in the blockchain network
was, thus, selected in a trusted manner.

Additionally, blockchain-enabled payment systems for the video streaming industry
were developed with an incentive mechanism for MEC servers [36]. Furthermore, the
flexibility and scalability of block size could be significantly improved by MEC. However,
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not every edge device could have enough cryptocurrency to buy the offloading service.
Therefore, Zhang et al. [37] proposed a loan strategy for this purpose. Although the mining
task could be executed on MEC servers, competition exists among IoT devices. The reason
is that the resources of edge servers are still limited compared to relatively numerous IoT
devices. To deal with this issue, Zhao et al. [38] solved the computation resources allocation
problem in the MEC-assisted public blockchain network. Moreover, this strategy could
protect the blockchain system from 51% attack [39] because the attacker with the majority
stake in this system would try to preserve and secure this kind of cryptocurrency, but not
to destroy it.

2.3. Blockchain-Enabled AI

Traditional AI solutions, including deep learning and reinforcement learning, require
the centralized governance of data. A single learner should gather data and computing
resources for learning machines and agents before the training exercise. This centralized
architecture leads to several issues, such as single points of failure and personal data
leakage [40]. As mentioned above, blockchain is a decentralized and distributed record
system. This characteristic is very suitable for deploying AI solutions in distributed IoT
systems. Moreover, collaboration and trusted data sharing among learning machines
could be realized by blockchain technology. In this review, we focus on introducing smart
contract-based AI, especially the federated AI solution.

In a nutshell, smart contract [25] is a powerful tool to enable distributed and decentral-
ized ML for IoT systems. As illustrated in Figure 3, this kind of predefined and self-verified
scripts, including learning algorithms and models, can be deployed at each distributed
learning device in a decentralized manner. Furthermore, only learning parameters are
shared and verified by blockchain transactions, while sensitive IoT data are not accessible
to any third parties. This guarantees the secure sharing of the learning experience and
gives the self-governance of data to each entity, which is the basic idea of blockchain-based
FL. Thus, blockchain and smart contact together enable a global platform for collaborating
ML in a distributed and decentralized manner.

 !"#"$%!&'!()*!
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Figure 3. Blockchain-based artificial intelligence (AI) for the Internet of Things (IoT).

Blockchain was introduced to manage the reputation of learning devices [41–45]. To
be specific, Kang et al. [42] proposed effective incentive mechanisms for reliable FL. Con-
sortium blockchain was further introduced by them for reputation management. Moreover,
blockchain-enabled reward systems were considered in Reference [4,46–50]. Furthermore,
the blockchain-enabled data integrity and sources validation could be realized by deep
learning with convolutional neural networks [51], giving the trustworthiness of training
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data quality. Moreover, Ma et al. [52] investigated data noise and the decentralized solution
for data cleaning with edge intelligence.

Lu et al. [40] gave a secure data sharing architecture for decentralized and secure
learning strategies to solve the privacy issue in ML. Moreover, the computing work in the
blockchain consensus process was used for FL. Furthermore, Qu et al. [46] introduced
poisoning attacks in decentralized ML. Likewise, Kang et al. [42] and Ramanan and
Nakayama [53] proposed reliable FL strategies by removing the centralized model aggre-
gator in ML. Plus, Yin et al. [54] investigated a blockchain-based federated deep learning
in the IoT domain. This strategy was motivated by multiparty secure computation, which
was also investigated in Reference [55]. Besides, Liu et al. [56] used smart contracts in the
self-defense of FL. Membership inference and poisoning attacks were, thus, prevented in
this way.

3. Emerging Trends and Visions

In this section, we aim at providing research directions and identifying emerging
trends in this area. We first discuss emerging research directions and related works in this
area, including blockchain-enabled IoT communications, blockchain-based IoT security,
decentralized ML in IoT, and blockchain-enabled incentive mechanisms in IoT. Then, recent
advances are selected and listed for future exploration. Finally, we summarize and illustrate
different trends according to the timeline.

3.1. Blockchain-Enabled IoT Communications

• 5G and beyond: Although the 5G network improves services for IoT communica-
tions [57], it may not be capable of enabling new IoT applications, including
telemedicine, haptic communication, bio-IoT, etc. Khan et al. [58] provided some fu-
ture directions for IoT communication in 6G systems. In terms of blockchain-enabled
edge intelligence, there are multiple research directions related to IoT communications.
For 5G and beyond, Lu et al. [59] discussed blockchain and FL particularly. Potential
application scenarios were listed in this paper, including intelligent transportation,
mobile networks, network data analysis, etc. Moreover, IoT automation could be real-
ized by 6G-enabled MEC. Sekaran et al. [16] pointed out research challenges in terms
of IoT-enabled 6G devices. Furthermore, Nguyen et al. [13] discussed the function of
blockchain in 5G and beyond networks in-depth.

• Decentralized D2D: For blockchain-enabled edge intelligence, device-to-device (D2D)
communication is a feasible solution for data sharing and collaboration. Furthermore,
blockchain gives the feature of decentralization to D2D. Particularly, Seng et al. [60]
investigated ultra-dense wireless networks (UDNs). A decentralized computation
offloading platform was proposed to coordinate tasks among devices and edge servers.
Furthermore, Zhang et al. [47] studied cache sharing for data delivery. To assist MEC
based offloading for inter-domain traffic, they proposed a blockchain-enabled market
to motivate both D2D and MEC nodes. Plus, a partial Practical Byzantine Fault
Tolerance protocol was proposed to minimize latency and guarantee the confidence
level of the D2D sharing.

• Edge Computing: The tradeoff between limited resources and required latency is a ma-
jor challenge for edge computing. To deal with this issue, Wu et al. [61] considered the
collaboration of edge and cloud. They proposed an energy-efficient IoT task offload-
ing algorithm for blockchain-enabled edge computing. Additionally, Xu et al. [62]
studied crowd-intelligence. An ecosystem was designed for trustless and hybrid
human-machine crowd-intelligence. Zhang et al. [63] further investigated edge service
migration. A blockchain-based secure edge service migration, namely Falcon, was pro-
posed to extend the service scalability and flexibility. Furthermore, Chuang et al. [64]
presented a trust-aware IoT data economic system (TIDES). The trading process in
MEC systems was entirely based on the smart contract. Furthermore, Feng et al. [65]
optimized the allocation of limited radio and computational resources. The schedul-
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ing of block producers was considered in this resource allocation. Furthermore, fast
transaction writing and maximum mining revenue should be considered separately ac-
cording to different IoT device requirements. A blockchain-based offloading strategy
was given for the above scenarios in MEC systems [66].

• Edge Caching: Content caching is a popular solution to the ever-increasing IoT data
traffic. Liu et al. [67] gave the offloading mode selection and caching strategy for
wireless blockchain networks. A novel MEC-enabled wireless blockchain framework
was further given for computation offloading and content caching [68]. Besides, ultra-
reliable communication is a popular trend. Sharma et al. [69] used neural-blockchain
for ultra-reliable caching in drone networks. Additionally, Cui et al. [70] implemented
FL for content caching in edge computing. A novel compressed algorithm of the FL
approach, namely CREAT, was proposed for this edge caching case.

• Distributed Network Function Virtualization: As a fundamental technology of software-
defined industrial IoT [71,72], network function virtualization (NFV) has emerged in
blockchain-enabled edge intelligence recently. Distributed NFV offers a flexible way
for large scale IoT networks management. Fu et al. [73] proposed a blockchain-based
framework to reach consensus across different management and orchestration systems.
Furthermore, a novel distributed software-defined network (SDN) architecture was
proposed to control fog nodes at the network edge [74].

Table 2 summarizes the literature on IoT communications and their related research
directions.

Table 2. Research directions and related literature on IoT communications.

Directions Ref. Contributions

5G and Beyond

[12] Provide proof-of-concept for blockchain applications in 5G and beyond networks.

[13] Investigate the potential of blockchain in 5G and beyond network for IoT.

[16] Suggest guidelines toward blockchain enabled IoT with 6Gcommunication.

[59] Propose blockchain-enabled learning framework for 5G beyondscenarios.

Decentralized D2D
[60] Propose decentralized platform design for D2D computationcoordination in UDNs.

[47] Optimize the decentralized D2D sharing and design the consensus for transactions execution.

Edge Computing

[61] Propose an energy-efficient IoT task offloading algorithm for blockchain-enabled edge computing.

[62] Design a trustless hybrid human-machine ecosystem for industrial IoT based on crowd-intelligence.

[63] Propose a novel service migration framework for flexible edge service.

[64] Propose a trust-aware data trading system for MEC.

[65] Design the joint resources allocation for blockchain-enabled MEC systems.

[66] Propose a blockchain-based offloading strategy in MEC scenarios

Edge Caching

[67] Propose caching strategy for wireless blockchain networks.

[68] Design an MEC-enabled wireless blockchain framework.

[69] Propose an ultra-reliable drone-caching approach enabled by neural-blockchain.

[70] Propose edge caching solutions based on FL.

Distributed NFV
[73] Propose a distributed NFV framework for management and orchestration based on the

MEC-enabled blockchain.

[74] Propose a novel distributed network architecture for fog nodes based on SDN.

3.2. Blockchain-Based IoT Security

No technology is perfect, neither is blockchain. The vulnerabilities of blockchain
technology have drawn the attention of both industries and academics [75]. For example,
a smart contract developer may make errors, and the related vulnerability could cause a
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hard fork in the blockchain system. Moreover, consensus mechanisms have the risk of 51%
vulnerability, which may cause malicious manipulations of transaction records. Therefore,
researchers and system designers should consider security issues while investigating
blockchain-based IoT systems.

• Authentication: Authentication based on public-key cryptography is an effective so-
lution to the security issue in IoT systems. A group signature scheme was proposed
for block validation in MEC [76]. Moreover, the authentication of FL nodes was given
in the Internet of health things [77]. The participating nodes were authenticated by
the smart contract in the proposed FL framework. Furthermore, Lin et al. [78] investi-
gated the authenticity of emergency levels in healthcare cases. The delay of the MEC
network was also optimized by them.

• Data Security: With the immutability of data records, blockchain has a nature of
data security. Therefore, this topic was considered in most literature in this research
area. For example, Kang et al. [79] gave a secure data sharing scheme based on the
consortium blockchain and smart contracts for vehicular networks.

• Data Privacy: In public blockchain systems, participants are anonymous because they
are just hashes of public keys. Different from a public blockchain in which all records
are visible to everyone, a permissioned or private blockchain, such as the Hyper-
ledger Fabric, only allows authenticated entities to access the data on the blockchain.
Furthermore, the zero-knowledge proof is another technique to make a transaction
without revealing participants’ information. It has been implemented to Zcash, a
privacy-protecting digital currency. For data privacy in IoT systems, IoT devices are
normally linked to human activities, storing sensitive data owned by individuals.
Zyskind et al. [80] introduced blockchain to protect personal data. Nguyen et al. [33]
considered privacy level for blockchain users in MEC systems. Furthermore, the pri-
vacy of the MEC network topology also needs protection. Yang et al. [81] constructed
an MEC system without exposing topology privacy. Lu et al. [40] further investigated
privacy-preserved data sharing for industrial IoT. FL was used to deal with IoT data
leakage. Moreover, Arachchige et al. [82] proposed a privacy-preserving framework,
namely PriModChain.

• Data Integrity: Reliable data acquisition requires data integrity. Islam and Shin [83]
proposed a UAV-assisted data acquisition scheme based on blockchain technology.
The data were encrypted with the help of a UAV. In addition, Kumar et al. [84]
presented a novel framework called ’BlockEdge’, which used blockchain to provide
data integrity in a decentralized manner. Furthermore, client data can be verified
to ensure integrity. Zhang et al. [85] proposed a platform architecture to detect the
failure in industrial IoT. The Merkle tree was used in this platform.

Table 3 summarizes the literature on IoT security and the related research directions.
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Table 3. Research directions and related literature on IoT security.

Directions Ref. Contributions

Authentication

[76] Design a group signature scheme for MEC based on blockchain.

[77] Propose an authentication framework for participating FL nodes.

[78] Optimize the MEC network delay with authenticity priorities.

Data Security [79] Propose a secure data sharing scheme based on consortium blockchain.

Data Privacy

[33] Propose an MEC-based blockchain network and maximize the privacy
levels.

[81] Employ blockchain for topology protection in MEC.

[40] Design a secure data sharing architecture based on FL for industrial IoT.

[82] Propose a novel privacy-preserving framework for ML in industry 4.0.

Data Integrity

[83] Propose a UAV-based scheme to achieve integrity in IoT data acquisition.

[84] Propose a novel blockchain and edge framework to ensure data integrity
in Industry 4.0.

[85] Design a verifiable data architecture for device failure detection in indus-
trial IoT.

3.3. Blockchain-Enabled Incentive Mechanisms in IoT

• Energy Trading: On one hand, most IoT and other edge devices are energy-constrained.
On the other hand, IoT devices generate and own a huge amount of data, containing
valuable information. Therefore, knowledge and energy trading between edge servers
and edge nodes is a research trend in this area. Lin et al. [4] proposed a novel edge
intelligence framework using wireless power transfer. By exploring the permissioned
blockchain, the energy and knowledge trading was secured in the proposed frame-
work. Furthermore, Kang et al. [86] designed a peer-to-peer energy trading model.
An incentive mechanism was proposed for discharging electrical vehicles to boost
the electric power grid. A pricing platform was further given based on a consortium
blockchain. Additionally, the FL-based power management was investigated by Wang
et al. [87]. They proposed an AI-enabled, blockchain-based electric vehicle integration
system, named AEBIS, for smart grid. The overall supply power could be balanced by
demand-side devices.

• Entities Collaboration: Motivated by the mining reward process, collaboration design
among different entities in IoT systems emerges as a popular direction in this research
area. Liu et al. [88] motivated the collaboration among content owners, transcoders,
and receivers by the proposed framework in MEC-enabled video steaming. Besides,
Zhao et al. [44] proposed an FL-enabled crowdsourcing framework for smart home
systems, in which collaboration was motivated by the reward. Furthermore, a new
proof of business consensus protocol was developed by Hu et al. [89] to guarantee
the incentive in blockchain-enabled federated slicing. Moreover, Ridhawi et al. [90]
studied the composition process in content delivery networks. Participants were
rewarded by fog entities for solving this process in multimedia service delivery.

• Auction Mechanism: MEC servers require incentives to execute the tasks offloaded
from IoT devices. However, trustworthiness should be considered in this research
direction. Sun et al. [91] proposed double auction mechanisms to motivate MEC
servers. Moreover, a blockchain was used to prevent record tampering from malicious
edge servers.

Table 4 summarizes the literature on incentive mechanisms in IoT and the related
research directions.
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Table 4. Research directions and literature related to incentive mechanism in IoT.

Directions Ref. Contributions

Energy Trading

[4] Propose a novel knowledge and energy trading frame work
based on permissioned blockchain.

[86] Propose a peer-to-peer energy trading model based on the
consortium blockchain.

[87] Propose a novel power management platform based on the
blockchain and FL for smart grid.

Entities Collaboration

[88] Design an incentive mechanism based on blockchain to enable
collaboration in MEC-enabled video steaming.

[44] Propose an incentive mechanism to award entities in FL crowd-
sourcing for smart home systems.

[89] Develop a new proof of business consensus protocol to incen-
tive entities in federated network slicing.

[90] Propose a blockchain-enabled service composition solution.

Auction Mechanism [91] Propose double auction mechanisms to motivate MEC servers
in cross-server resource allocation.

3.4. Decentralized ML in IoT

• Neural Networks: Using neural networks in the Internet of medical things is a popular
trend. However, medical data are privacy-sensitive and vulnerable to malicious
attacks. Połap et al. [92] proposed a federated approach for blockchain-based neural
networks in Internet of medical things. It guaranteed distributed and local data
storage for patients.

• Deep Reinforcement Learning: This learning approach was widely used in academic
research. However, most papers just applied deep reinforcement learning (DRL) me-
chanically for optimization purposes. Another trend is to explore its potential for IoT,
especially in mobile blockchain applications. Gao et al. [93] gave a task scheduling
approach based on DRL to maximize the mining reward and minimize the cost. More-
over, a DRL approach was presented for blockchain-enabled MEC [94]. Cooperative
task offloading was investigated in this paper. Furthermore, Zhuang et al. [95] investi-
gated routing control in blockchain-enabled MEC. A novel DRL-based approach was
given for adaptive network routing. Moreover, Yu et al. [96] investigated DRL and
FL jointly. They proposed an intelligent ultra-dense edge computing framework and
used DRL to make the offloading decision and to allocate resources. Furthermore,
Jiang et al. [97] proposed a video analytics framework and DRL solutions to reduce
the latency of the MEC system in the Internet of autonomous vehicles. Additionally,
a framework was proposed for blockchain-enabled MEC. The adaptive resource al-
location was given based on DRL approaches [98]. Furthermore, Asheralieva and
Niyato [99] investigated deep Q-learning and Bayesian deep learning for the decision
making in blockchain-based MEC.

• FL: Learning in a federated way is not a new topic. However, blockchain-enabled
FL emerges as a popular research trend. Its decentralized framework gives privacy
and security in the learning process. Hua et al. [100] proposed a blockchain-enabled
FL for heavy-haul railways and implemented asynchronous collaborative learning
in this federated system. Committee consensus was further devised for blockchain-
enabled FL to reduce the cost of computing and increase security [101]. Moreover,
cognitive computing has emerged as a new trend in Industry 4.0 networks [102]. A
decentralized method was proposed for cognitive computing based on blockchain-
enabled FL. Furthermore, Shen et al. [103] investigated the unintended property
leakage problem. They proposed a novel property inference attack to exploit this
issue in FL. Plus, Souza et al. [104] proposed a distributed and federated approach
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named as DFedForest, which was based on random forest algorithms and blockchain
technologies. Additionally, a decentralized deep learning method called DDLPF was
proposed for IoT applications [105]. DDLPF is a decentralized deep learning paradigm
with privacy-preservation and fast few-shot learning. The meta-learning, FL, and
blockchain techniques were jointly investigated in this paper.

Table 5 summarizes the literature on ML in IoT and the related research directions.

Table 5. Research directions and literature related to ML in IoT.

Directions Ref. Contributions

Neural Networks [92] Design a federated approach for neural networks in the Internet
of medical things.

DRL

[93] Propose a DRL-based solution for task scheduling in the mobile
blockchain.

[94] Proposed a cooperative computation offloading strategy based
on DRL for blockchain-enabled MEC.

[95] Propose a DRL-based routing control for blockchain-based MEC.

[96] Propose DRL-based strategies for offloading and resources man-
agement in ultra-dense edge networks.

[97] Propose DRL solutions for MEC-enabled video analytics on the
Internet of autonomous vehicles.

[98] Propose a framework for edge nodes to reach consensus and
allocate resources by DRL approaches.

[99] Develop a learning approach for decision making based on deep
Q-learning in blockchain-based MEC.

FL

[100] Propose a blockchain-enabled FL method in haul railway control
system.

[101] Devise an innovative committee consensus mechanism for
blockchain-enabled FL.

[102] Propose a cognitive computing paradigm based on FL and
blockchain.

[103]
Propose a novel property inference attack to evaluate the prop-
erty leakage in blockchain-enabled FL for intelligence edge com-
puting.

[104] Design a novel and decentralized FL method based on forest
algorithms and blockchain.

[105] Propose a practical decentralized deep learning approach for
IoT applications based on the FL and blockchain.

3.5. Recent Advances

In this part, we select and introduce some recent advances related to blockchain-
enabled edge intelligence. These topics are not fully investigated yet, but a few high-quality
works have already been done. We aim at highlighting these new topics for researchers
who wish to glimpse the latest research trends in this area. In addition, these advances
further support that blockchain-enabled edge intelligence could be a game-changer across
different industries.

• Video Streaming: Traditional video streaming requires centralized governance of data,
which leads to centralized and low-profit video processing. Moreover, this centralized
management and distribution of a large volume of video content require substantial
data storage and communication bandwidth at a huge cost. In addition, video streams
have to be converted into several versions to meet the different requirements of down-
loaders, by a process called video transcoding [106] that is a computation task with
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a heavy workload. By exploiting blockchain-enabled edge intelligence, transcoding
tasks can be offloaded to MEC servers and user privacy is also secured. This approach
was proposed by Liu et al. [107], and smart contracts were further implemented to en-
able self-organized video streaming. Lui et al. [36] further proposed an adaptive block
size scheme in Reference [36], together with an autonomous content delivery market
based on smart contracts. The authors further developed incentive mechanisms to
facilitate collaboration among content providers, transcoders, and downloaders in
Reference [88].

• Tactile Internet: Ultra-low delay communication is the main feature of the tactile Inter-
net, which could be brought into reality With the help of 5G and beyond networks.
This has motivated multiple research works and applications, such as haptic com-
munications [108] and real-time telesurgery [109,110]. By bringing computing and
caching resources close to end devices, MEC becomes the key to realize the above
delay-sensitive application. A few papers have investigated the blockchain-enabled
tactile Internet incorporating MEC. For example, Hassija et al. [111] proposed a
blockchain-based mobile data offloading scheme to deal with the efficiency and scala-
bility issues in tactile Internet. Furthermore, drone-based tactile Internet was studied
in Reference [112]. A blockchain-based security framework was introduced to replace
heavy security algorithms for resource-constrained drones.

• Digital Twins: Real-world physical components can be virtualized into the digital
world. This real-time simulation is like a man in a mirror. All replicas of the same
physical component are called digital twins (DTs) [113]. Furthermore, blockchain was
investigated in this paper to ensure transparency, trust, and security across different
industries. Moreover, blockchain-enabled low-latency FL was proposed for edge
association in DTs wireless network [114]. The time cost and learning accuracy were
balanced by exploring multi-agent reinforcement learning optimization. Furthermore,
Lu et al. [115] explored empowering FL with permissioned blockchain to improve
communication security and data privacy protection in DTs edge networks.

3.6. Summery of Topics and Trends

In the following, we summarize hot topics and research trends based on the previous
mining of peer-viewed articles in the institute of electrical and electronics engineers (IEEE)
Explore and Web of Science databases, including early accessed papers. Further, we
visualize hot topics based on co-citation and co-word graphs. Finally, we illustrate multiple
emerging trends according to the timeline.

Keywords could be a strong tool to classify different topics related to blockchain-
enabled edge intelligence. In this subsection, we use CiteSpace [22], a data mining tool
empowered by ML algorithms, to classify hot topics for readers. The purpose of this data
mining is to offer an intuitive vision of this research area.

Particularly, we use the log-likelihood ratio (LLR) algorithm to identify popular topics
for researchers. Before we give the illustration, the two graph types are explained as
follows: (1) Co-citation relationship: the correlation of two paper exists when they are
cited in the same paper. This relationship gets stronger when more co-citations occur.
(2) Co-word relationship: keywords in the same paper have certain correlations. If the
co-occurring of two keywords happens frequently, then the co-word relationship between
these two keywords is strong.

The light color of a link means the co-citation exists recently. The dark color means the
correlation between this literature pair occurs early. The font size of each topic represents
its co-citation and co-word frequencies in Figure 4a,b, respectively. Readers could visualize
the big picture of the research area from these figures.
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(a) Co-citation graph (b) Co-word graph

Figure 4. Illustration of emerging trends. (a) Co-citation graph. (b) Co-word graph.

Based on the above data mining and classification, we propose some emerging trends
according to the timeline in Figure 5. The selected topics have occurred in the existing
literature frequently. One can see that we slice the related topics according to the years of
publications. In addition, more and more topics and related works emerge as time goes by.
This means the surveyed research area is evolving and becoming more popular.

Figure 5. Emerging trends according to timeline.

As we can see from the above picture, there are multiple links between pairs of hot
topics. A link between two topics means that they are correlated. For example, 5G-related
blockchain-enabled edge intelligence was a hot topic in 2018. It evolved and became
6G in 2020. In addition, deep learning was a hot topic in 2018, but it evolved to deep
reinforcement learning in 2019, and finally updated to FL in 2020. Moreover, privacy and
access control were two correlated topics in 2019. Additionally, blockchain-enabled mobile
edge computing mainly focused on resource allocation in 2018 and then there were more
works related to energy consumption and privacy issues in 2019. This makes sense because
IoT devices are energy-constrained, especially for those in industrial IoT systems [116].
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4. Open Issues and Discussions

In this section, we sum up some open issues for blockchain-enabled edge intelligence.
We first discuss blockchain-enabled trust in three layers, namely the social layer, data
layer, and technical layer. We aim to help readers understand this research area from
different perspectives but not limited to the technical domain. Next, we list and describe
some challenges and research gaps in this area, including selfish learning, fork issues,
and transaction rejection. Finally, we raise three research questions by discussing some
unresolved issues and conflicts in this research area.

4.1. Trust Layers for Edge Intelligence

Blockchain-enabled trust could be considered in different layers for researchers and
developers from different research areas. We further extend the description of blockchain
trust layers [117] for blockchain-enabled edge intelligence as follows:

• Social Layer: the layer at which task publishers (e.g., IoT devices or human users),
workers (e.g., edge nodes or servers), and blockchain platforms (e.g., smart contracts,
decentralized applications) could interact with each other and make transactions on
resources and information. In this layer, interactions among entities could include
reputation establishment [118], resources marketing [119], paid collaboration, identity
management, and the regulation of training strategies.

• Data Layer: the layer at which information records in blockchain are managed by
self-governance. The recorded data could include learning model parameters, IoT
data, reputation records, published tasks, transaction records, and the history of global
learning models. This layer concerns with learning quality, data integrity, privacy,
protection, the architecture of blockchain transactions, and the lifecycle of records.

• Technical Layer: the layer at which strategies are implemented to realize the functions of
edge intelligence. Platforms (e.g., Hyperledger Fabric) and mathematical foundations
are included in this layer. Such strategies could include learning algorithms, consen-
sus mechanisms, incentive mechanisms, zero-knowledge proofs, secure multi-party
computation, contribution evaluation frameworks, optimization algorithms, etc.

4.2. Challenges and Research Gaps

Although blockchain has many advantages according to our literature review, it is
not perfect for edge intelligence in IoT. To realize the blockchain-enabled edge intelligence,
there are still many research gaps in this area. We list some major challenges as follows:

• Selfish Learning: In the Bitcoin system, selfish mining [120] may cause serious security
and fairness issues. Selfish miners refer to a group of miners who collude to increase
their reward. Minority groups or individuals could not compete with the selfish group
because of their limited computing resources. This could further lead to the central-
ization of mining operations. Motivated by selfish mining, selfish learning attacks are
attacking blockchain-enabled edge intelligence systems, where edge nodes exchange
learning experiences and get the reward according to their contributions [121]. In such
attacks, edge nodes collude in an FL scenario and accumulate model contributions. In
this case, the selfish group will always win and get a reward. Moreover, other normal
learning nodes tend to join in this selfish group for mining rewards. Furthermore, in-
dividuals can become selfish too. A single learning node may not powerful enough to
win, so it just hides, waits, and accumulates its model contribution for future rewards.
This could cause delays and decrease the quality of the global learning model.

• Fork Issues: Forks occur when the software of different mining nodes become mis-
aligned. When edge nodes are not in agreement with the same learning model or
algorithm, an alternative chain (i.e., a forked chain) emerges. Two potential conditions
may cause a fork in a blockchain-enabled edge intelligence system. On one hand,
the computing capability of MEC servers, which are close to the task publisher (i.e.,
the IoT device) geographically, is limited and relatively weak. A malicious attacker
can deploy a powerful rogue MEC server close to the target task publisher. As the
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requirement of low-latency in edge intelligence is met with fast consensus mechanisms
in blockchain systems, the mining puzzle could be very easily solved by this powerful
rogue server. With malicious intentions in mind, this rogue node could start a fork
to attack the global learning model. On the other hand, the global model could also
fork accidentally if two learning nodes contribute the most and equally to the global
learning model in the same iteration, as both model contributions are recorded at
nearly the same time.

• Transaction Rejection: Edge nodes are resource-constrained, especially for IoT devices.
Although there are several research works related to incentive mechanisms for IoT
devices and edge servers, transaction rejection is still an unresolved problem. Most
papers take the success of blockchain transactions for granted because miners are
assumed to have a strong desire to record the transaction into a block for a reward.
However, blockchain nodes could always refuse to participate in mining if the prede-
fined reward is not good enough because solving computational puzzles costs a lot of
energy. As resource-constrained devices, edge nodes may not spend their energy and
join in the blockchain system because they have difficulty in recharging. In such cases,
transactions are always rejected, and the consensus of a global learning model is hard
to realize.

4.3. Cross-Layer Research Questions

As discussed in the above section, topics and research trends are focused on different
layers of blockchain-enabled trust. For example, decision-making in the social layer;
security and privacy issues in the data layer; and mathematical foundation and mechanisms
in the technical layer. However, there are some conflicts in the existed literature that cut
across these layers. We briefly summarize them into three research questions:

• Question 1: How to design a balanced framework for blockchain-enabled
edge intelligence?
This is a common issue that exists in most decentralized systems. The Zooko’s Trian-
gle [122] points out that it is highly unlikely to have a decentralized system with both
security and human-readability. Thus, we could further acknowledge that efficiency,
security, and decentralization are three angles in the Zooko’s triangle of blockchain-
enabled edge intelligence. Researchers should keep this conflict in mind when they
use blockchains to enable edge intelligence. For example, either the decentralization
level or security level might be sacrificed when they maximize the transaction speed
in edge systems. Thus, a trade-off exists among these factors.

• Question 2: How to establish standard criteria to verify a high-quality training model
for edge intelligence?
Deep learning models or parameters are shared and traded in decentralized ML, such
as FL. However, there is no general criterion for evaluating and verifying recorded
models or parameters. Each paper has its own method that may not be readily
compared with that implemented in another article. Furthermore, it might not be
a good idea to simply use accuracy or the loss function to verify the quality of the
ML model because it could cost a lot of energy and time for training a very accurate
model, which might not be preferable for energy-constrained devices in some low-
latency cases.

• Question 3: How to reduce the complexity of blockchain strategies for
edge intelligence?
Different from other devices, edge or IoT devices are resource-constrained. Blockchain
strategies presented in most papers are not suitable for the blockchain-enabled edge
intelligence because most proposed algorithms, such as zero-knowledge proof for
privacy preservation, are too complicated for edge nodes to execute. Researchers
should keep this in mind when they develop their own strategies in the scenario of
blockchain-enabled edge intelligence.
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5. Conclusions

In this review, we have given a thorough literature survey on blockchain-enabled edge
intelligence. To help researchers and readers in understanding this area, we have first given
some basic knowledge about blockchain, MEC, and AI. Furthermore, research trends and
directions have been introduced by exploring literature mining. We have presented a vision
of research trends, as well as the hot topics, in this area. Additionally, video streaming,
tactile Internet, and digital twins (DTs) have been highlighted and introduced for their
cutting-edge applications. Finally, we have discussed some open issues and research gaps,
including selfish learning, fork issues, and transaction rejection.
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