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Abstract: Nowadays there are many DNS firewall solutions to prevent users accessing malicious
domains. These can provide real-time protection and block illegitimate communications, contributing
to the cybersecurity posture of the organizations. Most of these solutions are based on known
malicious domain lists that are being constantly updated. However, in this way, it is only possible to
block malicious communications for known malicious domains, leaving out many others that are
malicious but have not yet been updated in the blocklists. This work provides a study to implement
a DNS firewall solution based on ML and so improve the detection of malicious domain requests on
the fly. For this purpose, a dataset with 34 features and 90 k records was created based on real DNS
logs. The data were enriched using OSINT sources. Exploratory analysis and data preparation steps
were carried out, and the final dataset submitted to different Supervised ML algorithms to accurately
and quickly classify if a domain request is malicious or not. The results show that the ML algorithms
were able to classify the benign and malicious domains with accuracy rates between 89% and 96%,
and with a classification time between 0.01 and 3.37 s. The contributions of this study are twofold. In
terms of research, a dataset was made public and the methodology can be used by other researchers.
In terms of solution, the work provides the baseline to implement an in band DNS firewall.

Keywords: cybersecurity; DNS; firewall; machine learning

1. Introduction

The DNS is a fundamental service to the functioning of the Internet. Name servers
maintain the mapping between a logical name and the IP address of the servers, so that all
communications start by contacting the DNS to obtain the IP address before accessing the
desired service (All abbreviations have been listed in Abbreviations Section).

As the Internet grows, so does the number of DNS domains. According to the report
provided by Verisign [1], the second quarter of 2020 closed with 370.1 million new domain
name registrations across all TLD. An increase of 0.9 percent when compared to the first
quarter of 2020, and an increase of 4.3 percent, year over year. Unfortunately, this growth
has a less positive side. In [2] it is said that 70% of 200,000 newly registered domains every
day are malicious or suspicious. According to the same study, these new domains stay
active only for a very brief period, just hours, while others are quickly spotted behaving as
command and control servers or distributing malware or phishing attacks.

Most of the current DNS firewall solutions are based on blocklists of malicious do-
mains. When a request is sent to these systems, it is filtered and a query is produced
to check the veracity of the domain. The blocklists are constantly updated, but if a new
malicious domain is not yet in the list the request continues the flow without any filter,
leaving the user/organization exposed to potential cyberattacks. Another approach to
malicious domain detection is passive DNS analysis. This method consists of the analysis
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and exploration of DNS logs to find patterns and extract valuable information in order
to detect malicious domain names. In [3], the author collected and analyzed real-world
DNS data to detect malicious behavior and was able to detect different patterns, such
as unauthorized name servers and botnet controllers. Furthermore, based on passive
DNS analysis, the study [4] focuses on the passive analysis of recursive DNS traffic traces
collected from multiple large networks. The authors analyzed more than 2500 million
DNS queries, and were able to accurately detect malicious flux service networks (multiple
IP addresses per malicious domain name that changes in quick succession to difficult
take-down operations).

Considering the number of malicious domains and their short lifetime, the filtering
based on blocklist and passive DNS analysis is not enough to mitigate the problems. To
cope with the challenge of detecting attempts to communicate with malicious domains in
a timely manner, we propose the study and implementation of a DNS firewall solution
based on ML. There are previous studies that also detect malicious domains on the fly, such
as [5–7]. However, as described in the next sections, we will explore a different approach
in order to detect malicious domains with high accuracy rates and in a timely manner. Our
approach considers a set of steps, all of them important, namely:

• Due to the non-existence of a DNS dataset, a list of malicious and non-malicious
domains needs to be selected;

• From the list of domains, other features that can add value to the analysis should
be derived. This process consists of data enrichment and involves the use of OSINT
sources;

• The resulting dataset must be analyzed and prepared before it is submitted to ML
algorithms. This step includes an exploratory data analysis to ascertain the existence
of missing data and extreme values. It also involves the processing of data in order to
obtain a dataset that can be analyzed using ML algorithms;

• The ML algorithms should be selected according the type of analysis to be done (e.g.,
supervised versus unsupervised learning);

• The features importance should be accessed to maximize the accuracy while reducing
the time to classify the domain names;

• Different experimental analysis should be conducted to determine which algorithm(s)
is most suitable for further use;

• Conclusions should be drawn on the effectiveness of the solution and on its pos-
sible use in in-band or out-band mode to detect and mitigate problems related to
communication with malicious domains.

The creation of a DNS Firewall capable of detecting and blocking malicious com-
munications in an accurate and timely manner is very important. Since the DNS is the
basis for establishing communications, detecting and interrupting malicious communica-
tions at their source, independently from the attack vector, will prevent the escalation of
cyber-attacks, thus protecting organizations from the economic and reputation damages
associated with this kind of attack. The novelty of this study regards the custom-created
dataset as well the methodology adopted. The combination of those factors allowed us to
reach high accuracy rates in a timely manner to identify malicious domains. Compared
to previous studies mentioned in the literature section, our results stand out by the use of
a small sized dataset to train the ML models, which were able to reach high score rates.
Furthermore, results from the use of six different ML algorithms provides a comparison
that can be explored by other researchers.

This article is organized as follows: Section 2 describes the work carried out by other
researchers. Section 3 presents the proposed methodology to implement the DNS firewall
solution. Section 4 focuses on the DNS dataset creation and analysis. Section 5 presents
the data analysis through data preparation, ML classification models used on this work,
and the results. Section 6 presents the experimental results and Section 7 provides the
discussion of the results. Section 8 concludes the paper.
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2. State of the Art

The DNS is the central element of the internet and a widely know entry point for
cyber-attacks. According to International Data Corporation’s 2020 threat report [8], almost
80% of cybersecurity issues involve a malicious DNS query. Also in the cybersecurity
context, the last Global DNS Threat Report [9] found that, globally, 87% of the surveyed
organizations suffered from cyber-attacks, with an average cost of 779,008 e.

The DNS is responsible for mapping domain names to an IP address and to make
use of a caching system to store a domain name with a defined ttl1. Nowadays, millions
of devices are using DNS servers to be able to navigate on the internet. The DNS servers
communication are made in unique and unsigned packets [10], making these a target for
attackers. According to [11], there are numerous vulnerabilities related to the DNS, such
as man-in-the-middle attacks, packet sniffing, transaction ID guessing, caching problems,
cache poisoning, and DDOS attacks. Some threats, such as phishing attacks and malware
installation, might depend on a DNS request [12] either to establish a communication
between a victim and the command and control server, or to simply create a malicious
domain to promote malware dissemination and data theft. Therefore, there is a need to
improve DNS security to ensure secure DNS communications.

Motivated by the many vulnerabilities and a historical record of attacks on DNS
systems, two major security improvements were made: the use of DNSSEC and the DNS
firewall solutions.

The DNSSEC is related to several RFC such as the RFC 4033 [13] a standard is estab-
lished to add data origin authentication and data integrity to the DNS using cryptographic
digital signatures based on public-key cryptography. The DNSSEC exists for a long time
and 90% of the TLD has the DNSSEC implemented and enabled [14], but according to [15]
“only 1% of the .com, .org, and .net domains attempt to deploy DNSSEC”. According
to [16], the DNSSEC provides protection against spoofing of DNS data, and also to man-
in-the-middle attacks, by adding a layer of authentication to the traditional DNS. There
is some complexity in the implementation of a DNSSEC solution, as mentioned in [17].
This complexity can lead to a bad configuration which can result in vulnerabilities in the
DNSSEC server. In [18] the authors gathered 282,766 domain names and 4% of the domains
with DNSSEC implemented showed a form of misconfiguration. According to [11] there
are some different vulnerabilities to the DNSSEC, such as the chain of trust (root public
key injection), security considerations for key management, key rollovers, zone private key
storage, and DNSSEC timing issues.

In the DNS firewall solutions context, one of the current challenges is the use of DGA
by malicious actors. According to [19], there are four methods in which the DGA are
based: arithmetic, hash, wordlist and permutation. These methods take a seed as an input,
output a string, and append a TLD. Due to the randomness of these domains, it is difficult
to determine if a given domain name is malicious or not. In [20], a ML framework is
proposed to identify DGA domain names based on deep neural networks. The results are
encouraging, reaching 98.7% on average for the F1 score, and a precision of 83%. With
a ML model trained to detect malicious domains, created using DGA methods or not,
it is a valuable complement to actual firewall systems. In [5], the authors proposed the
EXPOSURE, a system that employs passive DNS analysis techniques to detect malicious
domains. They built a classifier model based on Decision Tree algorithm (J48), working
in real-time, over 15 features and reaching 98% of accuracy on a 10 fold cross-validation
analysis. Another DNS based approach is proposed in [6] and combines the domain
features, host-based features, and web-based features to identify malicious domains. Using
a small set of domains (10,000), the authors could reach 60% accuracy, which can be
certainly improved when applied to larger datasets.

Regarding the used dataset, there are some related works about the creation process.
In [21], the authors collected more than 100 numerical features of a domain. The collected
data were based on DGA and legitimate domain names to provide a large dataset to the
scientific community. The lack of features from OSINT sources are a potential limitation that
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we took into account in our dataset creation process. Contrarily, in [22] the authors collected
around 1.5 million domain names and extracted 11 features mainly based on host-based and
web-based characteristics of a domain, such as the IP address, TLD and information from
WHOIS, but not using numerical features. Therefore, we create a dataset with 34 features
using numerical, host-based, and web-based characteristics of a domain name.

Although there are numerous studies on DNS firewall systems, the need to analyze
and predict newly malicious domains over DNS communications in a timely manner is a
valuable cybersecurity countermeasure to mitigate, prevent and alert both organizations
and end-users against malicious DNS traffic.

3. Proposal and Methodology

A DNS firewall system as we propose can be used to complement the DNS firewall
systems based on block/allow lists with a ML model capable of verifying if a domain is
malicious or not. In this way, it is possible to block access to domains that are already
recognized as malicious and to others that are not yet catalogued as such, but which have a
high probability of being so.

The proposed firewall solution will be built in two distinct operation modes: in-band
and out-band. The in-band mode makes use of active DNS analysis and the out-band mode
follows the passive DNS analysis approach as described below:

• In-band: As illustrated in Figure 1, for the in-band mode, the DNS resolution requests
are analyzed in real time. This allows the determination of whether the requested
domain is malicious or not and blocks or alerts as soon as possible to the fact. The
overhead introduced by the DNS firewall is important and will be addressed in the
analysis considering different DNS request workloads.

• Out-band: As illustrated in Figure 2, in the out-band mode the DNS firewall will only
periodically analyze the DNS log. This way it will only be able to provide a posterior
analysis. Thus, it is useful to identify devices within the network that are involved in
malicious communications. This operation mode does not introduce overhead to the
normal processing of DNS requests.

Figure 1. DNS Firewall operating in In-band.
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Figure 2. DNS Firewall operating Out-band.

The analysis of the two modes of operation is very important as it allows the effec-
tiveness of the solution to be evaluated, and its behavior to be measured in a real-time
operation mode.

The main operation mode is illustrated in Figure 3. The system will analyze each DNS
query to gather information about the domain name and use that information as input for
posterior processing. In this step, parameters such as the WHOIS information (a record
listing about entities on the internet), IP address, and subdomains will be collected. After
the parameters collection, the data will be sent to a ML classification algorithm already
trained. The classification response will be used to determine if the domain is malicious or
not (considering the algorithm accuracy).

Figure 3. DNS query flowchart.

The data analytics process involves several stages, namely: data collection; exploratory
analysis; data preparation and ML algorithms evaluation (including feature selection
and classification).

In the data collection step, random domain names collected from publicly available
data sources and already classified as malicious or non-malicious, will be processed. For
each domain name, parameters such as the WHOIS information and the entropy of the
domain name will be extracted. In the exploratory analysis, the data collected will be
analyzed, taking into account factors such as the correlation of malicious and non-malicious
for each parameter, the count of “null” values and the geographic distribution. The data
preparation is a crucial step to structure, clean and adapt data to be consumed by ML
algorithms. It requires the transformation of non numeric data into numeric using well-
known methods such as label encoding, fitting of the numeric parameters with high
variance into a predefined scale, and standardization of the “null” values. Finally, the
ML algorithms evaluation involves two sub-steps: feature selection and classification.
In the selection of features, algorithms will be used to obtain the importance of each
parameter and exclude the ones with less relevance to avoid the over-fitting problem. The
classification is the last sub-step that will make use of the predefined selected features and
evaluate, for each ML algorithm, its accuracy, precision, F1 score, and classification time.

The process of the DNS dataset creation to be used to train ML algorithms and choose
the best ML algorithm from a historical set of DNS requests is presented in the next section.
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4. DNS Dataset

In this section, the DNS dataset creation process is presented. The data collection
for non-malicious domains was based on DNS logs, and uses four types of records (A,
AAAA, CNAME and MX). The domains were collected from Rapid7 Labs [23], which
provide datasets of DNS requests from their Project Sonar. This data are open and provide
a structured schema that facilitates the extraction process. A total of 45,000 domains were
randomly selected from these lists.

The malicious domains were collected from the SANS [24] public list. This list contains
malicious domains validated using common publicly available virus detectors. A total of
45,000 domains were randomly selected from the list.

A total of 90,000 domain names constitutes the entry point to the information gath-
ering process using OSINT sources. To do so we implemented a DNS configuration and
submitted each name to the resolver. This way we recreate the process as it really is. The
DNS server output is used as input for a Python application that processes the domain
name and enriches it with useful information. As the output, a CSV file is created. The
last column is named “Class” and it is the dependent variable classifying each domain
as malicious or non-malicious. The dataset is composed of thirty-four features per DNS
domain name:

• Domain–Baseline DNS used to enrich data, e.g., derive features;
• DNSRecordType–DNS record type queried;
• MXDnsResponse–The response from a DNS request for the record type MX;
• TXTDnsResponse–The response from a DNS request for the record type TXT;
• HasSPFInfo–If the DNS response has Sender Policy Framework attribute;
• HasDkimInfo–If the DNS response has Domain Keys Identified Email attribute;
• HasDmarcInfo–If the DNS response has Domain-Based Message Authentication;
• IP–The IP address for the domain;
• DomainInAlexaDB–If the domain is registered in the Alexa DB;
• CommonPorts–If the domain is available on common ports (21, 22, 23, 25, 53, 80, 110,

143, 161, 443, 445, 465, 587, 993, 995, 3306, 3389, 7547, 8080, 8888);
• CountryCode–The country code associated with the IP of the domain;
• RegisteredCountryCode–The country code defined in the domain registration process

(WHOIS);
• CreationDate–The creation date of the domain (WHOIS);
• LastUpdateDate–The last update date of the domain (WHOIS);
• ASN–The Autonomous System Number for the domain;
• HttpResponseCode–The HTTP/HTTPS response status code for the domain;
• RegisteredOrg–The organization name associated with the domain (WHOIS);
• SubdomainNumber–The number of subdomains for the domain;
• Entropy–The Shannon Entropy of the domain name;
• EntropyOfSubDomains–The mean value of the entropy for the subdomains;
• StrangeCharacters–The number of characters different from [a-zA-Z] and considering

the existence maximum of two numeric integer values;
• TLD–The Top Level Domain for the domain;
• IpReputation–The result of the blocklisted search for the IP;
• DomainReputation–The result of the blocklisted search for the domain;
• ConsoantRatio–The ratio of consonant characters in the domain;
• NumericRatio–The ratio of numeric characters in the domain (numeric_chars/len (domain));
• SpecialCharRatio–The ratio of special characters in the domain;
• VowelRatio–The ratio of vowel characters in the domain;
• ConsoantSequence–The maximum number of consecutive consonants in the domain;
• VowelSequence–The maximum number of consecutive vowels in the domain;
• NumericSequence–The maximum number of consecutive numbers in the domain;
• SpecialCharSequence–The maximum number of consecutive special characters in

the domain;
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• DomainLength–The length of the domain;
• Class–The class of the domain (malicious = 0 and non-malicious = 1);

The process of data gathering, extraction of information and storage into a structured
file is explained in [25]. The source code used, the produced dataset, and the exploratory
analysis is also publicly available.

5. Data Analysis

In this section, the data preparation phase, the feature selection process and the ML
algorithms adopted for the analysis are presented .

5.1. Data Preparation

According to [26], there are several tasks for preparing the data, such as data cleaning
and data transformation. For the data cleaning step, all null values for text type columns
were set as “null” (string data type). For the remaining column types, the null values were
replaced according to that described in a previous paper available in [25] (e.g., null values
have been replaced by the default value).

In the data transformation step, we ignored the Domain and DNSRecordType columns,
as mentioned in [25], the Domain column was anonymized according to the GDPR rules,
and the DNSRecordType was left in the dataset for filtering purposes only. Therefore,
these features have no value for later use in ML algorithms. For the text and boolean type
columns we use the Label Encoder from SkLearn framework [27] with a value between 0
and n_classes − 1. The boolean values were transformed to integers (0 and 1).

All integer values (excluding the Class label) were submitted to the min-max normal-
ization, a well-known approach used in past scientific experiments like [28,29], to export
all the values to a float data type and a range between 0.0 and 1.0. According to [30], the
min-max method performs a linear transformation on the original data fitting numeric
values into a desired scale.

Although there are several techniques for data normalization, the one that fits best in
the scope of this dataset is the “Scaling to a range” using the min-max method since we
have no extreme outlier values.

The resulting CSV file does not include the Domain and DNSRecordType features. All
the columns with text, boolean or integers as the datatype were normalized.

This data preparation phase is very important in a ML context. A weak approach
in data preparation can lead to unwanted results that are not coherent with the dataset
content. The next section presents the feature importance evaluation used to extract the
most important features from the dataset (normalized). The ML classification process,
considering the most significant features determined in the feature selection phase, is
also presented.

5.2. Machine Learning: Classification

The ML process was divided into two steps: feature selection/importance and ML
algorithm classification.

In the first step, after the normalization of the dataset, we used three different methods
to assess the features that have more weight for the analysis. The feature selection process
allows a better understanding of the data, better understanding of the model, and reduces
the number of input features while maximizing the classification accuracy results.

There are numerous methods of feature selection/importance for different scopes.
Considering the state of the art, our dataset, and type of analysis, we explored the following
feature selection methods:

• Feature importance: This method uses the Extra Trees Classifier algorithm to fit and
return the importance of the features;

• Univariate selection: Using a mathematical approach based on statistics this method
works by picking up the best features on univariate statistical tests;
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• RFE: According to [31], this method fits a model and deletes the feature (or features)
with the lowest importance until the specified number of features is reached.

As described in [32], the behavior and performance of a feature selection algorithm
depends strongly on the classification rule, sample size, and feature/label distribution.

The feature importance method makes use of the Extra Trees Classifier algorithm to fit
and return the importance of the features. The Code Snippet 1 was used to identify the
most significant features.

Code Snippet 1: Feature Importance function

import pandas as pd
from sk learn . ensemble import E x t r a T r e e s C l a s s i f i e r
#
# @Parameters :
# X − I n d e p e n d e n t v a r i a b l e s
# y − Dependent v a r i a b l e
# f e a t u r e _ n u m b e r − p r e d e f i n e d number o f f e a t u r e s t o be s e l e c t e d
#
def feature_importance (X , y , feature_number ) :

model = E x t r a T r e e s C l a s s i f i e r ( )
model . f i t (X , y )
feat_ importances = pd . S e r i e s ( model . feature_importances_ ,

index=X . columns )
return fea t_ importances . n l a r g e s t ( feature_number ) . axes [ 0 ] .
values

The univariate selection method selects features according to the K highest scores
and with chi-squared statistics of non-negative features as input function. The chi-square
method can be used to find the optimal subset of all features and to remove the ones with
the lowest rank. This method was applied in similar research works, such as [33] in which
the purpose was the implementation of an intrusion detection model based on the fusion of
this method and the SVM ML algorithm. As shown in the Code Snippet 2, the SelectKBest
from SkLearn [34] was used.

Code Snippet 2: Univarate Selection function

import pandas as pd
from sk learn . f e a t u r e _ s e l e c t i o n import Se lec tKBes t
#
# @Parameters :
# X − I n d e p e n d e n t v a r i a b l e s
# y − Dependent v a r i a b l e
# f e a t u r e _ n u m b e r − p r e d e f i n e d number o f f e a t u r e s t o be s e l e c t e d
#
def u n i v a r i a t e _ s e l e c t i o n (X , y , feature_number ) :

b e s t f e a t u r e s = Se lec tKBes t ( score_func=chi2 , k=feature_number )
f i t = b e s t f e a t u r e s . f i t (X , y )
d f s c o r e s = pd . DataFrame ( f i t . s cores_ )
dfcolumns = pd . DataFrame (X . columns )
f e a t u r e S c o r e s = pd . concat ( [ dfcolumns , d f s c o r e s ] , a x i s =1)
f e a t u r e S c o r e s . columns = [ ’ Features ’ , ’ Score ’ ]
return f e a t u r e S c o r e s . n l a r g e s t ( feature_number , ’ Score ’ )

. Features

. values

The RFE (with cross-validation) method consists of the recursive processing of smaller
sets of features to gather the features with the highest importance. It needs an estimator (in
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this case the Decision Tree Regressor was used) that will iterate and seek for the lowest
feature importance and exclude it. The recursive method stops when the number of
features left is equal to the desired number of features selected. After the definition of the
parameters, the model is fitted and transformed using the method transform that allows
reducing X to the selected features. Similarly to the previous method, a data-frame was
created to save each attribute and the associated importance. The code is presented in the
Code Snippet 3.

Code Snippet 3: RFE function

import pandas as pd
from sk learn . t r e e import Decis ionTreeRegressor
from sk learn . model_se lec t ion import S t r a t i f i e d K F o l d
from sk learn . f e a t u r e _ s e l e c t i o n import RFECV
#
# @Parameters :
# X − I n d e p e n d e n t v a r i a b l e s
# y − Dependent v a r i a b l e
# f e a t u r e _ n u m b e r − p r e d e f i n e d number o f f e a t u r e s t o be s e l e c t e d
#
def r f e _ c r o s s _ v a l i d a t i o n (X , y , feature_number ) :

r f e c v = RFECV( es t imator=Decis ionTreeRegressor ( ) , s tep =1 ,
cv= S t r a t i f i e d K F o l d ( 1 0 ) , verbose =1 ,
m i n _ f e a t u r e s _ t o _ s e l e c t =feature_number ,
n_jobs =4)

r f e c v . f i t (X , y )
r f e c v . transform (X)
dset = pd . DataFrame ( )
dset [ ’ a t t r ’ ] = X . columns
dset [ ’ importance ’ ] = r f e c v . es t imator_ . feature_importances_
dset = dset . s o r t _ v a l u e s ( by= ’ importance ’ , ascending=Fa lse )
return dset . a t t r . head ( feature_number ) . values

The identification of the most significant features is an important step in the analysis
especially when the number of features is high. It is necessary to remove the features with
less importance to feed the ML algorithm with only the most important features, to avoid
over-fitting, to decrease the training time, and to maximize the accuracy results.

Once the most significant features are identified, the next step is the application of ML
algorithms to determine the classification accuracy, precision, recall, F1 score, and the score
time (seconds) achieved per algorithm.

The algorithms used for the evaluation are presented below. The ML algorithms we
choose are often used in supervised machine learning classification problems, as already
mentioned in the state of art.

• SVM: According to [35], the SVM “accomplishes the classification task by constructing,
in a higher dimensional space, the hyperplane that optimally separates the data into
two categories”. The SVM algorithm can solve both linear and non-linear problems
by using a parameter named a kernel, which allows the researcher to set the more
relevant mathematical function regarding the problem. According to the SkLearn
documentation [36], there are four distinct kernel functions: linear, polynomial, RBF
and sigmoid. According to the study [37], where an identical dataset was used and
comparisons were made between the four kernel types, the precision achieved was
higher when linear kernel functions were used. Therefore in this evaluation we also
used the linear kernel function;

• LR: The LR algorithm is a statistical regression method based on supervised learning
used for predictive analysis. It makes use of linear relationships between the indepen-
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dent features and the target label. According to [38], this algorithm has advantages
such as simple implementation and excellent performance over linear datasets. Con-
sidering that one of the goals of this research is to have a solution capable of predicting
malicious domains as close to real-time as possible, performance is a major factor for
choosing the algorithm;

• LDA: According to [39] the LDA is a commonly used method to classify data based on
a dimensionality reduction. The main goal of a dimensionality reduction is to delete
the redundant features in a dataset while retaining the majority of the data. Although
it is used for predictive analysis in classification problems, there are vast use cases for
this algorithm, such as face recognition [40] and medical research [41,42];

• KNN: As mentioned by DeepAI [43] “the k-nearest neighbors algorithm, or kNN, is
one of the simplest machine learning algorithms. Usually, k is a small, odd number
- sometimes only 1. The larger k is, the more accurate the classification will be, but
the longer it takes to perform the classification”. According to [44], the optimal value
of k-nearest neighbors is different for distinct data samples. For this research, the
number of the k-nearest neighbors parameter was kept as 5 (the default value adopted
in the SkLearn framework) [45];

• CART: The CART term refers to Decision Tree algorithms that can be used on pre-
dictive problems to do classification and regression. For this research, the Decision
Tree Classifier was used, in which, according to the SkLearn documentation [46], the
main goal is “to create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features”. One of the main advantages of
this algorithm is the simplicity of understanding and interpretation, along with the
excellent performance demonstrated in previous analyses already mentioned in the
state of art;

• NB: The NB algorithms are used on supervised ML algorithms by applying Bayes
Theorem. According to SkLearn documentation [47], there are three major models
based on NB: Gaussian, Multinomial, and Bernoulli. The Gaussian is commonly
used for classification problems. The Multinomial is more used in text classification
problems and implements the NB algorithm for multinomial data. The Bernoulli
method implements the NB algorithm according to multivariate data distribution
mainly used for text classification. Therefore we selected the Gaussian NB model in
order to classify and predict the dataset in a timely manner.

After the ML algorithms selection, the dataset was split between training and testing
groups using 10-fold cross-validation which is commonly used in the state of the art from
different research studies. The number of features selected was nine based on repetitive
evaluations. For each feature selection algorithm previously mentioned, the output was
taken into account to select the higher importance features. The time metric evaluates the
mean of the prediction time, for each iteration of the cross-validation.

To run each ML algorithm, we created a function that receives the dataset containing
the best nine features using each one of the three feature selection/importance methods
mentioned earlier in this section. To run the cross-validation process with the dependent
and independent features the cross_validate function from SkLearn [48] was used. which
allows to “evaluate metric(s) by cross-validation and also record fit/score times”.

To evaluate the effectiveness of the ML models we chose common metrics as follows:

• Accuracy: The accuracy is the ratio between the correctly predicted observations
versus the total number of observations;

• Precision: The precision is the ratio between the correctly predicted positive observa-
tions and the total predicted positive observations;

• Recall: The recall is the ratio between the correctly predicted positive observations
and all observations in the actual class (0 or 1);

• F1 score: The F1 score is the average of precision and recall and takes into account the
false positives and false negatives;
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• Score time: Corresponds to the time for the test of the estimator on each cross-
validation iteration.

The source code used to evaluate the feature importance and the ML algorithms is
publicly available in [49].

6. Results

For consistency of results, the computational performance must be taken into account.
The experiments were performed on a machine with the following characteristics:

• Processor: Intel Core i7-8565U @ 1.80 Ghz;
• Memory: SDRAM DDR4-2400 16 GB (16 GB × 1);
• Graphics Processor: Intel UHD Graphics 620;
• Storage: 512 GB PCIe Gen 3 × 4;

– Read up to 3100 MB/s;
– Write up to 2800 MB/s.

The results for each feature importance method are described in the Tables 1–3. As
mentioned in the previous section, the test mode selected was 10-fold-cross-validation and
the number of features selected was nine. The features vary for each feature selection/im-
portance method (feature importance, univariate selection and RFE).

Table 1 presents the classification results achieved when considering the features with
higher importance ( ’NumericRatio’, ’ConsoantRatio’, ’NumericSequence’, ’HasSPFInfo’,
’TXTDnsResponse’, ’DomainLength’, ’VowelRatio’, ’CreationDate’ and ’StrangeCharacters’)
determined using the feature importance method.

Table 1. Results using the Feature Importance feature selection method.

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.912 0.949 0.872 0.898 3.087

LR 0.916 0.949 0.878 0.905 0.014

LDA 0.908 0.950 0.861 0.894 0.012

KNN 0.951 0.965 0.936 0.946 1.793

CART 0.947 0.967 0.926 0.939 0.011

NB 0.903 0.947 0.851 0.887 0.012

Considering the feature importance method, the ML algorithm with the highest
accuracy (95%), recall (93%), and F1 score (94%) was the KNN. Although this algorithm has
good results, the time to predict is above 1 s (1793), losing to the CART algorithm with a
score time of 0.01 s. Furthermore, the precision was slightly higher for the CART algorithm.

Table 2 presents the results when the univariate feature selection method was used.
The top nine features achieved by this method were: ’HasSPFInfo’, ’TXTDnsResponse’,
’CreationDate’, ’NumericRatio’, ’LastUpdateDate’, ’HttpResponseCode’, ’ConsoantRatio’,
’MXDnsResponse’ and ’StrangeCharacters’.
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Table 2. Results using the Univariate Selection method.

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.919 0.940 0.895 0.909 3.375

LR 0.916 0.949 0.878 0.904 0.014

LDA 0.906 0.957 0.848 0.889 0.013

KNN 0.947 0.966 0.926 0.940 3.237

CART 0.956 0.969 0.941 0.952 0.013

NB 0.908 0.955 0.854 0.891 0.013

From the results presented in Table 2, the algorithm with the best result was the CART.
This algorithm shows a validation accuracy of 95%, with a precision of 96%. The recall
reached 94% and the F1 score 95%. The lowest score time (0.013) is shared by the CART,
LDA, and NB algorithm.

Table 3 presents the results achieved by using the features with higher importance ac-
cording the RFE method. The features used were: ’NumericRatio’, ’ASN’, ’DomainLength’,
’NumericSequence’, ’Ip’, ’ConsoantRatio’, ’TLD’, ’StrangeCharacters’ and ’CountryCode’.

Table 3. Results using the RFE feature selection method.

Algorithm Accuracy Precision Recall F1 Score Time (sec)

SVM 0.910 0.937 0.878 0.899 3.250

LR 0.913 0.939 0.883 0.903 0.013

LDA 0.907 0.938 0.869 0.895 0.014

KNN 0.957 0.970 0.943 0.953 1.369

CART 0.961 0.976 0.945 0.958 0.013

NB 0.897 0.936 0.851 0.884 0.012

The results presented in Table 3 also reveal that the CART algorithm is the best
regarding the validation accuracy. This algorithm was able to reach 96% accuracy and
97% precision with a recall value of 94% and F1 score of 95%. The time score (0.013)
was also a good result, losing only to the NB algorithm (0.012), but the difference was
almost insignificant.

In order to make a comparison between the results achieved so far, a new experiment
was conducted. The previous results were achieved by following a traditional and manual
analysis. We now compare those results with the ones achieved by using an AutoML
approach. To do this, we submitted the dataset to the TPOT [50] tool that optimizes
machine learning pipelines using genetic programming. This tool takes care of the data
cleaning, feature-related tasks (selection, preprocessing, and construction), ML model
selection, parameter optimization, and model validation tasks. To be coherent with the
previous experiments, the k-fold value was set to ten. For the remaining TPOT Classifier
parameters, we keep the default values. The results are presented in Table 4.

Table 4. Results using the AutoML optimized pipeline.

Algorithm Accuracy Precision Recall F1 Score Time (sec)

CART (AutoML) 0.962 0.973 0.952 0.959 0.025

The results achieved by using AutoML are not far from the results achieved by the
manual/traditional approach.
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In general the results achieved so far are encouraging. They show that the algorithms
are able to distinguish between benign and malicious domains with accuracy rates between
89% and 96%. Considering that the time to detect malicious domains is very important, the
analysis presented also considers the time, in seconds, that each algorithm took to make
the decision and calculate the mean value.

7. Discussion and Recommendations

The use of AutoML methods, which automates the pipeline for ML processes, are a
valuable source of comparison with traditional and manual approaches. As shown by the
results, the AutoML algorithm has chosen the CART as the best algorithm and estimators
to the pipeline. As shown in Table 3, although the feature selection was made using the
RFE method, we also get the highest values using the CART algorithm. The accuracy
only differs by decimal values (AutoML = 0.962/CART (using RFE) = 0.961). The main
difference was the hyper-parameter tuning used by AutoML to reach the highest score.
The time resulting from AutoML (0.025 s) was slightly higher than our result (0.0136 s).
The combination of accuracy and time are important for further implementation of the
DNS firewall in a real scenario where, for instance, the highest accuracy algorithm can
be devalued in favor of a better time response algorithm. Another consideration must
be the feature selection methods which can be improved or even excluded depending on
the chosen ML algorithm. In Table 5 is possible to analyze the comparison of the selected
features for each method.

Table 5. Features importance comparison.

Feature Importance Univariate Selection RFE AutoML

ASN X X

ConsoantRatio X X X X

CountryCode X X

CreationDate X X

DomainLength X X X

HasSPFInfo X X

HttpResponseCode X

Ip X X

LastUpdateDate X

MXDnsResponse X

NumericRatio X X X

NumericSequence X X X

StrangeCharacters X X X X

SubdomainNumber X

TLD X X

TXTDnsResponse X X

VowelRatio X

The data presented in Table 5 shows that for the CART algorithm, which was the
model with highest accuracy validation results and one of the fastest in the score time, the
best feature selection/importance algorithms was the RFE.

Table 6 represents the comparison between the ML algorithms, dataset size and
accuracy score with two similar studies mentioned in the state of art.
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Table 6. Results comparison.

Study Algorithms Dataset Size Accuracy

Palaniappan et al. [6] LR 10,000 60%
Ren, F., Jiang, Z., Wang, X. et al. [20] ATT-CNN-BiLSTM 1,308,230 98%
Presented in this paper CART 90,000 96%

The results from the study in [20] reaches a highest accuracy score of 98%. Although
the accuracy differs by only 2% when compared with our result, the dataset size is consid-
erably larger which can be a valuable point to take into account for further evaluations and
improvements. The result of the study in [6] reinforces the link between the dataset size
and the accuracy score. The major advantage of our study consists of the methods used,
such as the data preparation with normalization and label encoding, along with the RFE
method to select the most important features to feed the model and obtain 96% accuracy
using a relatively small dataset. Despite the dataset size, there are also numerous factors
to evaluate and analyze in order to improve the ML model, such as the hyperparameter
tuning, data preparation, and feature selection processes.

The ground base to implement a DNS firewall solution based on ML is completed. As
future work, we envisage the implementation in a real scenario as follows: (a) creation of a
DNS proxy (which will also work as a firewall), (b) application of our ML model on each
request, (c) logging of the results to a future passive analysis and (d) alert/allow/block
system to inform the user. The Figure 4 describes the proposed future work.

Figure 4. DNS Proxy/Firewall.

This implementation can be a vital system when applied over a current DNS firewall
without ML approaches in real-time to classify domains. The possibility to improve legacy
systems is also a valuable point for users and organizations.

8. Conclusions

The main objective of our work is to implement a firewall solution based on ML in
order to classify DNS requests and filter them regarding the probability of being malicious
or not. The development of a DNS firewall based on ML encompasses a set of steps
such as the creation of a DNS dataset from DNS logs, the exploratory analysis of the
dataset, the data preparation for the ML process, the feature selection by importance and
the ML algorithms application to determine the classification accuracy. To accomplish
these steps, we firstly created a DNS dataset containing 34 features enriched using OSINT
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and analytical methods. The resulting dataset is publicly available [51] and can be used
by other researchers. After this, the dataset was analyzed to correlate features with the
class label providing valuable insights on how the data are distributed by malicious or
benign domains. In order to be used by ML algorithms, the data were processed, making
use of well known methods such as label encoding and min-max functions to normalize
all the values. The feature importance process was made using three distinct methods
(feature importance, univariate selection, and RFE), each one with different results. The
ML algorithms were selected taking into account the type of analysis (supervised) and the
state of art. Six different algorithms were used: SVM, LR, LDA, KNN, CART, and NB. The
results were collected and analyzed, and we verified that the CART algorithm is the best
algorithm considering the RFE feature selection method. Additionally, considering the
existence of automatic ML processes, the effectiveness of this type of processes was also
analyzed. We used AutoML, and a slight improvement in accuracy was observed but, as a
drawback, an increase in the time to classify a set of domains was also observed.

The classification results achieved with our approach are very interesting. The results
show an accuracy above 96% and a low time to classify, which is a good indicator to further
explore the application and adopt it for a real scenario. The results obtained from the ML
algorithms can also be used by researchers for future research in this field.

With the creation of a DNS firewall as we propose, the DNS core service is not affected.
The DNS will respond to the requests, however, considering the classification result, the
IP associated with the name of the request may be changed to block the connection. For
example, in response to a resolution request, the DNS server may respond with the IP
address 127.0.0.1, sinking the communication, thus avoiding malicious communications.

Finally, we must consider that all this work was carried out in a laboratory environ-
ment, so there is a great limitation in terms of tests in real scenario. With the creation of a
prototype and testing in a real environment, we will certainly observe different results due
to both the volume of orders and the variance in their characteristics. These tests will be
essential to improve and make this solution more robust.
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Abbreviations
The following abbreviations are used in this manuscript:

AutoML Automated Machine Learning
CART Decision Tree
CSV Comma-separated Values
DDOS Distributed Denial of Service
DGA Domain generation algorithm
DNS Domain Name Service
DNSSEC DNS Security Extensions
GDPR General Data Protection Regulation
IP Internet Protocol
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LR Logistic Regression
ML Machine Learning
NB Naive Bayes
OSINT Open Source Intelligence
RBF Radial basis function
RFC Request For Comments
RFE Recursive Feature Elimination
SANS SANS Internet Storm Center
SVM Support-Vector Machine
TLD Top Level Domain
TTL Time To Live
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