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Abstract: Blockchain technology provides a “tamper-proof distributed ledger” for its users. Typically,
to ensure the integrity and immutability of the transaction data, each node in a blockchain network
retains a full copy of the ledger; however, this characteristic imposes an increasing storage burden
upon each node with the accumulation of data. In this paper, an off-chain solution is introduced to
relieve the storage burden of blockchain nodes while ensuring the integrity of the off-chain data. In
our solution, an off-chain remote DB server stores the fully replicated data while the nodes only store
the commitments of the data to verify whether the off-chain data are tampered with. To minimize the
influence on performance, the nodes will store data locally at first and transfer it to the remote DB
server when otherwise idle. Our solution also supports accessing all historical data for newly joined
nodes through a snapshot mechanism. The solution is implemented based on the Hyperledger Fabric
(HLF). Experiments show that our solution reduces the block data for blockchain nodes by 93.3%
compared to the original HLF and that our advanced solution enhances the TPS by 9.6% compared
to our primary solution.

Keywords: blockchain; scalability; storage; data integrity; performance

1. Introduction

Blockchain systems are categorized into permissionless blockchains (a.k.a. a public
blockchain) and permissioned blockchains (a.k.a. a consortium/private blockchain). In a per-
missionless blockchain system, any computer or user that can access the blockchain network
can join it or quit at will. The nodes and users of the permissionless blockchain networks
are identified by their public keys. Cryptocurrencies such as Bitcoin [1], Ethereum [2], and
EOS [3] are constructed as permissionless blockchain systems. Permissioned blockchains
are always used for information-sharing among several stakeholders. The nodes and users
that want to join the network need to be authorized. Certification Authority (CA) can
be used to perform the authorization. HLF [4] and Quorum [5] are typical permissioned
blockchain systems.

Blockchain provides a tamper-proof distributed ledger by mechanisms such as decen-
tralized architecture, consensus algorithm, asymmetric encryption, and so on. Transactions
that are sent to the blockchain system are packed into blocks by certain rules. A block
contains a block header and a block body, the transactions are recorded in the block body.
Each block contains the hash of its previous block, so that the blocks form a chain structure,
which means that tampering with a historical transaction can be obtained by comparing the
block hash saved in the next block. The blocks are usually stored as files in the file system
of blockchain nodes. Typically, each node of the blockchain network retains a full copy of
the entire chain of blocks, so that each node can check the integrity of the data locally.

Since the size of the chain of blocks increases continually, the blockchain systems
are facing a storage scalability issue. For permissionless blockchains, the data size of a
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Bitcoin node has reached 366.51 GB [6] and the data size of a Ethereum node has reached
987.54 GB [7] by 28 September 2021; for permissioned blockchains, the issue has also caused
concern [8,9]. The storage burden is becoming more onerous for individual participants
who run blockchain nodes with their personal computers. This situation may injure the de-
centralized character of blockchain systems since only wealthy individuals or organizations
can afford the increasing storage scaling demand.

Methods proposed to solve the storage scalability issue of blockchain systems are
divided into “on-chain” solutions and “off-chain” solutions. On-chain solutions reduce the
contents stored in each node by altering the range of consensus or the contents of transac-
tions [10–13]. Off-chain solutions provide off-chain storage devices to store data, but most
of them focus on reducing the data size before the data are uploaded to blockchains [14–17].
This approach uses blockchain as a proof repository to ensure the integrity of off-chain data,
but the off-chain data cannot be retrieved through blockchain node, on the contrary, block
archiver [18] reduces the data size of the data that has been uploaded to the blockchain
and stored in the blockchain nodes, but block archiver fails to ensure the integrity of the
data stored off-chain, which severely damages the tamper-proof property of the original
blockchain system. To bridge this gap, an off-chain solution for the data that has been
uploaded to the blockchain with tamper-proof property is proposed in this paper. The
data are eliminated from the blockchain node and transmitted to a remote DB server while
the node saves a concise vector commitment (VC) [19] to ensure the integrity of the data
stored off-chain.

The contributions made by the present research are as follows:

1. An off-chain solution to solve the data scalability issue of blockchain systems while
ensuring the integrity of the data stored off-chain is proposed, the target of this
solution is to reduce the size of the data that has been uploaded to the blockchain and
stored in the blockchain nodes. Each node saves a concise VC to ensure the integrity
of the data of a block while the raw data are eliminated from the node.

2. The performance of our solution is improved compared to our primary solution “xFa-
bLedger” [20] by separating the transaction-processing phase and the data-reduction
phase. The data reduction is performed when a blockchain node is backed up to avoid
read-write conflicts and negative impact on performance.

3. The solution is implemented based on Hyperledger Fabric (HLF) V2.3.2 [21], and
storage experiments and performance experiments are conducted to prove the effec-
tiveness of our solution.

The rest of the paper is organized as follows: Section 2 describes different approaches
used when solving the scalability issues of blockchain. Section 3 introduces the transaction-
processing model and storage structure of the HLF blockchain system and the mechanism
of VC. Section 4 introduces our solution and then analyzes the security and performance
features thereof. Section 5 demonstrates the details of our implementation based on HLF.
Section 6 shows our experimental results and their evaluations. Section 7 concludes with
recommendations for future research.

2. Related Work

Blockchain technology is not only underpinning cryptocurrencies, but also widely
adopted in other industries, such as finance [22–24], IoT [14,25,26] and healthcare [27–29].
Although blockchain benefits the systems that use this technology, it brings scalability
issues to them [30–32]. The methods to solve the storage scalability issue of blockchain are
categorized into “on-chain” solutions and “off-chain” solutions.

2.1. On-Chain Solutions

“Sharding” is a method that divides the nodes of the blockchain network into sub-
groups called shards, each shard acts as an independent blockchain network to pro-
cess transactions and store data [10,11]. This approach reduces the data need to store
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for blockchain nodes, but each node still needs to store the full copy of the blocks of
the subgroup.

Several works propose storing the data distributedly similar to traditional peer-to-peer
content distribution networks [33–35] do. CUB [12] introduces the concept of “Consensus
Unit” (CU), in which nodes combine their resources to maintain the blockchain data
together rather than based on one copy per node. The differences between a CU and a
shard are: (1) as a whole, each CU stores identical data while each shard stores their unique
data; (2) each node in a shard stores identical data while each node in CU stores different
blocks. Jidar [13] proposes a method allowing Bitcoin blockchain nodes to store only those
transactions that are related to themselves. To verify a transaction, a proof is attached with
the transaction when it is sent. Moreover, a bloom filter is added to each block to check
whether a transaction has been affected.

On-chain solutions can reduce the storage burden of blockchain, but each node still
needs to store at least part of the blocks. On-chain solutions also tend to introduce extra
network overhead since the nodes must communicate to decide which node stores which
part of the entire data.

2.2. Off-Chain Solutions

Most of the off-chain solutions focus on reducing the data size before the data are
uploaded to blockchains [14–17]. In these solutions, blockchains work as proof repositories
to ensure the integrity of off-chain data, but the problems are: (1) off-chain data cannot
be retrieved through a blockchain node; (2) each node still need to store the full copy of
the blocks.

Block archiver [18] is a solution used to reduce the data size of the data that has been
uploaded to the blockchain and stored in the blockchain nodes by transmitting the data
to an off-chain block archiver repository. It addresses the storage issue for HLF. In an
organization (formed by serveral blockchain nodes) of HLF, a block archiver repository
is deployed off-chain to store archived block files, a “block archiver” is deployed on the
anchor/leader peer (a kind of blockchain node), and “block archiver clients” are deployed
on other peers. The “block archiver” is responsible for transmitting block files from
the peer’s local file system to the block archiver repository, deleting local block files and
notifying the “block archiver clients” to delete relevant block files from their local file
systems. Fast fabric [36] also mentioned an approximate idea that storing the blocks in a
distributed storage cluster. However, these solutions have not considered the method to
keep the integrity of the block data after they are stored off-chain.

Our solution is proposed to address the aforementioned problems in current solutions.
A remote DB server is used to store the data that has been stored in the blockchain nodes,
while the off-chain stored data are still retrievable through blockchain nodes. Concise
commitments are stored in each node to ensure the data integrity for the blocks, therefore
the size of data that stored on blockchain nodes are extremely reduced. The concept of CU
is also adopted to avoid centralization and reduce network overhead.

3. Background

To help understand our solution better, several relevant technologies are introduced
as background in this section.

3.1. Hyperledger Fabric
3.1.1. A Modular Pluggable Blockchain System

Hyperledger Fabric is a popular open-sourced permissioned blockchain system. In a
permissionless blockchain system, the fundamental components (e.g., consensus algorithm
and block generation rules) must be pre-determined before the system starts to provide
services, since each node in a blockchain system must obey the same rules. If a change
is needed after the blockchain system begins to run, the so-called “fork” [37] operation is
required. On the contrary, components in HLF are modular and pluggable. Provided the
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stakeholders reach a consensus, changes to the system can be easily realized. The nodes
in HLF networks are divided by their different functions. The nodes that are responsible
for saving blocks and answering query requests are called peers, some of the peers are
also obtained to carry out the calculations defined in the transactions, these peers are
called endorsers. The peers in the network always belong to different organizations: each
organization represents one or several stakeholders in the real world. The nodes that are
responsible for ordering the transactions and packing them into blocks are called orderers,
it is recommended that each organization deploys one orderer to represent the organization.
The orderers provide ordering services together follow certain consensus algorithms such
as Raft [38] or PBFT [39]. The orderers are referred to as Ordering Service Nodes (OSN).
Figure 1 illustrates the structure of a typical HLF network.

Org4

Org3

Org2

Org1

OSN

Peer1

Peer2

Peer3

Org1

2 1 0

Figure 1. The structure of Hyperledger Fabric network. The Ordering Service Nodes (OSN) or-
der blocks and deliver ordered blocks to each organization (Org). Each organization contains
several peers.

3.1.2. Transaction-Processing Architecture

For most of the blockchain systems, a consensus of the order of transactions in a
block must be reached before calculating the results of the transactions. Since each node
will calculate the results independently to verify the results, the order of the transactions
must be determined to maintain consistency among nodes. This architecture renders the
computational resources of the blockchain system un-scalable. To solve this problem, HLF
adopts a different transaction-processing architecture called “execute-order-validate” [4],
in which transactions are calculated concurrently by multiple endorsers then ordered by
OSN and later validated by peers.

3.1.3. Storage Structure of A Peer

The storage structure of an HLF peer comprises a chain of blocks and several local
databases. In HLF, a block consists of three parts [21]:

• Block Header comprises three fields

– Block Number is the sequence of the current block. The block number is counted
from 0. The first block is called genesis block.

– Data Hash is the hash value of all the transactions that are recorded in the current
block.

– Previous Hash is the Data Hash of its previous block.
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• Block Data contains the ordered transactions. The transaction creators’ and the
endorsers’ signatures are attached with each transaction. The count of transactions
stored in a block is called the “block size” which can be configured before the network
is started.

• Block Metadata contains the validation codes used to verify transactions and the
signature of the block creator.

The blocks are chained together through the “Previous hash”, and they are stored in
the file system as block files. The size of block files is configured before the network is
started so that the number of blocks that each block file contains is determined.

The blocks preserve all original information pertaining to each transaction, but for
data retrieval, local databases are needed to provide the necessary functionality:

• StateDB records the newest status of all the objects defined in the applications of the
blockchain system. The status is recorded as <Key, Value> pairs. It can be chosen
that whether CouchDB [40] or LevelDB [41] is used as the state DB before the HLF
network is started.

• IndexDB indicates where to find each block and transaction in the block files. It records
the sequence number of the block file retaining the indexed blocks and transactions
and offsets of those blocks and transactions.

• HistoryDB can be used to track each change for each key. The sequence numbers of
key-related blocks and transactions are recorded.

3.1.4. Snapshot

A snapshot mechanism [42] is officially included in the HLF V2.3 to back-up a peer. A
snapshot comprises several files that are exported from local databases of a peer. It can be
used for checking whether ledger forks occur among different organizations and letting a
new peer join the channel without synchronizing previously committed blocks from other
peers. When a peer is going to generate a snapshot, the committing of blocks is stopped to
prevent read-write conflicts.

3.2. Vector Commitment

For a given element e and a sequence number i, VC [19] can be used to identify
whether e is equal to the ith element of an ordered set e (e1, . . . en). In blockchain systems,
the transactions in a block form an ordered set of elements, thus VC can be used to identify
whether a given transaction is in a block and its position is also correctly provided. VC
demonstrates the features of hiding, position binding, conciseness and an ability to be
updated. The following six algorithms are used to define VC:

1. Given security parameter k and the size n of ordered set e, the “KeyGen” algorithm
outputs the public parameters pp.

pp← KeyGen(1k, n) (1)

2. Given the public parameters pp and the ordered set e, the “Commitment” algorithm
outputs the commitment C of e.

C← Commitmentpp(e1, ..., en) (2)

3. The “Open” algorithm is used to generate the proof πi for the ith element.

πi ← Openpp(i, e1, ..., en) (3)

4. The “Verify” algorithm is employed to check whether the given element e is equal to
ei through the proof πi. If the proof is accepted, the algorithm outputs 1.

{0, 1} ← Veri f ypp(C, i, e, πi) (4)
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5. When the ith element of e needs to be updated with e
′
, the “Update” algorithm can

be run to output a new commitment C
′

and the update information U.

C
′
, U ← Updatepp(C, e, e

′
, i) (5)

6. When the ith element of e is updated, the proofs of other elements (e.g., ej) also
need to be updated. The algorithm “ProofUpdate” outputs the updated proof π

′
j of

element ej.

π
′
j ← Proo f Updatepp(πj, e

′
, i, U) (6)

4. SASLedger: A Secured, Accelerated Scalable Storage Solution

To relieve the storage burden for blockchain nodes, we focus on reducing the size
of the chain of blocks since it alone is responsible for most of the storage burden of a
blockchain node. Figure 2 shows the system architecture of our solution. An off-chain
solution within each CU is used to achieve lower network overhead compared to on-chain
solutions or solutions without adopting CU [13] or solutions without adopting CU [10–13]:
an off-chain remote DB server for each CU is added to store the blocks; VC is used to ensure
the integrity of each transaction in a block stored in the remote DB server. Although the
blocks are stored in the remote DB server, the nodes still maintain their local databases
respectively and still be able to check the data integrity of the blocks that they transmit
to the remote DB server, thus the decentralized character and tamper-proof character of
blockchain system are retained.

Node1

Node2

Node3

Remote DB server

2 1 0 Proofs

Consensus unit

Blocks

Vector commitment of blocks

Blockchain network

Figure 2. System architecture of our solution. The entire blockchain network is divided into mul-
tiple Consensus Unit (CU), in which nodes combine their resources to maintain the blockchain
data together.

4.1. Proving Data Integrity through VC

To prove the integrity of the data in a block, Jidar [13] attaches a proof for each
transaction, which requires extra storage space and generates significant network overhead.
Compared to Jidar, in our solution, nodes only store a concise VC of a block, the proof for a
transaction is generated and provided by the remote DB server only when the transaction
is requested.

A Merkle tree [43] is used to generate VC for the set of transactions in a block and
proofs for the transactions. As shown in Figure 3, the hashes of the transactions in a block
(tx1, . . . , txn) form the leaf nodes of the Merkle tree, the root of the Merkle tree is considered
to be VC (C) of the block (7). When the proof of the ith transaction txi is requested, the list
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which includes adjacent sibling nodes of the corresponding leaf and its ancestor nodes is
returned as the proof π (8), in Figure 3, the list [Hash3, Hash12, Hash5678] (shown in yellow)
is the proof of transaction tx4.

Root
(Commitment)

Hash1234

Hash12 Hash34 Hash56

Hash5678

Hash78

Hash1 Hash2 Hash3 Hash4 Hash5 Hash6 Hash7 Hash8

tx3 tx4 tx5 tx6 tx7 tx8tx1 tx2

Leaves

Figure 3. Merkle tree-based vector commitment. The hashes of the transactions in a block
(tx1, . . . , txn) form the leaf nodes of the Merkle tree, the root of the Merkle tree is considered to
be VC of the block. The list [Hash3, Hash12, Hash5678] (shown in yellow) is the proof of transaction
tx4.

When a transaction is requested, the transaction is retrieved from the remote DB server
with its proof and verified by calculating the Merkle tree root using the received proof and
comparing the root with the previously stored commitment (9). If the root equals the VC,
the node can believe that the transaction has not been subject to tampering on the remote
DB server. In the case of a block being requested, the node retrieves the block from the
remote DB server and validates its integrity by calculating its hash and comparing it with
the previously stored hash of the block. The size of a VC is 32 B when SHA256 is used as
the hash calculating algorithm while the size of a block with default settings containing
10 transactions is 34 KB [20]. Since the size of a VC is much less than the size of a block,
storing its VC instead of the original block can save much storage space.

C← Commitment(tx1, ..., txn) (7)

π ← Open(i, tx1, ..., txn) (8)

{0, 1} ← Veri f y(C, i, tx, π) (9)

Since the transactions in a block are fixed, the “Update” and “ProofUpdate” algorithms
in conventional VC definition are not applicable. The “KeyGen” algorithm is unnecessary
neither since there are no other public parameters to be generated. The algorithms are
shown in detail with Algorithms A1–A4 in Appendix A.

4.2. A Primary Solution: xFabLedger

xFabLedger [20] is our primary solution in which after each node receives a block, the
node generates commitment for the block and transmits the block to the remote DB server.
The block is never stored in the file system of the node. Figure 4 illustrates how a block is
processed. xFabLedger solves the excessive storage growth issue and security issue, but
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experiments indicates that the performance is decreased compared to that of the original
blockchain system.

Previous block positionCurrent block position

Remote DB server

Consensus unit

…

Node 1

2 1 0 Proofs

2 1 0

Block Hash Commitment

xxxxx xxxxx

…

Node n

2 1 0

Block Hash Commitment

xxxxx xxxxx

…

3

3

Figure 4. The primary solution. After a block is received by a blockchain node, the node generates
commitment for the block and transmits the block to the remote DB server immediately.

4.3. The Advanced Solution: SASLedger

In our advanced solution, the data-reduction operation is separated from the transaction-
processing phase. The data-reduction operation should be performed when the system is
not busy or when the system is being backed up (e.g., the snapshot mechanism in HLF).
Figure 5 shows the two phases of our solution: during the transaction-processing phase, the
nodes process the transactions as vanilla blockchain nodes do and save the blocks locally,
thus the TPS remains unaffected. During the data-reduction phase, the nodes perform the
following operations for each committed block:

• Calculate a VC for the set of transactions contained in the block;
• Save the hash value of the block and its commitment to local storage as a 〈Key, Value〉

pair which is used as an index of the block: 〈blockHash, commitment〉;
• Transmit the content of the block to the remote DB server;
• Delete the block from its local storage.

When a query is sent to a node to retrieve a block or a transaction, the node re-
trieves the block or transaction from the remote DB server and transmits it to the client
after verification.

A snapshot of the blocks can be generated from the block indices: this can be used to
build block indices for a newly joined node in the future.



Future Internet 2021, 13, 310 9 of 19

3 2 1 0

Export snapshot files

Remote DB server

Consensus unit

…

Transaction-processing phase

Node 1

2 1 0

Node n

3

3

Remote DB server

Consensus unit

…

Data-reduction phase

Node 1

3 2 1 0 Proofs

2 13 0

Block Hash Commitment

xxxxx xxxxx

…

Node n

2 13 0

Block Hash Commitment

xxxxx xxxxx

…

Previous block positionCurrent block position

Figure 5. Two phases of our advanced solution. In the transaction-processing phase, the nodes
process the transactions as vanilla blockchain nodes do and save the blocks locally. In the data-
reduction phase, the nodes generate commitments for the blocks, transmit the blocks to the remote
DB server, and delete the blocks locally.

5. Implementation Based on Hyperledger Fabric

Our advanced solution is implemented based on HLF V2.3.2. The reasons why HLF is
chosen as the basis for our implementation are:

1. We are focusing on enterprise-level applications while HLF is a popular permis-
sioned blockchain solution for information-sharing among companies due to its high
performance and rich privacy preserving mechanisms [4,21];

2. The nodes in a HLF network are already divided into “organizations”, which is
suitable for building a CU since the peers in an organization are managed by the same
administrator, and they are identified by each other through digital signatures;

3. The snapshot mechanism introduced in HLF V2.3.2 provides a perfect timing to
perform the “data-reduction” operation of our solution.

A remote DB server is deployed in each organization of HLF to store all the blocks pre-
viously stored in the peers in this organization. When a new generated block is arrived, the
peers commit the block (saving the block to its file system and saving the relevant informa-
tion to its local databases) as vanilla HLF peers do, so that the TPS of the blockchain system
is unaffected. The data-reduction operation is conducted when a snapshot is generated.

5.1. Peer Node

As mentioned in Section 3, a peer node of HLF performs the following operations:

• Endorsing : performing the calculations defined in transactions;
• Committing : preserving blocks to the file system of the peer and preserving some

block-related information to the peer’s local databases;
• Responding query requests : searching blocks and local databases to find information

that is requested by users and answering the requests;
• Generating snapshot : stop committing and then exporting information from local

databases to snapshot files.
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The “Generating snapshot” operation is modified to transmit the blocks to the remote
DB server and delete the blocks from its local file system. The “Responding query requests”
operation is also modified by adding verification process after the blocks and transactions
are retrieved from the remote DB server. The communications between peers and the
remote DB server are realized by way of a GRPC protocol [44]. The “Endorsing” and
“Committing” operations remain unmodified.

5.1.1. Modification of Generating Snapshot

Before a block is transmitted to the remote DB server, the commitment of the block is
generated and the indexDB of the peer is updated, so that the peer can retrieve transactions
and blocks from the remote DB server after transmitting the blocks. A comparison of
contents in indexDB before and after the update is provided (Table 1).

Table 1. Contents of indexDB before and after updating.

Key Before Update After Update

blkHash block file, block offset VC for the block,
hash of the entire block a

blkNum block file, block offset blkHash

txID, blkNum,txNum block file, block offset, tx validation codetx offset,tx validation code
a MetaData is not included when blockHash is calculated.

In HLF implementation, a peer who joins a channel through a snapshot can obtain
the latest world states when the snapshot is generated; but it cannot access the contents of
blocks that have been committed before the snapshot is generated since the local databases
of the peers that generate the snapshot only contain information of those blocks that are
stored locally. However, in our implementation, since the indexDB is updated for the blocks
that are going to be transmitted to the remote DB server, those blocks can be accessed by
new peers if they join the channel through copying the information from the snapshot
to their local databases. To support this function fully, the snapshot contents exported
from different local databases are extended: besides the contents exported from stateDB
and configHistoryDB which are also included in the snapshot of HLF, the snapshot of
SASLedger also contains the history records of states that are exported from the historyDB
and all the <Key, Value> records in the indexDB after it is updated.

5.1.2. Modification of “Responding Query Requests”

In HLF, peers provide four query interfaces for users:

• QueryTransaction is used to retrieve a transaction-by-transaction ID;
• QueryBlock is employed to retrieve a block-by-block number;
• QueryBlockByHash is to obtain a block-by-block hash;
• QueryBlockByID is to acquire a block using the transaction ID of one of the transac-

tions that is compacted within the block.

Since SASLedger retrieves blocks and transactions from the remote DB server, the
retrieved data must be verified to ensure that they are not subject to tampering on the
remote DB server. The verification is performed by the peer as described in Section 4.1.

5.2. Remote DB Server

The remote DB server is implemented based on leveldb. It comprises three databases:
blockDB, txIndexDB, and merkleTreeDB. When a block is received by the remote DB server,
first, the redundancy of the block is checked through its hash; secondly, if the received
block has not already been saved, the blockData are saved to the blockDB, the transactions
in the block body are traversed to save the indices of the transactions to the txIndexDB,
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and the Merkle Tree is calculated for the block and saved to the merkleTreeDB. Table 2 lists
the contents of these databases.

Table 2. Contents of remote databases.

Database Key Value

blockDB blkHash blockData
txIndexDB txID blkHash, txNum a

merkleTreeDB merkleNode adjacent sibling node
a The sequence number that the tx is stored in the block.

The remote DB server provides four APIs for the peers to invoke:

• AddBlock : uploads a block to remote DB server;
• GetBlockByHash : retrieves a block by blockHash and returns the block;
• GetBlockByTxId : retrieves a block by transaction ID and returns the block;
• GetTransactionByTxId : retrieves a transaction-by-transaction ID and returns the

transaction and its proof.

6. Experiment and Evaluation

Experiments are conducted to elucidate how much storage space the SASLedger can
save compared with HLF. Meanwhile, experiments are performed to compare the TPS and
query latencies of SASLedger, xFabLedger, and HLF.

6.1. Basic Experimental Settings

Table 3 shows the configuration of the testing machines that we use to perform these
experiments. We use six computers, each with identical configurations: three of them are
used as blockchain nodes, one of them as the remote DB server. and the other two as
Performance Traffic Engine (PTE) [45] machines for sending transactions to the blockchain
networks. Table 4 lists the settings for blockchain networks.

Table 3. Testing machine configuration.

Configuration Item Value

OS Ubuntu 16.04
CPU i5-9400 (2.9 GHz) 6 cores

Memory 8 GB
Hard Disk SSD 512 GB

Network Bandwidth 1000 Mbps

Table 4. Blockchain network settings.

Blockchain Network Component Value

Orderer node number One
Consensus algorithm Raft
Organization number Two

Peer number in each organization One
StateDB leveldb

6.2. Storage Experiments

Experiments are carried out to understand to what level the SASLedger can relieve the
storage burden of a blockchain node. In Figure 6, the grey bars and red bars show the block
file storage demand of HLF and SASLedger, respectively; the yellow bars indicate the disk
size of the remote DB server; the green line shows the storage consumption reduction rate
(10) of SASLedger compared with HLF. When the number of transactions reaches 480,000,
the reduction rate of peer block file size reaches 93.3%. Since the first block file containing
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the genesis block and the latest block file are kept when deleting block files in peers, the
SASLedger holds storage consumption records (red bars in Figure 6) of a constant value
when the number of transactions changes.

reduction_rate =
HLF_size− SASLedger_size

HLF_size
(10)
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Figure 6. Storage comparison between HLF and SASLedger. The grey bars and red bars show the
block file storage demand of HLF and SASLedger, respectively; the yellow bars indicate the disk size
of the remote DB server; the green line shows the storage consumption reduction rate of SASLedger
compared with HLF.

6.3. Performance Experiments

To assess the performance of blockchain networks, two PTE machines are used to send
a certain number of write-only transactions to the two organizations. The configuration of
the PTE is summarized in Table 5.

Table 5. PTE settings.

Setting Item Value

PTE machine number Two
Process number per PTE Eight
Tx number per Process 3000

The TPS values of HLF, xFabLedger, and SASLedger are compared when they adopt
different block sizes. Figure 7 shows the experimental results. For each of the three
blockchain systems, the TPS increases as the block size increases. The reason for this is
that over the same number of transactions, the larger the block size, the fewer blocks are
generated thus the number of block-oriented operations is reduced. Since xFabLedger
transmits the block to the remote DB server during the transaction-processing phase, its
TPS is lower than that when using HLF. SASLedger separates the block transmission
from transaction-processing phase, which leads to a TPS improvement of 9.6% compared
with xFabLedger.

Figure 8 shows the block commitment latency comparison of HLF, xFabLedger, and
SASLedger when the block size is changed. The block commitment latency is the time at
which a block and its relevant information are recorded. It can be divided into three parts:

• BlockCommitTime is the time span to record the block itself;
• StateCommitTime is the time span to write relevant information to stateDB;
• HistoryCommitTime is the time span to write relevant information to historyDB.
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Figure 8 indicates that the total block commitment latency of xFabLedger with each
block size is the highest among the three blockchain systems and the commitment latencies
of HLF and SASLedger are similar. This observation can explain the result shown in
Figure 7.
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Figure 7. Throughput comparison of HLF, xFabLedger, and SASLedger.The TPS of xFabLedger is
lower than that when using HLF. The TPS is improved to the same level with HLF in SASLedger.
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Figure 8. Block commitment latency comparison: HLF, xFabLedger, and SASLedger. The total block
commitment latency of xFabLedger with each block size is the highest among the three blockchain
systems and the commitment latencies of HLF and SASLedger are similar.

For the performance of query requests, the query latencies of the three blockchain
systems are tested by calling the four query interfaces: QueryTransaction, QueryBlock,
QueryBlock, and QueryBlockByID.

In SASLedger a block is stored in the peers before it is transmitted to the remote DB
server. Figure 9 shows that if a block is still stored in the local file system of a peer, the time
to query it and the transactions therein is similar to the time cost when using HLF, while
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for a block that has been transmitted to the remote DB server, the query latency is similar
to that when using xFabLedger. Since the blocks are either stored locally in the peers or
stored in the remote DB server, the overall query performance is significantly affected by
the distribution of stored locations. In the worst situation that all blocks are stored in the
remote DB server, the block-query-latency and transaction-query-latency of SASLedger are
31% and 67% higher than those of HLF, respectively.
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Figure 9. Query latency comparison: HLF, xFabLedger, and SASLedger. When using SASLedger, for
a block stored in the local file system of a peer, the time to query it and the transactions therein is
similar to the time cost when using HLF, while for a block that has been transmitted to the remote
DB server, the query latency is similar to that when using xFabLedger.

7. Conclusions

In this paper, a secured and accelerated scalable storage solution for blockchain
systems is proposed. Our solution relieves the storage burden of blockchain nodes by
adding an off-chain remote DB server for each CU in blockchain network to store the blocks
while ensuring data integrity. Our solution also improves the performance compared to our
previous work by separating the data-deduction operation from the transaction-processing
phase. Experiments show that our solution can reduce the size of block files for peers by
93.3% compared to the original HLF blockchain system and that our solution enhances the
TPS by 9.6% compared to xFabLedger.

Our solution can be applied in blockchain systems constructed with HLF to enhance its
storage scalability by simply replacing the vanilla HLF peers with the modified SASLedger
peers and deploying the remote DB server. For conventional HLF blockchain systems, if
the storage spaces of peers are insufficient, additional hard disks need to be installed to
each peer; however, in a SASLedger blockchain system, new hard disks only need to be
installed in the remote DB server, which reduces the budget.

There are several limitations left in our solution:

• Retrieving blocks or transactions from the remote DB server is slower than retrieving
them from the local file system of a peer, thus our solution leads to a decrease of the
query performance.

• The data-reduction phase of our solution depends on the snapshot operation of HLF,
since the commitment of transactions are stopped when taking the snapshot, the
performance is decreased due to the snapshot operation.

In the future, we would like to study the mechanism of the local databases of HLF
peers to solve the read-write conflict problem when exporting the contents of the local
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databases. This may accelerate the current snapshot generation process by keeping the
commitment of transactions unstopped when a snapshot is taken.
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DB Database
HLF Hyperledger Fabric
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OSN Ordering Service Nodes
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Tx Transaction
PBFT Practical Byzantine Fault Tolerant
VC Vector Commitment
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BAO Blocks Assignment Optimization
TPS Transactions Per Second
OS Operating System
CPU Central Processing Unit
SSD Solid-State Driver
GB Gigabytes
MB Megabytes

Appendix A.

In the following algorithms, “=” means “equals to” and “||” means “concatenation”.

Algorithm A1: Initialization

txArray← [tx1, ..., txn]
MerkleTree.layerArray← emptyArray /* Initialize the layers of the
MerkleTree with an empty array */

Function CalcHashForTxs(txArray):
i← 0
while i < sizeOf(txArray) do

hashArray[i]← sha256(txArray[i] || i)
i← i + 1

end
return hashArray
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Algorithm A2: Commitment and Construction of MerkleTree

Function Commitment(txArray):
hashArray← CalcHashForTxs(txArray)
return CommitRecursively(hashArray)

Function CommitRecursively(layer):
i← 0
de f aultSibling← sha256(constantA)
while i < sizeOf(layer) do

if layer[i + 1] exists then
if layer[i] < layer[i+1] then

upperLayer[ i
2 ]← sha256(layer[i] || layer[i + 1])

else
upperLayer[ i

2 ]← sha256(layer[i + 1] || layer[i])
end
layer[i].parent← upperLayer[ i

2 ] /* Record the node’s parent */
layer[i].sibling← layer[i + 1] /* Record the node’s sibling */
layer[i + 1].parent← upperLayer[ i

2 ]
layer[i + 1].sibling← layer[i]

else
if layer[i] < defaultSibling then

upperLayer[ i
2 ]← sha256(layer[i] || de f aultSibling)

else
upperLayer[ i

2 ]← sha256(de f aultSibling || layer[i])
end
layer[i].parent← upperLayer[ i

2 ]
layer[i].sibling← de f aultSibling

end
i← i + 2

end
MerkleTree.layerArray.append(layer) /* Save current layer to
MerkleTree */

if 1 = sizeO f (upperLayer) then
MerkleTree.layerArray.append(upperLayer) /* Save the upper layer
to MerkleTree */

return upperLayer[0]
else

return CommitRecursively(upperLayer)
end
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Algorithm A3: Open

Function Open(i, txArray):
hashArray← CalcHashForTxs(txArray)
proo f Array← emptyArray
return GetProo f Recursive(hashArray[i], proo f Array)

Function GetProofRecursively(node, proo f Array):
sibling← MerkelTree.getSibling(node) /* Find the node’s sibling */
if sibling dose not exist then

return proo f Array
else

proo f Array.append(sibling)
parent← MerkelTree.getParent(node) /* Find the node’s parent */
return GetProo f Recursively(parent, proo f Array)

end

Algorithm A4: Verify

Function Verify(C, i, tx, proo f Array):
result← sha256(tx || i)
j← 0
while j < sizeOf(proofArray) do

if result < proofArray[j] then
result← hash256(result || proo f Array[j])

else
result← hash256(proo f Array[j] || result)

end
j← j + 1

end
if C = result then

return 1
else

return 0
end
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