
future internet

Article

High Performance Graph Data Imputation on Multiple GPUs

Chao Zhou and Tao Zhang *

����������
�������

Citation: Zhou, C.; Zhang, T. High

Performance Graph Data Imputation

on Multiple GPUs. Future Internet

2021, 13, 36. https://doi.org/

10.3390/fi13020036

Received: 24 December 2020

Accepted: 27 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
chaozhou@shu.edu.cn
* Correspondence: taozhang@shu.edu.cn; Tel.: +86-21-66135300

Abstract: In real applications, massive data with graph structures are often incomplete due to various
restrictions. Therefore, graph data imputation algorithms have been widely used in the fields of
social networks, sensor networks, and MRI to solve the graph data completion problem. To keep the
data relevant, a data structure is represented by a graph-tensor, in which each matrix is the vertex
value of a weighted graph. The convolutional imputation algorithm has been proposed to solve the
low-rank graph-tensor completion problem that some data matrices are entirely unobserved. How-
ever, this data imputation algorithm has limited application scope because it is compute-intensive
and low-performance on CPU. In this paper, we propose a scheme to perform the convolutional im-
putation algorithm with higher time performance on GPUs (Graphics Processing Units) by exploiting
multi-core GPUs of CUDA architecture. We propose optimization strategies to achieve coalesced
memory access for graph Fourier transform (GFT) computation and improve the utilization of GPU
SM resources for singular value decomposition (SVD) computation. Furthermore, we design a
scheme to extend the GPU-optimized implementation to multiple GPUs for large-scale computing.
Experimental results show that the GPU implementation is both fast and accurate. On synthetic data
of varying sizes, the GPU-optimized implementation running on a single Quadro RTX6000 GPU
achieves up to 60.50× speedups over the GPU-baseline implementation. The multi-GPU implemen-
tation achieves up to 1.81× speedups on two GPUs versus the GPU-optimized implementation on a
single GPU. On the ego-Facebook dataset, the GPU-optimized implementation achieves up to 77.88×
speedups over the GPU-baseline implementation. Meanwhile, the GPU implementation and the
CPU implementation achieve similar, low recovery errors.

Keywords: GPU; data imputation; graph-tensor

1. Introduction

With the rapid development of social networks, e-commerce, and the Internet, a large
amount of graph-structure data has been generated. User profiles in social networks, user-
item matrices in recommendation systems, and sensory data in the Internet of Things
can be modeled as feature matrices [1]. These matrices with the graph structure can be
represented as the graph-tensor by stacking them in vertex order [2]. However, due to
limitations in the data collection and measurement process [1], it is ubiquitous that only
a subset of data matrices is observed while some data matrices are fully unobservable.
These incomplete data introduces difficulties for later data mining and analysis. Therefore,
various tensor completion methods have been designed to recover the incomplete data in
different situations.

Exiting works studied the data completion problem of tensors with missing ele-
ments [3], tubals [4], or matrices [2,5]. Figure 1 shows an example of missing data matrices.
In this social network (i.e., a graph), each user has a data matrix, but the data matrices
for users v1 and v4 are entirely unobservable. We obtain an observed graph-tensor by
stacking data matrices in vertex order and taking vertex order as the third dimension of the
graph-tensor. To complete the observed graph-tensor, Sun et al. proposed a convolutional
imputation algorithm to recover the graph-tensor [2]. However, with the growing data size
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or dimension of tensors, the execution time of the CPU-based convolutional imputation
algorithm increases rapidly [5], making it impractical for efficient big-data processing or
applications with real-time requirements.

In this paper, we propose a high-performance, Graphics Processing Unit (GPU)-based
graph-tensor imputation scheme for large-scale graph data and social network applications.
We design, implement, and optimize an efficient convolutional imputation algorithm on
single and multiple GPUs by exploiting multi-core GPUs of CUDA architecture. First, we
design and implement a baseline graph-tensor imputation algorithm on GPU. Second,
we investigate the performance bottlenecks of the baseline implementation and explore
stream computing and batched computing techniques to optimize the utilization of GPU
SM resources and CPU-GPU communications for higher performance. Third, in order to
support large-scale graph-tensor imputation, we propose a multi-GPU computing scheme
to utilize more memory and computing resources of multiple GPUs on a computing node.

Figure 1. (a) A social network represented as a graph. (b) A graph-tensor corresponds to the graph
of (a).

Our contributions are summarized as follows.

• We design and implement the convolutional imputation algorithm on GPU to achieve
high performance and accuracy. The GPU-based convolutional imputation algorithm
includes an efficient graph Fourier transform operation with coalesced memory ac-
cesses to achieve high parallelism.

• We propose effective optimization strategies to improve GPU utilization, including
stream computing and batched computing. To support large-scale graph-tensor impu-
tation and further improve performance, we propose a multi-GPU computing scheme
to perform the computation on multiple GPUs.

• We perform extensive experiments to evaluate the performance of the GPU-based
convolutional imputation algorithm using both synthetic and real data. With synthetic
data, the GPU-optimized implementation achieves up to 60.50× speedups versus
the GPU-baseline implementation running on a Quadro RTX6000 GPU. The multi-
GPU implementation achieves up to 1.81× speedups on two GPUs versus the GPU-
optimized implementation on a single GPU. The GPU implementation achieves similar
recovery errors with the CPU MATLAB implementation. For the ego-Facebook dataset
with various sampling rates, the GPU-optimized implementation achieves up to
77.88× speedups versus the GPU-baseline implementation running on a Quadro
RTX6000 GPU, while achieving similar recovery errors.

The remainder of this paper is organized as follows—Section 2 reviews the related
works. In Section 3, we describe the notations and the convolutional imputation algorithm.
Section 4 presents the design, implementation, and optimization of the graph-tensor
imputation algorithm on GPU. We scale the optimized GPU implementation onto multiple
GPUs in Section 5. In Section 6, we evaluate the performance of the GPU-based graph-
tensor imputation algorithm. The conclusions are drawn in Section 7.
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2. Related Works

We discuss the related works on graph applications, tensor completion, GPU-based
tensor computing and research on high-performance GPUs.

Graph, as an important data structure, has strong expressive ability, and has wide
applications in many fields. In the field of data mining, a variety of graph processing
systems have been developed, from GraphChi [6], which is a CPU-based system for com-
puting large-scale graphs on a single machine, to the multi-GPU based system Gunrock [7],
to Gluon [8] which is a distributed heterogeneous (CPU+GPU) graph analytics system.
These systems provide a high-level API for implementing graph analysis algorithms, such
as PageRank (PR), connected components (CC), and single-source shortest path (SSSP).
GSPBOX [9] and PyGSP [10] are two CPU-based graph signal processing libraries that
provide a variety of graph operations, including graph Fourier transform. In the field
of deep learning, the concept of graph neural network (GNN) was first proposed in [11],
which extends the existing neural network for processing data in the graph domain. In re-
cent years, a set of neural network theory based on graph convolution operation has been
developed and continuously derived [12,13].

Low-rank tensor completion is an important research filed for the data reconstruction
problem. It can be applied to recommender systems [14], MRI data recovery [15], video
decoding or inpainting [16], and so on. However, these studies only focus on the low-
rank approximation to estimate missing values; thus, they cannot sufficiently exploit the
relevance of information structure. Recently, Sun et al. [2] proposed the convolutional
imputation algorithm to recover graph-tensor by utilizing the graph structure for the
scenario where the data of some vertices are completely missing. The algorithm utilizes GFT
to transform the graph-tensor from the spatial domain to the spectral domain, which could
expose more parallelisms and brings an opportunity for high-performance computing.

Some existing works [3,4,17] proposed high-performance algorithms for tensor com-
pletion. Their algorithms converted a tensor completion problem into a set of parallel
matrix completions in the frequency domain, then use a matrix completion algorithm to
complete each slice matrix, and finally convert the results back to the time domain. Liu et al.
proposed a fast iterative tensor completion algorithm called Tubal-Alt-Min based on the
low-rank matrix completion [3]. As the Tubal-Alt-Min algorithm has high parallelism,
Zhang et al. implemented this algorithm on GPU in the cuTensor-tubal library [17] for high
performance. Inspired by these researches, we implement the convolutional imputation
algorithm [2] on high-performance GPUs to improve efficiency in applications. However,
in order to utilize the GPU effectively, some challenges must be addressed, including data
transfer, memory access, and appropriate parallelization schemes for graph-tensor compu-
tations.

High-performance GPUs have been increasingly adopted in data processing to im-
prove efficiency. Abdelfattah et al. [18] designed effective thread and kernel scheduling
strategies to accelerate dense matrix-vector computations. Jia et al. [19] exploited mul-
tiple GPUs to accelerate the execution of Lux system by combining coalesced memory
access with shared memory access. Zhang et al. [20] design a multi-GPU scheme for ho-
momorphic matrix completion to make full use of multiple GPUs on a single node and
accommodate large-scale data. The convolutional imputation algorithm [2] is based on the
iterative calculation of singular value soft-threshold, which includes compute-intensive
SVD computation. We compare and utilize the SVD routines in cuSLOVER and KBLAS
GPU libraries. We further propose optimization strategies on kernel design, memory
accesses, and batched computing to improve algorithm performance.

3. Convolutional Imputation Algorithm

We introduce the notations, summarize the convolutional imputation algorithm [2],
and provide parallel acceleration analysis for this algorithm.
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3.1. Notations

We use lowercase boldface letters x ∈ Rn1 to denote vectors and uppercase boldface
letters X ∈ Rn1×n2 to denote matrices. Let i, j index the rows and columns of a matrix,
respectively, and Xij or X(i, j) to denote the (i, j)-th matrix entry. Third-order tensors are
denoted by uppercase calligraphic letters, X ∈ Rn1×n2×n3 . Let i, j, k index the first, second,
and third dimensions of a tensor, respectively, and Xijk or X (i, j, k) to denote the (i, j, k)-th
entry. Let [n] denote the set {1, 2, · · · , n}, then i ∈ [n1], j ∈ [n2], k ∈ [n3] unless otherwise
specified. Please refer to Table 1 for the notations of major symbols.

Table 1. Major symbols.

Notations Description

x ∈ Rn1 A vector that has n1 entries
X ∈ Rn1×n2 A matrix of size n1 × n2
X ∈ Rn1×n2×n3 A third-order tensor of size n1 × n2 × n3
G ∈ Rm×n×N A graph-tensor
G̃ ∈ Rm×n×N A graph-tensor in the frequency domain
U ∈ RN×N A graph Fourier transform matrix

Graph-Tensor: a weighted graph is defined by G = (V, E), where V = {v1, ..., vN} is
a set of N vertices and E is a set of edges. We use the weighted adjacency matrix A ∈ RN×N

to describe the the relationship between vertices in the graph. Two vertices vk and v` are
adjacent if (vk, v`) ⊆ E is an edge, k, ` ∈ [N]. Let Ak` denote the weight on the edge (vk, v`),
otherwise, let Ak` = 0.

Assuming the data on each vertex vk is a matrix of size m× n, we define a graph-tensor
G ∈ Rm×n×N by stacking data matrices of all vertices along the third dimension. The data
matrix of the k-th vertex vk is denoted by G(:, :, k) or G(k) for simplicity. The Frobenius

norm of a graph-tensor is ‖G‖F =

√
∑m

i=1 ∑n
j=1 ∑N

k=1

∣∣∣Gijk

∣∣∣2.

Tubes and slices: a tube (also called a fiber) is a 1D vector defined by fixing all indices
but one, while a slice is a 2D matrix defined by fixing all but two indices. Tubes can be
categorized into model-1, model-2, and model-3 tubes, and slices can be categorized into
frontal, lateral, and horizontal slices [3]. We use G(i, j, :) to denote the (i, j)-th model-3 tube
and G(:, :, k) to denote the k-th frontal slice. We call G(:, :, k) or G(k) the data matrix if it is a
vertex value, and frontal slice otherwise.

Graph Fourier Transform (GFT): the graph Fourier transform extends the concept of
the discrete Fourier transform to a general graph, which is to transform a graph signal in
the spatial domain into the spectral domain. For a graph G with the adjacent matrix A,
the normalized graph Laplacian matrix is defined as L = I − D−1/2 AD−1/2, where D is a
diagonal matrix with entries Dii = ∑j Aij. The graph Fourier transform matrix U, a unitary
N × N matrix, is given by the eigendecomposition of L = UΛU−1, where columns of
U are the eigenvectors of L, and Λ is the diagonal matrix whose diagonal elements are
eigenvalues of L.

The graph Fourier transform (GFT) of a graph-tensor G is defined as G̃ = UG, where
G̃ ∈ Rm×n×N is a stack of N matrices in the spectral domain of the graph. Furthermore,
each frontal slice in the spatial domain is a linear combination of data matrices on the
graph, G̃(k) = ∑`∈[N] Uk`G(`). The inverse graph Fourier transform (iGFT) is defined as
G(k) = ∑`∈[N] U−1

k` G̃(`), correspondingly.
Convolution of Graph-Tensors: in the Convolution Theorem, the convolution in the

time domain corresponds to point-wise multiplication in the frequency domain. We gener-
alize it to graph-tensors, which is defined as multiplication in the spectral space. Given

two graph-tensors X ,Y on the same graph, we define their convolution as (X̃ ∗ Y)(k) =
X̃ (k)Ỹ(k). Then, we denote a stack of matrices as X̃ ∗ Y , where each matrix is the matrix
multiplication of X̃ (k) and Ỹ(k).
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For more detailed definitions of the graph-tensor and related operations, please refer
to [3,21–23].

3.2. Overview of the Convolutional Imputation Algorithm

The convolution imputation algorithm [2] was proposed for recovering missing slices
in a graph tensor (i.e., here we consider the case of missing slices, the slice-sampling pattern).
In the slice-sampling pattern, the data matrix of each vertex is either fully observed or
fully missing. Figure 1 shows an example of a social network that can be abstracted into
a graph G. Each user is represented by a vertex vk, and each relationship between users
is represented by an edge (vk, v`). The graph-tensor in Figure 1b is composed of the data
matrix of each vertex, in which two frontal slices are missing due to the complete loss of
users v1 and v4’s information. To recover the missing slices is a graph-tensor completion
problem in the slice-sampling pattern.

The pseudo code of the convolutional imputation algorithm [2] is given in Algorithm 1.
We use Ω ⊆ [N] to denote the slice-sampling index set, and 1

Ω is a complement set
to Ω. The projection operator PΩ is defined to sample the graph-tensor by retaining
only entities that are indexed in the set Ω. Given an observed low-rank graph-tensor
PΩ(G), a graph Fourier transform matrix U, and a sequence of regularization parameters
λ1 > λ2 > ... > λC, the imputation algorithm [2] iteratively performs imputation of G impute

and singular value soft-threshold of G̃ impute to find the minimizer of the optimization
problem. According to the convolution of graph-tensors, in the spectral domain, we denote
singular value soft-threshold as S

λ
j
k
(G̃(k)) = U(S− λ

j
k I)+V T , where (·)+ means keeping

only positive values, and G̃(k) = USV T is the singular value decomposition (SVD), j ∈ [C],
k ∈ [N].

Algorithm 1 Iterative convolutional imputation.

Input: PΩ(G) ∈ Rm×n×N , number of iterations C, maximum number of iterations T.
1: Initialize: Gest

0 = 0, t = 0,
2: Generate graph Fourier transform matrix U,
3: Generate regularization parameters λ1 > λ2 > ... > λC, where λj = (λ

j
k), k = 1, ..., N,

4: for j = 1 to C do
5: while t ≤ T and NOT converged do
6: t← t + 1,
7: G impute = PΩ(G) + P 1

Ω
(Gest

t−1),

8: G̃ impute = UG impute,
9: G̃est

t (k) = S
λ

j
k
(G̃ impute(k)),

10: Gest
t = U−1G̃est

t ,
11: end while
12: Gλj = Gest

t ,
13: end for
Output: solution GλC .

For λj in each iteration, the algorithm selects the maximum singular value of G̃(k) as
λ1

k , and decays λj at a constant speed λj+1 = cλj. For more details on convergence and
computational complexity, please refer to [2].

3.3. Parallel Acceleration Analysis

We use Figure 2 to analyze the parallelism of the convolutional imputation algo-
rithm [2]. The algorithm consists of three nested loops, the first loop (the outermost for-
loop) executes C times, and the second loop (the while-loop) will break out if it reaches the
maximum number of iterations T or the convergence criteria. However, these two loops
cannot be executed in parallel because both of them depend on the previous result of Gest

t .
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On the other hand, in the third loop, we can compute the singular value soft-threshold for
N matrices in parallel.

Figure 2. The overall flow chart of the convolutional imputation algorithm.

In the CPU MATLAB implementation of the convolutional imputation algorithm,
the computing time of graph Fourier transform and inverse graph Fourier transform ac-
counts for more than 50% of the total running time, and the computing time of singular
value soft-threshold accounts for more than 45% of the total running time. These operations
of the graph-tensor corresponding to lines 8–10 in Algorithm 1 involve matrix multipli-
cation and matrix singular value decomposition, which can exploit parallel computing
on GPU for acceleration. Specifically, there are m× n graph Fourier transform on mode-3
tubes of G impute that can be computed in parallel on GPU. Similarly, there are m× n in-
verse graph Fourier transform that can be parallelized on GPU. Besides, exploiting the
convolution theorem of graph-tensors, the computing of N singular value soft-threshold
on frontal slices of G̃ impute can be conducted in parallel on GPU in the graph spectral
domain. Therefore, we focus on the design, implementation, and optimization of lines 8–10
in Algorithm 1 on GPU to obtain a high-performance convolutional imputation algorithm.

4. Efficient Convolutional Imputation Algorithm on GPU

We parallelize the convolutional imputation algorithm in Algorithm 1 on GPU by
designing data storage and mapping algorithm steps onto the GPU architecture. Inspired
by the optimization of memory access in [17,19], we take the idea of coalesced memory
access to optimize GFT in the baseline GPU implementation. Then we mainly focus on the
compute-intensive operation SVD and propose techniques to improve the utilization of
GPU resources, memory bandwidth utilization, and overlap CPU-GPU communication.

4.1. Design and Implementation of the Baseline GPU Convolutional Imputation Algorithm
4.1.1. Computing in the Graph Spectral Domain

For the convolutional imputation of graph-tensors, we convert it into the graph
spectral domain for computing, which generally includes the following three steps:

• First, transform the incomplete graph-tensor into the graph spectral domain by apply-
ing graph Fourier transform along the third dimension.

• Then, perform the matrix imputation task for each frontal slice of the graph-tensor.
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• Finally, transform the completed graph-tensor back to the time domain by applying
the inverse graph Fourier transform along the third dimension.

4.1.2. Data Storage

The above three steps access the tubes and slices of the graph-tensor alternately.
The first and the third steps fetch and store tubes while the second step fetches and stores
slices. Since the structure of memory hardware is a 1D linear space, we use a 1D arrays
for data storage. In addition, because CUDA libraries [24] access the matrix in the column-
major format, we store each frontal slice of the graph-tensor in the column-major format.
For a graph-tensor G with each frontal slice representing a vertex value, we unfold it in
slice-by-slice, column-major layout as a 1D array in CPU and GPU memory. G(:, :, k) of
size m× n is squeezed into an array of size 1×mn. As shown in Figure 3, we store the
graph-tensor as a 1D array in memory, where different frontal slices are represented by
different colors.

Figure 3. Reconstruction of graph-tensor data for computing graph Fourier transforms in the
batched scheme.

4.1.3. Parallelization of the Algorithm

In Algorithm 1, the major computations are graph Fourier transform, inverse graph
Fourier transform, and singular value soft-threshold in lines 8–10 in each iteration. Since
the process of inverse graph Fourier transform is quite similar to the process of graph
Fourier transform, we only discuss graph Fourier transform in the following sections
for conciseness. For the outermost for-loop, we set the configurable parameter C as the
number of iterations, and λj(j = 1, 2, ..., C) is the regularization parameter for iteration
j. The result for iteration j with λj is a start for the next iteration j + 1 with λj+1. For the
nested while-loop, the program ends in the maximum iterations T or the convergence
condition satisfies the formula ‖Gest

t − Gest
t−1‖2/‖Gest

t−1‖2 ≤ ε , where ε > 0 is an adjustable
parameter that can affect the result of computing and t ≥ 2. In the while-loop:

• For the graph Fourier transforms computation in line 8 of Algorithm 1, the algorithm
accesses data along the third dimension of the graph-tensor. That is to access the
graph-tensor model-3 tube by model-3 tube. Based on the data storage mentioned
earlier, it cannot provide coalesced memory access for the GFT computation on GPU.
The premise of coalesced memory accesses is that accesses must be sequential and
addresses aligned. Therefore, we introduce the step of data reorganization. First,
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we utilize the eigenvalue solver method provided in the cuSLOVER library [24]
to get the graph Fourier transform matrix U, which is composed of eigenvectors
of the graph Laplacian matrix L. Then, we propose a mapping to reconstruct the
graph-tensor G impute, where the original slice-by-slice layout (the index of G impute

ijk is
(i − 1) + m ∗ (j− 1) + m ∗ n ∗ (k − 1)) of data is reorganized into the tube-by-tube
layout (the index of G impute

ijk is N ∗ (i − 1) + m ∗ N ∗ (j − 1) + (k − 1)). Finally, we
utilize batched matrix-matrix multiplication in the cuBLAS library [24] to calculate
the GFT of G impute, and then convert the result back to the original data layout in
the graph spectral domain to get G̃ impute. Since the benefits obtained from batched
matrix multiplication far outweigh the overhead introduced by reorganizing the data,
the overall algorithm performance is improved.
We design a batched scheme for the GFT computation by reorganizing the graph-
tensor data to improve parallelism. Figure 3 shows an example to illustrate the detailed
scheme. For a graph-tensor G with size 2× 3× 4 and graph Fourier transform matrix U
with size 4× 4, the original computation is that each frontal slice in the graph spectral
domain is a linear combination of data matrices on the graph, where data access is
random. The result of G(1, 1, 1) is the dot product of vector U(1, :) and G(1, 1, :), 0 ∗
0 + 2 ∗ 6 + 1 ∗ 2 + 1 ∗ 8 = 22. However, it is more time consuming because random
accesses to the data are slower than sequential accesses. Therefore, we reorganize
the graph-tensor data to achieve sequential accesses, such as the (1, 1)-th model-3
tube is reorganized into the 1st-column of 1-st frontal slice, the (2, 1)-th model-3
tube is reorganized into the 2nd-column of 1-st frontal slice, and so on. The graph
Fourier transform matrix U can now multiply each frontal slice matrix in batched by
exploiting batched matrix-matrix multiplication.

• For the singular value soft-threshold computation in line 9 of Algorithm 1, it in-
cludes singular value decomposition and matrix multiplication for each frontal slice,
as shown in the the pseudo code in Algorithm 2. To perform SVD of each frontal slice
of G̃ impute, we utilize the cusolverDnSgesvdj(.) routine in the cuBLAS library [24],
which is implemented via the Jacobi method and is faster than the standard method.
Besides, we arrange the computations in Algorithm 2 into batched computation to
achieve better parallelism and performance. Because S(k) only stores non-zero diago-
nal elements, we design a GPU kernel to batch the execution of N matrices (line 3),
where each thread is responsible for an element of tensorW (i.e.,W(i, j, k) is paired
with thread (i− 1, j− 1, k− 1)). Considering that tensor U of size m×m×N, tensor S
of size m× n× N and tensor VT of size n× n× N in SVD results are stored in 1D ar-
rays of size m ∗m ∗ N, min(m, n) ∗ N and n ∗ n ∗ N, respectively, the value ofW(i, j, k)
with the index (i− 1) + m ∗ (j− 1) + (m ∗ n) ∗ (k− 1) in the 1D array is max(S [(i−
1) + min(m, n) ∗ (k− 1)]− λ

j
k, 0)VT [(i− 1) + n ∗ (j− 1) + (n ∗ n) ∗ (k− 1))]. Using

this kernel is more efficient than calling the cuBLAS library API for each frontal slice.
Further, we convert the diagonal matrix to the left of the operator (Figure 4a) rather
than the right (Figure 4b) to allow for the coalesced memory access to the device mem-
ory. As shown in Figure 4a, threads access contiguous memory blocks, and so they
are benefiting from coalesced memory access instructions for better efficiency. In line
4, we utilize a routine in the cuBLAS library to perform the batched matrix-matrix
multiplication on N matrices in parallel.
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Algorithm 2 Implementation of singular value soft-threshold.

Input: graph-tensor G̃ impute ∈ Rm×n×N in the graph spectral domain, regularization
parameter λj of iteration j, number of vertex N.

1: for k = 1 to N do
2: (U (k),S(k),VT(k)) = SVD(G̃ impute(k)),
3: W(k) = max(S(k)− S j

k I, 0)VT(k),
4: G̃est(k) = U (k)W(k),
5: end for

Output: G̃est.

Figure 4. Thread mapping to perform the diagonal matrix-matrix multiplication of a batch of matrices.
The diagonal matrix in (a) is to the left of the operator, which enables coalesced memory access to
device memory, and in (b) is to the right of the operator.

4.2. Optimizations

We performed some preliminary experiments to evaluate the baseline GPU graph-
tensor convolutional imputation algorithm on a small dataset and found that it achieved
less than 10× speedup versus the CPU MATLAB implementation. Therefore, we diagnose
and optimize performance bottlenecks.

4.2.1. Performance Bottlenecks Analysis

We analyzed the baseline GPU implementation using the CUDA profiler [24] and
observed three major bottlenecks: low memory copy overlap, low utilization of GPU
compute units and long execution time of SVD. We consider optimizing the baseline GPU
implementation on these aspects.

4.2.2. Optimizing SVD Computation

On GPUs, CUDA streams can be used to overlap computations and communications
because the hardware compute engine and copy engine are independent of each other. We
utilize two streams for data transmission and computation, respectively, to overlap their
execution and improve efficiency.

The execution time of SVD computation (line 2 of Algorithm 2) accounts for a large
proportion of the total time. In the baseline GPU implementation, for G̃ impute with a stack
of N frontal slices of size m × n, we use the matrix SVD routine cuSOLVER library to
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compute SVD of these N frontal slices sequentially on GPU. This leads to low performance,
primarily for two reasons. First, a matrix SVD on a single frontal slice is inadequate to
utilize all thousands of computing cores on GPU, especially for graph-tensors with a small
size of frontal slices. Second, kernel launch overhead is incurred every time the matrix SVD
routine is called. This kernel launch overhead is especially high for graph-tensors with a
large N. In order to improve GPU utilization and the performance of SVD computation,
we consider to pack these N matrix SVDs into a batch to compute them parallel using a
single GPU kernel. Note that N can be large if GPU has enough device memory. This is
suitable for the social network application in the experiment section, where the data matrix
of vertex vk is small, but the number of vertices is greater than thousands.

The cuSOLVER library provides a batched method to calculate multiple SVD in
parallel. However, the size of the matrix is limited to 32× 32 or smaller. Therefore, we
utilize the KBLAS library [18], which provides batched SVD routines for matrices with a
maximum size of 512× 512. Therefore are multiple batched SVD routines in the KBLAS
library, but none of them returns a matrix composed of right-singular vectors. Let the
singular value decomposition of a graph-tensor in spectral space be G̃ = USVT with size
m× n× N, the KBLAS library only provides U of size m× n× N containing left-singular
vectors, S of size n× n× N containing singular values, and VS of size n× n× N. Here we
set the rank of G̃ to n. Therefore, besides utilizing the batched SVD routine in the KBLAS
library, we design a kernel to obtain the right-singular vectors in the batched method
by computing (VS)S−1 in parallel. In this kernel, each GPU thread corresponds to one
element of the tensor V , as shown in Figure 4b.

5. Large-Scale and Multi-GPU Graph-Tensor Imputation

Real-world graphs such as Facebook and Twitter networks have more than one billion
vertices, which poses challenges for the graph-tensor imputation on a single GPU because
of limited computing cores and device memory. The SVD computation consumes lots of
device memory, including the buffer size calculated by cusolverDnDsyevd_bufferSize(.)
and variables U ,S ,VT that store the calculated results. In addition, the required computing
cores increase rapidly with the growing size of graphs. Therefore, it is beneficial to scale
the GPU convolutional imputation algorithm onto multiple GPUs in order to support the
computing of large-scale graph-tensors that beyond the device memory capacity of a single
GPU. We design a multi-GPU scheme for the convolutional imputation algorithm, as shown
in Figure 5. Since the data reorganizing step in GFT and iGFT computation requires the
entire graph-tensor as input, and the computing time of GFT and iGFT only accounts for
a small part of the total time, the multi-GPU scheme is focused on the computation of
singular value soft-threshold on multiple GPUs, which includes the compute-intensive
SVD operation.

The multi-GPU scheme uses CUDA and OpenMP as a hybrid. Assuming that there
are n GPUs on a computing node, the scheme use n OpenMP threads to control n GPUs for
computation and communication, respectively. In the scheme, after allocating memory for
input PΩ(G) and Ω on all GPUs, the scheme performs the following major steps in each
algorithm iteration:

• GPU0 utilizes a partitioning strategy to split the frontal slice of Gest
t into n partitions,

then sends a partition to each of the other n− 1 GPUs by using a peer to peer, asyn-
chronous memory transferring routine in the CUDA library [24]. Each GPU computes
its own part of G impute independently and sends the result back to GPU0;

• GPU0 performs synchronization to ensure results are received from all GPUs, then
performs GFT computation to obtain G̃ impute;

• GPU0 utilizes a partitioning strategy to split G̃ impute into n partitions, then sends a
partition to each of the other n− 1 GPUs by using a peer to peer, asynchronous memory
transferring routine. All GPUs perform singular value soft-threshold computation
with their own data independently. After the completion of computation, each of the
other n− 1 GPUs sends the result back to GPU0.
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• GPU0 performs synchronization to ensure all GPUs finish their tasks and then per-
forms the iGFT computation.

Figure 5. Multi-Graphics Processing Unit (GPU) scheme for the convolutional imputation algorithm.

In this scheme, using OpenMP threads achieves overlap of communications and
eliminates the use of cudaSetDevice(.) routine in the CUDA library to switch GPU during
computation. Besides, we utilize peer to peer, asynchronous communications between
GPUs, which transfers data between a pair of GPUs directly without accessing CPU
memory. To make full use of device memory, variables are immediately released when
they are no longer needed in each step.

The data partition strategy is based on GPU hardware performance that can be
obtained from the GPU specification on the NVIDIA website [25,26]. The size of the data
partition received by a GPU is proportional to its hardware performance. For instance,
we use Pi to denote the performance of GPUi, then GPUi receives Ri frontal slices for

processing, where Ri is the number of frontal slices distributed to GPUi and
Ri
Pi

=
Rj

Pj
,

i, j ∈ [n].

6. Performance Evaluation

We describe the detailed experiments settings of the GPU- and CPU-based convolu-
tional imputation algorithms. We evaluate algorithm performance in terms of running time
and recovery errors.

6.1. Evaluation Settings
6.1.1. Experiment Datasets and Configurations

We use both synthetic graphs and real social networks in experiments. The synthetic
graphs are generated according to [2], where the adjacency matrix of a sparse graph is
randomly generated, and the graph-tensor G is generated by performing iGFT operation
on a stack of low-rank matrices in the graph spectral domain. A low-rank matrix of rank r
in size n× n is obtained by multiplying two i.i.d Gaussian random matrices in size n× r.
Then we obtain the observed graph-tensor by taking slice-sampling pattern of G with ratio
p. For real social network data, we use the ego-Facebook dataset from SNAP [27] and
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take its graph topology to get the adjacency matrix. This undirected graph consists of
4039 vertices and 88,234 edges with equal weight. The way we get feature matrices is the
same as the way we generate the graph-tensor. The observed data is generated by random
missing of the feature matrix of several vertices.

We use running time and speedups as the time performance, where speedup = (GPU-
baseline time/GPU running time). We use the relative mean square error (rMSE) as the
accuracy performance, where rMSE = ‖G̃est − G̃‖/‖G̃‖. We set the number of iterations to
20 in all experiments, and ε = 10−8. We set r/n ≈ 0.1 and p = 0.8. We run all experiments
10 times and report the average results.

6.1.2. Experiment Platform

The hardware platform has an Intel Core i7-7820x CPU, an NVIDIA Quadro RTX6000
GPU (Turing architecture), a Tesla V100 GPU (Volta architecture), and 128GB DDR memory.
The RTX6000 GPU has 4608 CUDA cores with 24 GB DDR memory, achieving 16.3 TFLOPs
single-precision performance and 672 GB/s memory bandwidth. The V100 GPU has 5120
CUDA cores with 32 GB DDR memory, achieving 14 TFLOPs single-precision performance
and 900 GB/s memory bandwidth. The CPU and two GPUs are connected via PCIe 3.0 bus.
The operating system is Ubuntu 18.04 64bit. The CPU algorithm and the GPU algorithm
are running on MATLAB 2017b and CUDA 10.1, respectively. For single-GPU experiments,
we use Quadro RTX6000 GPU. For multi-GPU experiments, we use Quadro RTX6000 GPU
and Tesla V100 GPU.

6.2. Results and Analysis

We evaluate and compare the performance of the CPU MATLAB implementation
and three GPU implementations: baseline, optimized, and multi-GPU implementations.
We show running time of all implementations, and calculate the speedups of the GPU-
optimized and multi-GPU implementations over the GPU-baseline implementation respec-
tively. By comparing with the GPU-baseline implementation, we show the effectiveness of
our optimization schemes in the GPU-optimized and multi-GPU implementations. In addi-
tion, we test small-scale, medium-scale, and large-scale synthetic graph-tensors with sizes
of 64× 64× k, 128× 128× k, and 512× 512× k, respectively, where k varied from 100 to
4600. For the application of the GPU algorithm, we test graph-tensors of size 50× 50× 4039
generated from the real-world ego-Facebook graph [27] at different sampling rate. We use
single-precision floating-point in all implementations.

Figures 6–8 show the running time and speedups of the CPU and GPU implemen-
tations using synthetic data of different size. Compared to the CPU MATLAB imple-
mentation running on an Intel Core i7-7820x CPU, the GPU-baseline implementation
achieves up to 4.56×, 8.54×, and 6.41× speedups for graph-tensors of size 64× 64× k,
128× 128× k, and 512× 512× k, respectively. Compared to the GPU-baseline implemen-
tation, the GPU-optimized implementation achieves up to 60.50×, 15.55×, and 2.46×
speedups for graph-tensors of size 64× 64× k, 128× 128× k, and 512× 512× k, respec-
tively. With the optimizations in Section 4.2, the GPU-optimized implementation achieves
much better performance versus the GPU-baseline implementations. Table 2 shows the
running time breakdown for a graph-tensors of size 64× 64× 2100 using the nvprof tool.
In the GPU-optimized implementation, the SVD computation time is significantly reduced
compared to the GPU-baseline implementation. The memory copy time is also reduced
because the computations are overlapped with the communications using CUDA streams.
As shown in Figure 8, both the GPU-baseline and the GPU-optimized implementations are
unable to process graph-tensors of 512× 512× 2600 or larger due to limited resources (i.e.,
device memory and computing cores) on a single GPU. This motivates us to develop the
multi-GPU scheme.

The multi-GPU scheme has two major advantages: performance improvement and
supporting large-scale graph-tensors. As shown in Figures 6–8, compared to the GPU-
baseline implementation on a single GPU, the multi-GPU implementation achieves up to
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60.29×, 25.76×, and 4.42× speedups for graph-tensors of size 64× 64× k, 128× 128× k,
and 512× 512× k, respectively. Compared to the GPU-optimized implementation on a
single GPU, the multi-GPU implementation achieves up to 1.81× speedups. On small-scale
graph-tensors, the multi-GPU implementation running on two GPUs is slightly slower
than the GPU-optimized implementation running on a single GPU, as shown in Figure 6.
The reason is that there is overhead introduced by data splitting and the synchronization
among multiple GPUs. For medium-scale and large-scale graph-tensors, the multi-GPU
implementation running on two GPUs significantly outperforms the GPU-optimized im-
plementation running on a single GPU, as shown in Figures 7 and 8. The performance
improvement of computing on multiple GPUs outweighs the overhead introduced by the
multi-GPU scheme. In addition, Figure 8 shows that the multi-GPU implementation can
process large graph-tensors of 512× 512× 2600 or larger, which are not supported by the
GPU-baseline or GPU-optimized implementations running on a single GPU.
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Figure 6. Running time of the GPU-base baseline, optimized, and multi-GPU implementations and
the CPU MATLAB implementation with synthetic graph-tensors of 64× 64× k. Speedups of the
GPU-optimized and multi-GPU implementations correspondingly.
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Figure 7. Running time of the GPU-base baseline, optimized, and multi-GPU implementations and
the CPU MATLAB implementation with synthetic graph-tensors of 128× 128× k. Speedups of the
GPU-optimized and multi-GPU implementations correspondingly.
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Figure 8. Running time of the GPU-base baseline, optimized, and multi-GPU implementations
and the CPU MATLAB implementation with large-scale synthetic graph-tensors of 512× 512× k.
Speedups of the GPU-optimized and multi-GPU implementations correspondingly. Graph-tensors of
512× 512× 2600 and larger exceed the capability of a single GPU.

Table 2. Running time breakdown for a graph-tensor of 64× 64× 2100 using nvprof.

GPU Algorithm Total Time
(s)

SVD Time
(s)

GFT Time
(s)

Memory
Copy Time

(s)

Right-Singular
Vectors Time (s)

GPU-baseline 149.54 146.37 0.27 1.96 -
GPU-optimized 2.47 1.43 0.27 0.11 0.02

Figure 9 shows the rMSE of graph-tensor imputation algorithm with synthetic data on
CPU and GPUs, respectively. We set the missing rate to 20% and configure the algorithm
to execute for 20 iterations with ε = 10−8. Both the GPU implementation and the CPU
implementation achieve low recovery errors in the order of 10−5 (i.e., good accuracy).
In addition, the rMSEs of the GPU implementation are very close to those of the CPU
MATLAB implementation under different sizes of graph-tensors, which validates the
correctness of the GPU implementations.

For the graph-tensor of size 50 × 50 × 4039 generated from the real-world ego-
Facebook graph [27], we vary the missing rates from 5% to 50% and evaluate the per-
formance of algorithms. Figure 10 shows the running time and speedups of the CPU
MATLAB, GPU-baseline, and GPU-optimized implementations. We can observe that as
the growth of the missing rates, the recovery time also increases both on CPU and GPU.
The average running time of the CPU implementation, the GPU-baseline implementation,
and the GPU-optimized implementation is 1051.73 s, 522.04 s and 6.75 s, respectively. Com-
pared to the GPU-baseline implementation, the GPU-optimized implementation achieves
up to 77.88× speedups.
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Figure 9. The relative square errors of the algorithm with synthetic graph-tensors of different sizes
on GPU and CPU, respectively.
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Figure 10. Running time and speedups of the graph-tensor imputation with the ego-Facebook
graph [27] under varying missing rates on GPU and CPU, respectively.

For the graph-tensor of size 50 × 50 × 4039 generated from the real-world ego-
Facebook graph [27], Table 3 shows the average recovery errors of the CPU implementation
and the GPU implementation under varying observing rates Nobs from 0.5N to 0.9N, where
N = 4039 (i.e., the number of vertices). The rMSEs decreases with the increasing of observ-
ing rates both on CPU and GPU since fewer slices are missed in the graph-tensors. Besides,
the GPU implementation achieves the same rMSEs with the CPU implementation on all
observing rates.

Table 3. Average relative mean square errors (rMSEs) under varying observing rates.

Nobs = 0.5N 0.6N 0.7N 0.8N 0.9N

CPU 0.038 0.032 0.018 0.008 0.001
GPU 0.038 0.032 0.018 0.008 0.001
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7. Conclusions

In this paper, we proposed a GPU-based convolutional imputation algorithm for
high-performance and accurate graph-tensor imputation with the slice-sampling pattern.
Focusing on compute-intensive GFT, iGFT, and SVD operations, we optimized memory
accesses, GPU utilization, and CPU-GPU communications. By utilizing coalesced memory
access, streams and batched computing, the GPU-optimized implementation achieves up
to 60.50× speedups over the GPU-baseline implementation with synthetic data. In ad-
dition, we designed a multi-GPU implementation to further improve performance and
support large-scale graph-tensors on multiple-GPUs on a computing node. The multi-GPU
implementation achieves up to 1.81× speedups on two GPUs versus the GPU-optimized
implementation on a single GPU. With the graph-tensors generated from the real-world ego-
Facebook graph [27], the GPU-optimized implementation achieves up to 77.88× speedups
versus the GPU-baseline implementation. Besides, the GPU implementation and CPU
implementation achieve similar, low recovery errors. In the future, we plan to scale this
work onto multi-node GPU clusters to support wider applications.
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