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Abstract: The community-based structure of communication on social networking sites has long
been a focus of scholarly attention. However, the problem of discovery and description of hidden
communities, including defining the proper level of user aggregation, remains an important problem
not yet resolved. Studies of online communities have clear social implications, as they allow for
assessment of preference-based user grouping and the detection of socially hazardous groups.
The aim of this study is to comparatively assess the algorithms that effectively analyze large user
networks and extract hidden user communities from them. The results we have obtained show
the most suitable algorithms for Twitter datasets of different volumes (dozen thousands, hundred
thousands, and millions of tweets). We show that the Infomap and Leiden algorithms provide for the
best results overall, and we advise testing a combination of these algorithms for detecting discursive
communities based on user traits or views. We also show that the generalized K-means algorithm
does not apply to big datasets, while a range of other algorithms tend to prioritize the detection of just
one big community instead of many that would mirror the reality better. For isolating overlapping
communities, the GANXiS algorithm should be used, while OSLOM is not advised.

Keywords: social networks; user discussions; user web-graph; clustering; hidden community
detection; Infomap; Leiden; GANXiS

1. Introduction

With the growth of the Internet, its complexity has also grown substantially. In partic-
ular, social networking has provided for formation of user clusters corresponding to an
increasingly big number of communities at various levels, up to the cross-platform one. As
previous research states, the formation of communities is based on user traits (e.g., group
belonging, identity, spoken language, or location), discussion patterns (e.g., liking, com-
menting, mentioning, or reposting), and content features (e.g., political views, values, or
cultural differences). Communities may also be situational, or ad hoc [1], such as hashtag-
based ones, or calculated, created by special curation [2]; in such cases, their borders are
seen well enough. However, there are cases when hidden communities gradually accu-
mulate online, e.g., within hashtagged discussions, and remain latent for non-involved
observers; or, they are hidden on purpose, such as those created by terrorist groups. In any
case, the detection of latent communities may serve not only as a metric for assessing the
complexity of online discussions but also as a measure that can add to resolving burning
social issues of security, political polarization, or cultural intolerance.

Despite the growing number of works dedicated to detection of intentionally hid-
den and/or latent self-cumulative communities on social media [3,4], a cumulation of
communities in real-world discussions has so far mostly been an object of ‘one case/one
model’ studies where tests on real data bear an illustrative function only, if at all. There is
almost no comparative assessment of community detection models. Furthermore, the size
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and traits of discovered communities found by one model are not judged against those
detected by other models, which, though, seems natural to do. Rare exceptions include
works on several spectral algorithms for directed graphs [5] which consider clustering
algorithms based on cyclic and acyclic patterns, as well as comparative evaluation of
community detection algorithms [6] in which only two algorithms, Infomap and Louvain,
are considered (also assessed in our paper—see below). However, in these works, the
authors do not assess the possibility of using methods for identifying communities on
graphs of different sizes, especially large (around 100,000 nodes) and extra-large (more
than 500,000 nodes), and also do not investigate user interactions in discussions. Another
shortcoming of the current research on hidden communities is that the models are not
compared on the datasets of varying size, despite the fact that not all the models work with
large-scale data well enough.

Our research aims at partly covering the three aforementioned research gaps. The first
gap is absence of comparative assessment of community detection models. The second
one is selecting (or creating) the best model for real-world discussion data from social
media. The third one is testing the models for the datasets belonging to one platform but
significantly differing in size. Thus, the research design of this paper is the following: we
test nine existing models of community detection in social media data on four datasets
collected in 2013 to 2016 on Twitter by seven quality metrics that are considered precise
in the previous literature. The old enough datasets are used, as they are virtually clean,
in terms of botization and other types of computational propaganda, and are free from
algorithmic impact upon the discussions cast by the platform itself.

The remaining part of this paper is organized as follows. Section 2 describes the
difference between various clustering algorithms for networks seen as directed/undirected
graphs. Section 3 provides the selection of community detection methods and metrics for
their quality evaluation, while Section 4 tells of our research design. We demonstrate the
results for four various datasets in Section 5 and discuss them in the Conclusion.

2. Related Work
2.1. Selecting Community Detection Algorithms

Community allocation methods can be divided into two categories.
The first category includes destiny-based clustering (DBSCAN, OPTICS, K-Means

type) [7–9]. One of the advantages of these methods is the efficiency of the allocation of
compacted clusters, but when applying these methods to graph analysis, the following
problems arise:

1. The need to use additional metrics to estimate the distance between vertices, and, in
the case of oriented graphs, this choice is very narrow;

2. The limitations of computing on large-dimensional graphs (with more than 50,000 nodes)
(in particular, the speed of searching for new clusters is significantly reduced, and, on
super-large graphs (with more than 500,000 nodes), this class of algorithms cannot
get a result without additional optimization);

3. Limited application to sparse data [10].

The second type includes graph methods for searching for hidden communities based
on graph properties [11] and the structure of connections of graph nodes [12–14]. The
advantages of these methods include the speed and the ability to calculate, including
on large-scale graphs. However, when using such approaches, the number of hidden
communities found in the graph can vary from several hundred to several thousand
(although in many SNA tasks it is required to find up to several dozen). In addition, this
class of algorithms is very sensitive to graph data. This is why a separate task within
community detection in graphs is used to adapt existing methods to specific real data
from the relevant subject area. In [15], the authors received high ratings of the efficiency
of the Infomap [12] and LPA [14] algorithms on synthetic data and real web data of large
size. In [16], the authors compared their algorithm with the Infomap and OSLOM [17]
algorithms, where they obtained the best results in speed and floating quality results
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on billing network data. In [18], the authors used the Louvain [13] algorithm as one of
two algorithms for clustering large volumes of related data, and, in [19,20], the authors
also used graph algorithms for searching communities on real data, which showed high
application efficiency. In studies [21,22], Infomap and SLPA (GANXiS) [23] were also used
in their work, but Infomap proved to be better.

As we can see from the above studies, there are few works dedicated to the analysis
of user discussions on social networks. Individual tasks, such as topic modeling and
sentiment analysis, are being investigated; however, user interaction within the discussion
has not been investigated using these methods. Therefore, in this work, the main focus
is on the application and testing of the most efficient methods for identifying hidden
communities on real-data graphs of user discussions.

2.2. Communities in Networked Discussions: A Social Scientific Perspective

Testing algorithms and assessing their quality implies that they are tested either
against known baseline results (by other methods or on marked-up data) or some pre-set
ground truth. Establishing the latter requires a clear sociological task, e.g., for networked
discussions, detection of politically polarized communities, sentiment-based grouping, and
discursive or cultural divisions (as such a task would shape expectations on the number,
size, and interaction patterns of the latent communities).

In this research, however, we cannot fix strict enough ground truth, as we compare the
algorithms without setting a task. Yet, despite intentionally not setting the ground truth
to compare to before testing, it is quite clear and commonsensical that social researchers
who would like to use the algorithms for community detection usually aim at goals that
imply a low number of communities. Thus, in political polarization studies or research
on social group conflicts, the number of polarized views-based communities cannot be
high [24]. In general, studies of hidden communities are often necessary to detect the
structure of conflict, such as (non-)binary political polarization, mutual hostility of social
groups, opinion preferences towards burning issues on public agendas, recommender
communities in marketing, or hidden chains of influencers [25]. In all these cases, it is
expected that the discussion graphs are divided into a small number (2 to 5) of comparably
large communities that represent social groups, political views, communities of practice, or
center-periphery relations.

This is why, comparing the algorithms, we will not only look at the metrics calculated
automatically (see below) but also judge qualitatively, by comparing the number and size
of the detected communities, implying that algorithmic group detection should aim at
finding a small number of robust communities.

3. Models and Methods in SNA
3.1. User Discussion Model

In this work, as a model of user discussion, we present a directed user web graph G:

GD = G(V, E), (1)

where V = {VG, VR, VGR}means all the users who took part in the discussion, VG are the
users who only generated content in the discussion D, VR are the users who only reacted to
the content in discussion D, and VGR are the users who both generated content and reacted
to other content. Furthermore, E refers to the connections that represent likes, comments,
or reposts between the discussion participants. Visual representation of a networked
discussion split by participation type according to (1) is presented on Figure 1.
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Figure 1. Visual representation of the structure of a networked discussion, by user type.

Let us assume that user A from VG published a message on the social network on
some event, and user B from VR reacted to this post via a like, comment, or repost. Then
there will be a connection B− A (‘A caused by this publication a reaction from user B’) in
an unweighted directed graph.

Thus, in this paper, the search for communities in social graphs is the task of ana-
lyzing (1)—that is, finding sub-structures in a discursive community with three different
participation strategies. The methods used for this analysis are discussed below.

3.2. Description of Community Detection Methods

This section will describe clustering techniques that have not yet been applied to (1).

3.2.1. The Directed Louvain Algorithm

Directed Louvain [26] is an extension for directed graphs of the greedy Louvain [13]
algorithm: starting from any set of vertices, the algorithm calculates the increase in modu-
larity from moving vertices between communities. This increase is calculated using the
following formula:

∆Qd =
dC

i
m
−
[

dout
i ∗ Σin

tot + din
i Σout

tot
m2

]
,

where dC
i —the degree of node i in community C; din

i (dout
i )—the indegree (outdegree) of

node i; Σin
tot (Σout

tot )—the incoming (outcoming) edges of community C.

3.2.2. The Leiden Algorithm

The Leiden [27] algorithm is partially based on the smart local move algorithm, which
can be seen as an improvement on the Louvain [13] algorithm, and also uses the idea of
speeding up local movement of nodes and the idea of moving nodes to random neighbors.
The algorithm can use CPM or modularity as quality functions, and includes three stages:

1. Local node movement;
2. Improving partition;
3. Enhanced partition-based network aggregation using a non-enhanced partition to

create an initial partition for the aggregate network.

3.2.3. The Directed Label Propagation Algorithm

The directed label propagation algorithm (DLPA) [28] is a development for directed
graphs of the label propagation algorithm [14] method. LPA is one of the fastest community
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finding algorithms for undirected graphs. It can be used with large graphs, relies on
topology, and is easy to implement:

1. The algorithm assigns a unique label to each node;
2. Each node selects a label among its neighbors based on the frequency of occurrence;
3. If the distribution of labels reaches a steady state, the algorithm stops, otherwise it

returns to step 2;

The principle of label selection looks like this:

lnew
v =

∣∣∣Nl(v)
∣∣∣,

where v—the node, l—the node label, and N(v)—neighbors of node v.
DLPA differs from the original algorithm by the weighting rule for each edge:

1−
Eout

S Ein
T

kSkT

where Eout
S —the outdegree of the source node, Ein

S —the indegree of the target node, kS—the
degree of the source node, and kT—the degree of the target node.

3.2.4. The Infomap Algorithm

The Infomap [12] algorithm works as follows: each node is assigned to a separate
community. Then, in random sequential order, each node is moved to a neighboring com-
munity, if this movement decreases the map equation value. The repetition is performed
each time in a new random sequential order until no movement leads to a decrease in map
equation. Then, the graph is rebuilt, and the communities of the last level are replaced by
nodes at this level. Then, the procedure is repeated for this level. The network is rebuilt
until the map equation result cannot be reduced any more.

3.2.5. The Generalized K-Means Algorithm

Generalized K-means using PageRank [29] improves the k-means [9] method, general-
izing it to both directed and undirected graphs. Generalized k-means uses the PageRank
algorithm as a measure of centrality and the Dijkstra’s algorithm as a metric for the distance
between vertices for directed graphs.

Like the usual k-means, this algorithm consists of three stages:

1. The initialization stage: k centroid vertices are randomly selected;
2. The assignment stage: using Voronoi diagrams with centroids to divide the set of

vertices into subsets;
3. The update stage: building subgraphs, calculating PageRank for each subgraph, and

updating the centroids.

3.2.6. The Order Statistics Local Optimization Method

The order statistics local optimization method (OSLOM) [17] is based on local opti-
mization of the fitness function, which expresses the statistical significance of clusters in
relation to random fluctuations, which is estimated using the extreme and order statistics
tools. OSLOM can be used on its own or as a rework procedure for breaks/coverage
provided by other methods. The method includes three phases:

1. The search for significant clusters before convergence;
2. Analysis of the resulting set of clusters to detect their internal structure or possible

associations;
3. Discovery of the hierarchical structure of clusters.
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3.2.7. The Speaker–Listener Propagation Algorithm

GANXiS, aka SLPA [23], is another extension of the LPA [14] algorithm that consists
of three stages, as described below.

1. The memory of each node is initialized with the identifier of this node (unique label).
2. The steps are repeated until the stopping criterion is met:

a. one node is selected as a listener;
b. each neighbor of the selected node sends one tag following a certain conver-

sation rule, e.g., choosing a random tag from its memory with a probability
proportional to the frequency of occurrence of this tag in memory;

c. the listener accepts a label from a collection of labels received from neighbors
following a specific listening rule, e.g., choosing the most popular label from
what it has observed at the current stage.

3. Finally, post-processing based on in-memory labels of nodes is used to display
communities.

SLPA utilizes an asynchronous update scheme, i.e., when updating a listener’s mem-
ory at time t, some already-updated neighbors have memories of size t and some other
neighbors still have memories of size t − 1. SLPA reduces to LPA when the size of memory
is limited to 1, and the stopping criterion is the convergence of all labels. Thus, SLPA is a
joint version of the LPA algorithm that is suitable for detecting overlapping (fuzzy) clusters,
while the disjoint version of the algorithm may be employed for finding non-fuzzy clusters
and is used here for comparative purposes. We will name the joint algorithm GANXiSo,
and the disjoint one GANXiSd.

3.3. Evaluation Metrics for Community Detection

In order to evaluate partitions, we decided to use various quality indicators that
characterize how similar the structure of connections of a given network is to a community.
The metrics are based on the idea that communities are collections of nodes with more
connections inside and fewer connections outside. They were selected from a standard set
of known metrics, which are commonly used to assess the graph properties of detected
communities in a directed graph [30–35]. Such properties, for example, include the ability
to distinguish large communities in a graph, the density of internal connections within
formed communities, the number of edges in a graph outside the community, and the ratio
of incoming edges to the total number of community edges. In selecting the metrics, we also
used the following logic: (1) the metrics must vary in terms of which graph properties they
measure; (2) the metrics have to suit both the density-based and pattern-based clustering;
and (3) taken together, the metrics must describe the main graph properties in terms of
community detection. The metrics selected have no underlying ‘ground truth’ capacity;
that is, none of them can tell whether a hidden community is found or not. However, taken
together, the metrics provide for much better clarity on how well the algorithms cluster the
graph nodes. The metrics, though, may provide for sociological meaning (e.g., stronger
connection of nodes may reveal modularity based on opinion, group belonging, or ex-
pression sentiment), but the meaning of the result is task-dependent (e.g., we consider it
better when a discussion is less modular, which would mean more equal spread of political
opinion). It is not the peculiar sociological meaning that we demand from each metric;
taken together, they are to provide for a bigger picture of how close a given algorithm is to
finding a closer-to-life number of communities.

1. The NEDindex [30] value ranges from 0 to 1. Cluster nodes are more strongly con-
nected to the entire graph if NEDindex tends towards 1, and vice versa, cluster nodes
are weakly connected if NEDindex is close to 0.

D(G) = 2 ∑1≤i≤n ei,
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NED(C) =
|Vc|+ |Ec|+ D(C)

|Vc|+ (
|Vc|

2
) + D(G, Vc)

,

NEDindex = ∑
1≤i≤n

NED(Ci) ∗ D(Ci)

D(G)
. (2)

This metric indicates the strength of the connection between the cluster vertices
relative to the entire graph.

2. Directed modularity [31] is an extended version of the modularity metric [32] for
directed graphs. The higher the value, the better the result.

Q =
1
m ∑

ij

[
Aij −

kin
i kout

j

m

]
δcicj (3)

Modularity reflects the concentration of edges within communities compared with
random distribution of links between all nodes regardless of communities. Modularity
also shows the effectiveness of the method to detect large communities.

3. Clustering Coefficient is used in this paper as a version of the clustering coefficient [33]
extended for directed and weighted graphs.

CD = N−1
N

∑
i=1

CD
i (4)

In this metric, the average value of the ratio of existing triangles based on the vertex i
to all kinds of triangles based on this vertex is considered, that is, the completeness of
the relationship between the vertices is considered. The closer the metric value is to 1,
the better the community detection.

4. Conductance [34] is the proportion of the total number of edges outside the commu-
nity for unweighted networks or the proportion of the total weight of such edges
for weighted networks. This metric allows you to know the “conductivity” of the
resulting community. The closer the conductance value to 0, the better the quality of
the community. ∣∣Eout

c
∣∣∣∣Ein

c |+|Eout
c
∣∣ (5)

5. Contraction [34] measures the average number of edges per node within community
C or the average weight per node of such edges. This metric shows how important
this community is to the rest of the graph. The closer the contraction value to 1, the
better the quality of the community. ∣∣Ein

c
∣∣

c
(6)

6. Expansion [34] measures the average number of edges (per node) outside the commu-
nity C, or the average weight per node of such edges. This metric shows how strongly
this community is connected to the rest of the graph. The lower the expansion value,
the better the quality of the community.∣∣Eout

c
∣∣

c
(7)

7. Community Fitness [35] calculates the ratio of the total indegree number of the
community C to the total degree of α, where is α a positive number that controls the
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size of communities. This allows you to find out the density of detected communities.
The higher the community fitness value, the better result we get.

com f it =
kC

in(
kC

in + kC
out
)α (8)

4. Experiment
4.1. Experiment Description

The methods suggested above will be applied to the four datasets, after which the re-
sulting values will be evaluated by the metrics (2)–(8). For completeness of the experiment,
as test data, we take a graph of small size (about 10 thousand nodes), medium size (up
to 50 thousand nodes), large size (up to 200 thousand nodes), and extra-large (more than
500 thousand nodes). Moving from a small dataset to large ones during testing, algorithms
and metrics that do not perform efficiently on the task will be cut off. Next, two tables will
be created for each dataset. The first table will contain the results of applying the metrics,
highlighting the best results in each metric. The second table will contain the count of
resulting clusters and the size of the seven largest of them. Based on the data obtained for
each dataset, it will be possible to draw a conclusion on efficiency of the algorithms on the
datasets of varying volume.

Our strategy differs from the ‘ground truth’ one: instead of having just one pre-
analyzed discussion with known modularity as a ‘ground truth’ (which might lead to the
situation of random closeness of this or that model to the content-based graph modularity),
we take four discussions on various volume and set the sociological perspective for expec-
tations, to see which algorithm(s) come closer to them on datasets of varying volume. This
is why our design implies use of multiple metrics and multiple datasets.

4.2. The Datasets

To test and evaluate the extant tools, real-world datasets crawled from Twitter, a
microblogging service with elements of a social network, were used. Each of these datasets
was collected using the Twitter API during or immediately after high-profile, socially
resonant events that triggered social unrest [24,36,37]. For accurate results, the datasets
vary in size (the number of tweets), and testing will be carried out from the smallest to the
largest one.

The mall size dataset (hereinafter referred to as “Biryulevo”) consists of the tweets
posted on 17 to 31 October 2013, during the sharp phase of the riots in the Moscow district
Biryulevo-Zapadnoe. Initially, it contains 20,106 links and 11,429 users, but, after cleaning
from isolate users, 10,275 vertices and 20,093 edges remain.

The medium size dataset (hereinafter referred to as “Cologne”) contains the data
collected for 1 to 31 January 2016, within the discussion on mass attacks on women in
Cologne on the eve of 2016. Initially, it contained 40,117 users and 98,508 links, after
cleaning from isolate users, the number of users decreased to 36,850, and the number of
links to 96,244.

The large size dataset (hereinafter referred to as “Ferguson”) contains data from 22 to
31 August 2014, on the riots in Ferguson, USA, provoked by a murder of an African Ameri-
can teenager by a white policeman. The dataset contains 169,676 users with 334,050 links,
and, after cleaning from isolate users, 143,024 users with 325,369 links remain.

The extra-large dataset (hereinafter referred to as “Charlie Hebdo”) was obtained
for the period of 7 to 10 January 2015 by collecting a response to a terrorist attack in the
editorial office of the Charlie Hebdo magazine. The total number of participants is 719,503,
connections are 981,131, and, after clearing, there are 617,041 users and 980,351 connections.

5. Results

As stated above, in this section we present the results of the experiment for four
various datasets of different volumes.
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The results of the task solution for the Biryulevo case are shown in Tables 1 and 2.
Each method has its own peculiarities:

• The Infomap algorithm tends to highlight one large community, which can be used as
a starting point for deeper research;

• Similar to the Infomap algorithm, GANXiS (both pure and overlapping versions)
distinguishes one large society, but this set is smaller than for Infomap;

• The generalized K-means algorithm does not take into account the lack of connections
between isolates, which is the reason for the unification of almost all small discussions
(2-3-4 participants) into one large society;

• Directed Louvain shows good results. However, it was not able to get ahead in any
metric, steadily holding on to the second or third place;

• Despite it only partially belonging to the directed graph clustering algorithms, Leiden
(both the one that uses modularity and the one that uses the clique percolation method)
shows good results, being ahead of the directed Louvain algorithm in almost every
point. Its peculiarity is that it highlights the communities of average size and/or close
to each other in size;

• DLPA allocates almost twice as many communities as other algorithms, all but the
largest do not differ much in size;

• OSLOM identifies a large number of communities, which, moreover, can strongly overlap.

Table 1. Results of evaluations by metrics on the Biryulevo dataset.

DirMod ClusCoe ComFit NEDind Conduc Contrac Expans

DLPA 0.486 0.056 1.373 0.605 0.625 0.849 2.361
DirLouv 0.574 0.039 6.548 0.793 0.286 0.766 0.715
Infomap 0.088 0.034 7.877 0.940 0.209 0.685 0.375
OSLOM - 0.035 2.479 0.501 0.967 0.087 1.403

GKM 0.390 0.0099 7.956 0.423 0.950 0.190 2.161
LeidMod 0.584 0.039 6.686 0.806 0.278 0.761 0.686
LeidCPM 0.571 0.040 5.052 0.676 0.365 0.828 1.001
GANXiSd 0.406 0.040 2.538 0.661 0.526 0.841 1.681
GANXiSo - 0.049 3.295 0.643 0.550 0.848 2.282

Note. The best results are highlighted in bold.

Table 2. The number of communities obtained on the Biryulevo dataset and the value of the seven
largest of them for each algorithm.

Count 1 2 3 4 5 6 7

DLPA 1159 741 205 171 115 111 108 105
DirLouv 243 691 583 494 486 463 459 381
Infomap 202 9276 232 86 41 33 28 26
OSLOM 642 2637 1743 1425 847 763 737 619

GKM 200 3300 2815 1812 815 496 313 90
LeidMod 238 716 464 458 451 416 388 356
LeidCPM 315 627 613 226 226 214 208 208
GANXiSd 627 4881 190 146 129 113 103 101
GANXiSo 647 4956 638 255 166 146 139 83

The results for the Cologne case are shown in Tables 3 and 4. At this dataset volume,
(3) metric showed high computational complexity, so it was no longer used.
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Table 3. Results of evaluations by metrics on the Cologne dataset.

DirMod ClusCoe ComFit NEDind Conduc Contrac Expans

DLPA - 0.070 2.299 0.723 0.521 0.815 1.378
DirLouv - 0.028 7.753 0.917 0.234 0.691 0.459
Infomap - 0.024 8.468 0.949 0.201 0.653 0.344
OSLOM - 0.034 3.380 0.495 0.963 0.098 1.249

GKM - 0.013 28.498 0.422 0.934 0.209 2.600
LeidMod - 0.028 7.764 0.916 0.233 0.693 0.459
LeidCPM - 0.033 4.379 0.689 0.397 0.793 1.030
GANXiSd - 0.031 3.057 0.693 0.501 0.807 1.798
GANXiSo - 0.042 3.551 0.670 0.526 0.829 2.290

Note. The best results are highlighted in bold.

Table 4. The number of communities obtained on the Cologne dataset and the value of the seven
largest of them for each algorithm.

Count 1 2 3 4 5 6 7

DLPA 2479 20,669 425 277 249 198 173 168
DirLouv 735 4356 4105 4091 3604 3447 1933 1886
Infomap 673 27,016 3726 1145 590 465 445 338
OSLOM 1690 10,823 7336 3058 1881 1519 1466 921

GKM 200 11,474 7737 4353 2971 2947 1859 1119
LeidMod 734 4453 3882 3540 3212 3181 2686 1739
LeidCPM 1221 2395 672 625 414 405 362 355
GANXiSd 1864 24,911 128 110 108 94 89 80
GANXiSo 1964 25365 458 210 162 128 110 83

For the mid-range dataset, the algorithms have shown the following results:

• Infomap showed a more even selection of communities than on the Biryulevo dataset,
nevertheless retaining the emphasis on the largest of them;

• GANXiS continued to highlight one large community, and the emphasis on this
community grew;

• As in the case of the Biryulevo dataset, generalized K-means has combined minor
discussions into one large group;

• Directed Louvain performed well again, continuing to hold on to second or third place;
• Unlike for the first dataset, the sizes of communities after the Leiden algorithm differ

depending on the metric (CPM or modularity). The first option showed a large number
of fairly small communities, while the second showed a smaller number of moderately
large communities;

• DLPA on the Cologne dataset showed the risk of going into “overflow” of one com-
munity, not giving any other one chances to grow while, again, having twice as many
communities as other algorithms;

• OSLOM distinguished communities of not the best quality even in comparison with
GANXiS.

The results for the large dataset (Tables 5 and 6) may be described the following way:

• Infomap once again got four best metrics results, receiving, though, one large community;
• GANXiS kept the trend shown on small and medium datasets;
• The generalized K-Means algorithm has shown its inapplicability to sufficiently per-

form on large graphs, since both the computational cost and the memory cost made it
impossible to use this algorithm;

• Directed Louvain retains its position relative to other algorithms;
• The Leiden algorithm kept the trend shown on the medium-sized dataset;
• DLPA identified more equal-sized communities than on the medium dataset, which

demonstrates variability of the algorithm performance depending on the size of initial data;
• OSLOM got results worse than on medium dataset on every, except metric (8).
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Table 5. Results of evaluations by metrics on the Ferguson dataset.

DirMod ClusCoe ComFit NEDind Conduc Contrac Expans

DLPA - 0.085 1.522 0.640 0.599 0.847 2.735
DirLouv - 0.027 6.318 0.949 0.208 0.666 0.371
Infomap - 0.026 6.476 0.959 0.199 0.655 0.340
OSLOM - 0.034 2.426 0.493 0.964 0.096 1.305

GKM - - - - - - -
LeidMod - 0.027 6.244 0.945 0.212 0.670 0.380
LeidCPM - 0.035 4.494 0.740 0.345 0.782 1.062
GANXiSd - 0.031 3.303 0.772 0.422 0.773 1.260
GANXiSo - 0.034 4.064 0.799 0.397 0.756 1.294

Note. The best results are highlighted in bold.

Table 6. The number of communities obtained on the Ferguson dataset and the value of the seven
largest of them for each algorithm.

Number 1 2 3 4 5 6 7

DLPA 18,389 3059 1224 1044 913 877 708 662
DirLouv 4429 16,029 13,916 13,391 12,936 8827 4334 4053
Infomap 4321 106,521 15,617 1651 1012 506 409 353
OSLOM 11,546 16,417 15,372 10,438 8874 6587 4081 3074

GKM - - - - - - - -
LeidMod 4481 15,804 12,715 12,212 11,385 9162 4355 4260
LeidCPM 6226 1001 729 704 648 572 554 531
GANXiSd 8472 98,344 211 184 159 104 100 97
GANXiSo 7489 111,798 184 159 155 102 95 84

The results for the extra-large dataset (Tables 7 and 8) are the following:

• Infomap showed a better division into same-size communities, retaining the emphasis
on the largest of them;

• It revealed that the GANXiS algorithm is not applicable to extra-large networks;
• As in the case of the large dataset, generalized K-means is not applicable to the

networks of this size;
• The directed Louvain continued to evenly allocate communities;
• Leiden shown dramatically grown difference between the size of CPM and modularity

metric-based communities;
• DLPA on an extra-large dataset has allocated a lot of small, smaller than before,

communities;
• OSLOM has got even worse results than on the large dataset on every metric.

Table 7. Results of evaluations by metrics on the Charlie Hebdo dataset.

DirMod ClusCoe ComFit NEDind Conduc Contrac Expans

DLPA - 0.027 1.375 0.672 0.514 0.764 1.550
DirLouv - 0.012 4.395 0.953 0.163 0.604 0.256
Infomap - 0.012 4.381 0.942 0.166 0.608 0.268
OSLOM - 0.015 1.730 0.479 0.979 0.054 1.239

GKM - - - - - - -
LeidMod - 0.011 4.408 0.955 0.162 0.603 0.253
LeidCPM - 0.016 3.351 0.758 0.276 0.713 0.663
GANXiSd - - - - - - -
GANXiSo - - - - - - -

Note. The best results are highlighted in bold.
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Table 8. The number of communities obtained on the Charlie Hebdo dataset and the value of the
seven largest of them for each algorithm.

Number 1 2 3 4 5 6 7

DLPA 84,409 1244 882 726 662 576 529 488
DirLouv 26,415 68,217 45,678 44,734 40,369 26,807 22,583 18,774
Infomap 26,497 164,839 33,635 32,111 25,038 20,098 17,226 14,033
OSLOM 67,296 34,960 27,735 26,061 17,319 10,912 7614 6962

GKM - - - - - - - -
LeidMod 26,335 56,201 39,371 33,976 27,120 25,745 20,270 17,705
LeidCPM 34,647 949 719 626 607 565 531 521
GANXiSd - - - - - - - -
GANXiSo - - - - - - - -

6. Discussion and Conclusions

The experiments conducted have shown the relative mathematical efficiency of the
selected methods for detecting user communities in the discussions of Twitter (the mi-
croblogging service with elements of a social network) when the discussions are presented
in the form of directed graphs of different sizes. In Appendix A, we show the summary
of the results. Table A1 clearly demonstrates that the Infomap algorithm can be called the
best; however, due to the property of highlighting one large society, it can rather be used as
a preparatory stage for the subsequent clustering by another algorithm, or the repeated
application of Infomap. After Infomap comes the Leiden algorithm, which has shown the
best results after Infomap, and does not have the ability to single out one large community.
Therefore, these two algorithms can be used in conjunction. If it is necessary to isolate
overlapping communities based on test results, the GANXiS algorithm should be used.

Table A2 shows that the generalized K-means and GANXiS algorithms are not suitable
for large-scale Twitter data. Infomap and Leiden (again), just as Direct Louvain, show
very similar results as to the number of the detected communities, and the numbers are
lower. Here, we need to repeat that, without a clear sociological task, we could not set the
ground truth to which to compare the test results; the number of the detected communities
(higher or lower) is better depending on the research goal. In general, the low number
of robust communities is optimal. This is why we see these three algorithms as coming
closer to possible ground truth in social research. Yet, it is also necessary to state that
algorithmic results do not correspond to the logic of social studies designated in Section
2.2, as the methods come to either delineation of one large community or a much larger
number of smaller communities detected. Of the three aforementioned algorithms with the
best (lowest) number of communities, Infomap finds the largest groups, which might be
considered the best result.

Yet, it would be too bold to call such a result satisfactory in sociological terms. Socio-
logically, the use of the tested algorithms poses a general question on their applicability for
current social science tasks, as well as the following questions:

• How does the structure of hidden communities relate to the expected social, cultural,
and/or political cleavages in the discussion?

• How can algorithmic detection of hidden communities come closer to detecting
communities of views, as linked to communities of formal connections?

Earlier, we had partly answered this question [37] by using a complicated multi-step
methodology of group views detection. However, the use of a combination of Infomap (to
find the discussion core) and Leiden (to find modules within the core) might be a shorter
way to find the communities based on social traits or views. This creates implications for
further research that will show whether the formal community structure corresponds to
the substantial divisions in the discourses.
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Comparing our results to other works also shows the following. Despite the fact that,
in our work, we did not test the algorithms on synthetic data, our performance on real data
was better than that in [5] on synthetic data. However, since ground-truth testing also has
its drawbacks on real data, further analysis of the clustering results is planned in future
tests. Additionally, in the nearest future, we plan the following expansion of our work:

1. Conduct semantic analysis of the quality of the results obtained using experts or NLP
methods;

2. Expand the work results by adding agglomerative clustering and Markov stopping
moment for optimal clustering [10].
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DirLouv Directed Louvain
GKM Generalized K-means
LeidMod Leiden modularity
LeidCPM Leiden CPM
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ClusCoe Clustering coefficient
NEDind NEDindex
Conduc Conduction
Contrac Contraction
Expans Expansion
Bir the Biryulevo case
Col the Cologne case
Fer the Ferguson case
ChE the Charlie Hebdo case
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Appendix A. Summary Tables

Table A1. Results of model evaluation, summary table.

DirMod ClusCoe ComFit NEDind Conduc Contrac Expans

Bir Col Fer ChE Bir Col Fer ChE Bir Col Fer ChE Bir Col Fer ChE Bir Col Fer ChE Bir Col Fer ChE Bir Col Fer ChE

DLPA 0.486 - - - 0.056 0.07 0.085 0.027 1.373 2.299 1.522 1.375 0.605 0.723 0.64 0.672 0.625 0.521 0.599 0.514 0.849 0.815 0.847 0.764 2.361 1.378 2.735 1.55
DirLouv 0.574 - - - 0.039 0.028 0.027 0.012 6.548 7.753 6.318 4.395 0.793 0.917 0.949 0.953 0.286 0.234 0.208 0.163 0.766 0.691 0.666 0.604 0.715 0.459 0.371 0.256
Infomap 0.088 - - - 0.034 0.024 0.026 0.012 7.877 8.468 6.476 4.381 0.94 0.949 0.959 0.942 0.209 0.201 0.199 0.166 0.685 0.653 0.655 0.608 0.375 0.344 0.34 0.268
OSLOM - - - - 0.035 0.034 0.034 0.015 2.479 3.38 2.426 1.73 0.501 0.495 0.493 0.479 0.967 0.963 0.964 0.979 0.087 0.098 0.096 0.054 1.403 1.249 1.305 1.239
GKM 0.39 - - - 0.0099 0.013 - - 7.956 28.498 - - 0.423 0.422 - - 0.95 0.934 - - 0.19 0.209 - - 2.161 2.6 - -

LeidMod 0.584 - - - 0.039 0.028 0.027 0.011 6.686 7.764 6.244 4.408 0.806 0.916 0.945 0.955 0.278 0.233 0.212 0.162 0.761 0.693 0.67 0.603 0.686 0.459 0.38 0.253
LeidCPM 0.571 - - - 0.04 0.033 0.035 0.016 5.052 4.379 4.494 3.351 0.676 0.689 0.74 0.758 0.365 0.397 0.345 0.276 0.828 0.793 0.782 0.713 1.001 1.030 1.062 0.663
GANXiSd 0.406 - - - 0.04 0.031 0.031 - 2.538 3.057 3.303 - 0.661 0.693 0.772 - 0.526 0.501 0.422 - 0.841 0.807 0.773 - 1.681 1.798 1.26 -
GANXiSo - - - - 0.049 0.042 0.034 - 3.295 3.551 4.064 - 0.643 0.67 0.799 - 0.55 0.526 0.397 - 0.848 0.829 0.756 - 2.282 2.290 1.294 -

Note. The best results for each case/algorithm are highlighted in bold.
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Table A2. The number of communities obtained as compared by algorithm and the seven largest communities,
summary table.

Algorithm Case Count 1 2 3 4 5 6 7

DLPA

Bir 1159 741 205 171 115 111 108 105
Col 2479 20,669 425 277 249 198 173 168
Fer 18,389 3059 1224 1044 913 877 708 662
ChE 84,409 1244 882 726 662 576 529 488

DirLouv

Bir 243 691 583 494 486 463 459 381
Col 735 4356 4105 4091 3604 3447 1933 1886
Fer 4429 16,029 13,916 13,391 12,936 8827 4334 4053
ChE 26,415 68,217 45,678 44,734 40,369 26,807 22,583 18,774

Infomap

Bir 202 9276 232 86 41 33 28 26
Col 673 27,016 3726 1145 590 465 445 338
Fer 4321 106,521 15,617 1651 1012 506 409 353
ChE 26,497 164,839 33,635 32,111 25,038 20,098 17,226 14,033

OSLOM

Bir 642 2637 1743 1425 847 763 737 619
Col 1690 10,823 7336 3058 1881 1519 1466 921
Fer 11,546 16,417 15,372 10,438 8874 6587 4081 3074
ChE 67,296 34,960 27,735 26,061 17,319 10,912 7614 6962

GKM

Bir 200 3300 2815 1812 815 496 313 90
Col 200 11,474 7737 4353 2971 2947 1859 1119
Fer - - - - - - - -
ChE - - - - - - - -

LeidMod

Bir 238 716 464 458 451 416 388 356
Col 734 4453 3882 3540 3212 3181 2686 1739
Fer 4481 15,804 12,715 12,212 11,385 9162 4355 4260
ChE 26,335 56,201 39,371 33,976 27,120 25,745 20,270 17,705

LeidCPM

Bir 315 627 613 226 226 214 208 208
Col 1221 2395 672 625 414 405 362 355
Fer 6226 1001 729 704 648 572 554 531
ChE 34,647 949 719 626 607 565 531 521

GANXiSd

Bir 627 4881 190 146 129 113 103 101
Col 1864 24,911 128 110 108 94 89 80
Fer 8472 98,344 211 184 159 104 100 97
ChE - - - - - - - -

GANXiSo

Bir 647 4956 638 255 166 146 139 83
Col 1964 25,365 458 210 162 128 110 83
Fer 7489 111,798 184 159 155 102 95 84
ChE - - - - - - - -
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