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Abstract: In recent years, the Internet of Things (IoT) devices have become an inseparable part of
our lives. With the growing demand for Smart Applications, it becomes clear that IoT will bring
regular automation and intelligent sensing to a new level thus improving quality of life. The core
component of the IoT ecosystem is data which exists in various forms and formats. The collected
data is then later used to create context awareness and make meaningful decisions. Besides an
undoubtedly large number of advantages from the usage of IoT, there exist numerous challenges
attributed to the security of objects that cannot be neglected for uninterrupted services. The Mirai
botnet attack demonstrated that the IoT system is susceptible to different forms of cyberattacks.
While advanced data analytics and Machine Learning have proved efficiency in various applications
of cybersecurity, those still have not been explored enough in the literature from the applicability
perspective in the domain of resource-constrained IoT. Several architectures and frameworks have
been proposed for defining the ways for analyzing the data, yet mostly investigating off-chip analysis.
In this contribution, we show how an Artificial Neural Network model can be trained and deployed
on trivial IoT nodes for detecting intelligent similarity-based network attacks. This article proposes a
concept of the resource-constrained intelligent system as a part of the IoT infrastructure to be able
to harden the cybersecurity on microcontrollers. This work will serve as a stepping stone for the
application of Artificial Intelligence on devices with limited computing capabilities such as end-point
IoT nodes.

Keywords: cybersecurity; smart cities; smart applications; network attacks; machine learning;
internet of things

1. Introduction

Internet of Things (IoT) is a new way of organizing domestic infrastructure and
everyday automatons through portable and cheap devices which are capable of handling
routine works and optimizing tasks over the large infrastructure [1]. There is a vast
amount of architectures and platforms available for building ad hoc solutions ranging
from single-board microcontroller units (MCU) such as Arduino and STM32, and ending
with a single-board portable computer such as Raspberry Pi, Cubieboard and Orange Pi,
etc. [2]. Smart Cities became reality and utilize all these technologies to make our everyday
life better. Despite usefulness and incredible automation capabilities, there exist serious
threats to IoT in both physical and cyber realms [3]. F-secure, a security firm estimated that
cyberattacks on IoT devices are increasing at a rapid speed, i.e., more than 2.9 billion attack
events that involve IoT devices were recorded in 2019 [4].

IoT end-node devices are designed to operate with a limited amount of memory,
computational capabilities, and energy [5,6]. They can perform specific simple operations
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helping to automate everyday tasks, while human resources can be free to execute other,
more important tasks [7]. This is where the smart-alike applications became tightly inte-
grated into our everyday life such as smartwatches, smart fridges, climate control, house
alarms, etc. With the growing popularity of interconnected devices in our everyday lives,
there emerges an understanding of obvious cybersecurity threats related to the omnipresent
collection of different data, including personal and sensitive information [8,9]. While it is
used for creating a better environment, often, the data protection is not taken into consid-
eration [10]. It has been shown recently that IoT systems are susceptible to cyberattacks
in nearly the same ways as conventional Information and Communication Technologies
(ICT) systems. Cybersecurity experts keep pace in the development of attack mitigation
methods on IoT gateways/hubs like Intrusion Detection Systems (IDS) and Anti-Viruses
(AV). With the emergence of intelligent data systems that use previous experience and
expert knowledge, one can mitigate attacks in a fast manner using fewer resources, yet the
models need to be tuned [11]. Moreover, IoT end-node devices may gather information
from a wide range of trivial sensors that further can be used to form awareness about states
in the whole system and support automated decision making either from the incident
response perspective or police investigations [12].

However, there can be seen several problems related to the characteristics of IoT end-
node devices. One challenge is resource constraints that cause irregular connection intervals
influenced mostly by the availability of necessary energy required for data transmission.
Another challenge that is recently appearing is the examples of adversarial Machine
Learning (ML) that can be considered as a major threat to intelligent cybersecurity solutions.
So, there is a need to put unnecessary computations off-chip and leave only necessary
ones on-chip [13]. Conventional ML methods will have to be adapted and tuned to be
able to fully incorporate constraints of IoT platforms as described by Zahoor et al. [14] as
well as perform necessary data fusion and feature selection from across multiple sensors.
In addition to this, it can be observed a large cyber threat landscape on IoT platforms,
including conventional network and malware infections. While malware for IoT end-node
devices was considered to be nonsense a few years ago, the huge impact from the Mirai
botnet proved that such malware has already been developed [15].

The contribution of this paper is two-fold. First, it presents a way of protecting IoT end-
node devices from cyberattacks using data analytics. Recent research showed that such an
approach is technically sound and can be incorporated to preserve confidentiality, integrity,
and availability of the system and data. ML gives flexibility since exact network attacks
rules need to be updated regularly, which is not possible in remote locations. However,
the current challenge that we foresee is in the ability to deploy such models only on the
level of IoT gateways that have sufficient resources for the training and testing phase.
Second, we propose a framework of an intelligent system that might be used in the IoT
ecosystem to support the detection of network attacks, including the active involvement
of IoT end-nodes (in contrary to more powerful IoT gateways). In particular, the proof-of-
concept includes the Artificial Neural Network (ANN) that is trained on the Arduino with
2 KBytes of RAM (Random Access Memory) to detect network attacks. Finally, the analysis
of the current needs of intelligent IoT infrastructure protection is provided to highlight a
particular way of achieving a trade-off between intelligent security systems and qualitative
delivery of services. A potential application of advanced data analytics to combat the
crimes in Smart Cities was presented in a winning idea during Interpol Thinkathon 2018
competition (https://www.politiforum.no/artikler/norsk-forskning-pa-framtidens-politi-
til-topps-i-interpol/449053, accessed on 21 September 2021) by the NTNU team, where the
idea of advanced data analytics in Smart Cities has been presented.

The paper is organized as follows. Section 2 gives an overview of the existing smart
applications and modern community-accepted IoT components currently available on the
market. Aspects of the utilization of Machine Learning on the Internet of Things end-node
are explored in Section 3. A suggested use case scenario and methodology of the IoT-based
Neural Network training is given in Section 4. Moreover, various sides of complexity and
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applicability in the resources-constrained environment have been studied with respect to
ANN. Corresponding training and testing phases together with computing performance
implications are evaluated in Section 5. Finally, discussions of the achieved results and
conclusions are given in Section 6.

2. Background Literature Review

The purpose of this section is to give an understanding of the particular applica-
tions that might be vulnerable to cyberattacks, as well as to demonstrate what are the
specific components that are community accepted and can be freely used in any kind of
smart applications.

2.1. Security Concerns in Smart Applications

In general, the whole range of smart applications includes any kind of hardware
and software that can be used to improve living standards, facilitate everyday tasks, and
simplify the interaction between humans and the surrounding environment. This can
include personal health monitoring devices, smart homes, smart environments, smart fac-
tories, smart grids, etc. [16]. The main idea is to utilize multiple sensors of the information
to model the surrounding context of the environment and an optimized defined model
according to requirements, often adaptive.

A general IoT ecosystem normally has the following components, independently from
the smart application, as presented by Mujica et al. [17]: sensors—simple passive devices
that perform reading of measurements (temperature, brightness, etc), actuators—active
devices that can perform actions (different servo-based elements), IoT nodes—end-point
devices with limited computational capabilities (CPU ≈ MHz) that are used to collect data,
send measurements and often work using batteries or solar panels, IoT gateways—portable
devices having the functionality of low-end personal computers (CPU ≈ GHz), performing
data processing and aggregation tasks, Data Lakes—redundant storage used for collecting
historical data, processing and giving access to customers through the Internet. Part of the
ecosystem is software that defines particular functionality and the system’s response to
environmental changes based on the sensors.

However, the growing popularity of smart applications made them vulnerable to
multiple attacks that have been successfully demonstrated during the last years as described
by Deokirikar et al. [18]. The Mirai botnet demonstrated that the security and impact of
the attacks on the IoT should not be underestimated [15]. The attack was successful
due to multiple factors, including weak and default passwords, insufficient or absent
implementation of industrial security standards, lack of privacy-by-design. To resemble
the whole picture, it was studied how well privacy is implemented in the smartwatches
by famous brands [10]. Due to the lack of such an omnipresent design feature, multiple
users can be affected, especially, when the smartwatches are used by kids. A similar case
was known from the German doll called “Cayla doll”, which is susceptible to attacks, also
including eavesdropping over wireless communication [19]. The discovery of the indicators
of compromise led to the ban of dolls and it has been pulled out of the market.

Considering the aforementioned security concerns, there has been created a web portal
“Shodan” (https://www.shodan.io/, accessed on 21 September 2021) to monitor devices that
are connected to the Internet globally. Searching for the generic keywords “Internet of Things”
we can get information about 9747 devices across the globe as of 10 February 2020. A corre-
sponding search for the “webcam” resulted in 4598 different devices currently online. It also
can be seen that in both cases, many devices use some kind of HTTP webserver to deliver
the information. In a matter of fact, even MCU is capable of running web servers that can
be accessed externally such as Arduino (https://www.arduino.cc/en/Tutorial/WebServer,
accessed on 21 September 2021). Therefore, the amount of connected IoT devices is growing
and the level of their capabilities is approaching consumer personal computers.

Cybersecurity became one of the important requirements when it comes to the design
of Information and Communication Technologies (ICT) systems, including IoT. It covers

https://www.shodan.io/
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both physical aspects such as sensors and actuators in remote locations and cyber aspects,
i.e., data. The data can be way more valuable than the price of the hardware and installed
software [20]. Therefore, in this work, we consider data as one of the values of the smart
applications and, therefore, keep in mind the following states that the data in the ICT system
can be found in data-at-rest, data-in-transfer, data-in-use. Over the last decades, there have
been developed a huge number of cybersecurity solutions that are available for personal
computers as well as large-scale business solutions to mitigate basic threats, e.g., malware
and network attacks. However, we have to highlight that the limited computational
capabilities of the IoT devices in smart applications bring new challenges to ensuring the
protection of data in the aforementioned three states.

2.2. Data-Related Capabilities of the IoT Ecosystem Components

The key to the successful identification of attacks on the IoT ecosystem is the avail-
ability of the necessary data and corresponding Indicators of Compromise. Taking into
consideration a generic structure of the IoT ecosystem mentioned earlier, we focus only
on IoT nodes and IoT gateways, which are more susceptible and vulnerable to cyberattacks.
Those devices often have multiple communication capabilities and are located at the fore-
front of the anticipated attacks. On the one side, the Data Lakes have enough computational
capacities to withstand large-scale Distributed Denial-of-Service (DDoS) attacks using
enterprise solutions. On the other side, sensors/actuators have no functionality that can be
affected-their ways to check the readings to prevent erroneous actions. Therefore, those
can be only sabotaged physically, however, cannot be performed unnoticed due to multiple
security measures [21].

To ensure reproducibility of the study, the range of devices that we consider are well-
maintained in the community, open projects available for a wide range of customers to
build end-point solutions. The main research question is to understand the capabilities of
those devices related to data processing and the anticipated introduction of data analytics.
The amount of data that can be generated in the IoT ecosystem has already become
susceptible to the challenges affiliated with the Big Data paradigm: Velocity, Variety,
Veracity, and Variability [3]. It means that one will need to develop novel cybersecurity
defense mechanisms in IoT focusing on the most important traces of traffic attributed
to attacks.

As mentioned before, we are looking into the capabilities of single-board MCU and
single-board microcomputers or System on a Chip (SoC) from the perspective of data
analytics to combat cyberattacks. Both are portable and can be easily placed on-site as well
as out in a remote location with limited availability of power supply either through batteries
or solar panels. Considering the popularity aspects and community-based maintenance
of the projects, AVR-based Arduino can be treated as the most popular single-board
micro-controller (IoT node) with ARM-based Raspberry Pi/Orange Pi representing single-
board micro-computer (IoT gateway) [22]. From the cybersecurity perspective, data can be
protected on the Linux-based IoT gateway using tools available for Unix such as Clam
AV for malicious software detection, encryption available for Linux [23] and RPiDS [24]
for IDS.

However, the application of such measures on IoT end-nodes is extremely limited.
There is no OS, yet rather firmware that defines strict routine of initialization function
SETUP() and iterative function LOOP() [25]. The only cybersecurity solution that is available
and being tested for AVR is Arduino Crypto library [26]. Therefore, it is necessary to
establish an understanding of what kind of data analytics for security can be run on IoT
nodes and what should be moved to IoT gateway for the sake of ensuring primary services
availability and data protection. Therefore, it is imperative to see the differences in the
computational and data processing capabilities of both IoT nodes and IoT gateways. The
comparison of the two most common, widely used, and cheap devices are given in Table 1.

From the comparison of both devices, it is clear that IoT gateway devices can partici-
pate in full-scale data processing and analytics. However, IoT node with limited computa-
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tional capabilities shortens the range of additional functionality that can be implemented
in addition to primary functionality.

Table 1. Comparison of popular MCU (left) and SoC (right).

Characteristics Arduino Uno Rev3 1 Orange Pi One 2

CPU frequency 16 Mhz 4-core 1 GHz
Flash memory 32 KBytes 3 None
RAM 2 KBytes 512 MB DDR3
EEPROM 1 KByte None
Operating Voltage 3.3–5 V 5 V
SD card extension Possible 4 Yes
NAS/USB HDD No Yes
Network Possible 5 Ethernet
1: https://store.arduino.cc/arduino-uno-rev3 (accessed on 21 September 2021); 2: http://www.orangepi.org/
orangepizero/ (accessed on 21 September 2021); 3: of which 2 KB is used by bootloader; 4: SD card extension
shield; 5: Ethernet card extension shield.

3. Machine Learning on the Internet of Things: State of the Art and Implications

Generally speaking, ML represents a concept of training computer systems based
on the previous historical information to detect or predict patterns that have not been
seen before as presented in Kononenko et al. [27]. ML has found multiple applications in
security such as malware detection, network attack detection, spam detection, etc. The
general ML approach is shown in Figure 1.

1. Training. This is the process of building the Intelligent Classifier that can help to
perform similarity-based attacks classification and detection:

• Data Pre-processing. The raw characteristics such as files’ static and dynamic
properties, network traffic packet, etc have to be harvested in a methodological
reproducible manner.

• Feature Construction. Extraction of the relevant and selection of the best numer-
ical indicators that can differentiate different entry patterns. The quality of the
features will define the efficiency and effectiveness of the whole model.

• Model Training. During this step, the selected Machine Learning method is
being trained.

2. Testing. This step helps to determine the particular class (e.g., malicious or benign)
of a data piece that needs to be classified such as a file or network traffic packet:

• Pre-processing. A set of raw characteristics is being aggregated in a way identi-
cal to Training: Data Pre-processing step.

• Feature measurement. The raw data characteristics are extracted according to
the defined previously features properties.

• Classification/Decision Making. Similarity-based identification using the model
constructed during the Training: Model Training step.

Figure 1. A general Machine Learning routine.

https://store.arduino.cc/arduino-uno-rev3
http://www.orangepi.org/orangepizero/
http://www.orangepi.org/orangepizero/
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3.1. Community-Accepted Machine Learning Models

ML methods have been successfully used before in different tasks related to cyberse-
curity and data protection. A recent survey by Stam et al. [28] demonstrated how different
models can be applied. The current state of the art in ML [27] includes methods like Hid-
den Markov Model (HMM), Support Vectors Machines (SVM), Bayesian Networks (BN),
k-Nearest Neighbors (k-NN), Decision Rules (DR), Fuzzy Logic (FL), etc. With the growth
in the computational capabilities of IoT devices, an opportunity came to apply more com-
plexity and intense data analytic everywhere. It means that there can be used optimized
ML models with better accuracy, model specification, capable of handling a variety of data
types and decision granularity [29]. One of the recent developments in so-called Hybrid
Intelligence is when stand-alone ML models are combined to mitigate the weaknesses
of each and produce a better and more generalized model. Shalaginov [30] showed that
Neural Networks can be combined and used with Fuzzy Logic to produce an accurate
classification model as well as descriptive fuzzy logic rules set for a human-understandable
explanation of the ML classification for cybersecurity.

In recent years, the Deep Learning concept has become popular [31], basically intro-
ducing higher levels of non-linearity in the models used to describe complex real-world
data. Deep Neural Networks gained popularity due to the powerful ability to model
problems related to text and image processing as well as in cybersecurity. In the majority
of cases, “deep” means adding more layers to the Neural Network, such that it consid-
ers all networks with more than 3 layers [32]. A popular ML cross-platform ML tool
Weka (https://www.cs.waikato.ac.nz/ml/weka/, accessed on 21 September 2021) uses a
following “rule of thumb”: (number_o f _attributes + number_o f _classes)/2.

When it comes to the application of those models in the IoT ecosystem, there have
to be considered multiple aspects and limitations for a successful application. So, what
matters for the final use is (i) space complexity and (ii) computational complexity of the train
ML model that can be used to predict classes of input data. We can conclude that there
exist a large number of variations of ML models, however, one would need to consider the
usage of feature selection and shallower models for end-point components like IoT nodes
and extensive models with a higher level of abstraction at the IoT gateway level.

3.2. Human Factor in Cyberattacks Detection in Smart Cities

A need for a security expert to understand what is happening in the IoT ecosystem
and if there are any zero-day attacks. One of the ways is to deploy so-called human-
oriented detection, where ML models are supplemented by a description of the detection
process, for example, readable linguistic rules attributed to an attack. To do so, the decision
model should be deployed on IoT node, while the descriptive model should be linked and
actualized on the IoT gateway/control management system.

3.3. Existing ML Implementations for IoT

To give an understanding of the existing concepts of ML application in IoT for security,
a literature study has been performed. It can be seen that this perspective has drawn
enough attention in the scientific community. Yavuz [33] studied an application of Deep
Learning for network attack detection using a large-scale data simulation approach. The
authors successfully used a data set with 64.2 million data points to train the Deep Neural
Network for the detection of IoT routing attacks. Further, Canedo et al. [34] used 4000 data
samples containing device ID, sensor value, and time stamp of each data transmission to
train ANN for detection of abnormalities in the IoT network. Hussain et al. [35] presented
an extensive overview of the literature related to the application of ML and DL for security
in IoT. Multiple challenges and opportunities have been mentioned, also include the fact
the IoT devices have limited capacities. Al-Garadi et al. [36] performed another extensive
literature review where it was given a detailed description of possible attacks on the IoT
infrastructure and network layers and now different data can be used to ensure the IoT
security through training ML and DL methods in particular. Another literature review by

https://www.cs.waikato.ac.nz/ml/weka/
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Andročec et al. [37] presented findings such as the most commonly used ML methods in
IoT are SVM and ANN, while 62% of reviewed research works focus on network attacks,
intrusion detection in particular. Restuccia et al. [38] discussed current challenges in the
age of IoT and Software-Defined networks. One of the aspects is the development of
secure-by-design IoT components, where authors emphasized that it is necessary to create
a dynamic framework that is capable of providing application-independent protection of
cybersecurity. While many relevant works have been published in recent years, the authors
of those do not consider applications of the ML methods on IoT nodes, yet rather train the
models on regular computers.

From a software design perspective, one would need to incorporate the current
development approaches and consider existing auxiliary libraries available for MCU. On
the IoT gateway side, there can be seen multiple ML libraries, supported by the fact
that those have more computational capabilities. Embedded Learning Library (ELL) by
Microsoft provides a wide range of functionality to support the classification of data such
that audio or images [39]. Tsai et al. [40] presented demonstrated a practical demonstration
of how popular TensorFlow can be used on the Raspberry Pi platform for distributed
data analytics. Another example is an ML kit on Orange Pi available from ready-to-use
Operating Systems (OS) software components [41]. The general pattern that we can see is
that IoT gateways usually run on Linux-alike OS and any ML libraries available for PC
also can be installed on IoT gateways. A single research paper that focuses on developing
resource-aware ML methods for boards with 2 KBytes RAM like Arduino is written by
Kumar et al. [42].

At the IoT level, we can see that there are very few works available for single-board
micro-controllers such as available for Arduino [43,44]. There is also Q-behave [45], ML
library for Arduino, while it is dedicated to training an Arduino to learn simple patterns
from the user and not exactly an implementation of community-accepted ML models.
On the other hand, there are implementations of ANN such as ArduinoANN [46] or
Neurona [47]. So, there can be seen a few, mostly experimental, implementations, yet no
widely-used software products.

4. Methodology: Distributed ML-Aided cyberattacks Detection on IoT Nodes

This section describes a study of the application of ML for cybersecurity on the
IoT ecosystem, in particular, network attack detection. In a matter of fact, we evaluate
applicability, a computational overhead that the ML model, ANN as the most popular,
can bring towards the real-world IoT applications. For the evaluation phase, we have
chosen to consider the most generic components, currently used in the community and
widely maintained.

4.1. Use Case and Suggested Model Overview

The literature study showed that over the last few years that can be seen a large
interest in applying ML for cybersecurity hardening in the IoT domain. However, most of
the suggested data analytics tasks and routines have been placed out of the IoT domain
onto personal computers or the cloud. The goal of this contribution is to propose a way
and initiate a demonstration of how advanced data analytics can be also partially used on
the IoT nodes and not just IoT gateways. Figure 2 presents the suggested integration of
ML in the IoT ecosystem independently from the application. We consider the following
components: Sensors/Actuators, IoT nodes, IoT gateways, and Data Lakes with large
computational capabilities at the business owner’s premises. In most cases, IoT nodes and
IoT gateways communicate either through custom network lines or Internet connections
with the main data storage. This implies, also considering possible remote locations, that
an attacker can launch malicious activities against any components of this infrastructure:
Attack 1 against IoT nodes, Attack 2 against IoT gateway, and Attack 3 against the company
itself. From the perspective of cybersecurity measures, Attack 3 can be mitigated by using
industrial solutions like AV/IDS, Attack 2 can be mitigated by similar solutions on the
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lower scale for IoT gateways, while IoT gateways do not have a standard for such measures
against Attack 3.

Figure 2. Machine Learning application for cybersecurity hardening in IoT ecosystem.

We propose using an advanced data analytics approach based on intelligent compo-
nents across IoT infrastructure: Big Data analytics is done in the company’s premises and
application-specific ML training and inference either on IoT gateway or IoT nodes. The sce-
nario that we consider is the application of an ML-based cybersecurity guard mechanism
for detecting network attacks on the IoT infrastructure. From the data analysis perspective,
KDD Cup 1999 dataset was selected as the most commonly used in the literature. It was
used before in the analysis of ML complexity for network forensics by Shalaginov et al. [30].
However, it was stated that the dataset has multiple intrinsic problems with duplicate
entries, so we decided to look at the improved dataset—NSL-KDD, as suggested by Taval-
laee et al. [48]. Authors are aware that the datasets are considered to be obsolete from
the perspective of the network attacks landscape. However, it is used for the repeatably,
concept trial comparability to previous works. For the proof-of-concept demonstration, we
rely on the fact that ML models have been tested on the NSL-KDD dataset and the error
rates are known. Furthermore, the purpose of this article is to demonstrate the applicability
of the method and not test the accuracy of ML models, which was already done before.
To our knowledge, the Arduino implementation of ANN is one of the few capable of
running on Arduino Uno rev3 boards. Unfortunately, it is not possible at the moment to
utilize a range of other ML methods, such that are available for microcomputers from the
TensorFlow Lite library [49] as it would require using different hardware components than
listed in this article.

4.2. Bounding Complexity for Neural Network on IoT

Generally, data flow and computations of ML routine are easily incorporated as a
singular system on personal computers or large-scale servers. From the perspective of the
IoT ecosystem, it is clear that not all of the operations of ML routine can be fully deployed
and utilized on micro-controllers. First, two sub-routines of the Training phase mentioned
above are not computationally heavy. For example, parameters such as file size can be
extracted using system functions and be stored in a separate features list as a numerical
value. The same stands for the first two sub-routines of the Testing phase since those are
nearly identical in both phases (feature reduction/selection is optional) [27].

However, from Figure 3, we can see that the most computationally heavy part is con-
sidered to be the third step, Model Training, when the hypothesis evaluation and parameters
optimization happens. ANN training is performed in two steps. The output calculation step
and weights update step will be as follows in case of sigmoid activation function [50]:

yactual = sigmoid[(x1 · w1 + · · ·+ xN · wN + b)− θ] (1)

wi
new = wi

old + α · (ytarget − yactual) · xi (2)
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Computational complexity: the first step will take N multiplications, N additions
and 4 operations for activation function where N is a number of features. The second step
will take approximately 4 computing operations.

Space complexity: N weights (w1 · wN), a bias b, a threshold value θ and output func-
tion value y. Moreover, there has to be stored D training data samples with N features each
and D class labels. In overall, it approximately requires D · (2 · N + 4) · M + D · 4 · N · M
computing operations, where M is a number of training epochs.

Once the model is trained from the input data, the internal structure of the ML model
is fixed as a set of weights/parameters. During the Testing phase, 2 · N + 4 parameters
estimation is used against previously defined features to determine a class of the input
data sample. From the storage complexity perspective, it will require N + 2 memory units
for the parameters of the ANN and N parameters of a single unclassified data sample.

Figure 3. Example of space and computational complexity of single-layer ANN.

In the real world, we can see that training ANN might be a way to heavy task for
the IoT ecosystem components. Considering the aforementioned justification, training of
a single-layer ANN might have polynomial complexity of O(N3), while training will be
nearly linear O(N). For example, using KDD Cup 1999 full data set, it requires nearly
1110 seconds to train a Neuro-Fuzzy model on a powerful server station, while the testing
phase requires 95 × 10−6 seconds per new data sample to predict the actual class as was
demonstrated in Shalaginov et al. [30]. Therefore, it is important to see that the heaviest
parts of the computations in ML routine, i.e., Training, should be placed off IoT nodes to
IoT gateways, while the prediction, i.e., Testing, can still be left at the IoT node level.

5. Experimental Design Analysis of Results

This section presents an overview and implications of the training and testing phases
of the ML approach to be used on the IoT node.

5.1. Training–Building a Model

Features in the NSL-KDD dataset represent following characteristics: (i) basic TCP
connection, (ii) packet content features, (iii) time window-based traffic features. The afore-
mentioned study [30] used the following features for the experiments (id - feature name):
6-dst_bytes, 41-dst_host_srv_rerror_rate, 10-hot, 12-logged_in, 14-root_shell, 22-is_guest_login,
29-same_srv_rate, 37-dst_host_srv_diff_host_rate, 5-src_bytes. Two types of the most common
traffic found in the dataset were selected: “normal”—Class ID 0 and “neptune” (sub-type of
DOS)—Class ID 1. For software part, ArduinoANN implementation [46] (on Arduino IDE
v1.8.9) of neural network was used with the following parameters: training epochs-max
232−1, learning rate = 0.3, momentum = 0.9, input nodes = 9, hidden nodes = 5, weights
initialization = 0.5, error threshold = 0.001. The original implementation was designed to
recognize binary data from digits on LCD array to number, while it was extended to be
able to handle real-valued data from KDD dataset. For hardware part, Arduino Uno Rev3
board and USBtinyISP programmer with connection at 9600 baud rate for serial monitor
was utilized. The space complexity evaluation is given in Table 2 and basically represents
that the training data are stored as 20 data samples with 9 features in 4-Byte real value
and a class label in 2-Byte integer. In reality, the difference between storing 2 samples and



Future Internet 2021, 13, 272 10 of 14

20 samples will be equal to 720 Bytes/18 = 40 Bytes per each network packet stored in the
memory for the model training. The main limitation at the training phase is the limited
amount of SRAM (2 KBytes).

Table 2. Space complexity of the ANN model training on Arduino Uno Rev3.

Space Compexity Flash, Bytes (%) SRAM, Bytes (%)

Full memory 32,256 (100%) 2048 (100%)

2 training packets (9 f.) 8276 (25%) 970 (47%)

20 training packets (9 f.) 8960 (27%) 1690 (82%)

Table 3 demonstrates the performance evaluation and time complexity of different
epochs. It took 1 second and 326 milliseconds to train the ANN model with 16 epochs (until
the error threshold has been reached). The micros() function was used to measure the time.
To thoroughly evaluate the performance, we utilized the training error calculation function
during each training epoch in the Neural Network: E = 1

2·M · ∑M
i=1(y

i
target − yi

actual)
2 with

error terminating criteria: ε = 10−3 . This is similar to regression-based loss function
Mean Square Error (MSE) used in popular Keras library [51] for any type of classification
problems. Such an approach gives a better understanding of per-epoch performance
improvement in comparison to conventional classification-based metrics such that accuracy
where one would need to utilize round() function to approximately determine where
the tested sample belongs to Class 0 or Class 1. This is a proof-of-concept work and
we believe that setting higher values of ε will have a negative impact on the stopping
criteria in a real-world case with erroneous and imprecise data. Furthermore, this helps to
take into consideration the trade-off between accuracy and training time as some of the
real-world problems cannot guarantee 100% accuracy while using the Machine Learning
community-accepted ANN method. In this work, we did not focus on the performance
aspects of ANN as this was heavily tested and validated before. However, we can state
that the main parameters that generally influence the performance and training time are
number of training epochs M, training error threshold ε and number of layers in the neural
network. As of now, ANN implementation for Arduino UNO Rev3 cannot incorporate
higher complexity due to the resource-constrained environment issues with the memory
considerations stated in Table 2. Having a bigger size of memory would allow utilization
of more advanced ML techniques.

Table 3. Computation complexity and performance of the ANN training phase.

Epoch ID 1 10 16

Output Error 2.08758 0.01587 0.00946

Time (per epoch), 10−6 s 28,752 29,808 29,756

So, it can be seen that ANN can be trained on Arduino UNO Rev3 with limited
training data in a reasonable amount of time. To increase the number of training samples,
the possible solution is to utilize the SD card and discard the training data once the model
is trained, yet this will bring additional overhead.

5.2. Testing–Attack Detection Phase

While there can be found many ML libraries for IoT gateways, to authors’ knowledge,
there have not been tested and developed many ML approaches for end-point IoT nodes
that can contribute towards this. Most of the works mentioned earlier use data analytic and
ML for the analysis of data extracted from IoT devices, which is done on more powerful
machines. The testing phase includes a comparison of the network packet that arrives
against the previously training model. It is similar to IDS/Intrusion Prevention Systems
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(IPS) systems when the network traffic is inspected and being compared against predefined
signatures. Table 4 demonstrates the difference between model accuracy and time to
classify a single network packet, while measured during the first/last epoch.

Table 4. Example of predicted ANN output (“Output”), normal/attack class (“Target”) and used
time (“Time”) for the classification of first 10 network packets.

ID
1st Epoch 16th Epoch

Target Output Time, µs Target Output Time, µs

1 0 0.39667 1196 0 0.03863 1388
2 0 0.39667 1896 0 0.03863 1932
3 1 0.70681 1752 1 0.97040 1836
4 0 0.27704 1176 0 0.02999 1176
5 0 0.32847 1668 0 0.02803 1668
6 1 0.75069 1792 1 0.98339 1856
7 1 0.70681 1752 1 0.97040 1836
8 1 0.70512 1756 1 0.96993 1828
9 1 0.70606 1752 1 0.97020 1820
10 1 0.70662 1740 1 0.97035 1836

To practically reflect the computational complexity of the training phase, we can say that
the average time needed to evaluate a single network packet based on 9 characteristics on
the Arduino UNO Rev3 using trained ANN model is 1643 µs. It will be equal approximately
to 600 network packets/s. However, these are the ideal conditions and more study is needed
using an actual network extension board. From the study [30], we can see that it takes up
to 40 µs for an ML model to classify a questioned network traffic packet on a multi-core
system. At the same time, the extensive benchmark of the different extension shields for
Arduino UNO Rev3 gives the data transfer rate ranging from 79.27 KBytes/s up to 329.60
KBytes/s. Using a rough estimation, we can see that the following packet rate range can be
expected [30]:

Ratemin =
79.27 × 103 Bytes/s

84 bytes/packet
≈ 943 packets/s (3)

Ratemax =
329.60 × 103 Bytes/s
1538 bytes/packet

≈ 214 packets/s (4)

At the same time, the space complexity for the ready-to-use ANN model will be as
follows: (N + 1) · H weights in the hidden layer, H + 1 weights in the output later, number
of input nodes N, number of hidden H and number of output layer O, where N is a
number of input features, H is a number of hidden layers, O is a number of output nodes.
For this specific case, we can evaluate the model will require, respectively, 50 4-Byte real
weights, 6 4-Byte real weights, 1 2-Byte integer, 1 2-Byte integer, and 1 2-Byte integer. Such
guesstimate gives roughly 230 Bytes needed to store the ANN model on the IoT node
(Arduino UNO Rev3).

Digital Evidences Analysis in the IoT ecosystem. One of the important considera-
tions while using Computational Intelligence in Cybersecurity is the ability to derive an
explanation of the cyber incident. Moreover, the data can be used as evidence in case of
an investigation. From the perspective of IoT, this is a challenging task due to: (i) limited
data storage, (ii) limited logging (username, timestamps, non-repudiation), (iii) mostly
proprietary protocols and data formats, (iv) absence of wide support by Digital Forensics
tools. Considering all this, it is also important to have intelligent models to possess some
level of explainability of the decision being made, for example, through linguistic and
human-understandable approaches like Fuzzy Logic rules in addition to numerical ANN
weights on IoT nodes.
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6. Conclusions & Discussions

Internet of Things devices became a vital part of our everyday activities bringing
flexibility, convenience, and smart application in many domains. While this is undoubtedly
disruptive technology with great potential for live standards improvement, there exist
many security challenges that also can be found in ICT components. However, it has been
shown that IoT devices are more susceptible to attacks due to reduced capabilities for
implementing security standards, as well as limited functionality that can be deployed
to protect the infrastructure. This paper studies the current state of the art related to
IoT end-node devices security measures, the applicability of Machine Learning, and data
analytic existing standards. We propose a concept of the intelligent model training for
IoT end-node device-based network attacks detection, in addition to commonly used IoT
gateways cybersecurity measures. Moreover, a proof-of-concept is implemented on MCU
Arduino Uno Rev3 with 2KByte RAM to demonstrate how the Artificial Neural Networks
can be used for intelligent network attack detection with a low error rate. It is clear that
based on the selected features, the model can be trained even on IoT end-node in nearly
1 s using 16 training epochs to achieve necessary accuracy, while it takes around 2 ms to
classify previously unseen network packets. However, the training phase should be placed
off-chip on a more powerful IoT gateway device, while the training can be done on IoT
nodes using weights of the already trained model. This ongoing work is intended to serve
as a stepping stone for future research in the practical applications of ML on IoT end-node
device nodes.
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