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Abstract: Video delivery is exploiting 5G networks to enable higher server consolidation and deploy-
ment flexibility. Performance optimization is also a key target in such network systems. We present
a multi-objective optimization framework for service function chain deployment in the particular
context of Live-Streaming in virtualized content delivery networks using deep reinforcement learning.
We use an Enhanced Exploration, Dense-reward mechanism over a Dueling Double Deep Q Network
(E2-D4QN). Our model assumes to use network function virtualization at the container level. We
carefully model processing times as a function of current resource utilization in data ingestion and
streaming processes. We assess the performance of our algorithm under bounded network resource
conditions to build a safe exploration strategy that enables the market entry of new bounded-budget
vCDN players. Trace-driven simulations with real-world data reveal that our approach is the only one
to adapt to the complexity of the particular context of Live-Video delivery concerning the state-of-art
algorithms designed for general-case service function chain deployment. In particular, our simulation
test revealed a substantial QoS/QoE performance improvement in terms of session acceptance ratio
against the compared algorithms while keeping operational costs within proper bounds.

Keywords: live-video delivery; 5G networks; virtualized content delivery networks; network func-
tion virtualization; service function chain deployment; deep reinforcement learning

1. Introduction

Video traffic occupies more than three-quarters of total internet traffic nowadays, and
the trend is to grow [1]. Such growth is mainly characterized by Over-The-Top (OTT)
video delivery. Content providers need OTT Content Delivery systems to be efficient,
scalable, and adaptive [2]. For this reason, cost and Quality of Service (QoS) optimization
for video content delivery systems is an active research area. A lot of the research effort in
this context is being placed on the optimization [3], and modeling [4] of Content Delivery
systems’ performance.

Content Delivery Networks (CDN) are distributed systems that optimize the end-to-
end delay of content requests over a network. CDN systems are based on the redirection
of requests and content reflection. Well-designed CDN systems warrant good Quality of
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service (QoS) and Quality of Experience (QoE) for widely distributed users. CDN uses
replica servers as proxies for the content providers’ origin servers. Traditional CDN systems
are deployed on dedicated hardware and incur, thereby in high capital and operational
expenditures. On the other hand, virtualized Content Delivery Networks (vCDN) use
Network Function Virtualization (NFV) [5], and Software-defined Networking (SDN) [6]
to deploy their software components on virtualized network infrastructures like virtual
machines or containers. NFV and SDN are key enablers for 5G networks [7]. Over
the last two years, numerous internet services providers (ISP), mobile virtual network
operators (MVNO), and other network market players are exploiting 5G networks to
augment the spectrum of network services they offer [8]. In this context, virtualized
CDN systems are taking the profit of 5G networks to enable higher server consolidation,
and flexibility during deployment [9,10]. VCDNs reduce both capital and operational
expenditures concerning CDNs deployed to dedicated-hardware [11]. Further, vCDNs are
edge-computing compliant [12] and make possible to act win-win strategies between ISP
and CDN providers [13].

1.1. Problem Definition

Virtualized Network systems are usually deployed as a composite chain of Virtual
Network Functions (VNF), often called a service function chain (SFC). Every incoming
request to a virtualized network system will be mapped to a corresponding deployed SFC.
The problem of deploying a SFC inside a VNF infrastructure is called VNF Placement or
SFC Deployment [14]. Many service requests can share the same SFC deployment scheme,
or the SFC deployments can vary. Given two service requests that share the same requested
chain of VNFs, the SFC deployment will vary when at least one pair of same-type VNFs
are deployed on different physical locations for each request.

This work focuses on the particular case of Live-Video delivery, also referred to as
live-streaming. In such a context, each service request is associated with a Live-Video
streaming session. CDNs have proved essential to meet scalability, reliability, and security
in Live-Video delivery scenarios. One important Quality of Experience (QoE) measure in
live-video streaming is the session startup delay, which is the time the end-user waits since
the content is requested and the video is displayed. One important factor that influences
the startup delay is the round-trip-time (RTT) of the session request, which is the time
between the content request is sent, and the response is received. In live-Streaming, the
data requested by each session is determined only by the particular content provider or
channel requested. Notably, cache HIT and cache MISS events may result in very different
request RTTs. Consequently, a realistic Live-Streaming vCDN model should keep track of
the caching memory status of every cache-VNF module for fine-grain RTT simulation.

Different SFC deployments may result in different round-trip times (RTT) for live-
video sessions. The QoS/QoE goodness of a particular SFC deployment policy is generally
measured by the mean acceptance ratio (AR) of client requests, where the acceptance ratio
is defined as the percentage of requests whose RTT is below a maximum threshold [14–16].
Notice that RTT is different from the total delay, which is the total propagation time of the
data stream from the origin server and the end-user.

Another important factor that influences RTT computation is the request processing
time. Such a processing time will notably depend on the current VNF utilization. To
model VNF utilization in a video-delivery context, major video streaming companies [17]
recommend to consider not only the content-delivery tasks, but also the resource consump-
tion associated with content-ingestion processes. In other words, any VNF must ingest a
particular data stream before being able to deliver it through its own client connections,
and such ingestion will incur non-negligible resource usage. Further, a realistic vCDN
delay model must incorporate VNF instantiation times, as they may notably augment the
starting delay of any video-streaming session. Finally, both instantiation time and resource
consumption may differ significantly depending on the specific characteristics of each
VNF [3].
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In this paper, we model a vCDN following the NFV Management and orchestration
(NFV-MANO) framework published by the ETSI standard group specification [9,18–20].
We propose elastic container-based virtualization of a CDN inspired by [5,19]. One of
the management software components of a vCDN in the ETSI standard is the Virtual
Network Orchestrator (VNO), which is generally responsible for the dynamic scaling of
the containers’ resource provision [19]. The resource scaling is triggered when needed, for
example, when traffic bursts occur. Such a resource scaling may influence the resource
provision costs, also called hosting costs, especially if we consider a cloud-hosted vCDN
context [20]. Also, data-transportation (DT) routes in the substrate network of a vCDN
may be affected by different SFC deployment decisions. Consequently, DT costs may also
vary [9], especially if we consider a multi-cloud environment as we do in this work. Thus,
DT costs may also be an important part of the operational costs of a vCDN.

Finally, Online SFC Deployment implies taking fine-grained control decisions over
the deployment scheme of SFCs when the system is running. For example, one could
associate one SFC deployment for each incoming request to the system or keep the same
SFC deployment for different requests but be able to change it whenever requested. In
all cases, Online SFC Deployment implies that SFC policy adaptions can be done each
time a new SFC request comes into the system. Offline deployment instead takes one-
time decisions over aggregations of input traffic to the system [21]. Offline optimization’s
effectiveness relies on the estimation accuracy of future environment characteristics [22].
Such estimation may not be trivial, especially in contexts where incoming traffic patterns
may be unpredictable or when request characteristics might be heterogeneous, which is
the case of Live-Streaming [9,14,23,24]. Consequently, in this work, we consider the Online
optimization of a Live-Streaming vCDN SFC deployment, and we seek such optimization
in terms of both QoS/QoE and operational costs, where the latter are composed of hosting
costs and data-transportation costs.

1.2. Related Works

SFC Deployment is an NP-hard problem [25]. Several exact optimization models,
and sub-optimal heuristics, have been proposed in recent years. Ibn-Khedher et al. [26]
defined a protocol for optimal VNF placement based on SDN traffic rules and an exact
optimization algorithm. This work solves the optimal VNF placement, migration, and
routing problem, modeling various system and network metrics as costs and user sat-
isfaction. HPAC [27] is a heuristic proposed by the same authors to scale the solutions
of [26] for bigger topologies based on the Gomory-Hu tree transformation of the network.
Their call for future work includes the need for the dynamic triggering of adaptation like
monitoring user demands, network loads, and other system parameters. Yala et al. [28]
present a resource allocation and VNF placement optimization model for vCDN and a
two-phase offline heuristic for solving it in polynomial time. This work models server
availability through an empirical probabilistic model and optimizes this score alongside
the VNF deployment costs. Their algorithm produces near-optimal solutions in minutes for
a Network Function Virtualization Infrastructure (NFVI) deployed on a substrate network
made of even 600 physical machines. They base the dimensioning criteria on extensive
video streaming VNF QoE-aware benchmarking.

Authors in [20] keep track of resource utilization in the context of an optimization
model for multi-cloud placement of VNF chains. Utilization statistics per node and network
statistics per link are taken into account inside a simulation/optimization framework for
VNF placement in vCDN in [29]. This offline algorithm can handle large-scale graph
topologies being designed to run on a parallel-supercomputer environment. This work
analyzes the effect of routing strategies on the results of the placement algorithm and
performs better with a greedy max-bandwidth routing approach. The caching state of each
cache-VNF is modeled with a probabilistic function in this work. Offline Optimization of
Value Added Service (VAS) Chains in vCDN is proposed in [30], where authors model an
Integer Linear Programming (ILP) problem to optimize QoS and Provider Costs. This work
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models license costs for each VNF added in a new physical location. An online alternative
is presented in [31], where authors model the cost of VNF instantiations when optimizing
online VNF placement for vCDN. This model lacks to penalize the Roud Trip Time (RTT) of
requests with the instantiation time of such VNFs. More scalable solutions for this problem
are leveraged with heuristic-based approaches like the one in [32]. On the other hand,
regularization-based techniques are used to present an online VNF placement algorithm
for geo-distributed VNF chain requests in [32]. This work optimizes different costs and the
end-to-end delay providing near-optimal solutions in polynomial time.

Robust Optimization (RO) has also been applied to solve various network-related op-
timization problems. RO and stochastic programming techniques have been used to model
optimization under scenarios characterized by data uncertainty. Uncertainty concerning
network traffic fluctuations or resource request amount can be modeled if one seeks to
minimize network power consumption [33] or the costs related to cloud resource provi-
sioning [34], for example. In [35], Marotta et al. present a VNF placement and SFC routing
optimization model that minimizes power consumption taking into account that resource
requirements are uncertain and fluctuate in virtual Evolved Packet Core scenarios. Such an
algorithm is enhanced in a successive work [36] where authors improve the scalability of
their solution by dividing the task into sub-problems and adopting various heuristics. Such
an improvement permits solving high-scale VNF placement in less than a second, making
such an algorithm suitable for online optimization. Remarkably, the congestion-induced
delay has been modeled in this work. Ito et al. [37] instead provide various models of the
VNF placement problem where the objective is to warrant probabilistic failure recovery
with minimum backup required capacity. Authors in [37] model uncertainty in both failure
events and virtual machine capacity.

Deep Reinforcement Learning (DRL) based approaches have been modeled to solve
the SFC deployment also. DRL algorithms have recently evolved to solve problems on
high-dimensional action spaces through the usage of state-space discretization [38], Policy
Learning [39,40], and sophisticated Value learning algorithms [41]. Network-related prob-
lems like routing [42], and VNF forwarding graph embedding [43–45] have been solved
with DRL techniques. Authors in [46] use the Deep Q-learning framework to implement a
VNF placement algorithm which is aware of the server reliability. A policy learning algo-
rithm is used for optimizing operational costs and network throughput on SFC Deployment
optimization in [14]. A fault-tolerant version of SFC Deployment is presented in [47], where
authors use a Double Deep Q-network (DDQN) and propose different resource reservation
schemes to balance the waste of resources and ensure service reliability. Authors in [48]
assume to have accurate incoming traffic predictions in input and use a DDQN based
algorithm for choosing small-scale network sub-regions to optimize every 15 min. Such
a work uses a threshold-based policy to optimize the number of fixed-dimensioned VNF
instances. A Proximal Policy Optimization DRL scheme is used in [49] to jointly minimize
packet loss and server energy consumption on a cellular network SFC deployment environ-
ment. The advantage of DRL approaches with respect to traditional optimization models
is the constant time complexity reached after training. A well-designed DRL framework
has the potential to achieve complex feature learning and near-optimal solutions even to
unprecedented context situations [23].

1.3. Main Contribution

To the best of the authors’ knowledge, this work is the first VNF-SCF deployment
optimization model for the particular case of Live-Streaming vCDN. We propose a vCDN
model where we take into account, at the same time:

• VNF-instantiation times,
• Content-delivery and content-ingestion resource usage,
• Utilization-dependant processing times,
• Fine-grained cache-status tracking,
• Operational costs composed of data-transportation costs and hosting costs,
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• Multi-cloud deployment characteristics,
• No a-priory knowledge of session duration.

We seek to jointly optimize QoS and operational costs with an Online DRL-based
approach. To achieve this objective, we propose a dense-reward model and an enhanced-
exploration mechanism for over a dueling-DDQN agent, which combination leads to the
convergence to sub-optimal SFC deployment policies.

Further, in this work, we model bounded network resource availability to simulate
network overload scenarios. Our aim is to create and validate a safe-exploration framework
that facilitates the assessment of market-entry conditions for new cloud-hosted Live-
Streaming vCDN operators.

Our experiments show that our proposed algorithm is the only one to adapt to the
model conditions, maintaining an acceptance ratio above the state-of-art techniques for
SFC deployment optimization while keeping a satisfactory balance between network
throughput and operational costs. This paper can be seen as an upgrade proposal for
the framework presented in [14]. The optimization objective of SFC deployment that
we pursue is the same: maximizing the QoS and minimizing the operational costs. We
enhance the algorithm used in [14] to find a suitable DRL technique for the particular case
of Live-Streaming in v-CDN scenarios.

2. Materials and Methods
2.1. Problem Modelisation

We now rigorously model our SFC Deployment optimization problem. First of all, the
system elements that are part of the problem are identified. We then formulate a high-level
optimization statement briefly. Successively, our optimization problem’s decision variables,
penalty terms, and feasibility constraints are described. Finally, we formally define the
optimization objective.

2.1.1. Network Elements and Parameters

We model three-node categories in the network infrastructure of a vCDN. The content
provider (CP) nodes, denoted as NCP, produce live-video streams that are routed through
the SFC to reach the end-users. The VNF hosting nodes, NH , are the cloud-hosted virtual
machines that instantiate container VNFs and interconnect through each other to form
the SFCs. Lastly, we consider nodes representing geographic clusters of clients, NUC.
Geographic client clusters are created in such a way that every client in the same geographic
cluster is considered to have the same data-propagation delays with respect to the hosting
nodes in NH . Client cluster nodes will be referred to as client nodes from now on. Notice
that different hosting nodes may be deployed on different cloud providers. We denote the
set of all nodes of the vCDN substrate network as:

N = NCP ∪ NH ∪ NUC

We assume that each live-streaming session request r is always mapped to a VNF
chain containing a Streamer, a Compressor, a Transcoder, and a Cache module [19,50]. In a
live-streaming vCDN context, the caching module acts as a proxy that ingests video chunks
from a Content Provider, stores them on memory, and sends them to the clients towards
the rest of the SFC modules. Caching modules accelerate session startup time and prevent
origin server overloads, keep an acceptable total delay, improving session startup times
which is a measure of QoE in the context of live-streaming. Compressors, instead, may help
to decrease video quality when requested. On the other hand, transcoding functionalities
are necessary whenever the requested video codec is different from the original one. Finally,
the streamer acts as a multiplexer for the end-users [19]. The order in which the VNF chain
is composed is explained by Figure 1.
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Figure 1. The assumed Service Function Chain composition for every Live-Video Streaming session
request. We assume that every incoming session needs for a streamer, a compressor a transcoder and
a cache VNF modules. We assume container based virtualization of a vCDN.

We will denote the set of VNF types considered in our model as K:

K = {streamer, compressor, transcoder, cache}

Any k-type VNF instantiated at a hosting node i will be denoted as f k
i , ∀k ∈ K, ∀i ∈ NH .

We assume that every hosting node is able to instantiate a maximum of one k-type VNF.
Note that, at any time, there might be multiple SFCs whose k-type module is assigned to a
single hosting node i.

We define fixed-length time windows denoted as t, ∀t ∈ N which we call simulation
time-steps following [14]. At each t, the VNO releases resources for timed-out sessions
and processes the incoming session requests denoted as Rt = {r1, r2, ..., r|Rt |}. It should be
stressed that every r will request for a SFC composed of all the VNF types in K. We will
denote the k-type VNF requested by r as f̂ k

r , ∀k ∈ K, r ∈ Rt. Key notations for our vCDN
SFC Deployment Problem are listed in Table 1.

We now enlist all the network elements and parameters that are part of the proposed
optimization problem:

• N = NCP ∪ NH ∪ NUC as the set of all nodes of the CDN network,
• K = {streamer, transcoder, compressor, cache} is the set of VNF types considered in

our model,
• L(N × N), is the set of links between nodes in N, so that (i, j) ∈ L, ∀i, j ∈ N,
• R = {CPU, Bandwidth, andMemory}, is the set of resource types for every VNF

container,
• The resource cost matrix Γ ∈ M(|R|, |NH |), where γres,i is the per-unit resource cost

of resource res at node i,
• D ∈ M(|N|, |N|), is the link delay matrix so that variable di,j ∈ R+ represents the

data propagation delay between the nodes i and j. We assume di,j = 0 for i = j. Notice
that D is symmetric,

• O ∈ M(|N|, |N|), is the data-transportation costs matrix, where oi,j ∈ R+ is the
unitary data-transportation cost for the link that connects i and j. We assume oi,j = 0
for i = j. Notice that O is symmetric,

• Ik, ∀k ∈ K are the parameters indicating the instantiation times of each k-type VNF.
• Rt = {r1, r2, ..., r|Rt |} is the set of incoming session requests set during time-step t.

Every request r is characterized by br ∈ [0, 1], the scaled maximum bitrate, pr ∈ [0, 1],
the mean scaled payload, lr, the content provider requested, and ur, the user cluster
from which r was originated,

• T is a fixed parameter indicating the maximum RTT threshold value for the incoming
Live-Streaming requests.

• P∗ ∈M(|R|, |NH |) is the optimal processing times matrix, where ρ∗res,k is the processing-
time contribution of the res resource in any k-type VNF assuming optimal utilization
conditions,
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• Ψ ∈M(|R|, |NH |) is the time degradation matrix, where ψres,k is the parameter repre-
senting the degradation base for the res resource in any k-type VNF,

• ct
res,k,i, ∀res ∈ R, ∀k ∈ K, ∀i ∈ NH are a set of variables indicating the res resource

capacity of f k
i VNF during t.

Table 1. Key notations for our vCDN SFC Deployment Problem.

Notation Meaning

NCP The set of content-provider nodes
NH The set of VNF hosting nodes
NUC The set of user clusters

K The set of VNF types (cache, compressor, transcoder, and streamer)
t A fixed time-step in our simulation

Rt The set of incoming SFC requests during time-step t
T The max tolerable RTT for SFC any Live-Streaming request
br The maximum scaled bitrate of r
pr The mean scaled session payload of r
f̂ k
r The k-type VNF requested by r

lr The channel or content provider requested by r
sr The session workload of r

γres,i The unit cost of res resource in hosting node i
di,j The data propagation delay between nodes i and j
f k
i The k-type VNF container instance in node i

at,k
n 1 if f k

n is instantiated at the beginning of t
xk

r,i 1 if f̂ k
r is assigned to node i, 0 otherwise

zr
i,j,k 1 if the link between i and j is used to reach f̂ k

r , 0 otherwise
yl,i,k 1 if f k

i is currently ingesting channel l, 0 otherwise
ct

res,k,i The res resource provision in f k
i during t

σk,r,res The client res resource demand of r in any k-type VNF instance
vk,res The res resource demand for content ingestion in any k-type VNF instance
ures,k,i The current res resource usage of f k

i
µres,k,i The current res resource utilization of f k

i
ρr

res,i,k The processing time contribution of res resource in f k
i for f̂ k

r

φp
The normalization exponent for mean payload
in the session workload formula

φb
The normalization exponent for maximum bitrate
in the session workload formula

oi,j The unitary data-transportation cost for the link between nodes i and j
vr 1 if the SFC assigned to r respects the maximum tolerable RTT, 0 otherwise

ρ∗res,k
The processing-time contribution of res in any k-type VNF
assuming optimal utilization conditions

2.1.2. Optimization Statement

Given a Live-Streaming vCDN constituted by the parameters enlisted in Section 2.1.1,
we must decide the SFC deployment scheme for each incoming session request r, con-
sidering the penalties in the resulting RTT caused by the eventual instantiation of VNF
containers, cache MISS events, and over-utilization of network resources. We must also con-
sider that the entity of the vCDN operational costs is derived from our SFC deployments.
We must deploy SFCs for every request to maximize the resulting QoS and minimizing
Operational Costs.



Future Internet 2021, 13, 278 8 of 28

2.1.3. Decision Variables

We propose a discrete optimization problem: For every incoming request r ∈ Rt, the
decision variables in our optimization problem are the binary variables xk

r,i, ∀i ∈ NH , ∀k ∈ K
that equal 1 if f̂ k

r is assigned to f k
i , and 0 otherwise.

2.1.4. Penalty Terms and Feasibility Constraints

We model two penalty terms and two feasibility constraints for our optimization
problem. The first penalty term is the Quality of Service penalty term and is modeled as
follows. The acceptance ratio during time-step t is computed as:

χt
Q =

∑r∈Rt υr

|Rt|
(1)

where the binary variable vr indicates if the SFC assigned to r respects or not its maximum
tolerable RTT, denoted by Tr:

vr =

{
1, if RTTr <= Tr

0, otherwise
(2)

Notice that RTTr is the round-trip-time of r and is computed as:

RTTr = ∑
i,j∈N

∑
k∈K

zr
i,j,k · di,j + ∑

i∈NH

∑
k∈K

xk
r,i · {(1− at,k

i ) · Ik + ρt
i,k} (3)

where:

• The binary variable zr
i,j,k equals 1 if the link between nodes i and j is used to reach f̂ k

r ,
and 0 otherwise,

• The parameter di,j ∈ R+ represents the data-propagation delay between the nodes i
and j. (We assume a unique path between every node i and j),

• The binary variable xk
r,i equals 1 if f̂ k

r is assigned to f k
i , and 0 otherwise,

• The binary variable at,k
i equals 1 if f k

i is instantiated at the beginning of t, and 0
otherwise,

• Ik is a parameter indicating the instantiation time of any k-type VNF.
• ρr

i,k is the processing time of r in f k
i .

Notice that, by modeling RTTr with (3), we include data-propagation delays, process-
ing time delays, and VNF instantiation times when needed: We will include the delay to
the content provider in such RTT only in the case of a cache MISS. In other words, if i
is a CP node, then zr

i,j,cache will be 1 only if f cache
j was not ingesting content from i at the

time of receiving the assignation of f̂ cache
r . On the other hand, whenever f̂ k

r is assigned to
f k
i , but f k

i is not instantiated at the beginning of t, then the VNO will instantiate f k
i , but

adequate delay penalties are added to RTTr, as shown in (3). Notice that we approximate
the VNF instantiation states in the following manner: Any VNF that is not instantiated
during t and receives a VNF request to manage starts its own instantiation and finishes
such instantiation process at the beginning of the t + 1. From that moment on, unless the
VNF has been turned off in the meantime because all its managed sessions are timed out,
the VNF is considered ready to manage new incoming requests without any instantiation
time penalty.

Recall that we model three resource types for each VNF: CPU, Bandwidth, and
Memory. We model the processing time of any r in f k

i as the sum of the processing times
related to each of these resources:

ρr
i,k = ρr

cpu,i,k + ρr
mem,i,k + ρr

bw,i,k (4)
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where ρr
res,i,k, ∀res ∈ {cpu, mem, bw} are each of the resource processing time contributions

for r in f k
i , and each of such contributions is computed as:

ρres,i,k =

{
ρ∗res,k · ψ

µres,k,i−1
res,k , if µres,k,i

αres,k
> 1

ρ∗res,k otherwise
(5)

where:

• the parameter ρ∗res,k is the processing-time contribution of res in any k-type VNF
assuming optimal utilization conditions,

• ψres,k is a parameter representing the degradation base for res in any k-type VNF,
• the variable µres,k,i is the res utilization in f k

i at the moment when f̂ k
r is assigned.

Note that (5) models utilization-dependent processing times. The resource utilization
in any f k

i , denoted as µres,k,i, ∀res ∈ {cpu, mem, bw} is computed as:

µres,k,i =


ures,k,i
ct

res,k,i
, if cres,k,i > 0

0, otherwise
(6)

where ures,k,i is the instantaneous res resource usage in f k
i , and ct

res,k,i is the res resource
capacity of f k

i during t. The value of ct
res,k,i is fixed during an entire time-step t and depends

on any dynamic resource provisioning algorithm acted by the VNO. In this work we
assume a bounded greedy resource provisioning policy as specified in Appendix A.1. On
the other hand, if we denote with R̃t the a subset of Rt that contains the requests that have
already been accepted at the current moment, we can compute ures,k,i as:

ures,k,i = ût
res,k,i + ∑

r∈R̃t

xk,r,i · σk,r,res + ∑
l∈NCP

yk
l,i · υk,res (7)

where:

• The variable ût
res,k,i indicates the res resource demand in f k

i at the beginning of time-
step t,

• The binary variable xk,r,i was already defined and it indicates if f̂ k
r is assigned to f k

i ,
• σk,r,res is the res resource demand faced by any k-type VNF when serving r, and we

call it the client resource-demand,
• The binary variable yk

l,i is 1 if f k
i is currently ingesting content from content provider l,

and 0 otherwise,
• The parameter υk,res models the res resource demand faced by any k-type VNF when

ingesting content from any content provider.

Notice that, modeling resource usage with (7), we take into account not only the
resource demand associated with the content transmission, but we also model the resource
usage related to each content ingestion task the VNF is currently executing.

The res resource demand that any k-type VNF faces when serving a session request r
is computed as:

σk,r,res = σmax,k,res · sr (8)

where σmax,k,res is a fixed parameter that indicates the maximum possible res resource
consumption implied while serving any session request incoming to any k-type VNF. The
variable sr ∈ [0, 1] instead, is indicating the session workload of r, which depends on the
specific characteristics of r. In particular, the session workload will depend on the normalized
maximum bitrate and the mean payload per time-step of r, denoted as br and pr, respectively:

sr = (pr)
φp · (br)

φb (9)

In (8), the parameters φp, φb ∈ [0, 1] do not depend on r and are fixed normalization
exponents that balance the contribution of br and pr in sr.
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Recall that the binary variable vr indicates if the SFC assigned to r respects or not
its maximum tolerable RTT. Notice that we can assess the total throughput served by the
vCDN during t as:

χt
T = χt

Q · ∑
r∈Rt

sr (10)

The second penalty term is related to the Operational Costs, which is constituted by
both the hosting costs and the Data-transportation costs. We can compute the Hosting
Costs for our vCDN during t as:

χt
H = χt−1

H − χ̃t
H + ∑

i∈NH

∑
k∈K

∑
res∈R

γres,i · ct
res,k,i (11)

where

• χt−1
H are the total Hosting Costs at the end of time-step t− 1,

• χ̃t
H are the hosting costs related to the timed-out sessions at the beginning of time-

step t,
• R is the set of resources we model, i.e., Bandwidth, Memory, and CPU,
• γres,i is the per-unit resource cost of resource res at node i.

Recall that ct
res,k,i is the res resource capacity at f k

i during t. Notice that different nodes
may have different per-unit resource costs as they may be instantiated in different cloud
providers. Thus, modeling the hosting costs using (11), we have considered a possible
multi-cloud vCDN deployment. Notice also that, using (11), we keep track of the current
total hosting costs for our vCDN assuming that timed-out session resources are released at
the end of each time-step.

We now model the Data-Transportation Costs. In our vCDN model, each hosting
node instantiates a maximum of one VNF of each type. Consequently, all the SFCs that
exploit the same link for transferring the same content between the same pair of VNFs will
exploit a unique connection. Therefore, to realistically assess DT costs, we create the notion
of session DT amortized-cost:

dr
cost = ∑

i,j∈NH

∑
k∈K

pr · zr
i,j,k · oi,j

|R(i,j,k)
r |

(12)

where oi,j is a parameter indicating the unitary DT cost for the link between i and j, and

R(i,j,k)
r is the set of SFCs that are using the link between i and j to transmit to f k

j the content
related to the same CP requested by r. Notice that DT costs for r are proportional to the
mean payload pr. Recall that zr

i,j,k indicates if the link between i and j is used to reach f̂ k
r .

According to (12), we compute the session DT cost for any session request r in the following
manner: For each link on our vCDN, we first compute the whole DT cost among such a
link. We then compute the number of concurrent sessions that are using such a link for
transferring the same content requested by r. Lastly, we compute the ratio between these
quantities and sum such ratios for every hop in the SFC of r to obtain the whole session
amortized DT cost. The total amortized DT costs during t are then computed as:

χt
D = χt−1

D − χ̃t
D + ∑

r∈Rt

vr · dr
cost (13)

where

• χt−1
D are the total DT costs at the end of the t− 1 time-step,

• χ̃t
D are the total DT costs regarding the timed-out sessions at the beginning of time-

step t,
• dr

cost is the session DT cost for r computed with (12). Recall that vr indicates if r was
accepted or not based on its resultant RTT.
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On the other hand, the first constraint is the VNF assignation constraint: For any
live-streaming request r, every k-type VNF request f̂ k

r must be assigned to one and only
one node in NH . We express such a constraint follows:

∑
i∈NH

xk
r,i = 1, ∀r ∈ Rt, ∀k ∈ K, (14)

Finally, the second constraint is the minimum service constraint. For any time-step t,
the acceptance ratio must be greater or equals than 0.5. We express such a constraint as:

χt
Q ≥ 0.5, ∀t ∈ N (15)

One could optimize operational costs by discarding a significant percentage of the
incoming requests instead of serving them. The fewer requests are served, the less the
resource consumption entity and the hosting costs will be. Also, data transfer costs are
reduced when less traffic is generated due to the rejection of live-streaming requests.
However, the constraint in (15) is created to avoid such naive solutions to our optimiza-
tion problem.

2.1.5. Optimization Objective

We model a multi-objective SFC deployment optimization: At each simulation time-
step t, we measure the accomplishment of three objectives:

• Our first goal is to maximize the network throughput as defined in (10), and we
express such objective as max(χt

T),
• Our second goal is to minimize the hosting costs as defined in (11), and we express

such objective as min(χt
H),

• Out third goal is to minimize the DT cost as defined in (13), and such objective can be
expressed as min(χt

D).

We tackle such a multi-objective optimization goal with a weighted-sum method that
leads to a single objective function:

max(wT · χt
T − wD · χt

D − wH · χt
H) (16)

where wT , wH , and wD are parametric weights for the network throughput, hosting costs,
and data transfer costs, respectively.

2.2. Proposed Solution: Deep Reinforcement Learning

Any RL framework is composed of an optimization objective, a reward policy, an
environment, and an agent. In RL scenarios, a Markov Decision Process (MDP) is modeled,
where the Environment conditions are the nodes of a Markov Chain (MC) and are generally
referred to as state-space samples. The agent iteratively observes the state-space and chooses
actions from the action-space to interact with the Environment. Each action is corresponded
by a reward signal and leads to the transition to another node in the Markov Chain, i.e., to
another point in the state-space. Reward signals are generated by a action-reward that drives
learning towards optimal action policies under dynamic environment conditions.

In this work, we propose a DRL-based framework to solve our Online SFC Deployment
problem. To do that, we first need to embed our optimization problem in a Markov Decision
Process (MDP). We then need to create an action reward mechanism that drives the agent to
learn optimal SFC Deployment policies, and finally, we need to specify the DRL algorithm
we will use for solving the problem. The transition between states of the MDP will be
indexed by τ, ∀τ ∈ N in the rest of this paper.

2.2.1. Embedding SFC Deployment Problem into a Markov Decision Process

Following [14,32,48,51,52], we propose to serialize the SFC Deployment process into
single-VNF assignation actions. In other words, our agent interacts with the Environment
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each time a particular VNF request, f̂ k
r , has to be assigned to a particular VNF instance, f k

i
of some hosting node i in the vCDN. Consequently, the actions of our agent, denoted by aτ

are the single-VNF assignation decisions for each VNF request of a SFC.
Before taking any action, the agent observes the environment’s conditions. We propose

to embed such conditions onto a vector sτ that contains a snapshot of the current incoming
request and hosting nodes’ conditions. In particular, sτ will be formed by the concatenation
of three vectors:

sτ = (R̂, Î, Û) (17)

where:

• R̂ = (lr, ur, sr, f̂−r ) is called the request vector, and contains information about the
VNF request under assignment. In particular, R̂ codifies the requested CP, lr, the client
cluster from which the request was originated, ur, the request’s session workload,
sr, and the number of pending VNFs to complete the deployment of the current
SFC, f̂−r . Notice that f̂−r ∈ {0, 1, 2, 3, 4} and that f̂−r goes each time from 4 to 0 as
our agent performs the assignations actions regarding r. Note that the first three
components of R̂τ are invariable for the whole set of VNF requests regarding the SFC
of r. Notice also that, using a one-hot encoding for lr, ur and f̂−r , the dimension of R̂ is
|R̂| = |NUC|+ |NCP|+ |K|+ 1,

• Î = (î1, î2, ..., î|NH |) is a binary vector where îj equals 1 if f k
j is ingesting the CP

requested by r and 0 otherwise,
• Û = (û1, û2, ..., û|NH |), where ûi is the utilization value of the resource that is currently

the most utilized resource in f i
k.

2.2.2. Action-Reward Schema

When designing the action-reward schema, we take extreme care in giving the right
entity to the penalty of resource over-utilization, as it seriously affects QoS. We also include
a cost-related penalty to our reward function to jointly optimize QoS and Operational
Costs. Recall that the actions taken by our agent are the single-VNF assignation decisions
for each VNF request of a SFC. At each iteration τ, our agent observes the state information
sτ , takes an action aτ , and receives a correspondent reward r(sτ , aτ) computed as:

r(sτ , aτ) = wQ · rQoS(sτ , aτ)− ν · (wD · χt
D + wH · χt

H) (18)

where:

• The parameters wQ, wD, and wH are weights for the reward contributions relating to
the QoS, the DT costs, and the Hosting Costs, respectively,

• rQoS(sτ , aτ) is the reward contribution that is related to the QoS optimization objective,
• ν is a binary variable that equals 1 if action a corresponds to the last assignation step of

the last session request arrived in the current simulation time-step t, and 0 otherwise.

Recall that χt
D and χt

H are the total DT costs and hosting costs of our vCDN at the end
of the simulation time-step t. Using (18), we subtract a penalty proportional to the current
whole hosting and DT costs in the vCDN only at the last transition of each simulator
time-step, i.e., when we assign the last VNF of the last SFC in Rt. Such a sparse cost penalty
was also proposed in [14].

When modeling the QoS-related contribution of the reward instead, we propose the
usage an inner delay-penalty function, denoted as d(t). In practice, d(t) will be continuous
and non-increasing. We design d(t) in such a way that d(t) < 0, ∀t > T. Recall that T is
a fixed parameter indicating the maximum RTT threshold value for the incoming Live-
Streaming requests. We specify the inner delay-penalty function used in our simulations in
Appendix A.2.

Whenever our agent performs an assignation action a, for a VNF request f̂ k
r in r,

we compute the generated contribution to the RTT of r. In particular, we compute the
processing time of r in the assigned VNF, eventual instantiation times, and the transmission
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delay to the chosen node. We sum such RTT contribution at each assignation step to form
the current partial RTT, which we denote as ta

r . The QoS-related part of the reward assigned
to a is then computed as:

rQoS(a) =


d(ta

r ) · 2− f̂−r , if f̂−r > 0 and d(ta
r ) > 0

d(ta
r ) · 2 f̂−r , if f̂−r > 0 and d(ta

r ) < 0
1, if f̂−r = 0 and d(ta

r ) > 0
0, if f̂−r = 0 and d(ta

r ) < 0

(19)

If we look at the first line of (19), we realize that a positive reward is given for every
assignment that results in a non-prohibitive partial RTT. Moreover, such a positive reward
is inversely proportional to f̂−r (the number of pending assignations for the complete
deployment of the SFC of r). Notice that, since ta

r is cumulative, we give larger rewards to
the latter assignation actions of an SFC, as it is more difficult to avoid surpassing the RTT
limit at the end of the SFC deployment with respect to the beginning.

The second line in (19) shows instead that a negative reward is given to the agent
whenever ta

r exceeds T. Further, such a negative reward worsens proportionally to the
prematureness of the assignation action that caused ta

r to surpass T. Such a worsening
makes sense because bad assignation actions are easier to occur at the end of the SFC
assignation process with respect to the beginning.

Finally, the third and fourth lines in (19) correspond to the case when we the agent
performs the last assignation action of an SFC. The third line indicates that the QoS related
reward is equal to 1 whenever a complete SFC request r is deployed, i.e., when every f̂ k

r in
the SFC of r has been assigned without exceeding the RTT limit T, and the last line tells us
that the reward will be 0 whenever the last assignation action incurs in a non-acceptable
RTT for r.

This reward schema is the main contribution of our work. According to the MDP
embedding proposed Section 2.2.1, the majority of actions taken by our agent are given a
non-zero reward. Such a reward mechanism is called dense, and it improves the training
convergence to optimal policies. Notice also that, in contrast to [14], our reward mechanism
penalizes bad assignments in contrast to ignoring them. Such an inclusion enhances
the agent exploration in the action space and reduces the possibility of converging to
local optima.

2.2.3. DRL Algorithm

Any RL agent receives a reward Rτ for each action taken, aτ . The function that RL
algorithms seek to maximize is called the discounted future reward and is defined as:

Gτ = Rτ+1 + γRτ+2 + ... =
∞

∑
k=0

γkRτ+k+1 (20)

where γ is a fixed parameter known as the discount factor. The objective is then to learn an
action policy that maximizes such the discounted future reward. Given a specific policy π,
the action value function, also called Q-value function indicates how much valuable it is to
take a specific action aτ being at state sτ :

Qπ(s, a) = Eπ [Gτ‖sτ = s, aτ = a] (21)

from (21) we can derive the recursive Bellman equation:

Q(sτ , aτ) = Rτ+1 + γQ(sτ+1, aτ+1) (22)

Notice that if we denote the final state with s f inal , then Q(s f inal , a) = Ra. The Temporal
Difference learning mechanism uses (22) to approximate the Q-values for state-action pairs
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in the traditional Q-learning algorithm. However, in large state or action spaces, it is not
always feasible to use tabular methods to approximate the Q-values.

To overcome the traditional Q-learning limitations, Mnih et al. [53] proposed the usage
of a Deep Artificial Neural Network (ANN) approximator of the Q-value function. To
evict convergence to local-optima, they proposed to use an ε-greedy policy where actions
are sampled from the ANN with probability 1− ε and from a random distribution with
probability ε, where ε decays slowly at each MDP transition during training. They also used
the Experience Replay (ER) mechanism: a data structure D keeps (sτ , aτ , rτ , sτ+1) transitions
for sampling uncorrelated training data and improve learning stability. ER mitigates the
high correlation presented in sequences of observations during online learning. Moreover,
authors in [54] implemented two neural network approximators for (21), the Q-network
and the Target Q-network, indicated by Q(s, a, θ) and Q(s, a, θ−), respectively. In [54], the
target network is updated only periodically to reduce the variance of the target values
and further stabilize learning with respect to [53]. Authors in [54] use stochastic gradient
descent to minimize the following loss function:

L(θ) = E(sτ ,aτ ,rτ ,sτ+1)∼U(D){[r + γ max
a

Q(sτ , a, θ−)−Q(sτ , aτ ; θ)]2} (23)

where minimization of (23) is done with respect to the parameters of Q(s, a, θ). Van Hasselt
et al. [55] applied the concepts of Double Q-Learning [56] on large-scale function approxi-
mators. They replaced the target value in (23) with a more sophisticated target value:

L(θ) = E(sτ ,aτ ,rτ ,sτ+1)∼U(D){[rτ + γQ(sτ+1, argmax
a

Q(sτ+1, a; θ), θ−)−Q(sτ , aτ ; θ)]2} (24)

Doing such a replacement, authors in [55] avoided over-estimations of the Q-values
which characterized (23). This technique is called Double Deep Q-Learning (DDQN), and
it also helps to decorrelate the noise introduced by θ, from the noise of θ−. Notice that θ
are the parameters that approximate the function used to choose the best actions, while θ−

are the parameters of the approximator used to evaluate the choices. Such a differentiation
in the learning and acting policies is also called off-policy learning.

Instead, Wang et al. [41] proposed a change in the architecture of the ANN approxi-
mator of the Q-function: they used a decomposition of the action value function in the sum
of two other functions: the action-advantage function and the state-value function:

Qπ(s, a) = Vπ(s) + Aπ(a) (25)

Authors in [41] proposed a two-stream architecture for an ANN approximator, where
one stream approximated Aπ and the other approximated Vπ . They integrate such contri-
butions at the final layer of the ANN Qπ using:

Q(s, a; θ1, θ2, θ3) = V(s; θ1, θ3) + (A(s, a; θ1, θ2)−
1
|A|∑a′

A(s, a′; θ1, θ2)) (26)

where θ1 are the parameters of the first layers of the ANN approximator, while θ2 and
θ3 are the parameters encoding the action-advantage and the state-value heads, respec-
tively. This architectural innovation works as an attention mechanism for states where
actions have more relevance with respect to other states and is known as Dueling DQN.
Dueling architectures have the ability to generalize learning in the presence of many
similar-valued actions.

For our SFC Deployment problem, we propose the usage of the DDQN algorithm [55]
where the ANN approximator of the Q-value function uses the dueling mechanism as
in [41]. Each layer of our Q-value function approximator is a fully connected layer. Conse-
quently, it can be classified as a multilayer Perceptron (MLP) even if it has a two-stream
architecture. Even if we approximate Aπ(a) and Vπ(s) whit two streams, the final output
layer of our ANN approximates the Q-value for each action using (26). The input neu-
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rons receive the state-space vectors sτ specified in Section 2.2.1. Figure 2 schematizes the
proposed topology for our ANN. The parameters of our model are detailed instead in
Table 2.

Figure 2. Dueling-architectured DDQN topology for our SFC Deployment agent: A two-stream deep
neural network. One stream approximates the state-value function, and the other approximates the
action advantage function. These values are combined to get the state-action value estimation in the
output layer. The inputs are instead the action is taken and the current state.

Table 2. Deep ANN Assigner topology Parameters.

Parameter Value

Action-advantage hidden layers 2
State-value hidden layers 2
hidden layers dimension 128

Input layer dimension 2 · |NH |+ (|NUC|+ |NCP|+ |K|+ 1)
Output layer dimension |NH |

Activation function between hidden layers ReLU

We index the training episodes with e ∈ [0, 1, ..., M], where M is a fixed training
hyper-parameter. We assume that an episode ends when all the requests of a fixed number
of simulation time-steps Nep have been processed. Notice that each simulation time-step t
may have a different number of incoming requests, |Rt|, and that every incoming request
r will be mapped to an SFC of length |K|, which coincides with the number of MDP
transitions on each SFC deployment process. Consequently, the number of transitions in
an episode e will be then given by

Ne = ∑
t∈[te

0,te
f ]

|K| · |Rt| (27)

where te
0 = t · Nep and te

f = t · (Nep + 1) are the initial and final simulation timesteps of
episode e, respectively (Recall that t ∈ N).

To improve training performance and avoid convergence to local optima, we use the
ε-greedy mechanism. We introduce a high number of randomly chosen actions at the
beginning of our training phase and progressively diminish the probability of taking such
random actions. Such randomness should help to reduce the bias in the initialization of
the ANN approximator parameters. In order to gradually lower the number of random
moves as our agent learns the optimal policy, our ε-greedy policy is characterized by an
exponentially decaying ε as:

ε(τ) = ε f inal + (ε0 − ε f inal) · e
−τ

εdecay , ∀τ ∈ N+ (28)

where we define ε0, ε f inal , and εdecay as fixed hyper-parameters such that

εdecay >> 1 ≥ ε0 >> ε f inal
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Notice that ε(0) = ε0 and
lim

τ→+∞
ε(τ) = ε f inal

We call our algorithm Enhanced-Exploration Dense-Reward Duelling DDQN (E2-
D4QN) SFC Deployment. Algorithm 1 describes the training procedure of our E2-D4QN
DRL agent. We call learning network the ANN approximator used to choose actions. In
lines 1 to 3, we initialize the replay memory, the parameters of the first layers (θ1), the
action-advantage head (θ2), and the state-value head (θ3) of the ANN approximator. We
then initialize the target network with the same parameter values of the learning network.
We train our agent for M epochs, each of which will contain Ne MDP transitions. In lines
6–10 we set an ending episode signal τend. We need such a signal because, when the final
state of an episode has been reached, the loss should be computed with respect to the pure
reward of the last action taken, by definition of Q(s, a). At each training iteration, our
agent observes the environment conditions, takes an action using the ε-greedy mechanism,
obtains a correspondent reward, and transits to another state (lines 11–14). Our agent stores
the transition in the replay buffer and then randomly samples a batch of stored transitions
to run the stochastic gradient descent on the loss function in (24) (lines 14–25). Notice that
the target network will only be updated with the parameter values of the learning value
each U iterations to increase training stability, where U is a fixed hyper-parameter. The
complete list of the training hyper-parameters used for training is enlisted in Appendix A.4.

Algorithm 1 E2-D4QN.

1: Initialize D
2: Initialize θ1, θ2, and θ3 randomly
3: Initialize θ−1 , θ−2 , and θ−3 with the values of θ1, θ2, and θ3, respectively
4: for episode e ∈ {1, 2, ..., M} do
5: while τ ≤ Ne do
6: if τ = Ne then
7: τend ← True
8: else
9: τend ← False

10: end if
11: Observe state sτ from simulator.
12: Update ε using (28).
13: Sample a random assignation at action with probability ε

or aτ ← argmax
a

Q(sτ , a; Θ) with probability 1− ε.

14: Obtain the reward rτ using (18),
and the next state sτ+1 from the environment.

15: Store transition tuple (sτ , aτ , rτ , sτ+1, τend) in D.
16: Sample a batch of transition tuples T from D.
17: for all (sj, aj, rj, sj+1, τend) ∈ T do
18: if τend = True then
19: yj ← rj
20: else
21: yj ← r + γQ(sj+1, argmax

a
Q(sj+1, a; θ), θ−)

22: end if
23: Compute the temporal difference error L(θ) using (24).
24: Compute the loss gradient ∇L(θ).
25: Θ← Θ− lr · ∇L(θ)
26: Update Θ− ← Θ only every U steps.
27: end for
28: end while
29: end for
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2.3. Experiment Specifications
2.3.1. Network Topology

We used a real-world dataset to construct a trace-driven simulation for our experiment.
We consider the topology of the proprietary CDN of an Italian Video Delivery operator in
our experiments. Such an operator delivers Live video from content providers distributed
around the globe to clients located in the Italian territory. This operator’s network consists
of 41 CP nodes, 16 hosting nodes, and 4 client cluster nodes. The hosting nodes and
the client clusters are distributed in the Italian territory, while CP nodes are distributed
worldwide. Each client cluster emits approximately 1× 104 Live-Video requests per minute.
The operator gave us access to the access log files concerning service from 25–29 July 2017.

2.3.2. Simulation Parameters

We took data from the first four days for training our SFC Deployment agent and used
the last day’s trace for evaluation purposes. Given a fixed simulation time-step interval
of 15 seconds and a fixed number of Ne = 80 time-steps per episode, we trained our
agent for 576 episodes, which correspond to 2 runs of the 4-day training trace. At any
moment, the vCDN conditions are composed by the VNF instantiation states, the caching
VNF memory states, the container resource provision, utilization, etc. In the test phase
of every algorithm, we should fix the initial network conditions to reduce evaluation bias.
However, setting the initial network conditions like those encountered at the end of its
training cycle might also bias the evaluation of any DRL agent. We want to evaluate every
agent’s capacity to recover the steady state from general environment conditions. Such an
evaluation needs initial conditions to be different with respect to the steady-state achieved
during training. In every experiment we did, we set the initial vCDN conditions as those
registered at the end of the fourth day when considering a greedy SFC deployment policy.

We fix the QoS, Hosting costs, and DT-cost weight parameters in (16) to 0.6, 0.3, and
0.1, respectively.

In the context of this research, we did not have access to any information related to
the data-transmission delays. Thus, for our experimentation, we have randomly gener-
ated fixed data-transmission delays considering the following realistic assumptions. We
assume that the delay between a content provider and a hosting node is generally bigger
concerning the delay between any two hosting nodes. We also assumed that the delay
between two hosting nodes is usually bigger than between hosting and client-cluster nodes.
Consequently, in our experiment, delays between CP nodes and hosting nodes were gen-
erated uniformly in the interval 120–700 [ms], delays between hosting nodes, from the
interval 20–250 [ms], the delays between hosting nodes and client clusters were randomly
sampled from the interval 8–80 [ms]. Also, the unitary data-transportation costs were
randomly generated for resembling a multi-cloud deployment scenario. For links between
CP nodes and hosting nodes, we assume that unitary DT costs range between 0.088 and
0.1 USD per GB (https://cloud.google.com/cdn/pricing (accessed on 26 October 2021)).
For links between hosting nodes, the unit DT costs were randomly generated between 0.08
and 0.004 USD per GB, while DT Cost between hosting nodes and client cluster nodes is
assumed null.

The rest of the simulation parameters are given in Appendix A.3.

2.3.3. Simulation Environment

The training and evaluation procedures for our experiment were made on a Google
Colab-Pro hardware-accelerated Environment equipped with a Tesla P100-PCIE-16GB GPU,
an Intel(R) Xeon(R) CPU @ 2.30GHz processor with two threads, and 13 GB of main
memory. The source code for our vCDN simulator and our DRL framework’s training
cycles was made in python v. 3.6.9. We used torch library v. 1.7.0+cu101 (PyTorch) as
a deep learning framework. The whole code is available online on our public repos-
itory (https://github.com/QwertyJacob/e2d4qn_vcdn_sfc_deployment (accessed on 26
October 2021)).

 https://cloud.google.com/cdn/pricing
 https://github.com/QwertyJacob/e2d4qn_vcdn_sfc_deployment
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2.3.4. Compared State-of-Art Algorithms

We compare our algorithm with the NFVDeep framework presented in [14]. We
have created three progressive enhancements of the NFVDeep algorithm for an exhaustive
comparison with E2-D4QN. NFVDeep is a policy gradient DRL framework for maximizing
network throughput and minimizing operational costs on general-case SFC deployment.
Xiao et al. design a backtracking method: if a resource shortage or exceeded latency event
occurs during SFC deployment, the controller ignores the request, and no reward is given
to the agent. Consequently, sparse rewards characterize NFVDeep. The first algorithm
we compare with is a reproduction of NFVDeep on our particular Live-Streaming vCDN
Environment. The second algorithm introduces our dense-reward scheme on the NFVDeep
framework, and we call it NFVDeep-Dense. The third method is an adaptation of NFVDeep
that introduces our dueling DDQN framework but keeps the same reward policy as the
original algorithm in [14], and we call it NFVDeep-D3QN. The fourth algorithm is called
NFVDeep-Dense-D3QN, and it adds our dense reward policies to NFVDeep-D3QN. Notice
that the difference between NFVDeep-Dense-D3QN and our E2-D4QN algorithm is that
the latter does not use the backtracking mechanism: In contrast to any of the compared
algorithms, we permit our agent to do wrong VNF assignations and to learn from its
mistakes to escape from local optima.

Finally, we also compare our proposed algorithm with a greedy-policy lowest-latency
and lowest-cost (GP-LLC) assignation agent, based on the work presented in [57]. GP-LLC
is an extension of the algorithm in [57], that includes server-utilization, channel-ingestion
state, and resource-costs awareness in the decisions of a greedy policy. For each incoming
VNF request, GP-LLC will assign a hosting node. This greedy policy will try not to overload
nodes with assignation actions and always choose the best available actions in terms of
QoS. Moreover, given a set of candidate nodes respecting such a greedy QoS-preserving
criterion, the LLC criterion will tend to optimize hosting costs. Appendix B describes in
detail the GP-LLC SFC Deployment algorithm.

3. Results

Various performance metrics for all the algorithms mentioned in Section 2.3.4 are
presented in Figure 3. Recall that the measurements in such a figure are taken during
the 1-day evaluation trace as mentioned in Section 2.3.2. Notice that, given the time-step
duration and number of time-steps per episode specified in Section 2.3.2, one-day trace
consists of 72 episodes, starting at 00:00:00 h at finishing at 23:59:59 of the 29 July 2017.

3.1. Mean Scaled Network Throughput per Episode

The network throughput for each simulation time-step was computed using (10) and
the mean values for each episode were scaled and plotted in Figure 3a. Also the scaled
incoming traffic amount is plotted in such a figure. In the first twenty episodes of the trace,
which correspond to the period from 0:00 to 6:00, the incoming traffic goes from intense to
moderate. Incoming traffic has minor oscillations with respect to the antecedent descent
from episode 20 to episode 60, and it starts to grow again from the sixtieth episode on,
which corresponds to the period from 18:00 to the end of the trace.

The initial ten episodes are characterized for a comparable throughput between
GP-LLC, E2-D4QN, and NFVDeep-Dense-D3QN. We can see, however, from the 20th
episode on, the throughput of policy-based NFVDeep variants is lowered. From episode 15,
however, which corresponds to the period from 05:00 to the end of the day, the throughput
of our proposed algorithm is superior throughput with respect to every other algorithm.
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Figure 3. Basic evaluation metrics of E2-D4QN, GP-LLC, NFVDeep and three variants of the latter, presented in Section 2.3.4.
(a) Scaled mean network throughput per episode. (b) Mean Acceptance Ratio per episode. (c) Mean rewards per episode.
(d) Mean scaled total Data-Transportation Costs per episode (e) Mean scaled total hosting costs per episode. (f) Mean scaled
optimization objective per episode.

3.2. Mean Acceptance Ratio per Episode

The AR for each simulation time-step was computed using (1) and the mean values
for each episode are plotted in Figure 3b. At the beginning of the test, corresponding to
the first five episodes, E2-D4QN has a superior AR performance. From episodes 5 to 15,
only E2-D4QN and NFVDeep-Dense-D3QN keep growing in the acceptance ratio. The
unique algorithm that holds a satisfactory acceptance ratio during the rest of the day is E2-
D4QN instead. It should be stressed that the AR cannot be one in our experiments because
the parameter configuration described in Section 2.3.2 resembles overloaded network
conditions on purpose.

3.3. Mean Rewards per Episode

Figure 3c shows the mean rewards per episode. We plot the rewards obtained at every
|K| assignation steps. Notice that such a selection corresponds to the non-null rewards in
the sparse-reward models.

During the first 15 episodes, -00:00 to 05:00- both GP-LLC and E2-D4QN increment
their mean rewards starting from a worse performance with respect to the NFVDeep
algorithms. This is explained because the Enhanced-Exploration mechanism of E2-D4QN
and GP-LLC is the unique that includes negative rewards in the reward assignation policy.
From episode 15 to 20, E2-D4QN reaches the rewards obtained by NFVDeep-Dense-D3QN,
and from episode 20 on, E2-D4QN has a better performance with respect to the NFVDeep
variants, most of all due to the lowering of operational costs for this algorithm. Finally,
with the exception of the last 5 episodes, only E2-D4QN dominates the rest of the trace in
the mean reward metric, with the exception of the last five episodes.
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3.4. Total Scaled Data-Transportation Costs per Episode

The total DT costs per time-step as defined in (13) were computed and the mean
values per episode were scaled and plotted in Figure 3d. During the whole evaluation
period, both E2-D4QN and GP-LLC incur higher DT costs with respect to every other
algorithm. This phenomenon is explained by the Enhanced Exploration mechanism, which
permits E2-D4QN and GP-LLC, to accept requests even when the resulting RTT is over
the acceptable threshold. E2-D4QN and GP-LLC accept every incoming request instead.
Notice, however, that E2-D4QN and GP-LLC progressively reduce DT costs due to common
path creation for similar SFCs.From the twentieth episode on, however, only E2-D4QN
minimizes such costs while maintaining an acceptance ratio greater than 0.5.

3.5. Total Scaled Hosting Costs per Episode

A similar explanation can be given for the total Hosting Cost behavior. Such a cost
was computed for each time-step using (11) and the mean values per episode were scaled
and plotted in Figure 3e. Given the adaptive resource provisioning algorithm described
in Appendix A.1, we can argue that, in general, hosting cost is high for E2-D4QN and
GP-LLC because their throughput is high. The hosting costs burst that characterizes
the first twenty episodes, however, can be explained by the network initialization state
during experiments: Every algorithm is evaluated from an uncommon network state with
respect to the steady state reached during training. The algorithms that are equipped
with the Enhanced-Exploration mechanism tend to worse such a performance drop at the
beginning of the testing trace because of the unconstrained nature of such mechanism. It is
the Enhanced-Exploration however, that drives our proposed agent to learn sub-optimal
policies that permit to maximize the network acceptance ratio.

3.6. Optimization Objective

The optimization objective as defined in (16) was computed at each time-step, and the
mean values per episode were scaled and plotted in Figure 3f. Recall that (16) is invalid
whenever the acceptance ratio is above the minimum threshold of 0.5 as mentioned in
Section 2.1.4. For this reason, in Figure 3f we set the optimization value to zero whenever
the minimum service constraint was not met. Notice that no algorithm can achieve the
minimum acceptance ratio during the first ten episodes of the test. This behavior can
be explained by the greedy initialization with which every test has been carried out:
The initial network state for every algorithm is very different from the states observed
during training. From the tenth episode on, however, E2-D4QN is the only algorithm to
achieve a satisfactory acceptance ratio, and thus, the optimization objective function has a
non-zero value.

4. Discussion

Trace-driven simulations have revealed that our approach shows adaptability to the
complexity of the particular context of Live-Streaming in vCDN with respect to the state-
of-art algorithms designed for general-case SFC deployment. In particular, our simulation
test revealed decisive QoS performance improvements in terms of acceptance ratio with
respect to any other backtracking algorithm. Our agent progressively learns to adapt to
the complex environment conditions like different user cluster traffic patterns, different
channel popularities, unitary resource provision costs, VNF instantiation times, etc.

We assess the algorithm’s performance in a bounded-resource scenario aiming to
build a safe-exploration strategy that enables the market entry of new vCDN players.
Our experiments have shown that the proposed algorithm, E2-D4QN is the only one to
adapt to such conditions, maintaining an acceptance ratio above the general case state-
of-art techniques while keeping a delicate balance between network throughput and
operational costs.

Based on the results in the previous section, we now argue the main reasons that make
E2-D4QN the most suitable algorithm for online optimization of SFC Deployment on a Live-



Future Internet 2021, 13, 278 21 of 28

video delivery vCDN scenario. The main reason for our proposed algorithm’s advantage
is the combination of the enhanced exploration with a dense-rewards mechanism on a
dueling DDQN framework. We argue that such a combination leads to discover convenient
long-term actions in contrast to convenient short-term actions during training.

4.1. Environment Complexity Adaptation

As explained in Section 2.3.4, we have compared our E2-D4QN agent with the
NFVDeep algorithm presented in [14], with three progressive enhancements to such algo-
rithm, and with an extension of the algorithm presented in [57], which we called GP-LLC.
Authors in [14] assumed utilization-independent processing times. A consequence of this
assumption is the possibility of computing the remaining latency space with respect to
the RTT threshold before each assignment. In our work, instead, we argue that realistic
processing times should be modeled as utilization-dependent. Moreover, Xiao et al. did
not model ingestion-related utilization nor VNF instantiation time penalties. Relaxing the
environment with these assumptions simplifies the environment and helps on-policy DRL
schemes like the one in [14] to converge to suitable solutions. Lastly, in NFVDeep, prior
knowledge of each SFC session’s duration is also assumed. This feature helps the agent to
learn to accept longer sessions to increase the throughput. Unfortunately, it is not realistic to
assume session duration knowledge when modeling Live-Streaming in vCDN context. Our
model is agnostic to this feature and maximizes the overall throughput when optimizing
the acceptance ratio. This paper shows that the NFVDeep algorithm cannot reach a good
AR on SFC Deployment optimization without assuming all the aforementioned relaxations.

4.2. State Value, Advantage Value and Action Value Learning

In this work, we propose the usage of the dueling-DDQN framework for implement-
ing a DRL agent that optimizes SFC Deployment. Such a framework is meant to learn
approximators for the state value function, V(s), the action advantage function, A(a), and
the action-value function, Q(s, a). Learning such functions helps to differentiate between
relevant actions in the presence of many similar-valued actions. This is the main reason
why NFVDeep-D3QN improves AR with respect to NFVDeep: Learning the action advan-
tage function, helps to identify convenient long-term actions from a set of similar valued
actions. For example, preserving resources of low-cost nodes for popular channel bursts in
the future can be more convenient in the long term with respect to adopting a round-robin
load-balancing strategy during low incoming traffic periods. Moreover, suppose we do
such a round-robin dispatching. In that case, the SFC routes to content providers won’t
tend to divide the hosting nodes into non-overlapping clusters. This will provoke more
resource usage in the long run: almost every node will ingest the content of almost every
content provider. As generally content-ingestion resource usage is much heavier with
respect to content-serving, this strategy will accentuate the resource leakage on the vCDN
in the long run, provoking bad QoS performance. Our E2-D4QN learns to polarize the
SFC routes in order to minimize content ingestion resource usage during the training
phase. Such a biased policy performs in the best way possible with respect to the compared
algorithms taking into account the whole evaluation period.

4.3. Dense Reward Assignation Policies

Our agent converges to sub-optimal policies by carefully designing a reward schema
as the one presented in Section 2.2.2. Our algorithm assigns a specific reward at each MDP
transition considering the optimality of VNF assignments in terms of QoS, hosting costs,
and data transfer costs. This dense-reward schema enhances the agent’s convergence. In
fact, in our experiments, we have also noticed that the dense-reward algorithms improve
the results of their sparse-reward counterparts. In other words, we see in Figure 3b that
NFVDeep-Dense performs slightly better than NFVDeep, and NFVDeep-Dense-D3QN
performs better than NFVDeep-D3QN. This improvement exists because dense rewards
provide valuable feedback at each assignation step of the SFC, improving convergence
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of the DRL agents to shorter RTTs. On the other hand, we have also observed that even
if cost-related penalties are sparsely subtracted in our experiments, the proposed DRL
agent learns to optimize SFC deployment not only with respect to QoS but also taking into
account the operational costs.

4.4. Enhanced Exploration

Notice that GP-LLC does not learn inherent network traffic dynamics, making it
impossible to differentiate convenient long-term actions from greedy actions. For example,
GP-LLC won’t adopt long-term resource consolidation policies, in which each channel is in-
gested by a defined subset of nodes to amortize the overall ingestion resource consumption.
On the other hand, we argue that the main reason that keeps NFVDeep above a satisfactory
performance is the leakage of the enhanced exploration mechanism. In fact, we demon-
strate that the acceptance ratio of E2-D4QN surpasses every other algorithm because we
add enhanced exploration, which enriches the experience replay buffer with non-optimal
SFC deployments during training, preventing the agent from getting stuck at local optima,
which we think is the main problem with NVFDeep under our environment conditions.

In practice, in all the NFVDeep or backtracking algorithms, i.e., the algorithms without
the enhanced-exploration mechanism, at each VNF assignment, the candidate nodes are
filtered based on their utilization availability. Only non-overloaded nodes are available
candidates. If the agent chooses an overloaded node, the action is ignored, and no reward
is given. Our model instead performs assignment decisions without being constrained
by current node utilization to enhance the exploration of the action space. The well-
designed state-space codifies important features that drive learning towards sub-optimal
VNF placements:

1. The request vector codifies useful information about the requests that help our agent
extract the incoming traffic patterns.

2. The ingestion vector helps our agent to optimize ingestion-related resource demand
by avoiding session assignments to VNF instances that do not ingest the content
requested at the moment of assignation.

3. The maximum utilization vector gives our agent resource utilization awareness,
making it able to converge to assignation policies that optimize processing times and
preserve QoS.

Consequently, our agent learns optimal SFC Deployment policies without knowing
the actual bounds of the resource provision or the current instantiation state of the VNF
instances that compose the vCDN. It learns to recognize the maximum resource provisioning
for the VNFs and also learns to evict assignations to non-initialized VNFs thanks to our
carefully designed reward assignation scheme.

4.5. Work Limitations and Future Research Directions

We have based the experiments in this paper on a real-world data set concerning a
particular video delivery operator. In this case, the hosting nodes of the corresponding
proprietary CDN are deployed in the Italian territory. However, such a medium-scale
deployment is not the unique possible configuration for a CDN. Consequently, as future
work, we plan to obtain or generate data concerning high-scale topologies to assess the
scalability of our algorithm to such scenarios.

Further, this paper presents the assessment of the performance of various DRL-based
algorithms. However, the authors of this work had access to real-world data set limited
to a five-day trace. Consequently, the algorithms presented in this work were trained on
a four-day trace, while the evaluation period consisted of a single day. Future research
directions include assessing our agent’s training and evaluation performance on data
concerning more extended periods.

Finally, in this work, we have used a VNF resource-provisioning algorithm that is
greedy and reactive, as specified in Appendix A.1. A DRL-based resource-provisioning
policy would instead act proactive and long-term convenient actions. Such a resource-
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provisioning policy, combined with the SFC deployment policy presented in this work,
would further optimize QoS and Costs. Thus, future work also includes the development
of a multi-agent DRL framework for the joint optimization of both resource provisioning
and SFC deployment tasks in the context of live-streaming in vCDN.
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Appendix A. Further Modelisation Details

Appendix A.1. Resource Provisioning Algorithm

In this paper we assume that the VNO component is acting a greedy resource provision-
ing algorithm, i.e., the resource provision on f k

i for the next time-step will be computed as:

ct+1
res,k,i = min(ct

res,k,i ·
µt

res,k,i

µ̂res,k,i
, cmax

res,k,i), ∀res ∈ {cpu, bw, mem} (A1)
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where the parameter cmax
res,k,i is the maximum res resource capacity available for f k

i , and
µ̂res,k,i is a parameter indicating a fixed desired utilization of f k

i after the adaptation takes
place and before receiving further session requests. Recall that µt

res,k,i it the current res
resource utilization in f k

i . Resource adaptation procedure is triggered periodically each
Ta time-steps, where Ta is a fixed parameter. On the other hand, each time that any f k

i is
instantiated, the VNO allocates a fixed minimum resource capacity for each resource in
such VNF instance, denoted as cmin

res,k,i.

Appendix A.2. Inner Delay-Penalty Function

The core of our QoS related reward is the delay-penalty function, which has some
properties specified in Section 2.2.1. The function that we used on our experiments is the
following:

d(t) =
1
t
+ e−t + 2e

−t
100 + e

t
500 − 1 (A2)

Notice that the domanin of d(t) will be the RTT of any SFC deployment and the
co-domain will be the segment [−1, 1]. Notice also that:

lim
t→+∞

d(t) = −1 and lim
t→tmin

d(t) ≈ 1

Such a bounded co-domain helps to stabilize and improve the learning performance
of our agent. Notice, however that it is worth noting that similar functions could be easily
designed for other values of T.

Appendix A.3. Simulation Parameters

The whole list of our simulation parameters is presented in Table A1. Every simulation
has used such parameters unless other values are explicitly specified.

Table A1. List of simulation parameters.

Parameter Description Value

γCPU CPU Unit Resource Costs (URC)
(0.19, 0.6, 0.05)(for each cloud provider)

γMEM Memory URC (0.48, 1.2, 0.1)
γBW Bandwidth URC (0.9, 2.5, 0.25)

cmax
Maximum resource provision parameter 20(assumed equal for all the resource types)

cmin
Minimum resource provision parameter 5(assumed equal for all the resource types)

φp Payload workload exponent 0.2
φb Bit-rate workload exponent 0.1

ρ∗cpu Optimal CPU Processing Time
5× 10−3

(baseline of over-usage degradation)
ρ∗mem Optimal memory PT 1× 10−3

ρ∗bw Optimal bandwidth PT 5× 10−2

ψcpu CPU exponential degradation base 100
ψmem Memory deg. b. 100
ψbw Bandwidth deg. b. 100
Ich cache VNF Instantiation Time 10,000Penalization in ms (ITP)
Ist streamer VNF ITP 8000
Ico compressor VNF ITP 7000
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Table A1. Cont.

Parameter Description Value

Itr transcoder VNF ITP 11,000
Ta Time-steps per greedy 20resource adaptation

µ̂res,k,n Desired resulting utilization 0.4after adaptation
αres Optimal resourse res utilization 0.75(assumed equal for every resource type)

Appendix A.4. Training Hyper-Parameters

A complete list of the hyper-parameters values used in the training cycles is specified
in Table A2. Every training procedure has used such values unless other values are
explicitly specified.

Table A2. List of hyper-parameters’ values for our training cycles.

Hyper-Parameter Value

Discount factor (γ ) 0.99
Learning rate 1.5× 10−4

Time-steps per episode 80
Initial ε-greedy action probability 0.9
Final ε-greedy action probability 0.0

ε-greedy decay steps 2× 105

Replay memory size 1× 105

Optimization batch size 64
Target-network update frequency 5000

Appendix B. GP-LLC Algorithm Specification

In this paper, we have compared our E2-D4QN agent with a greedy policy lowest-
latency and lowest-cost (GP-LLC) SFC deployment agent. Algorithm A1 describes the
behavior of the GP-LLC agent. Note that the lowest-latency and lowest-cost (LLC) criterion
can be seen as a procedure that, given a set of candidate hosting nodes, Nc

H chooses the
correct hosting node to deploy the current VNF request f̂ k

r of a SFC request r. Such a
procedure is at the core of the GP-LLC algorithm, while the outer part of the algorithm
is responsible for choosing the hosting nodes that form the candidate set according to a
QoS maximization criterion. The LLC criterion woks as follows. Given a set of candidate
hosting nodes and a VNF request, the LLC criterion will divide the candidate nodes in
subsets considering the cloud provider they come from. It will then chose the hosting node
corresponding to the route that will generate less transportation delay, i.e., the fastest route,
from the cheapest cloud-provider candidate node subset.

The outer part of the algorithm acts instead as follows. Every time that a VNF request
f̂ k
r needs to be processed, the GP-LLC agent monitors the network conditions. The agent

identifies the hosting nodes that are currently not in overload conditions, N̂H , the ones
that currently have a resource provision that is less than the maximum for all the resource
types ÑH , and the hosting nodes that currently have a fk ingesting the content from the
same content provider requested by f̂ k

r , Nk
l (lines 2–4). Notice that ÑH is the set of nodes

whose resource provision can still be augmented by the VNO. Notice also that choosing a
node from Nk

l to assign f̂ k
r , implies not to incur in a Cache MISS event and consequently

warrants the acceptance of r. If N̂H ∩ ÑH is not an empty set, the agent assigns f̂ k
r to a node

in such a set following the LLC criterion. However, if N̂H ∩ ÑH is an empty set, then if at
least N̂H is not empty, then a node from N̂H will be chosen using the LLC criterion. If on
the other hand, N̂H is empty, then a node from ÑH will be chosen with the LLC criterion.
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Finally, if both N̂H and ÑH are empty sets, then a random hosting node will be chosen for
hosting f̂ k

r (lines 5–16). Choosing a random node in the last case instead of using the LLC
criterion from the whole hosting node will prevent bias in the assignation policy to cheap
nodes with fast routes. Making such a random choice will then result in an increment in
the overall load balance among the hosting nodes.

Notice that, whenever possible, GP-LLC will evict overloading nodes with assignation
actions and will always choose the best actions in terms of QoS. Moreover, given a set of
candidate nodes respecting such a greedy QoS-preserving criterion, the inner LLC criterion
will tend to optimize hosting costs and data-transmission delays. Notice also that GP-LLC
does not take into account data-transportation costs for VNF SFC deployment.

Algorithm A1 GP-LLC VNF Assignation procedure.

1: for f k
r ∈ r do

2: Get the non-overloaded hosting nodes set N̂H
3: Get the still-scalable hosting nodes set ÑH
4: Get the set of hosting nodes that currently have a f k ingesting lr on Nk

l
5: if |N̂H | > 0 then
6: if |N̂H ∩ ÑH | > 0 then
7: use the LLC criterion to chose f k

r from N̂H ∩ ÑH
8: else
9: use the LLC criterion to chose f k

r from N̂H
10: end if
11: else
12: if |ÑH | > 0 then
13: use the LLC criterion to chose f k

r from ÑH
14: else
15: choose a random node f k

r from |N̂H |
16: end if
17: end if
18: end for
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