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Abstract: Deepfake aims to swap a face of an image with someone else’s likeness in a reasonable
manner. Existing methods usually perform deepfake frame by frame, thus ignoring video consistency
and producing incoherent results. To address such a problem, we propose a novel framework Neural
Identity Carrier (NICe), which learns identity transformation from an arbitrary face-swapping proxy
via a U-Net. By modeling the incoherence between frames as noise, NICe naturally suppresses its
disturbance and preserves primary identity information. Concretely, NICe inputs the original frame
and learns transformation supervised by swapped pseudo labels. As the temporal incoherence has an
uncertain or stochastic pattern, NICe can filter out such outliers and well maintain the target content
by uncertainty prediction. With the predicted temporally stable appearance, NICe enhances its details
by constraining 3D geometry consistency, making NICe learn fine-grained facial structure across the
poses. In this way, NICe guarantees the temporal stableness of deepfake approaches and predicts
detailed results against over-smoothness. Extensive experiments on benchmarks demonstrate that
NICe significantly improves the quality of existing deepfake methods on video-level. Besides, data
generated by our methods can benefit video-level deepfake detection methods.

Keywords: deepfake generation; face swapping; consistency transfer

1. Introduction

Deepfake technique has ignited extensive interests in both academia and industry
in recent years and inspires plenty of applications such as entertainment [1] and privacy
applications [2]. It aims to swap a face of an image with someone else’s likeness in a
reasonable manner.

Recent studies have shown that high-fidelity face-swapping generation is achiev-
able [3–5]. By disentangling the identity information and attribute information from
images, they achieve excellent performance in frame-level face swapping [6,7]. These
high-quality face-swapping results are spread in social media, which causes significant
malicious influences. Researches about deepfake also attract tremendous attention in the
academic community [8–10]. However, they swap faces by simply merging different fea-
tures extracted from different person frame by frame, which may lead to unnatural results.

Generating continuous face-swapping sequences is a very challenging task. Directly
generating face-swapping sequences might enhance the consistency, but it is computation-
ally infeasible in the current environment. The main issue for the face-swapping task is
how do we ensure continuity in final results. We try to find a way to inherit the continuity
from the origin video directly. Inspired by prior work, we observe that the structure of
a generator network is sufficient to capture the low-level statistics of a natural image or
video [11,12]. Based on this observation, we conjecture that the flickering artifacts in a
forged video are similar to the noise in the temporal domain. We can use a neural network
to inherit the continuity from the origin video.
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Until now, we have decided on the starting point of this task. However, the ending
point is unreliable because of the proxy’s instability, as shown in Figure 1. Directly using
the previous face-swapping proxy as a reference will cause the results’ artifacts because
the artifacts in the face-swapping proxy will also be inherited. To address this issue, we
introduce an aleatoric uncertainty loss that can tolerate the uncertainty in proxy data
during our training. Furthermore, to get higher-quality results, we introduce static 3D
detail supervision for fine-grained detail reconstruction.

In this paper, we propose a novel Neural Identity Carrier (NICe), which learns identity
transformation from an arbitrary face-swapping proxy via a U-Net. To better model the
inconsistency of face-swapping proxy, we introduce an aleatoric uncertainty loss that can
tolerate the uncertainty in proxy data, and force our NICe to better learn the primary
identity information in the meantime. Besides, we also introduce detail consistency transfer
to guarantee the fine-grained detail information, i.e., moles and wrinkles. Extensive
experiments on different types of face-swapping videos demonstrate the superiority of our
method both qualitatively and quantitatively, including better retention of the attribute
information from the target.

Figure 1. Previous methods suffers from two main problems in frame-level. First, they cannot inherit whole pose information
from target image, i.e., gaze direction deviation. Besides, they cannot generate harmony results in complex environments,
i.e., shadow areas.

The main contributions of this paper can be summarized as follows:

• We propose a novel Neural Identity Carrier (NICe), which learns identity transforma-
tion from an arbitrary face-swapping proxy via a U-Net.

• To better model the inconsistency of face-swapping proxy, we borrow the theory of
aleatoric uncertainty. Moreover, we introduce aleatoric uncertainty loss to tolerate the
uncertainty in proxy data and force our NICe to learn the primary identity information
in the meantime.

• With the predicted temporally stable appearance, we further introduce static detail
supervision to help NICe to generate results with more fine-grained details.

• We also verify that the refined forgery data can help to improve temporal-aware
deepfake detection performance.

The rest of this paper is organized as follows. Related works of face swapping approach,
uncertainty modeling, and 3D face reconstruction are presented in Section 2. A detailed
description of the proposed method is explained in Section 3. Section 4 demonstrates the
experimental results both quantitatively and qualitatively and provides ablation study
results. Section 5 presents a discussion of the proposed work, including the advantage of
the framework, limitations, and broader impact. Finally, Section 6 presents a conclusion of
the whole work.
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2. Related Work

In this section, we review the related work from three aspects: face-swapping ap-
proaches, uncertainty modeling, and 3D face reconstruction.

2.1. Face-Swapping Approaches

Face-swapping has a long history in vision and graphic research, going back nearly
two decades. They are proposed due to privacy concerns first, while they are more used
for entertainment [1]. The earliest swapping methods require manual adjustment [2].
Bitouk et al. propose an automatic face-swapping method [13]. However, these methods
cannot produce satisfactory results. Recently, learning-based methods have achieved better
performance. Deepfakes used auto-encoder to swap faces between identity and target [14].
Ivan et al. upgraded the structure and launched an open-source project, DeepFaceLab
(DFL), which is the most popular one on the Internet [15]. Nirkin et al. used a fixed 3D
face shape as the proxy to increase the controllability of face-swapping [5]. Nirkin et al.
proposed subject-agnostic methods which can be applied to any pair of faces without
training on them [4]. And Li et al. propose a two-stage method that can achieve high
fidelity and occlusion aware face-swapping [3].

Previous methods suffer from their backbone heavily. For example, auto-encoder-
based methods utilize an encoder to disentangle the target person’s attribute and identity
person’s identity information and reconstruct them back by a decoder—a large amount
of effective information lost in the encoder-decoder process [15]. GAN-based methods
cannot deal with the problem of temporal consistency and produce abnormal results
occasionally [4]. In this paper, we leverage a U-Net as neural identity carrier to carry
the primary information from face-swapping proxy, significantly avoiding the loss of
information and producing coherent results.

2.2. Uncertainty Modeling

There are two main types of uncertainty: epistemic (uncertainty of model) and
aleatoric (uncertainty of data) in deep learning fileds [16]. Thus the predictive uncer-
tainty should consist of two parts, epistemic uncertainty and aleatoric uncertainty. As the
face-swapping proxy performs severe inconsistency, the main kind of uncertainty for this
issue is the aleatoric uncertainty. Further, aleatoric uncertainty also has two sub-types:
homoscedastic and heteroscedastic [17].

The homoscedastic regression assumes constant observation noise σ for all input point
while the heteroscedastic regression, on the other hand, assumes that observation noise can
vary with input [18,19]. Especially, the heteroscedastic models are helpful when parts of the
observation space might have higher noise levels than others. In previous face-swapping
work, the observation noise parameter σ is often fixed as part of the model’s weight decay.

Previous methods point out that the observation noise parameter σ can be learned as a
function when data is independent [17]. Given the output, we can perform MAP inference
to find a single value for the model parameters θ:

L(θ) = 1
N

N

∑
i=1

1
2σ(xi)2 ||yi − f (xi)||2 +

1
2

log σ(xi)
2 (1)

where yi is the ground truth of the output data, f (·) is the model’s function, xi is the input
data point, N is the number of data points, σ is the model’s observation noise parame-
ter which captures how much noise we have in the outputs, and θ is the distribution’s
parameters to be optimized.

In our work, we realize the artifacts in face-swapping proxy always occur in facial
outlines and local patches. The inconsistency of face-swapping results always performs
like facial outline flicker, mouth area collapse, and eye shaking. We leverage aleatoric
uncertainty to predict the output’s difficult-to-generate area according to the input and
reduce the weight of these areas.
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2.3. 3D Face Reconstruction

3D face reconstruction has been a longstanding task in computer vision and computer
graphics. It shows excellent potential in the face-swapping task. Previous face-swapping
techniques tried to utilize 3DMM regression as auxiliary information to assist attribute
disentanglement [20,21]. However, they only use coarse 3D reconstruction because they
leverage 3D information to solve large-pose problems.

Recently, Chaudhuri et al. [22] learn the identity and expression corrective blend
shapes with dynamic (expression-dependent) albedo maps. They model geometric details
as part of the albedo map, and therefore, the shading of these details does not adapt
to cases with varying lighting. Feng et al. propose to model facial details as geometric
displacements and achieve significant improvement than previous methods [23].

Despite previous face-swapping methods utilizing 3D information to supervise their
training, they only use the coarse information [4,7]. Motivated by these recent develop-
ments of 3D face reconstruction, NICe leverages the temporally stable information with
static 3D detail information to build very realistic results while remedying the noise’s
affecting.

3. Methods

Existing face-swapping methods take identity and target image/video pairs as input.
In this paper, we treat the face-swapping problem from a novel perspective. We focus on
consistency inheritance in the whole process. Given an identity Xid and a target Xt, here
Xid and Xt can be any portrait image or video, we first use existing face-swapping methods
to generate a face-swapping proxy, denoted as Xre f .

Taking Xre f as references, we train a U-Net as a neural identity carrier to carry the
primary information of the face-swapping proxy. During the training stage, we introduce
a coarse encoder Ec and a detail encoder Ed to reconstruct a series of face parameters,
including albedo coefficients α, separate linear identity shape β and detail δ, which will be
used as constraints of the transfer learning to generate a photo-realistic result Xo.

3.1. Initial Face Swapping

As shown in the left of Figure 2a, current face-swapping methods can be regarded
as a facial attributes disentanglement and re-combination process of identity and target
portraits, in which Xid provides identity information of the identity and Xt provide at-
tribute information of the target. We use existing face-swapping methods to generate
face-swapping proxies Xre f . By fusing the identity and attribute embeddings, the swapped
results Xre f will inherit Xid’s identity traits and have Xt’s other information. Due to the
limitation of existing methods, the Xre f can suffer from the problems of inconsistency and
visual artifacts.

3.2. Consistency Transfer

After obtaining Xre f as a reference, we focus on the consistency transfer. The con-
sistency transfer consists of two parts, coherence consistency transfer—inheriting the
coherence from input video and detail consistency transfer—inheriting the static detail
information from identity image.
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Figure 2. The pipeline of our proposed framework. In the initial face-swapping stage, the face-swapping proxy Xre f is
obtained by swapping the identity face Xid to the target face Xt. We utilize the NICe to extract the face-swapping proxy’s
information and train the NICe under 3D supervision in the consistency transfer stage. We can directly input a target
image/video for inference. This framework is efficient in producing coherent and realistic swapped results.

3.2.1. Coherence Consistency Transfer

As mentioned before, applying swapping algorithms independently to each frame
often leads to temporal inconsistency in the generated video due to the discrete input
distribution. Inspired by the DVP [12], utilizing CNN to simulate unstable processing
algorithms is an efficient way to improve the temporal consistency of video produced by
image algorithms. The flickering artifacts in an imperfect swapped video are similar to the
noise in the temporal domain, while convolutional networks can reconstruct noise-free
content before the noise. Thus we believe the temporal noise of the initial swapped video
can be corrected by the re-expression of the neural identity carrier. As shown in Figure 2b,
we take U-Net as a NICe to remove the flickering artifacts based on face-swapping proxy
Xre f . During the training stage, the neural identity carrier takes Xt as input, and generate
the re-expression result Xo.

3.2.2. Detail Consistency Transfer

Prior face-swapping methods rely on heavy training on input data to synthesize
realistic and abundant details, such as wrinkles and moles. But the excessive training will
cause the carrier’s degradation that the U-Net will no longer learn the noise-free contents
but noises themselves. Thus, the over-trained U-Net’s results are inevitably direct to the
flickers, and visual artifacts appear. On the contrary, the basic facial information can not be
preserved well if we train the model insufficiently. To address the problem, we propose to
introduce a novel 3D representation manner to help enhance the detail information of Xo
without suffering the issues brought by the excessive or insufficient training process.

According to the observation, one individual will show different details when taking
different expressions and poses. The detail information of a subject is not all static. To
address this issue, we suppose that the detail information should be separated into two
parts, dynamic detail, which represents expression-related detail information, and static
detail, which represents resident detail information. In this paper, we utilize a detail UV
displacement map D to represent the details (both dynamic and static). By extracting the
static detail information from identity images, NICs can learn fine-grained facial structure.
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3.3. Static Detail Extractor

Getting a static detail extractor is not easy. First we adopt a pre-trained state-of-the-art
3D reconstruction model [23] as a coarse encoder. This coarse encoder Ec enables 3D
disentanglements in FLAME’s model space [24] and regress a series of FLAME parameters,
geometry parameters β, ψ and θ, albedo parameters α, camera parameters c and lighting
parameters l. Among geometry parameters, β describes the shape information, ψ is the
expression parameters, θ represents other coarse geometry information, such as the angle
of jaw, nose, and eyeballs.

We conjecture that the dynamic detail information can be represented by the expres-
sion parameters ψ and the pose-related parameter θ. To gain an efficient static detail
representation, we propose to train an extractor Ed, with the same architecture as Ec, to
extract the static detail information, i.e., moles and wrinkles, from input images.

As shown in Figure 3, the extractor Ed encodes input image Ij into a latent code δ
which represents static detail of Ij. Subsequently, we concatenate the latent code δ with
expression parameters ψ and pose parameters θ. Such a combination is finally decoded by
displacement decoder Fd to displacement D. The process of decode detail feature can be
formulated as,

D = Fd(δ, θ, ψ) (2)

where δ controls the static detail, θ and ψ both control the dynamic detail. Then, we convert
D to a normal map. And By converting original geometry M and its surface normal N to
UV space, denoted as Mun and Nun, we can calculate the detail geometry Md from them.
We formulate this process as

Md = Muv + D� Nuv (3)

Once the detail geometry Md obtained, the detail normal Nd can be derived easily.
Then we obtain the detail rendering result I′r through rendering Md with detail normal
Nd as

I′r = R(Md, B(α, l, Nd), c) (4)

whereR is a differentiable mesh renderer [25] and B is the shaded texture, represented in
UV coordinates. The obtained detail parameters are then used to constrain the network for
more realistic results.

3.4. Training Losses

In the first stage, the initial face-swapping method can be any existing method. We
primarily introduce the training process of consistency transfer and static detail extractor
in this section. There are two trainable parts in our framework: static detail extractor Ed
and neural identity carrier U-Net. To train a high-quality carrier network, we need to train
a good extractor first.
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Figure 3. Illustration of our 3D detail extractor’s training process. Ec is the state-of-the-art 3D
reconstruction model which disentangles the input face. The disentangled face parameters are then
recombined into coarse feature and detail feature respectively.

3.4.1. Static Detail Extractor Training

In Section 3.3, we introduce the pipeline of detail reconstruction. Given a set of images
from one individual, the detail reconstruction is trained by minimizing Lrecon, formally as

Lrecon = Lpho + Lmr f + Lsym + Lchr + Lreg, (5)

with photometric loss Lpho, ID-MRF loss Lmr f , soft symmetry loss Lsym, coherence loss
Lchr and regularization loss Lreg.

The photometric loss Lpho computes the distance of the input image I and the render-
ing Ir as Lpho = ‖VI � (I − Ir)‖. Here, VI is a binary mask generated by a face segmentation
method [5] which represents the facial region, and � denotes the Hadamard product. The
photometric loss Lpho can enforce more attention focused on the facial region and awareness
of occlusions with the help of mask VI .

Besides, we adopt the Implicit Diversified Markov Random Fields (ID-MRF) loss for
geometric details reconstruction [26]. Given two images of the same subject, the ID-MRF
loss minimizes the distance between these two images on VGG19’s feature level. As the
same setting as previous work [26], we compute the ID-MRF loss on layers conv3_2 and
conv4_2 of VGG19 as

Lmr f = 2LM(conv4_2) + LM(conv3_2), (6)

where LM(layer) denotes the VGG19’s feature-level distance between I′r and I on layer
layer of VGG19.

In consideration of occlusions, we also add a soft symmetry loss to regularize the
non-visible face parts. The soft symmetry loss can be formulated as

Lsym = Vuv � (D− Flip(D)), (7)

where Vuv denotes the facial mask in UV space, and Flip denotes the horizontal flip
operation.
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As mentioned in Section 3.2, detail information is divided into two parts, dynamic and
static. We believe that replacing the static detail codes of another image of the same subject
should have no effect on the final rendered image, which conforms to the logical evidence
that one specific person should have his own consistent static detail code. Formally, given
two images Ii and Ij of the same subject, the loss is defined as

Lchr = ‖Ii −R(M(βi, θi, ψi), A(αi),

Fd(δj, ψi, θi), li, ci))‖2 (8)

where βi, θi, ψi, αi, li, and ci are the parameters of Ii, while δj is the detail code of Ij.
Finally, the detail displacements D are regularized by Lreg = ‖D‖1,1 to reduce noise.

3.4.2. Neural Identity Carrier Training

Given target and reference image/video Xt, Xre f and an identity identity image Xid,
the transfer network is trained by minimizing

Ltrans f er = Lprimary + L3D (9)

To learn the process of identity transformation, a primary loss is essential. In consider-
ation of the artifacts in face-swapping proxy, we model the uncertainty at the same time.
We adjust the aleatoric uncertainty loss to fit our scenario. The primary loss is formulated as

Lprimary =
1

2σ(Xi)2 ||VGG(Xo)−VGG(Xre f )||2

+
1
2

log σ(Xi)
2

(10)

where VGG(·) denotes the VGG features which consist of features from layers conv1_2,
conv2_2, conv3_2, conv4_2 and conv5_2. The σ denotes the model’s noise parameter—
predicting how much noise we have in the outputs. It is noteworthy that we learn the
noise parameter σ implicitly from the loss function. Lprimary is a basic perceptual error
between Xo and Xre f . This loss can basically guarantee that the NICe can learn identity
transformation from arbitrary face-swapping proxy.

To enhance the quality of simulation, we adopt 3D losses with trained static detail
extractor Ed and coarse encoder Ec. 3D losses consist of three components, albedo loss
Lalbedo, shape loss Lshape and detail loss Ldetail , formulated as

L3D = Lalbedo + Lshape + Ldetail (11)

In consideration of the swapping area, the skin consistency between the face and the
neck can be perceived by the human vision system easily. We utilize albedo loss to improve
albedo consistency between Xo and Xt. The albedo loss is defined as

Lalbedo = ‖αXo − αXt‖ (12)

where αXo and αXt are the albedo coefficients of Xo and Xt, encoded by Ec respectively.
The shape loss Lshape focuses on identity preserving. Formally, we minimize

Lshape = ‖βXo − βXid‖ (13)

where βXo and Xid are the shape parameters of Xo and Xid encoded by Ec respectively.
The detail loss Ldetail can greatly enhance detail information. We define it as

Ldetail = ‖δXo − δXid‖ (14)
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where δXo and δXid are detail information’s latent code of Xo and Xid encoded by Ed
respectively.

4. Experiments

In this part, we compare our framework with several state-of-the-art face-swapping
methods by taking them as face-swapping proxies, including FaceSwap [11], DeepFakes [14],
FSGAN [4] and FaceShifter [3]. The initial swapped face videos of FSGAN are built by
ourselves, while others are collected from the FF++ dataset [27].

4.1. Quantitative Evaluation

For the quantitative evaluation, we compare the temporal consistency and attribute
differences among the results of ours and others. We use the stability error estab to measure
the temporal consistency:

estab(Ot, Ot−1) = M f � ||Ot −W t
t−1(Ot−1)||2, (15)

where estab(Ot, Ot−1) measures the coherence between two adjacent output Ot and Ot−1,
M f is the facial area mask,W t

t−1(·) is the function to warp Ot−1 to time step t using the
ground truth backward flow as defined in [28], Ot and Ot−1 are the results of frame t and
t− 1. Here, we only evaluate stability in facial regions. Lower stability error indicates more
stable results. For the entire video, we use average errors instead. As shown in Table 1,
Our method outperforms all mentioned methods which means that our method produces
more steady results.

Table 1. Temporal coherence estab comparison of different face-swapping methods. DF denotes Deep-
fake, FS denotes FaceSwap, FSGAN denotes FSGAN, and Fshift denotes FaceShifter. Our framework
can reduce the stability error of swapped results which represent better temporal coherence.

Methods DF FS FSGAN FShift

estab 1.471 1.518 1.498 1.214

Ours-estab 0.944 1.026 0.928 0.930

We also evaluate the attribute differences, including gaze direction, pose, 2d landmark,
and 3d landmark with Openface [29]. A lower difference indicates better inheritance.
As shown in Table 2, our method can inherit more attribute information than previous
methods.

Table 2. Quantitative comparisons among different face-swapping methods of gaze direction, pose,
2D landmarks, and 3D landmarks. Our method apparently reduces the attribute differences which
represents that our method can better inherit the attributes from the target video.

Methods Gaze Pose 2D lmk 3D lmk

DF 2.360 2.827 3.302 3.500
Ours-DF 2.038 2.611 3.055 3.270

FS 3.555 0.864 1.639 1.581
Ours-FS 2.665 0.729 1.379 1.340

FSGAN 2.803 1.469 1.768 1.801
Ours-FSGAN 2.226 1.290 1.560 1.609

FShift 2.471 1.085 1.750 1.801
Ours-FShift 2.201 0.945 1.650 1.647
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4.2. Qualitative Evaluation

For visually demonstrating the superiority of our framework in temporal consistency,
we select nine continuous frames in Figure 4 for comparison. It can be observed that the
results of FaceSwap are volatile due to the independent deformation for face alignment in
each frame, which our framework can significantly solve. FSGAN also suffers a serious
consistency problem; adjacent frames’ brightness can not maintain stability. This is mainly
because that its blending network cannot capture consistent information. Therefore, the
facial region becomes brighter and brighter from left to right, while our method can still
get very stable results.

Figure 4. The qualitative evaluation results of our method. The results of FaceSwap are unstable and full of traces of
deformation. FSGAN cannot deal with brightness well, which causes bad coherence in the temporal domain. Our method
can significantly eliminate the inconsistency in the temporal domain and produce satisfactory results.

4.3. Ablation Study

In this part, we investigate the efficiency of the proposed 3D loss and visualize the
corresponding results. We use FSGAN as a basic face-swapping method in this experiment.
The results in Figure 5 demonstrate that adopting detail losses can significantly enhance the
re-generation quality. Details become richer after adopting detail losses. More specifically,
detail information, such as the eyeglasses’ shading in row 1 and wrinkles in row 2, are
more abundant, which makes the results more realistic.
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Figure 5. Ablation study on 3D loss. Under the constraint of 3D loss, the generated result can obtain
more detail information and make results more realistic.

4.4. Ability to Improve Forgery Detection

We conduct additional experiments to verify that data synthesized by our framework
can help to enhance current forgery detection. We take I3D [30] as the baseline, which is the
most efficient video-level forgery detection method and has a recognized generalization
ability. We train the baseline on 100 videos from FF++ [27] datasets and evaluate the
cross-dataset performance on CelebDF-v2 [31]. Then we utilize our framework to refine
the previous 100 videos from FF++ and train I3D on them. Finally, we merge the refined
videos with initial videos and train I3D on them. As shown in Figure 6, a model trained on
our data can achieve better performances, which indicates that our framework has great
value to enhance the current deepfake datasets.

Figure 6. The testing accuracy comparison results on CelebDF-v2 of detection models trained on
different datasets. The training data generated by our method provides better temporal coherence and
quality which is challenging for detection and is able to help promote the ability of detection models.

5. Discussion

In this section, we discuss the advantages and limitations of our work. Besides, we
discuss the broader impact of our work which may bring severe ethical problems.

5.1. Advanced Framework

As shown in Figure 2a, most previous face-swapping methods can be regarded as
the facial attributes disentanglement and re-combination between identity and target. It is
noteworthy that the face reconstruction models in such methods do not play a fixed role
in training and inference. They use attributes from a natural portrait image for training
while using edited attributes for inference. Apparently, switching the latent codes between
different subjects must have a bad effect on the final result. As shown in Figure 2b,c, unlike
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previous methods, our framework only takes Xt as input in both the training and inference
stage. The identity information of Xid is already learned by NICe and keeps constant in the
inference. Thus the final output results Xo can significantly retain more attributes of Xt,
such as gaze direction.

Figure 7 gives examples of attributes preservation, here we use DeepFaceLab [15]
for comparison. Although DeepFaceLab can produce high-quality swapped results with
plenty of post-processing operations, it still suffers from detail inconsistency, such as gaze
direction and motion blur. But our framework perfectly inherits the gaze direction and
motion blur from target Xt.

Figure 7. Examples of attributes preservation. The first row shows that our method can inherit gaze
direction from the target. The second row shows that our method can preserve the same motion blur
as the target.

5.2. Limitations

Our framework must use the existing face-swapping method’s result as a proxy,
which also brings a limitation. The face-swapping proxy limits the quality of generated
results. Specifically, if the face-swapping proxy cannot provide satisfying facial content
as a reference, our method cannot produce a high-fidelity face even though we introduce
detail consistency as supervision.

5.3. Broader Impact

Face-swapping algorithms always face severe ethical problems. We sincerely notice
the ethical problem.

Conquering the harmful effects of face-swapping algorithms needs the research of de-
tection algorithms and the investigation of manipulation methods. However, the detection
ability always depends on the generation ability. It is challenging to detect high-quality
face-swapping videos because attackers can set off a public opinion storm by producing a
high-quality video regardless of the costs.

As to deepfake detection, the detectors always need enormous spoofing data to build
a robust detection model. Although several datasets have been proposed, there is always a
lack of high-quality data. Our method can be leveraged to enhance significantly previous
face-swapping methods and build more extensive datasets with coherent and high-quality
results.

In the future, we’ll expand the current Deepfake dataset (synthesized by our frame-
work) to advance state of the art in Deepfake detection algorithms. With the help of
our methods, the high-quality deepfake dataset could be established with high temporal
consistency deepfake content.

6. Conclusions

In this paper, we propose a novel neural identity carrier (NICe), which learns identity
transformation from an arbitrary face-swapping proxy via a U-Net. By neural identity
carrier’s re-expression and aleatoric uncertainty model, we can eliminate the flickers in the
face-swapping proxy. We further introduce static detail supervision to improve the final
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results’ detail. With the help of NICe, we can revive previous face-swapping methods and
strengthen any face-swapping methods.
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