
future internet

Article

PECSA: Practical Edge Computing Service Architecture
Applicable to Adaptive IoT-Based Applications

Jianhua Liu * and Zibo Wu

����������
�������

Citation: Liu, J.; Wu, Z. PECSA:

Practical Edge Computing Service

Architecture Applicable to Adaptive

IoT-Based Applications. Future

Internet 2021, 13, 294. https://

doi.org/10.3390/fi13110294

Academic Editor: Paolo Bellavista

Received: 25 October 2021

Accepted: 17 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Avionics and Electronics Engineering, Civil Aviation Flight University of China,
Guanghan 618307, China; wuzibo@cafuc.edu.cn
* Correspondence: jianhuacafuc13@cafuc.edu.cn

Abstract: The cloud-based Internet of Things (IoT-Cloud) combines the advantages of the IoT and
cloud computing, which not only expands the scope of cloud computing but also enhances the data
processing capability of the IoT. Users always seek affordable and efficient services, which can be
completed by the cooperation of all available network resources, such as edge computing nodes.
However, current solutions exhibit significant security and efficiency problems that must be solved.
Insider attacks could degrade the performance of the IoT-Cloud due to its natural environment and
inherent open construction. Unfortunately, traditional security approaches cannot defend against
these attacks effectively. In this paper, a novel practical edge computing service architecture (PECSA),
which integrates a trust management methodology with dynamic cost evaluation schemes, is pro-
posed to address these problems. In the architecture, the edge network devices and edge platform
cooperate to achieve a shorter response time and/or less economic costs, as well as to enhance the
effectiveness of the trust management methodology, respectively. To achieve faster responses for IoT-
based requirements, all the edge computing devices and cloud resources cooperate in a reasonable
way by evaluating computational cost and runtime resource capacity in the edge networks. More-
over, when cooperated with the edge platform, the edge networks compute trust values of linked
nodes and find the best collaborative approach for each user to meet various service requirements.
Experimental results demonstrate the efficiency and the security of the proposed architecture.

Keywords: edge computing; cloud; Internet of Things (IoT); efficiency; trust

1. Introduction

The Internet of Things (IoT) is usually composed of a large number of spatially
distributed physical devices, vehicles and other items that are embedded as wired or
wireless-connected nodes in the Internet to improve humans’ quality of life. The inter-
connected nodes of these items are expected to provide services of data transmission and
computation with reduced response time and economic costs. However, many IoT devices
are subject to restrictions, such as limited storage and computation capacity, and imbal-
anced distribution of the capacity among these devices, which can reduce the service
performance of the IoT. Cloud computing can enhance the IoT’s capability in terms of
storage, computation and management of various resources [1–3]. The cloud is able to
provide users with many extended services based on its powerful computing and storage
capacity. However, the cloud is far away from users of the IoT; therefore, it usually causes
large transmission delays. In order to improve the response delay of the requirements,
edge computing (EC) is proposed to share the tasks in the cloud. The computing and stor-
age resources of edge computing are composed of many routers, gateways, edge servers,
etc. They are deployed at the edge of the Cloud and in close proximity to IoT end nodes
at various locations, such as metropolitan centers, malls, cellular base stations, or even
WiFi access points [4]. The service provider of the IoT-Cloud can greatly reduce resource
consumption by moving some computing tasks from the Cloud to the edges, in terms of

Future Internet 2021, 13, 294. https://doi.org/10.3390/fi13110294 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-4475-3608
https://doi.org/10.3390/fi13110294
https://doi.org/10.3390/fi13110294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13110294
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13110294?type=check_update&version=2


Future Internet 2021, 13, 294 2 of 22

data transmission and data integration. Furthermore, users can obtain shorter responses
from the edges than from the Cloud. Edge computing nodes are aware of users’ location by
analyzing the data received from IoT devices. With edge networks, data can be transmitted
between the user and EC nodes without the participation of the core network [5]. Since
the IoT nodes and edge nodes move randomly, tasks need to be dynamically assigned to
the EC nodes that are adjacent to the users. To minimize the service delay, many solutions
tasks should be offloaded to different EC nodes that are adjacent to the users [6–10]. It is
inefficient for IoT applications to solve these requirements by simply allocating tasks to
available resources; further, to constantly improve hardware configurations is impractical.
In addition, a high-configured computing platform is usually associated with more costs.
Recently, a lot of studies have paid attention to offloading strategies for high service quality
and/or low costs [11–15]. In the literature, there is a common assumption that tasks are
only assigned to a single 4G or 5G network. However, for the edge computing network
that integrates both 4G and 5G devices, such operation may be not suitable because the
quality of the service depends on a single network.

An important part of service costs is energy consumption, regardless of network
structure. To minimize the service costs, most of the literature focuses on ways to minimize
energy consumption [4,9,15–17]. Unfortunately, in the literature, researchers often separate
operating costs from user prices. The authors in [4] investigate both running time and
total costs. However, their optimization expression considers the weighting of cost and
latency but ignores the requirements of the users who need minimum service price and of
those who need a minimum service latency. Furthermore, many data generated on the IoT
require security protection [10,18–20]. For instance, the health data of patients need to be
transmitted and processed under privacy protection. For all the aforementioned works,
the authors do not take into account the costs of security measures, such as encryption and
digital signatures. How to design an efficient cooperation service architecture to provide
quick-response service by integrating the resources of 4G and 5G devices is still an open
problem. Furthermore, due to the openness of network structure in IoT and edge networks,
the security operational costs must be evaluated.

To address the above -mentioned problems, we propose a practical edge service archi-
tecture including three cost evaluation schemes and a novel trust management mechanism
for adaptive IoT-based applications. The proposed service architecture aims to meet the
adaptive requirements of IoT-based applications, including minimum time delay, min-
imum service price, and minimum price within a given time. To be specific, our task
offloading scheme includes two parts: (1) Which devices are reliable? That is, it is necessary
to decide which devices are suited for task processing according to the available resources
and historical behaviors. (2) How can we assign tasks according to the adaptive needs
of users (i.e., a resource allocation problem)? How can we then transform this problem
into three sub-problems: how can we assign tasks within the minimum service time? How
can we assign tasks with the minimum price? Finally, how can we assign tasks with the
minimum price within a given time? We transformed these problems into linear program-
ming problems, which can be efficiently solved by the interior point method. In summary,
the scientific contributions of the paper are as follows:

(1) We propose a practical edge computing service architecture that integrates a trust
management methodology with dynamic cost evaluation schemes. To better allocate
online resources and meet the demands of IoT-based applications, all the service
requirements are divided into three categories: (1) requirements that need to be
handled within the shortest time, (2) requirements that need to be completed using
the minimum price, and (3) requirements that need to be handled using the minimum
price within a given time. Users are allowed to choose one of the three service
types according to the specific situations, while the providers are able to provide
various services.

(2) Our architecture is robust regardless of the relationship between data volume and
computation amount. A scale factor is used to construct the relationship. Our estima-



Future Internet 2021, 13, 294 3 of 22

tion schemes change adaptively with the change in coefficients; thus, the robustness
of our architecture is not be undermined by task changes.

(3) The available devices are filtered before task allocation based on our trust management
scheme. The service provider selects the nodes with a high trust value for data
processing, and the nodes with a low trust value are rejected. The convergence time
is very small, and the trust bias is acceptable. Moreover, the trust managements in the
IoT and the edge networks are distinguished. The former focuses on the legality of
behavior, while the latter focuses on the availability of resources. Moreover, the edge
platform can monitor the edge network status to dynamically adjust the resource
allocation strategies.

This paper is organized as follows: Section 2 provides related works. Section 3 presents
the basic concept of a novel architecture. Section 4 focuses on the design details of the
architecture. Section 5 presents the experiments results and analyses. We discuss some
practical issues in Section 6 and conclude this paper in Section 7.

2. Related Work

The concept of edge computing was presented to offload tasks from the cloud to
the network edge to enhance the performance of mobile devices [11,13]. While many
works have paid attention to service architectures for edge computing [12,15–17,21,22],
the resource allocation issue remains a critical challenge.

In order to overcome this challenge, Wang et al. [4] proposed a mobility-agnostic
online resource allocation that takes task reconfiguration as the main means to reduce
service costs. For task scheduling and resource allocation, an intelligent offloading system
for vehicular edge computing [14] was constructed by leveraging deep reinforcement
learning. The procedure is initiated by the requests of vehicle users, without any regulatory
process for these users; therefore, the robustness of this structure is poor. In order to
solve allocation optimization problems, a coalition-structure’s generation method [23] was
proposed, which introduces the concept of bargaining set and removes the impossible
coalition-structures by judging the no-bargain coalition to narrow the strategic space;
however, the assumption that any member can only participate in one task narrows its
application. In [15], the capabilities of edge computing and 5G are used to solve the
challenges in the development of an efficient energy cloud system. To save the battery
life of user’s equipment, Chen et al. [24] proposed a non-linear program to offload tasks
on the edge cloud or process them locally; they claimed that their scheme could reduce
the system’s energy consumption. To maximize the quality of experience (QoE) of more
users in the IoT, Shah-Mansouri et al. [25] proposed a near-optimal resource allocation
mechanism based on the Nash equilibrium, which can provide an upper bound for the
price of anarchy. To reduce overall power consumption in the IoT-Cloud, Barcelo et al. [26]
formulated the service distribution problem (SDP) in IoT-Cloud networks (IoT-CDSP) as a
min-cost mixed-cast flow problem and provided a solution for this problem in multiple
smart environments, e.g., 4G Link, WiFi Link, and Zigbee Link. To improve the quality
of service of multiuser, ultradense edge server scenarios, Guo et al. [27] proposed a
two-tier game-theoretic greedy offloading scheme to utilize the computation resources
among multiple edge servers. Premsankar et al. [28] evaluated the response delay in 3D
applications and showed that edge computing can be helpful for satisfying the latency
requirements of IoT applications. However, task offloading to the edge cloud via cellular
networks would generate insider-attack issues.

To address this challenge, one intuitive idea is to include trust relationships between
individual nodes in the IoT-Cloud. To facilitate the implementation of this idea, various
trust mechanisms, which quantify trust relationships according to different applications’
security requirements, have been proposed and integrated into IoT services. Focusing on
social attributes, Chen et al. [29] proposed a trust management protocol for IoT systems
that can select trust feedback from IoT nodes sharing similar social interests through a
filtering technique. To minimize the convergence time and trust bias of trust evaluation,



Future Internet 2021, 13, 294 4 of 22

an adaptive filtering method was proposed, by which each node can adapt its weight
parameters for combining direct and indirect trust. However, this mechanism pays little
attention to physical attributes. To ensure the scalability of the trust management scheme
and resist second-hand trust attacks, Alshehri et al. [30] presented a clustering-driven
trust management methodology for the IoT. It develops methods to counter bad-mouthing
attacks by identifying trust outliers from all the values. However, this mechanism requires
greater energy consumption [12]. Considering the limited bandwidth and power of IoT
nodes, Duan et al. [31] proposed an energy-aware trust derivation scheme that is claimed
to be able to reduce the overhead of the trust derivation process by a game theoretic
approach. The scheme only provides partial security. In order to meet repeated or similar
service requirements, Wang et al. [12] established service templates in the cloud and on the
edge platform to improve the efficiency of service response. They also integrated a trust
evaluation mechanism into the IoT-Cloud for security considerations. The mechanism does
not carry out normalization for the coefficient when calculating the direct trust; thus, it is
difficult to accurately measure the level of security by the trust values.

However, most of the existing works were performed based on the benefits of ser-
vice providers and/or the limitations of the mobile devices, while the various service
requirements of users have been ignored. Taking into account the limitations of the ex-
isting literature, in the paper, we propose a novel service architecture based on users’
requirements and the processing capabilities to help obtain a better service for IoT-based
applications. The service requirements of users are divided into three categories: minimum
service time, minimum price costs, and minimum price costs, within a given time. In fine-
grained resource management, trust management is used to enhance the robustness and
security of our service architecture.

3. Preliminary
3.1. Trust Evaluation Mechanism

In general, trust management in any communication system can be executed as a
procedure with three sequential phases [32]: phase 1, direct trust establishment; phase 2,
indirect trust generation; and phase 3, trust-based operations. In phase 3, direct and
indirect trust are utilized to support all operations, such as reliable data fusion and mining,
information security enhancement, and service assurance [33–36].

The effectiveness of trust management comes from observing the behavior of a large
amount of historical behavioral data collected during a recent observation period; thus,
the construction of trust values must be application-oriented. For example, if a trust value
is obtained by observing the data-forwarding behavior, it is not reasonable to use it to the
judge computing power. An acceptable trust scheme comes from interaction behaviors
between among in a specific application context.

3.2. Novel Service Architecture

Figure 1 shows the framework of an edge computing service for IoT-based applications
that includes three layers, i.e., the IoT layer, the edge network layer, and the cloud layer.
The IoT layer consists of users who need to submit computing tasks. The edge network
layer mainly corresponds to edge clouds deployed near the IoT users. The cloud layer
comprises the data processing center deployed far from the users. The cloud and the edge
networks accept service requests from users.

IoT applications usually collect a lot of raw data and initiate various service require-
ments. Trust management, in the IoT layer, is mainly used to monitor the historical behavior
of users and distinguish malicious users. All requirements of legitimate users are processed
by edge networks and/or the cloud, and the results should be returned as soon as possible.
The cloud is responsible for trust management, task allocation, data processing, and edge
resource management. For reasons of cost control and response time, many tasks are
delegated to the edge cloud.



Future Internet 2021, 13, 294 5 of 22

Figure 1. Edge computing service architecture for IoT-based applications.

Edge networks consist of six primary functions:

(1) Trust management: unlike IoT nodes, the trust values of the edge nodes are focused
on the available resources.

(2) Edge resource management: in edge networks, all the available resources are managed
by edge servers. The trust value, runtime resources, and tasks of every device in the
edge cloud are reported to the servers periodically.

(3) Evaluation of the minimum service time: for time-sensitive users, their service re-
quests need to be processed as soon as possible, regardless of the price costs.

(4) Evaluation of the minimum service price: many users want to obtain the results of
their requirements with a minimum price, although this service type results in longer
wait times.

(5) Evaluation of the minimum price within a given time: users want to achieve a tradeoff
between service time and price.

(6) Task allocation: based on the above functions, each task is divided into several parts
and sent to the appropriate edge nodes.

The cloud mainly performs the following functions:

(1) Trust management: the cloud develops trust management strategies and methods for
calculating trust values in edge networks and the IoT, respectively.

(2) Edge resource management: the cloud cooperates with edge servers to manage the
resources and coordinate resources among different edge servers.

(3) Task allocation: the cloud participates in task allocation and data processing if the
edge servers cannot meet stringent user demands.

Computation costs and transportation costs are the two most important factors for a
task allocation scheme. Generally, all the data transmitted to the edge nodes are used for
some computation. Thus, we make an assumption about the relationship between data
size and computation amount as follows.

Assumption 1. In an edge computation, the computation amount is proportional to the size of the
data transported from the users’ side to the edge nodes.



Future Internet 2021, 13, 294 6 of 22

The assumption is used in our model construction and performance evaluation. This
assumption is rational since the data transmitted from the user end to the edge network
usually need to be processed—data irrelevant to calculation is not transferred for efficiency
reasons. The scale factor between data size and computation amount is set as l.

4. Materials and Methods

In this section, we first introduce the framework of the trust evaluation mechanism.
Then, we give three basic service types and the associated resource allocation models.

4.1. Trust Evaluation Mechanism
4.1.1. Trust Evaluation Mechanism in the IoT

The major functions of the nodes in the IoT include data acquisition, data forwarding,
and request generation. Trust evaluation models should be established based on their
functions. Thus, evidence used to compute the direct trust Tu(i, j) may include the device’s
endurance capacity, packet loss rate, bandwidth, transmission delay, device activity, data
correctness rate, and overall success rate of historical events. To record historical events,
each node maintains a trust table that stores some information about the adjacent nodes
and the trust states, as shown in Table 1. A white list and a black list are used to record
the number of positive and negative historical events in the table. ew

(i,j) and eb
(i,j) denote the

number of positive activities and negative activities of node vi towards node vj, respectively.
A single interactive activity of vi toward vj can be seen as an outcome of tossing a coin.
When there is a positive activity, ew

(i,j) adds 1; otherwise, eb
(i,j) adds 1. Thus, ew

(i,j)/eb
(i,j)

can be seen as an outcome of a Bernoulli trial with the probability-of-success parameter
θi,j following a Beta distribution Beta(αi,j, βi,j). Considering an exponential decay [29],
the hyper parameters αi,j, βi,j are given as follows:

α(i, j) = e−ϕ∆t · α(i, j)
′
+ ew

(i,j)

β(i, j) = e−ϕ∆t · β(i, j)
′
+ eb

(i,j)

(1)

where ∆t is the trust update interval and α(i, j)
′

and β(i, j)
′

are the hyper parameters in
the last update interval. According to [29], the decay factor ϕ is a small positive number.
We adopt the Bayesian framwork [29] as the underlying model to evaluate the direct trust
Tu(i, j); here, Tu(i, j) denotes the trust value of node vj from the perspective of node vi.

Tu(i, j) =
α(i, j)

α(i, j) + β(i, j)
(2)

For the sustainable development of IoT-based business, the initial value of α(i, j)
′

and β(i, j)
′

are suggested to be set as 1 and 0, respectively. The update interval is a time
slice, which can be set as several seconds or tens of seconds. When a new update interval
arrives, each node will update its trust values. It is easy to obtain that Tu(i, j) is a value
in the interval [0, 1]. We set a threshold Tdit to separate the outliers from honest nodes.
If a node is honest, its trust value is located in the interval [Tdit, 1]. Otherwise, it is
located in [0, Tdit). The value of the observation window and Tdit are set according to the
monitoring sensitivity.

Table 1. Trust table of node vi.

Adjacent Nodes Trust Value Location List White List Black List Time

node v1 0.7 GPS position 1 ew
(i,1) eb

(i,1) 1
node v2 0.8 GPS position 2 ew

(i,2) eb
(i,2) 2

node v3 0.9 GPS position 3 ew
(i,3) eb

(i,3) 3



Future Internet 2021, 13, 294 7 of 22

The level of trust value is helpful for the node in the IoT to reveal the outliers and
establish a set of credible adjacent nodes and reliable routes for data transmission. If Tu(i, j)
is located in [Tdit, 1], node j is selected in the route list of node i, otherwise it is moved out
of the route list of node i. For the sustainable development of IoT-based business, the initial
trust value of new entrants is suggested to be set in the interval [Tdit, 1].

4.1.2. Trust Evaluation Mechanism in Edge Networks

The major functions of the nodes in edge networks include computing, data storage,
and data forwarding. Many nodes in edge networks are wired devices with unlimited
endurance capacity. Thus, for these nodes, the evidence used to compute the direct trust
value Tu(i, j) of the nodes should include the calculation capacity, storage space, response
speed, and overall success rate of historical events. Tu(i, j) is a key parameter associated
with the task distribution scheme. As the value of the Tu(i, j) of an edge node increases, its
data processing capacity becomes sharper. Therefore, a greater workload is assigned to
reduce service time. The value of the Tu(i, j) of an edge node changes dynamically. For a
busy edge network, the running capacity of data processing of each node is unpredictable.
For example, it may have a high CPU rate after a period with low CPU usage, low CPU
rates after high utilization, high physic memory utilization, and so on. Similar to the Tdit,
a threshold Tded is set to separate the outliers from honest nodes in the edge network. If a
node is honest, its trust value is located in the interval [Tded, 1]. Otherwise, it is located in
[0, Tded). Therefore, the trust value changes with the running capacity of the edge nodes.

4.1.3. Comprehensive Trust Computation

The trust values established in the IoT and edge networks are utilized to support
service operations. Generally, the service provider selects an edge node with a high
trust value for data processing, while the nodes with low trust values are rejected. Thus,
a comprehensive trust of each node should be established for the classification of honest
nodes and malicious nodes. Let us suppose that there is a q direct trust value about node j
submitted to the server; the mean value of all the direct trust values is as follows:

mt(j) =
∑

q
i=1 Tu(i, j)

q
, (3)

while the comprehensive trust TC(j) of a node j is given as

TC(j) =
q

∑
i=1

e−(Tu(i,j)−mt(j))2 · Tu(i, j)
q ∑

q
i=1 e−(Tu(i,j)−mt(j))2 , (4)

The comprehensive trust TC(j) changes with the real-time performance of the edge
nodes. Furthermore, the changes lead to offloading workload from the nodes with lower
trust values to the nodes with higher trust values. When the comprehensive trust TC(j)
of an edge node is less than a threshold Tue, its workload is reallocated to other edge
nodes for security and efficiency. The value of Tue is set according to the whole edge
network’s state. If the trust values of most edge nodes are increasing, the value of Tue
should be increased; otherwise, it should be decreased. When the TC(j) of a node in the IoT
is less than a threshold Tui, the node is blacklisted and its service requirements are rejected.
The trust estimation process is presented in Algorithm 1.



Future Internet 2021, 13, 294 8 of 22

Algorithm 1: Trust estimation algorithm.

Input:
NT:node type// node in IoT or node in the edge network;
Tdit,Tue, Tui:thresholds used in the algorithm;
N:number of currently available nodes in the edge network;
Output:
Tu(i, j),TC(j),N
Begin
01: each node calculates Tu(i, j) using (2) and sends it to the

associated server;
02: if NT=1 //the node is in IoT
03: {if Tu(i, j) ≤ Tdit
04: moves node j out of the route list of node i;
05: else
06: moves node j into the route list of node i;
07: the server calculates TC(j) using (4);
08: if TC(j) ≤ Tui
09: blacklists node j; }
10: else if NT=2//the node is in the edge network
11: {the server calculates TC(j) using (4);
12: if TC(j) ≤ Tue
13: if node j is on the available list
14: {N = N − 1;
15: moves node j out of the available list;}
16: else
17: if node j is on the available list
18: N = N;
19: else
20: moves node j into the available list;
21: N = N + 1;}
end

4.2. Three Basic Service Types and the Associated Cost Evaluation Schemes

The local edge devices or edge servers first analyze the requirements submitted
by adjacent users, such as the acceptable price and time of the services, service types,
amount of computing, and amount of data transmission, as well as which kind of software
resources and hardware resources would be used. If all the requirements can be matched,
the requirements can be further processed; otherwise, they are refused and the program is
terminated. How to better meet users’ needs is one of the most important issues for any
edge computing provider. Edge computing service providers (ECSPs) compete against
each other to attract and serve the demands generated by the customers. The competition
arises from the fact that the users (the individuals or organizations) who generate demand
for services in the market rationally choose the ECSP that offers good quality of services at a
lower price. Service time and service price are the two factors users are concerned about the
most. Based on these two factors, users’ requirements can be divided into three categories:
(1) requirements that need to be completed as soon as possible, regardless of service price;
(2) requirements that need to be completed at the lowest price, regardless of service time;
and (3) requirements that need to be completed based on a trade-off between service price
and service time, i.e., the minimum price within a given time. Any requirement is analyzed
on the edge platform and some important information is extracted. According to the
extraction, the requirements are classified into the three types: (1) requirements that need to
be completed as soon as possible, (2) requirements that need to be completed at the lowest
price, and (3) requirements that need to be completed with the minimum price within a
given time.



Future Internet 2021, 13, 294 9 of 22

To enhance the efficiency of execution of the process, devices with more computing
power are recommended. For example, devices with higher CPU frequency and larger
memory are recommended to be the first choice. Mass data transmission occupies much
bandwidth and leads to a long service time. If mass data transmission is involved in the
service, it is very important to consider the time cost of data transmission and computing
power of devices together. In some special cases, it is required to build a new computing
platform for special services. The software and hardware preparation demand a certain
amount of time. Thus, establishing an excellent resource allocation strategy is actually
equivalent to finding a trade-off between various factors, including computing power, cost
of data transmission, cost of software and hardware preparation, security, and requirements
of users. The security requirements include confidentiality, integrity, non-repudiation,
etc. The security requirements should be considered at the beginning of the service.
For example, the edge platform should encrypt sensitive messages for confidentiality.
To achieve rapid response, it is advised to estimate the lower bound or upper bound of the
calculation quantity and data size.

Information on available software and hardware resources of every edge platform,
such as the IP address of the devices, physical memory, usage rate of CPU, and service
software, should be updated by the cloud and the edge servers with a certain time interval.
In each time interval, every device reports to the associated edge server of its runtime
resources. The cloud collects the available resource information from all the edge servers.
This method not only reduces the data transfer volume but also improves the efficiency of
resources distribution.

Table 2 shows the correspondent relationship between words and abbreviations.

Table 2. List of main notations.

Symbol Meaning

R requirements of user
S available services of service provider

RT time requirement of user
RS security requirement of user
RP price requirement of user
ST available service time of service provider
SS available security service of service provider
SP available service price of service provider

Emax
i total battery energy of node i

Ttransmission data transmission time
Tsecurity security arrangement time, such as time of encryption, signature, etc.

Tcalculation calculation time

The requirement of user R consists of RS, RT , and RP. The available services of service
provider S consist of ST , SS, and SP. Table 2 shows the correspondent relationship between
symbols and their meaning.

R = RT ∩ RS ∩ RP (5)

S = ST ∩ SS ∩ SP (6)

Service S matches requirements R, and this is denoted as S � R, that is to say,
the following expressions are valid: 

RT ≥ ST

RP ≥ SP

RS ⊆ SS

(7)

The basic needs of security include confidentiality, integrity, availability, control-
lability, and auditability. For simplification, we only consider three security attributes,
i.e., confidentiality, integrity, and non-repudiation, for SS and RS; thus, SS and RS are



Future Internet 2021, 13, 294 10 of 22

both subsets of set {Confidentiality, Integrity, and Non− repudiation}. Confidentiality
can be guaranteed by data encryption. Integrity and Non-repudiation can be ensured by a
digital signature. The edge network’s security capacity is required to cover the security
demand of users. Let us suppose that RS is a set of security requirements of a user; then,
SS must contain all the elements in RS to satisfy the security requirements. For exam-
ple, if RS = {Con f identiality, Integrity}, then SS can be {Con f identiality, Integrity} or
{Con f identiality, Integrity, and Non− repudiation}. It should be noted that the validity
judgement of the formula RS ⊆ SS should be ahead of the estimation of ST and SP. When
the formula RS ⊆ SS is not valid, the service process is stopped. When RS ⊆ SS is valid,
the estimation of ST and SP is initiated. Below, we introduce three evaluation schemes for
resource allocation.

4.2.1. The Evaluation of the Minimum Service Time

The total service time ST in the edge network can be generally captured by the
following formula:

ST = Tsecurity + Ttransmission + Tcalculation (8)

In fact, Ttransmission, Tsecurity, and Tcalculation can overlap for some services; thus, the for-
mula above is a loose estimate of ST . A loose estimate gives service provider a loose amount
of time to complete tasks, contributing to a smaller probability to exceed the user’s time
limit than a tight estimate. The security measures’ execution efficiency is decided by
the equipment capability. Considering a widely used encryption algorithm; advanced
encryption standard (AES); and a mainstream digital signature algorithm, SHA-256, their
performing times can be seen, approximately, as a positive proportion of the data volumes
of plain texts [37,38], respectively. The performing time of security measures is calculated
using the following formula:

Tsecurity = ts · cpi · dai (9)

where ts is the complexity coefficient of the security algorithms, such as encryption algo-
rithm and signature algorithm. We denote the CPU computing capability of the ith edge
node as cpi, (i = 1, 2, · · · , m.). dai denotes the data volume of ith subtask. To reduce service
time and improve resource utilization of the IoT-Cloud, a task can be divided into multiple
subtasks and assigned to several devices. Furthermore,subtasks require different execution
times for their calculation. Thus, one must establish a resource allocation scheme prior
to evaluating the value of Ttransmission + Tcalculation. One of the most important goals of a
resource allocation scheme is to obtain a minimum value of Ttransmission + Tcalculation.

Let us assume that there are N edge computing nodes available and m edge nodes
are involved in a service, that is to say, one task of the service is broken down into m small
subtasks. For simplicity, let us assume that the ith subtask is processed by the ith edge
node. The total data volume of a task demand to be transmitted from the user end to the
edge networks is denoted by tvt. We denote the calculation amount of the ith subtask as
cai. Thus, the time for computing the ith subtask by edge node i is:

tE
i =

cai
cpi

(10)

According to circuit theories [24], the CPU power consumption of the ith edge node
is calculated as

pE
i = ρicai (11)

where ρi is the power coefficient of energy consumed per CPU cycle.
Similar to [24], our primary concern is upload time, while downlink delay is ignored

since the data size after task processing is generally much smaller than before processing.
Let vi denote the uplink data rate. Then, we can obtain that the time to transmit the ith



Future Internet 2021, 13, 294 11 of 22

subtask is ti = dai/vi. Formally, the task offloading problem based on minimum service
time can be formulated as follows:

minST =
m

∑
i=1

(ts · cpi · dai + dai/vi + cai/cpi) (12)

subject to 
Σm

i=1dai = tvt,

ρicai ≤ Emax
i (1 ≤ i ≤ m),

dai ≥ 0

(13)

Note that the objective function ST is linear and the constraints are all linear. As a
result, minST can be optimally solved by any solver for linear programming problems.

4.2.2. The Minimum Price Evaluation

Generally, a service provider needs to pay for equipment leasing, broadband con-
nection, and information security measures during the business operation period. Thus,
the total service price SP can be generally computed by the service provider using the
following formula:

Sp = Psecurity + Ptransmission + Pcalculation (14)

where Psecurity is the price of security measures, e.g., encryption and digital signature. We
denote the unit price of node i on a security operation as ps. Thus, Psecurity can be calculated
as follows:

Psecurity =
m

∑
i=1

psi · dai (15)

Ptransmission is the price of data transmission. In order to attract users, broadband
billing models are varied in various countries. The three most popular means are flat rate
billing, billing by flow, and billing by time. If the flat rate billing is adopted, the broadband
Internet fee is a constant. The transmission price of the 4G network can be calculated
as follows:

Ptransmission−14G = pcs4, (16)

The transmission price of the 5G network can be denoted as follows:

Ptransmission−15G = pcs5, (17)

where pcs4/pcs5 denotes the monthly fee, which is a constant. When the flow charge model
is adopted, the broadband price is proportional to the data volume. Moreover, the unit
price in the 4G network, which we denote by p4 f , is assumed to be different from that in
the 5G network, denoted by p5 f . The data amounts transmitted by the 4G link and 5G link
are denoted by da4G and da5G, respectively. Then, the transmission price can be calculated
as follows:

Ptransmission−2 = p4 f · da4G + p5 f · da5G, (18)

We ignore the price evaluation of 3G and 2G because of their low rate and low market
competitiveness compared with 4G and 5G. Without loss of generality, we assume that
the data associated with the ith subtask, with i ∈ {1, 2, · · · , F}, is transmitted using the 4G
link and that the data associated with the ith subtask, with i ∈ {F + 1, F + 2, · · · , m}, is
transmitted using the 5G link. We can obtain that

Ptransmission−2 = p4 f ·
F

∑
i=1

dai + p5 f ·
m

∑
i=F+1

dai (19)

The price evaluation of the mixture of the flow charge model and time charge model
is easy to obtain by adding the two estimation formulas above; therefore, we omit it for



Future Internet 2021, 13, 294 12 of 22

brevity. The above estimation formulas of the transmission price can be merged into a
single formula:

Ptransmission = γ · da4G + δ · da5G + ε

= γ ·
F

∑
i=1

dai + δ ·
m

∑
i=F+1

dai + ε
(20)

where γ, δ, ε ≥ 0 are constant coefficients determined by the billing models above. (γ, δ, ε) =
(0, 0, pcs4/pcs5) if the flat rate billing model is adopted, or (γ, δ, ε) = (p4 f , p5 f , 0) if the flow
charge model is adopted. We denote the unit calculation price of the ith edge node by pci,
i ∈ {1, 2, · · · , m}. The calculation price of the ith subtask can be computed as pci · cai/cpi.
Two tasks with the same data size often require different calculation times; therefore,
the calculation costs of the two tasks are quite different. In order to better estimate the
various costs of edge computing services, such as computation costs, transportation costs,
and storage overhead, we must carefully analyze the relationship between the amount
of computation and the amount of data. Referring to Assumption 1, we assume that the
computation amount is proportional to the data size transported from the users’ side to the
edge nodes and the scale factor is denoted by l. The scale factor l varies with the task. The
total calculation price of the task can be computed by

Pcalculation =
m

∑
i=1

pci · cai
cpi

=
m

∑
i=1

l · pci · dai
cpi

(21)

Thus, SP can be calculated as follows:

SP =
m

∑
i=1

psi · dai + γ ·
F

∑
i=1

dai + δ ·
m

∑
i=F+1

dai + ε

+
m

∑
i=1

l · pci · dai
cpi

(22)

In order to obtain the optimal solution of SP, we need to compute the minimum value
of the following expression:

minSP = γ ·
F

∑
i=1

dai + δ ·
m

∑
i=F+1

dai +
m

∑
i=1

l · pci · dai
cpi

=
F

∑
i=1

(psi + γ +
l · pci

cpi
) · dai +

m

∑
i=F+1

(psi + δ +
l · pci

cpi
)

· dai + ε

(23)

subject to 
Σm

i=1dai = tvt,

ρicai ≤ Emax
i (1 ≤ i ≤ m),

dai ≥ 0

(24)

Similar to the solution of minST , SP can be also be solved by any solver for linear
programming problems.

4.2.3. Minimum Price Evaluation with a Given Time

In certain situations, users want to enjoy services at the lowest price within a given
time. Let us denote the given time by TG. To successfully proceed with the service process,
TG must be no less than minŜT computed by the Formula (13) above. Combining all the



Future Internet 2021, 13, 294 13 of 22

aforementioned models, the minimum price estimation problem within a given time can
be further formulated with the following linear program:

minS∗P =
F

∑
i=1

(psi + γ +
l · pci

cpi
) · dai +

m

∑
i=F+1

(psi + δ

+
l · pci

cpi
) · dai + ε

(25)

s.t. 

m

∑
i=1
{ts · cpi · dai + dai/vi + cai/cpi} ≤ TG,

m

∑
i=1

dai = tvt,

ρicai ≤ Emax
i (1 ≤ i ≤ m),

dai ≥ 0(1 ≤ i ≤ m)

(26)

This multivariate linear optimization problem can be solved by any solver for linear pro-
gramming problems. The service estimation and resource allocation algorithm is presented
in Algorithm 2. All services are divided into three types: Type 1, services completed within
the shortest time; Type 2, services completed with the lowest price; and Type 3, services
completed with minimum price estimation within a given time. Since the number of edge
nodes used for completing a service is unpredictable, to complete the service by using a
minimum amount of equipment, we set the initial value of m as 1 and the step length as 1
in Algorithm 2. These settings can be changed according to concrete scenarios, e.g., we can
use dichotomy to quickly search for an appropriate value of m. Trust management can effec-
tively distinguish malicious nodes from normal nodes through the observation of historical
behavior. The IoT nodes with low trust values are removed from the routing table; that is
to say, the IoT device without security functions is not used as a transmission relay node
for IoT applications with security requirements, such as encryption and digital signature.
Furthermore, both the total service time ST and the total service price SP include the costs
of security operations (refer to Formulas (12), (24) and (25)). Thus, trust management can
help users obtain information security services at a lower price and less delay.

4.3. Time Complexity

It is convenient to check that the PECSA algorithms can be finished in polynomial time
since they only rely on solving a series of linear programming problems with polynomial
time complexity. There are many solution approaches available for linear programming,
from which we choose the interior point method due to its practical performance. In general,
the interior point method converges in time O(m3) [39], where m is the total number of
available edge nodes in each observation window.



Future Internet 2021, 13, 294 14 of 22

Algorithm 2: Service estimation and resource allocation algorithm.

Input:
RT ,RP,RS: requirements of user
tvt: the total data volume of a task
cpi: the computing power of the ith edge node
vi: data transmission rate from user to the ith edge node
l: the ratio of the data volume associated to calculation amount
γ, δ, ε: coefficients determined by billing models
ps: the unit price of a digital signature
pci(i = 1, 2, · · · , m): unit calculation price of the ith edge node
ST: the service type
Output:
ST : available service time
SP: available service price
da1, da2, · · · , dam: the task allocation quota
01: for m = 1; m ≤ N; m ++ {
02: if ST=1
03: {compute the minimum service time ST ;
04: if ST ≤ RT
05: {compute da1, da2, · · · , dam ;
06: compute SP ;
07: break; }
08: else
09: continue;}
10: else if ST=2
11: { compute the minimum service price SP ;
12: if SP ≤ RP
13: { compute dai(i = 1, 2, · · · , m);compute ST ;
14: break; }
15: else
16: continue;}
17: else if ST=3
18: {compute the minimum service price within a given time S∗P;
19: compute dai(i = 1, 2, · · · , m) related with S∗P }}

5. Performance Evaluation

In this section, we provide a simulation experiment concerning the trust evaluation
mechanism, the service time, and the service costs for edge computing. The experimental
results are divided into four parts: (1) we study the impact of trust value on the performance
of task offloading; (2) we investigate the impact of the task computation amount on the
service time and price; (3) we study the impact of task data size on the service quantities
in terms of task duration and price cost; and (4) we compare the proposed PECSA with
several task offloading schemes.

5.1. Experiment Setup

The simulation platform is Matlab 2020a. The experimental network settings include
20 edge nodes and 200 IoT nodes, where 10 edge nodes and 100 IoT nodes are 4G-enabled
devices and the others are 5G-enabled devices. Users and edge nodes move randomly
at a speed of 20 m/s. The 20 edge nodes are divided into five groups with four nodes in
each group, denoted as GA, GB, GC, GD, and GE. The computing power and price of each
group are inconsistent; please refer to Table 3. Each device in the IoT and edge networks
has a trust value T in [0, 1]. When the trust value decreases by 0.1, the computing power
also decreases by 0.1. With reference to the charging standard of China unicom, one of the
biggest network service providers in China, pcs4/pcs4 are set as 80/500. The security prices
are usually invisible to users; in fact, they are measured by the amount of data stored in



Future Internet 2021, 13, 294 15 of 22

the cloud or edge cloud. With reference to the charging standard of Alibaba Cloud, one of
the biggest cloud service providers, p4 f /p5 f are set as 0.002/0.003. The main parameters
used in the simulations are listed in Table 3.

Table 3. Experimental parameters.

Parameter Value

Data transmission rate of 5G, vi 1024 Mbps
Data transmission rate of 4G, vi 72 Mbps

Computing capability of nodes in GA, cpi 0.08 ms/10,000 multiplications
Computing capability of nodes in GB, cpi 0.12 ms/10,000 multiplications
Computing capability of nodes in GC, cpi 0.15 ms/10,000 multiplications
Computing capability of nodes in GD, cpi 0.20 ms/10,000 multiplications
Computing capability of nodes in GE, cpi 0.25 ms/10,000 multiplications

Calculation price of nodes in GA, pci 0.06/10,000 multiplications
Calculation price of nodes in GB 0.03/10,000 multiplications
Calculation price of nodes in GC 0.012/10,000 multiplications
Calculation price of nodes in GD 0.0054/10,000 multiplications
Calculation price of nodes in GE 0.0036/10,000 multiplications

Security price, psi 0.08/1 MB
Computing energy consume in edge cloud, ρ 90 W/Gigacycles

The total battery capacity, Emax
i 1000 J

5.2. Comparative Analysis

For trust evaluation, we consider the situation in which the malicious data device
behaves abnormally and generates incorrect trust values to cause the user to make incorrect
decisions. Figures 2 and 3 show the comprehensive trust evaluation results of a good
node and a malicious node, randomly picked, respectively. pm denotes the proportion of
malicious nodes. The convergence time is very small, about 50 s for both figures, where the
update interval is set as 5 s. We see that trust convergence behavior is observed for both
figures. The trust bias is acceptable since the trust value of the good node is between 0.7 and
0.8 and that of the malicious node is between 0.45 and 0.55. In a complex communication
environment, good nodes and malicious nodes could be distinguished by their trust value.

The service time for a requirement is determined by the amount of computation
and transmission. Two tasks that transmit the same amount of information often require
different calculation amounts. The product factor l is used to describe the relationship
between the data volume and calculation amount of a task. Our proposed architecture
can be applied to fields such as artificial intelligence, image recognition, coding, and so
on. In these fields, various iterative algorithms are usually used to complete specific work.
The iterative algorithm can be implemented by a for-loop statement. The calculation times
of each cycle are the same, so the value of l can be determined by the number of iterations.
For example, in [40], BP-decoding algorithms achieved good results in 20 iterations. If the
amount of calculation per iteration is 50, then l is 1000. In [41], the RANSAC algorithm
is used for image matching. The upper limit of the number of iterations is 400. Let us
suppose that one iteration requires 250 operations; then, l is 100,000. If the number of
iterations of the improved RANSAC algorithm is 40, then l is 10,000. In fact, the value of
l depends on the number of iterations of a specific algorithm. To illustrate the efficiency
of our proposed scheme, here we set l = 1000, 2000, 5000, 10,000, 50,000, and 100,000,
respectively. In Figures 4–7, the data volumes of the task are set to 5 GB. Usually, the price
is a critical factor for a user when purchasing cloud services. Four charging models are
considered in our architecture: flat rate billing of the 4G network, flat rate billing of the 5G
network, and billing by flow.



Future Internet 2021, 13, 294 16 of 22

Figure 2. Trust value of a good node under adaptive control with pm ranging from 0.1 to 0.4.

Figure 3. Trust value of a malicious node under adaptive control with pm ranging from 0.1 to 0.4.

Figure 4 shows that the time cost of a task increases with the increase in the coefficient l.
The abscissa is not uniformly distributed; the delay at l = 10,000 is about twice the delay at
l = 5000, and the delay at l = 50,000 is about five times the delay at l = 10,000. In general, cost
and delay are approximately linear. This is because, when l takes a larger value, the delay
of data calculation is much greater than that of data transmission. Therefore, the increase
in total delay is mainly caused by the increased amount of calculations. Figure 5 shows
that the price costs of the four models increase with the increase in l. The price costs of the
two flat rate billing models include not only the cost of the task but also the monthly fee;
therefore, they are more than the costs of billing by flow. Note that the price at l = 10,000 is
about twice the price at l = 5000, but the price at l = 50,000 is only about twice the price at



Future Internet 2021, 13, 294 17 of 22

l = 10,000. This is because the price of data transmission and security operations remain
unchanged, and they account for a large proportion of the total price.

Figure 4. Service time based on different values of l.

Figure 5. Service price based on different values of l and network charging models.

Figure 6 shows the impact of trust values on time costs. When the trust value is equal
to 1, the edge nodes have the best performance and the fastest computing speed. When
the trust value is less than 0.7, the time cost increases significantly. When the trust value is
0.6, the time cost is almost three times as long as that when the trust value is 1. There is a
small increase in the price costs with the decrease in trust value, in Figure 7, which is due
to edge devices with the lowest price costs; however, low trust values cannot continue to
provide services. The performance degradation is very severe if the average trust value
is less than 0.6 and the probability is very small in practice; thus, we ignore the situation.
By comparing Figures 6 and 7, we can see that lower trust value brings a slight rise in price
cost but also a significant increase in time cost. In other words, users pay almost the same
price to buy a lower quality service. Therefore, a low trust value is unfavorable to users.



Future Internet 2021, 13, 294 18 of 22

Figure 6. Service time based on different trust values.

Figure 7. Service price based on different trust values.

In fact, many users want to achieve a trade-off between price and time costs. The tasks
are required to be fulfilled at the lowest price within a given period of time. Figure 8 shows
that the price costs decrease with the increase in the time limit. Thus, it is feasible to wait
longer and pay a lower price. For tasks with large amounts of computation, e.g., l = 50,000,
or l = 100,000, adding a small service time leads to a significant price drop. When the
given service time is up to ∆ + 500 s, the downward trend becomes very small. For less
computationally intensive tasks, e.g., l = 1000, l = 2000, l = 5000, or l = 10,000, the effect
of relaxing the time limit to reduce the price cost is not obvious.



Future Internet 2021, 13, 294 19 of 22

Figure 8. Service price based on different values of l and time limitations: 4 + 100 s, 4 + 200
s, 4 + 300 s, 4 + 400 s, 4 + 500 s, 4 + 600 s, and 4 + 100 s, where 4 denotes the minimum
service time.

We compare the service price and time costs of PECSA to those of the MOERA [4]
and to the online greedy scheme under different workloads. The experimental results are
shown in Figures 9 and 10, respectively. Note that, with the increase in ε, the empirical
competitive ratio of MOERA varies over a very small range. Thus, the parameter ε of
MOERA is set to be 5 in our experiment. Figures 9 and 10 show that our scheme has
obvious advantages in time cost and price cost.

Figure 9. Service price comparison.



Future Internet 2021, 13, 294 20 of 22

Figure 10. Service price comparison.

6. Discussions

We now discuss some practical issues in implementing the proposed algorithm in real
systems. One important issue is the threshold selection in Section 4.1. In real scenarios,
threshold selection is usually conducted depending on the features of a real environment.
In this work, we acknowledge that 0.6 is a suitable threshold for our settings and experi-
mental environment. However, there is a need to explore and choose a specific threshold
in other environments. Due to network congestion and other problems, the performance of
IoT nodes in busy times is weaker than that in idle times. The threshold for busy hours
is recommended to be lower than that for idle hours. Another important issue is how to
determine the relationship between data quantity and calculation quantity, that is to say,
how to set the value of l. For the algorithm with uncertain iteration times, a slice of the
total data can be taken out for processing to obtain the specific value of the scale coefficient.
For an algorithm with a known number of iterations, the scale coefficient can be determined
by multiplying the number of iterations by the amount of calculation per iteration.

7. Conclusions

In this paper, we divide the requirements of IoT-based applications into three cate-
gories: security requirements, price requirements, and time requirements. To meet these
requirements, we first propose an edge computing service architecture integrated with a
trust management methodology. Then, we propose three cost estimation algorithms to
evaluate the minimum service time, the minimum service price, and the minimum service
price with a given time. The experimental results show that our proposed architecture can
greatly improve the service efficiency of IoT-based applications and meet various service
requirements adaptively. In order to perfect the architecture, interesting directions for
future work should seek to solve other issues through this architecture, such as studying
the problem of queuing of tasks, and the dynamics on the addition and removal of edge
nodes and network congestion.

Author Contributions: Conceptualization, J.L. and Z.W.; data curation, J.L.; formal analysis, Z.W.;
funding acquisition, J.L.; methodology, J.L. and Z.W.; software, Z.W.; supervision, J.L.; writing—
original draft, J.L. and Z.W.; writing—review and editing, Z.W. All authors have read and agreed to
the published version of the manuscript.



Future Internet 2021, 13, 294 21 of 22

Funding: This research was funded by the first-class undergraduate program “Double Ten Thousand
Plan” under grant 14002600100019J111, in part by the Civil Aviation Education Talent project under
grant E2021013, and by the industry, university and research cooperation project of the Ministry
under grant 202101311032, and by the 2020 Central University Education Teaching Reform Special
Fund under grant E2020017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, S.; Han, Y.; Wang, X.; Wang, Y. Computation Offloading with Multiple Agents in Edge-Computing–Supported IoT. ACM

Trans. Sens. Netw. 2020, 16, 1–27. [CrossRef]
2. Salaht, F.; Desprez, F.; Lebre, A. An Overview of Service Placement Problem in Fog and Edge Computing. ACM Comput. Surv.

2020, 53, 1–35. [CrossRef]
3. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
4. Wang, L.; Jiao, L.; Li, J.; Gedeon, J.; Mühlhäuser, M. MOERA: Mobility-Agnostic Online Resource Allocation for Edge Computing.

IEEE Trans. Mob. Comput. 2019, 18, 1843–1856. [CrossRef]
5. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of

Things. IEEE Internet Things J. 2020, 7, 6722–6747. [CrossRef]
6. Sladana, J.; Gyorgy, D. Computation Offloading Scheduling for Periodic Tasks in Mobile Edge Computing. IEEE/ACM Trans.

Netw. 2020, 28, 667–680. [CrossRef]
7. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv.

Turorials 2017, 19, 1628–1656. [CrossRef]
8. Chen, X.; Jiao, L.; Li, W. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE-ACM Trans. Netw.

2016, 24, 2827–2840. [CrossRef]
9. Mao, Y.; Zhang, J.; Letaief, K. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices.

IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]
10. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–460.

[CrossRef]
11. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The casefor VM-based cloudlets in mobile computing. IEEE Pervasive Comput.

2009, 8, 14–23. [CrossRef]
12. Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, A.; Jin, Q. A Secure IoT Service Architecture with an Efficient Balance Dynamics Based on

Cloud and Edge Computing. IEEE Internet Thing J. 2019, 6, 4831–4843. [CrossRef]
13. Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Hu, W.; Amos, N. Edge analytics in the internet of things.

IEEE Pervasive Comput. 2015, 14, 24–31. [CrossRef]
14. Ning, Z.; Dong, P.; Wang, X.; Rodrigues, J.; Xia, F. Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent

Offloading System. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–24. [CrossRef]
15. Jararweh, Y. Enabling efficient and secure energy cloud using edge computing and 5G. J. Parallel Distrib. Comput. 2020, 145, 42–49.

[CrossRef]
16. Jia, G.; Han, G.; Du, J.; Chan, S. A Maximum Cache Value Policy in Hybrid Memory-Based Edge Computing for Mobile Devices.

IEEE Internet Things J. 2019, 6, 4401–4410. [CrossRef]
17. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing

Systems. IEEE Trans. Wirel. Commun. 2018, 17, 1784–1797. [CrossRef]
18. Yi, S.; Qin, Z.; Li, Q. Security and privacy issues of fog computing: A survey. In Proceedings of the International Conference on

Wireless Algorithms, Systems, and Applications, Qufu, China, 10–12 August 2015; pp. 685–695.
19. Stojmenovic, I.; Wen, S.; Huang, X.; Luan, H. An overview of fog computing and its security issues. In Concurrency and

Computation: Practice and Experience; Wiley: New York, NY, USA, 2015; Volume 28.
20. Li, H.; Shou, G.; Hu, Y.; Guo, Z. Mobile edge computing: Progress and challenges. In Proceedings of the 2016 4th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 29 March–1 April
2016; pp. 83–84.

21. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2018, 67, 2049–2063. [CrossRef]

22. Bi, S.; Zhang, Y. Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation
Offloading.IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [CrossRef]

http://doi.org/10.1145/3372025
http://dx.doi.org/10.1145/3391196
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/TMC.2018.2867520
http://dx.doi.org/10.1109/JIOT.2020.3004500
http://dx.doi.org/10.1109/TNET.2020.2968209
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/JIOT.2018.2870288
http://dx.doi.org/10.1109/MPRV.2015.32
http://dx.doi.org/10.1145/3317572
http://dx.doi.org/10.1016/j.jpdc.2020.06.014
http://dx.doi.org/10.1109/JIOT.2018.2878872
http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.1109/TWC.2018.2821664


Future Internet 2021, 13, 294 22 of 22

23. Zhang, K.; Hua, Y.; Tian, F. A coalition-structure’s generation method for solving cooperative computing problems in edge
computing environments. Inf. Sci. 2020, 536, 372–390. [CrossRef]

24. Chen, M.; Hao, Y. Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network. IEEE J. Sel. Areas
Commun. 2018, 36, 587–597. [CrossRef]

25. Shah, H.; Wong, V. Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game. IEEE Internet Things J.
2018, 5, 3246–3257. [CrossRef]

26. Barcelo, M.; Correa, A.; Llorca, J.; Tulino, A.M.; Vicario, J.L.; Morell, A. IoT-cloud service optimization in next generation smart
environments. IEEE J. Sel. Areas Commun. 2016, 34, 4077–4090. [CrossRef]

27. Guo, H.; Liu, J.; Zhang, J.; Sun, W.; Kato, N. Mobile-Edge Computation Offloading for Ultradense IoT Networks. IEEE Internet
Things J. 2018, 5, 4977–4988. [CrossRef]

28. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

29. Chen, I.-R.; Guo, J.; Bao, F. Trust management for SOA-based IoT and its application to service composition. IEEE Trans. Serv.
Comput. 2017, 9, 482–495. [CrossRef]

30. Alshehri, M.D.; Hussain, F.K.; Hussain, O.K.; Omar, K. Clustering-Driven Intelligent Trust Management Methodology for the
Internet of Things (CITM-IoT). Mob. Netw. Appl. 2018, 23, 419–431. [CrossRef]

31. Duan, J.; Gao, D.; Yang, D.; Foh, C.H.; Chen, H.-H. An energy aware trust derivation scheme with game theoretic approach in
wireless sensor networks for IoT applications. IEEE Internet Things J. 2014, 1, 58–69. [CrossRef]

32. Zhang, C.; Zhu, X.; Song, Y.; Fang, Y. A Formal Study of Trust-Based Routing in Wireless Ad Hoc Networks. In Proceedings of
the INFOCOM’10: 29th Conference on Information Communications, San Diego, CA, USA, 14–19 March 2010; pp. 2838–2846.

33. Suryani, V.; Sulistyo, S.; Widyawan, W. Internet of Things (IoT) framework for granting trust among objects. J. Inf. Process. Syst.
2017, 13, 1613–1627.

34. Liu, X.; Liu, Y.; Liu, A.; Yang, L.T. Defending ON–OFF attacks using light probing messages in smart sensors for industrial
communication systems. IEEE Trans. Ind. Informat. 2018, 14, 3801–3811. [CrossRef]

35. Meng, W.; Li, W.; Su, C.; Zhou, J.; Lu, R. Enhancing trust management for wireless intrusion detection via traffic sampling in the
era of big data. IEEE Access 2018, 6, 7234–7243. [CrossRef]

36. Zhu, C.; Leung, V.C.; Yang, L.T.; Shu, L.; Rodrigues, J.J.; Li, X. Trust assistance in sensor-cloud. In Proceedings of the 2015
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April–1 May 2015;
pp. 342–347.

37. Patil, P.; Narayankar, P.; Narayan, D.G.; Meena, S.M. A Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES,
AES, RSA and Blowfish. In Proceedings of the 1st International Conference on Information Security and Privacy 2015, Nagpur,
India, 11–12 December 2015; pp. 617–624.

38. Christoph, D.; Maria, E.; Florian, M. Analysis of SHA-512/224 and SHA-512/256. In Proceedings of the International Conference
on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, 29 November–3 December
2015; pp. 1–30.

39. Khan, M.S. Quality Adaptation in a Multisession Multimedia System: Model, Algorithms and Architecture. Ph.D. Thesis,
University of Victoria, Victoria, BC, Canada, 1998.

40. Zhao, M.; Xu, B. Serial Decoding Algorithm with Continuous Backtracking for LDPC Convolutional Codes. Wirel. Pers. Commun.
2019, 4, 1–11. [CrossRef]

41. Zhu, W.; Sun, W.; Wang, Y.; Liu, S.; Xu, K. An Improved RANSAC Algorithm Based on Similar Structure Constraints. In
Proceedings of the 2016 International Comference on Robots and Intelligent System, Zhangjiajie, China, 27–28 August 2016;
pp. 94–100.

http://dx.doi.org/10.1016/j.ins.2020.05.061
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/JIOT.2018.2838022
http://dx.doi.org/10.1109/JSAC.2016.2621398
http://dx.doi.org/10.1109/JIOT.2018.2838584
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/TSC.2014.2365797
http://dx.doi.org/10.1007/s11036-018-1017-z
http://dx.doi.org/10.1109/JIOT.2014.2314132
http://dx.doi.org/10.1109/TII.2018.2836150
http://dx.doi.org/10.1109/ACCESS.2017.2772294
http://dx.doi.org/10.1007/s11277-019-06359-1

	Introduction
	Related Work
	Preliminary
	Trust Evaluation Mechanism
	Novel Service Architecture

	Materials and Methods 
	Trust Evaluation Mechanism
	Trust Evaluation Mechanism in the IoT
	Trust Evaluation Mechanism in Edge Networks
	Comprehensive Trust Computation

	Three Basic Service Types and the Associated Cost Evaluation Schemes
	The Evaluation of the Minimum Service Time
	The Minimum Price Evaluation
	Minimum Price Evaluation with a Given Time

	Time Complexity

	Performance EvaluationResults and Discussions
	Experiment Setup
	Comparative Analysis

	Discussions
	Conclusions
	References

