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Abstract: A heterogeneous system can be portrayed as a variety of unlike resources that can be locally
or geologically spread, which is exploited to implement data-intensive and computationally intensive
applications. The competence of implementing the scientific workflow applications on heterogeneous
systems is determined by the approaches utilized to allocate the tasks to the proper resources. Cost
and time necessity are evolving as different vital concerns of cloud computing environments such
as data centers. In the area of scientific workflows, the difficulties of increased cost and time are
highly challenging, as they elicit rigorous computational tasks over the communication network. For
example, it was discovered that the time to execute a task in an unsuited resource consumes more cost
and time in the cloud data centers. In this paper, a new cost- and time-efficient planning algorithm
for scientific workflow scheduling has been proposed for heterogeneous systems in the cloud based
upon the Predict Optimistic Time and Cost (POTC). The proposed algorithm computes the rank
based not only on the completion time of the current task but also on the successor node in the critical
path. Under a tight deadline, the running time of the workflow and the transfer cost are reduced
by using this technique. The proposed approach is evaluated using true cases of data-exhaustive
workflows compared with other algorithms from written works. The test result shows that our
proposed method can remarkably decrease the cost and time of the experimented workflows while
ensuring a better mapping of the task to the resource. In terms of makespan, speedup, and efficiency,
the proposed algorithm surpasses the current existing algorithms—such as Endpoint communication
contention-aware List Scheduling Heuristic (ELSH)), Predict Earliest Finish Time (PEFT), Budget-and
Deadline-constrained heuristic-based upon HEFT (BDHEFT), Minimal Optimistic Processing Time
(MOPT) and Predict Earlier Finish Time (PEFT)—while holding the same time complexity.

Keywords: heuristic scheduling; DAG; makespan; computation cost; scientific workflows; distributed
computing

1. Introduction

The emerging field of cloud computing is spreading computations that bring versatile
scalable services on necessity over the Internet by the virtualization of hardware and
software. The cloud comprises a heterogeneous system which can be well-portrayed as a
multiple unlikely set of resources, such as virtual machines or links, which can be locally or
hugely spread, that are exploited to produce data-intensive and computationally intensive
applications. A highly capable task-scheduling algorithm is very important for attaining
a better performance in cloud computing. The overall task scheduling is to give the task
of an application to suitable processors and then hand over the objective to execute on an
appropriate resource [1,2]. The static model is such that, when the characteristics of the tasks
are known in advance, the proficiency in executing the scientific workflow applications
on diverse systems is based on the methods used to distribute the tasks to an appropriate
resource. The core benefits of clouds are their availability, reliability, scalability, and
flexibility where the cloud provider has the ability to lease and release resources/services
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as per the user’s requirements. The cloud providers Amazon EC2, Digital Ocean, Microsoft
Azure, Rackspace Open Cloud, Google Compute Engine, IBM Smart Cloud Enterprise,
Cloud Stack, Open Nebula, and Go Grid offer resources/services [3].

Scientific workflows are depicted by a directed acyclic graph (DAG) in which nodes
signify tasks in the application and the edges signify dependencies between the tasks. Each
node label represents the time of the execution of the task, and the edges represent the
transfer costs among the tasks. The scientific workflows are specifically associated with
scientific denominations like bioinformatics and biodiversity. BioBIKE and astronomy
present a robust circumstance for the utilization of cloud implementation. Workflow
planning is a series consisting of allocating the dependent tasks on the appropriate resources
in such a way that the complete workflow will be able to finish its implementation inside
the user’s mentioned quality of service (QoS) constraints. The processing of workflows
involves enormous computation and communication costs. The aim is to allocate the
objectives onto appropriate virtual machines and sort the sequence of implementations
so that the task priority needs are satisfied and a minimum implementation time and
reduced cost are obtained. Moreover, realistic scheduling approaches must use only a few
resources and must have less time complexity. The task-scheduling problem is known to be
NP-complete, and the challenges in the field are mainly focused on getting low-complexity
heuristics that yield excellent schedules.

Scheduling algorithms are usually grouped into two types, namely heuristic and
meta-heuristic. For a broad range of given problems, heuristic is defined as an approximate
solution and problem-dependent and metaheuristics is defined as problem-independent
where a solution can be received for which it can be proved its closeness to the optimal
solution. The heuristic algorithms that are frequently operated in a heterogeneous envi-
ronment have varied and versatile virtual machines, such as cloud data centers, etc. They
consist of duplication-based, list-based, and clustering-based algorithms. Some of the
meta-heuristic algorithm examples are as follows—genetic algorithm (GA), firefly opti-
mization (FO), artificial neural network (ANN), cat swarm optimization (CSO), particle
swarm optimization (PSO), simulated annealing (SA), tabu search (TS), and ant colony
optimization (ACO) can provide an optimal solution. On relating the heuristic technique
with the metaheuristic technique, when the count of tasks is multiplied, the makespan of
the metaheuristic techniques proliferates continuously.

The heuristic algorithm can be separated into a duplication-based scheduling algo-
rithm [4], a list-scheduling algorithm, and a clustering scheduling algorithm. There are two
important stages in the list-scheduling algorithm. In the first stage, the priority is set to the
tasks by computing the rank to every task in the DAG. In the next stage, the corresponding
virtual machine is chosen to complete the task.

The methodology behind the clustering-based scheduling technique is to find the
tasks in the DAG which would be executed on the self-same virtual machine (VM). There
are two phases in the clustering-based technique. Phase 1 is the clustering phase, where
the tasks are segregated into a collection of disjoint clusters. Phase 2 is the merging phase,
where the clusters are merged so that they can be assigned or allocated to the confined
measure of processors at runtime. One of the best widespread heuristic clustering-based
algorithms is the dominant sequence clustering (DSC) [5].

The technique that replicates the parent tasks by using the time in which the pro-
cessors are idle is termed a duplication-based scheduling algorithm [6]. This collection
of algorithms performs task scheduling by the allocation of its redundant tasks. Hence,
this technique can decrease the inter-related communication overhead. Conversely, these
techniques are impractical due to their increased time complexity.

The genetic algorithm (GA) which is a meta-heuristic algorithm, is renowned and
extensively discussed. In this type, there are three stages, which are called the selection, the
crossover, and the mutation stage. In the first one (selection stage), initially, the population
set is generated and the parents are selected from ‘individuals’ of the group. In the crossover
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stage, the parents hybridize to yield children that are ‘offspring’, and in the mutation stage,
the children could be changed as per the mutation rules.

The scheduling algorithms aim to reduce the total execution time without making a
note of the resource access cost. However, resources of different competencies at different
costs are provided by the service provider in the cloud environment. More rapid resources
are always more expensive than the slow one. Therefore, various planning techniques
of the same workflow using dissimilar hardware/resources may result in a dissimilar
schedule length ratio and a dissimilar price. Therefore, the workflow planning issue in
cloud computing entails both cost and time limitations which need to be fulfilled as per the
user’s requirement. The budget constraint confirms that the cost mentioned by the user has
not been exceeded, and the deadline constraint confirms that the workflow is implemented
within the specified time limit. Decent heuristic attempts have been made to handle both
these constraints equally and achieve a better result.

The two objectives in workflows are minimizing the makespan and minimizing the
implementation costs. In this paper, a new Predict Optimistic Time and Cost (POTC) is
recommended to plan workflow applications to cloud computing services that reduce the
implementation cost (i.e., the sum of transfer cost and VM price) and the total execution time
(i.e., the addition of data transmission time and execution time) for executing the scientific
workflows simultaneously. In this paper, the major parameter that has an influence on the
cost in the heterogeneous system is considered. A system with a group of virtual machines
and various communication links is exhibited as a heterogeneous system. In the cloud
heterogeneous system, every single processor can transfer information with numerous
other processors concurrently [7]. The mapping of tasks to the resource consists of two
phases. In the initial phase, the tasks are ordered based on the rank and in phase two
the planner maps the tasks on to the resource with respect to resource cost, transfer cost,
implementation time, and earlier finish time from the pool of resources in a way that the
total implementation time and overall cost of executing the entire workflow are reduced
simultaneously based upon the auxiliary deadline and auxiliary budget of every workflow
task. The planned heuristic, explicitly POTC, depends upon the PEFT algorithm, which
reduces the overall workflow implementation time without bearing in mind the budget
and cost restraints while making the planning decisions. The projected heuristic algorithm
grants a valuable trade-off between cost and makespan under said constraints.

This finding is ordered as follows: the background of the task scheduling problem
is presented in this section. In the second section, we the review of existing scheduling
algorithms on the heterogeneous environment is extended. In Section 3 the application
and the scheduling models are explained. In Section 4, we project the proposed POTC
algorithm is projected and the contrast with the existing scheduling heuristic is explained.
In Section 5 the results and comparison with the existing models are discussed, and, finally,
Section 6 contains an elaborate conclusion.

2. Literature Survey

In this section, a review of task scheduling algorithms in scientific workflows has been
studied mostly on list-based heuristics. For the past few years, research has focused on the
workflow scheduling algorithm, in order to discover suboptimal results in a reasonably
short duration. High-quality schedules are normally generated at a sensible cost using
list-based scheduling heuristics. List-based scheduling heuristics have a lower complexity
of time, and their results signify a lesser processor load when compared to other scheduling
strategies, like clustering algorithms and task duplication strategies [8–10]. Many heuristic
algorithms like Heterogeneous Earlier Finish Time (HEFT), Dynamic Scheduling-of-Bag-
of-Tasks-based workflows (DSB), Budget-and Deadline-constrained heuristic-based upon
HEFT (BDHEFT), Critical Path on Processor (CPOP), and Predict Earliest Finish Time
(PEFT). Out of these, PEFT outperforms in terms of implementation time. However, all
these heuristics try to diminish the implementation time without bearing in mind the cost
of executing the workflow tasks.
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Topcuoglu [11] has proposed a list-based scheduling algorithm with the aim of in-
creasing the performance and fast scheduling time. The HEFT algorithm calculates the
upward rank for all the tasks in the level and sort in descending order of rank. The task
with the highest upward rank is selected first and assigns the same to the processor which
reduces its earliest finish time and minimizes the makespan under no restraints. However,
their solution does not meet the deadline constraint, and the communication cost is not
considered. The HEFT algorithm is tested for heterogeneous systems.

Verma [12] presented a Budget-and Deadline-constrained Heterogeneous Earliest
Finish Time (BDHEFT) with the aim of reducing the time and cost below the deadline and
budget constraint. BDHEFT is an extension of HEFT with heterogeneous resources over
the cloud. The algorithm outperforms in terms of monetary cost and makespan. However,
they have not taken the transfer cost and communication time into consideration.

Hamid [13] has proposed an algorithm for heterogeneous computing systems named
Predict Earlier Finish Time (PEFT), which uses the optimistic cost table. This study offers
a look-ahead on features that offer makespan enhancements without an increase in the
time complexity. However, the processor availability, deadline, and budget constraints are
not taken into consideration. The time complexity is given as O

(
n2), and it minimizes the

overall makespan. The minimum processing time of the critical path is calculated, and
every single task is provided with the best processor.

Djigal [14] has explicated the Predict Priority Task Scheduling (PPTS) algorithm, which
is a list-scheduling heuristic developed for heterogeneous systems, which minimizes the
makespan and cost. PPTS also introduces a look-ahead on features similar to the PEFT
technique with the same time complexity. This technique has introduced a predict cost
matrix while minimizing the makespan. However, deadline and budget constraints are not
considered. The study forecasts the nature of the tasks and processors using a look-ahead
feature. The algorithm offers better results for a small number of tasks.

Bittencourt [15] proposed an algorithm called look-ahead which incorporated the
HEFT technique. The processor selection policy is a crucial feature of this algorithm. The
algorithm computes the earlier finish time on all the processors for all the child tasks and
selects the processor based on the earlier finish time. The look-ahead’s structure is similar
to that of the HEFT, but the difference is that, for every successor of the present task, EFT is
calculated. The time complexity is given as O (v4.p3) for the look-ahead algorithm. The
authors concluded that the added stages of forecasting do not result in the improvement of
the makespan.

Zhou [16] presented a PEFT algorithm with an improved technique called Improved
Predict Earliest Finish Time Algorithm (IPEFT). IPEFT uses two cost tables to calculate the
rank, which is named as a Critical Node Cost Table (CNCT) and Pessimistic Cost Table
(PCT). The PCT and CNCT are a matrix and denote the number of tasks as rows and the
processors’ number as the columns, respectively. First, this matrix calculates the priority of
a task ti by RankPCT. Then, the tasks are arranged in decreasing order of RankPCT.

One of the big challenges in cloud computing is the effective scheduling of large and
computationally complex workflows with several dependent tasks interconnected to each
other. Ljaz [17] has introduced a Minimal Optimistic Processing Time (MOPT) algorithm
which is a list-based heuristic scheduling technique with an optimized duplication ap-
proach. The optimistic processing time matrix is used in the prioritizing phase to rank
the tasks. The mapping of the task to the resource is based on the minimum completion
time. The experimental analysis shows that this method provides quality schedules with
minimum makespan. This algorithm is suitable for communication-intensive applications,
as the communication cost increases among the tasks. However, in this work, the execution
cost with respect to deadline and budget constraints is not considered.

Wu [18] has proposed an Endpoint communication contention-aware List Scheduling
Heuristic (ELSH) to minimize the makespan and the cost. The author has identified that
the endpoint communication contention is the major parameter with a large impact on min-
imizing the workspan. The author has also discussed the manners of address contention,
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such as Exclusive and Shared Communication. In order to address the contention issue,
the author has implemented an exclusive communication technique. In this algorithm,
however, the economic cost and the budget and deadline constraints are not considered.

Ref. [19] has proposed a two-way strategy that includes historical scheduling and
achieves the load balancing of cloud resources. Virtual machines are created based on
the Bayes classifier algorithm, and the tasks are matched with the virtual machines. This
method saves time in creating virtual machines, and thus the time and the cost are reduced.
However, the proposed algorithm is not compared with the standard planning algorithm,
such as HEFT, PEFT, BDHEFT, etc.

Ref. [20] has proposed an algorithm that minimizes the energy consumption under
response time and reliability constraints. The author has formulated the problem as a
Non-linear Mixed Integer Programming problem and solved it using heuristic solutions.
To reduce the energy consumption, some of the energy inefficient processors are turned
off using a processor-merging algorithm and a slack time reclamation algorithm, and the
author has also applied the Dynamic Voltage Frequency Scaling (DVFS) technique onto it
to reduce the power consumption. However, the proposed approach has not paid much
attention to the computation cost.

Several existing algorithms have been studied, and it has been found that these
algorithms can lead to inefficient scheduling. One of the main issues faced in the above
method is that less important tasks are scheduled before higher priority tasks. Moreover,
the deadline and budget constraints are not considered. For this reason, in the proposed
algorithm, we calculate the rank such that the tasks with higher priority are arranged before
the tasks with less significance. The proposed algorithm is discussed in the following
section.

3. Task Scheduling Problem
3.1. Application Model

The two methods of task scheduling are the static method and the dynamic method.
When the task and the system parameters are unknown at compile time, a dynamic schedul-
ing strategy is suitable. For the dynamic scheduling, strategy decisions have to be made
at runtime, and this leads to an added overhead. The program, the heterogeneous cloud
environment, and the performance measure are the three components of the scheduling
model. The program, which is the initial step of a scheduling model, is characterized by a
direct acyclic graph (DAG), where the DAG is represented by G = (T, E) and T represents
the group of m tasks {t1, t2, . . . . . . . . . . . . .tm}, and the set of e edges are represented by
E. Every task ti ∈ T characterizes a task in the workflow submission, and every edge
(ti.......... tj) ∈ E signifies a precedence constraint, in such a way that the implementation of
tj ∈ T will not begin before the task ti ∈ T completes its implementation. If (ti,tj) ∈ T, then
tj is the child of ti and ti is the parent of tj. The exit task in the workflow application is the
task with no children, and the entry task in the application is a task with no parent. The
size of the task (STi) is stated in millions of instructions (MI). The main target in scheduling
the task is to allocate the tasks in the graph to the resources in a way that the makespan
and the cost are reduced while meeting the deadline and budget constraints.

A model environment consists of a distributed cloud resource, and the application
users can give their jobs at any period [21]. An algorithm with a dynamic strategy is
essential when the load is identified only at the runtime, when new tasks arrive. Therefore,
during task scheduling, not all task requirements are available for a dynamic strategy, and
so it cannot optimize depending on the full workload. On the contrary, a static method
will be able to maximize a schedule by making a note of all tasks without consideration
of the implementation order or time, as the schedule is produced before the beginning of
implementation, and during runtime this method causes no overhead. Here, an algorithm
is proposed that reduces the makespan and cost of a single task on a set of ‘P’ virtual
machines. For the execution of the task, ‘P’ virtual machines are available, and they are
not shared among the VMs during the task execution, which can be taken into account.
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Thus, with both the task and the system parameters available at compile-time, this static
approach has no or zero overhead during runtime and so is more suitable.

Moreover, in this model, we take into account the processors which are connected to
each other using a fully connected topology. For each processor, the communication of
tasks with other processors and the execution of tasks can be attained instantaneously and
without contention. Furthermore, the task execution is said to be non-preemptive.

Our heterogeneous system is considered to be an infrastructure with a single site,
with a set of GPUs and CPUs that assures parallel communications between various pairs
of devices and that are linked together with a switched network. The reason behind
the heterogeneity is that the system consists of dissimilar devices, such as GPUs and
microprocessors, with various types, specifications, and dissimilar generations. The same
site may have multiple clusters, and selecting resources from these clusters requires another
type of machine. A heterogeneous machine is nothing but a set of processors selected from a
homogeneous cluster to execute a DAG. Differences that are caused because of CPU latency
in a heterogeneous machine can vary and are insignificant. For lower Communication
to Computation Ratios (CCRs) [22] the communications between tasks are considered to
be negligible, but for the cause of higher Communication to Computation Ratios (CCRs),
network bandwidth is considered to be a major feature, and that is why we consider
network bandwidth to be similar throughout the whole network.

Then, we extended certain collective attributes that are used in scheduling the task.
This shall be discussed in the following sections. Each and every task has a dissimilar
cost and time in different virtual machines in a heterogeneous system. Each task ti ∈ T is
associated with the instructions and is implemented on the processor. Furthermore, CT(i, j)
is the predicted computation time on processor Pj for each task ti.

For a task ti, the computation time is defined by

CTVMi
ti

=
STi

PCvmi
(1)

where STi is the size of the task ti, CTVMi
ti is the time taken for the computation of the task

ti. VMi represents the virtual machine VMi. PCvmi is the processing capacity on VMi.
The average computation time is given by

CTi =

(
n

∑
j=1

CT(i, j)

)
/P (2)

where the number of processors is denoted by P.
The computation cost is denoted by CCi,v and is given by

CCi,v = µp ∗ CTi,v (3)

where the unit price for using the hardware resource v is represented by µp for each time
interval, and the further storage cost is presumed to be zero. For the period that is needed
to transfer the data, independent tasks are mapped to the same resources, but other tasks
are mapped to different resources.

For the task ti in a DAG, the set of immediate predecessors is given by pred(ti). The
entry task is the task with no predecessors [23].

In a DAG, succ(ti) represents the group of immediate successors for the task ti . If the
task has no successors, then it is named the exit task.

During the course of execution of the tasks, the processors can be idle, ready to execute,
or running. Avail(i) is the earliest time at which the processor Pi is ready to execute. The
actual time to finish the exit task is denoted by AFT(texit).
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The edge transfer cost is denoted by associating a weight with each edge that specifies
the required time of data transfer from task ti to tk. The edge e(i, k) denotes the cost to
transfer the data on an e(i, k) and is defined as

TCi,k = Lm +
Datai,k

Bwi,k
(4)

where, Datai,k , is the cost to transfer data from task ti to tk and Bwi,k (bits/s) is known
to be the transfer rate of the link that connects the processors. Lm is the latency time
(communication start up time) of the processor and is represented in seconds.

The average transfer cost is given by

TCi,k = Lm +
Datai,k

Bwi,k
(5)

The average transfer cost of an edge is zero if the resources are the same, because the
intra-resource data transfer cost is very low when contradicted to the inter- resource data
transfer cost

TCi,k = 0 i f ri = rk (6)

The earliest start time of the task ti is denoted by EST. The EST for the task ti on
processor Pk is defined by

EST(ti, Pk) = max

{
Avail(k), max

tj∈pred(ti)

{
AFT

(
tj
)
+ TCj,i

}}
(7)

The earliest finish time of the task ti on Processor Pk is given by

EFT(ti, Pk) = EST
(
ti, Pj

)
+ CTi,j (8)

The level of task ti is given by,

level
(
tentry

)
= 1

level(ti) = max
j∈pred(ti)

{
level

(
tj
)} (9)

Makespan is also known as the schedule length which is defined as the total imple-
mentation time

Makespan = max{AFT(texit)} (10)

The performance of every processor is measured in ‘FLOPS’ and bandwidth, and
latency is the performance measure of every communication link. The objective function of
this task-scheduling approach is to define the allocation of tasks to the resources, such that
the cost and makespan are minimized.

3.2. Workflow Scheduling Model

The workflow scheduling model has the following entities: user (denoted as ‘U’),
scheduler (denoted as ‘S’), and resource provider (denoted as ‘RP’). The resource provider
provides computational resources with various competencies. The cost and processing
power information of the resources that are available is publicly published. The queries
made by the scheduler related to the availability of resources are responded by the RP. The
workflow application is submitted by the user to the scheduler in addition to the deadline
(D) and budget (B). The execution of tasks in the workflow over the obtainable resources is
decided by the scheduler. The entire flow of the workflow can be visualized in Figure 1.
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Figure 1. Workflow scheduling model.

Figure 2 shows the rank computation model, where the workflow consists of tasks and
is given as input to the workflow management system. The rank is calculated by using the
predict optimal cost matrix. Based on the POCM, the task is prioritized, and the processor
is selected to execute the tasks.
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Figure 2. Rank computation model.

3.3. Workflow Implementation Model

In Figure 2, the workflow implementation model of the offered method is shown.
The DAG in the scientific workflows comprises nodes and edges. The edges signify data
and control dependencies among the tasks, and the nodes signify distinct tasks that are
being executed. The XML files of Workflowsim [24–26] consist of task files, and output
data of one task can be given as input to another task. At the beginning, the location of
the data and executables are not known to the workflow. A great number of workflow
management systems (WMSs) use a similar kind of model. The WMSs are modeled using
the Workflowsim tool, which can access immeasurable resources for lease depending on
the system’s memory capacity. Some of the major components involved in the working of
the workflow management system are given below.

I. Workflow submission: In order to schedule the workflow tasks, the workflow
application is submitted to the workflow management system (WMS) by the user.
The host machine, such as users’ laptops or a public resource, can hold the WMS.

II. Target implementation environment: This environment can be a well-known local
host, such as a small user’s personal computer, it can be a cloud, such as a virtual
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environment like an AWS cloud, or it can be a physical cluster located at a remote
place. Depending on the resource availability, the abstract workflow is mapped
into the workflow in an executable form. WMS takes up the responsibility of
monitoring the workflow execution. Moreover, it obtains the input, the output,
and the files acquired during the course of execution of the workflow tasks. The
major modules of the target implementation environment and their outline is as
follows:

# Clustering engine: In the WMS the system overheads are decreased by
grouping one or more relative small tasks into a job, which is a single
execution unit.

# Workflow engine: As defined by the workflow, the single execution unit
is called as jobs are submitted in sequence by the workflow engine as per
the task dependencies. From the workflow engine, the jobs are given to the
local workflow scheduling queue.

# Local queue and the local workflow scheduler: The individual workflow
jobs are maintained and monitored by the workflow scheduler on both the
remote and the local databases. The queuing delay is defined as the elapsed
time on presenting the job to the job scheduler and the actual execution on
the remote node.

# Remote implementation engine: The remote engine supervises the job
execution on the remote compute nodes.

4. Proposed Algorithm

The rank is calculated based on the predict optimal cost matrix in the proposed
algorithm, Pj denotes the processor Pj, and ti denotes the task ti. The rank calculation
formula is given by

POCMPOC(ti , pk) = CT(ti, Pk) + max
tm∈succ(ti)

{
min
Pβ∈P

[
POCMPOC

(
tm , Pβ

)
+ CT

(
tm , Pβ

)
+ CT

(
ti , Pβ

)
+ TCi,k

]}
(11)

Here, TCi,j = 0 when Pk = Pβ, and the value of POCMPOC for the exit task is
POCM(texit , pk ) = CT(texit , Pk).

The terms CT(ti, Pk) and CT
(
tm , Pβ

)
are of great importance. The computation time

denoted by CT(ti, Pk) defines the task importance of the current process on a processor Pk,
and CT

(
tm , Pβ

)
defines the task importance of the successor node in the critical path. The

aim of the algorithm is to allocate the task ti to the better processor, so that the makespan
and the reduced cost is achieved. The existing algorithms have not considered the effect of
task ti successors, but they just found the least EFT for a task ti and chose the processor
accordingly.

The proposed method is shown in Algorithm 1. The algorithm has two stages. In
phase one, prioritize that task; and in phase two, select the processor. In the prioritizing
phase the tasks are ordered depending on the rank calculation in the reducing order. Rank
is calculated as follows.

RankPOC(ti) =
∑P

m=1 POCM(ti, pk)

P
(12)

In the processor selection phase, two queues are maintained, namely the task queue
and the ready queue. Initially, the task queue has all the tasks. Depending on the rank of
the tasks, they move the task to the ready queue and calculate the earliest finish time of the
processor and the VM cost at its earliest. Choose the processor with minimum EFT and
cost. This process is repetitively done for all the tasks in the queue. Finally, the tasks with
higher priority are mapped to the appropriate processor. The focus of this technique is to
diminish the makespan and cost within the deadline and minimum cost.
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4.1. Deadline and Budget Computation

The user-defined deadline is given as

Duser = lowtime + Kd ∗ (hightime − lowtime) (13)

where lowtime is the lowest time to execute and hightime is the highest time to execute the
application.

lowtime = ∑
tk∈CP

CTmin (tk) + TC(tj→ti)

where tj is the parent task of ti in the critical path. Kd is the deadline ratio between [0 . . . .1].
CP is the critical path of a DAG from tstart to tend.

hightime is the highest time to execute the application.

hightime = ∑
tk∈CP

CTmax (tk) + TC(tj→ti)

CTmin (tk) is the minimum time required to execute on the fastest processor and
CTmax (tk) is the maximum time to execute on the slowest processor.

CTleast = ∑
tk∈T

CT represents the lowest computation time to execute on the fastest

processor. Where CTleast is the summation of computation time of all the task on the fastest
processor.

Buser represents the budget defined by the user, and it is given by

Duser = lowtime + Kd ∗ (hightime − lowtime) (14)

where Kb is the budget ratio between [0 . . . .1], lowcost is the lowest cost to execute and the,
which is the summation of the cost to execute a task on the critical path, and highcost is the
highest time to execute the application on the fastest processor, which is the summation of
the cost to execute a task on the critical path.

lowcost = ∑
tk∈CP

CTmin (tk)

highcost = ∑
tk∈CP

CTmax (tk)

Ccheap is the cheapest cost involved in the execution of the application.
The critical path of Figure 3a is calculated as 1→ 4→ 8→ 10 which is 88.
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Ccheap = ∑
tk∈T

Clow is the lowest execution cost of the task ti amid all the processors.



Future Internet 2021, 13, 263 11 of 20

The initial deadline is given as SD(texit) = Duser. The sub-deadline of each level is
calculated as

SD(tk) = min
tchild∈t_succ(tk)

{
SD(tchild)− CTmin(tk)− TC (tk → tchild)

}
(15)

where SD denotes the sub-deadline of the task at each level. CT represents the computation
time, and TC represents the transfer cost.

Algorithm 1 POTC Planning Algorithm

Require: W = G (T,E)
Require: R = Un

i=1Ri, Duser and Buser
1. if D_user < CT_least and B_use < C_cheap

return no possible schedule
2. Compute RankPOC for all Tasks

(a) POCMPOC(ti , pk) = CT(ti, Pk) + max
tm∈succ(ti)

{
min
Pβ∈P

[
POCMPOC

(
tm , Pβ

)
+ CT

(
tm , Pβ

)
+ CT

(
ti , Pβ

)
+ TCi,k

]}
.

(b)RankPOC(ti) =
∑P

m=1 POCM(ti , pk)
P

3. Prioritize the task and list in decreasing order of Ranku
4. Compute the sub deadline (SD) for all tasks
5. Create an empty list in Ready Queue (RQ)
6. Create ti tasks in the Task Queue (TQ)
7. while TQ is < > do
8. tk ← Assign highest rank task from TQ
9. RQ← Assign task tk and delete in TQ
10. for all VM in the VM set Vj do

11. Compute the Earliest Finish Time using EST
(

tk, Pj

)
+ POCM

(
tk, Pj

)
Assign task tk to Processor Pj

12. end for
13. Update TQ
14. End while
15. Assign task ti to the VM Vj with Min Value

4.2. Task Prioritization Phase

While prioritizing the task, consider one of the important tasks of the present task,
which is nothing but its successor in the critical path node and the number of succes-
sors. For the DAG1, the cost matrix is shown in Figure 3a,b, while Table 1 shows the
priority based on the RankPOCM matrix. The tasks’ priority list by RankPOCM is or-
dered as (T1, T3,T6,T2,T5,T4,T8,T7,T9,T10), the tasks’ priority list by Rankuc is ordered
as (T1,T5,T6,T2,T4,T3,T8,T7,T9,T10), and the tasks’ priority list by Rankoct is ordered as
(T1,T4,T6,T2,T3,T5,T8,T7,T9,T10). The ranking method can forecast the rank in the initial
phase by considering the importance of a task’s relation, and the technique is similar to
the rank calculation with Rankuc. On comparing Rankuc

(
ti, Pj

)
with RankPOCM

(
ti, Pj

)
,

we can see that RankPOCM
(
ti, Pj

)
include CC

(
ti, Pj

)
and CT(ti, Pk), which is similar to the

Rankuc [11] and Rankoct method [13].

4.3. Processor Selection Phase

After prioritizing the task, compute the Forecast EFT (FEFT
(
ti, Pj

)
) for each task ti on

a processor Pj, which is defined by

FEFT
(
ti, Pj

)
= EFT

(
ti, Pj

)
+ POCM

(
ti, Pj

)
(16)

After which, to execute a task, a processor that achieves the minimum FEFT
(
ti, Pj

)
is

chosen. The main aim of the processor selection phase is to ensure that the descendants of
the present task can complete its execution without an increase in complexity. The forecast
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method is explained as follows: consider the scheduling of task T1 and task T3: for the task
T1, P2 is the resource that gives the least EFT, and for the task T3, P2 is the resource that
gives the least EFT. Thus, T1 is scheduled to P2 and T2 is scheduled to P3. Moreover, for
the entire DAG, the anticipated EFT is reduced. The makespan obtained from the proposed
forecast-based algorithm is 114, the makespan obtained for the same DAG1 using PEFT
is 134, and the makespan based on HEFT using the same DAG is 145. Thus, the obtained
makespan using HEFT, PEFT, and POTC for the DAG1 is 145, 134, and 114.

Table 1. The rank obtained through the POCM, OCT, and upward rank for Figure 3.

Task RankPOCM Rankoct Rankuc

T1 263.2 84.3 183.8

T2 161.7 53.3 120.9

T3 168.6 44 112.6

T4 143.6 62.3 116.6

T5 150.9 31 139.59

T6 165.3 54.6 125.9

T7 78.3 23.3 58.6

T8 106.9 31.3 94.6

T9 69.6 14.33 48.2

T10 22.6 0 22.6
Note: The Rank for RankPOCM is calculated based on the formula mentioned in Equations (11) and (12). Rankoct
is calculated from [12], and Rankuc is calculated from [21].

The time complexity of the proposed method is calculated based on the rank com-
putation and the task to resource mapping, Given the workflow G(T, E) with the number
of tasks represented as ‘n’ and the dependencies represented as ‘e’. The first phase of the
algorithm computes the rank of all the tasks which process the entire tasks and the edges.
The time complexity of this step is given as (n + e) ≈ O

(
n222

)
. In the selection phase, the

outer loop is for ‘n’ tasks and the inner loop is for ‘r’ resources. The time complexity for
this phase is given as O(n.r). Thus, the final time complexity is given as O

(
n222

)
. Thus,

the time complexity of the proposed method is similar to PEFT, MOPT, and BDHEFT.

5. Results and Discussion

The results obtained by the POTC algorithm—along with the ELSH, MOPT, PEFT,
and BDHEFT and their performance—are presented in this section. For the purpose of
the experiment, two sets of workflow applications called ‘Epigenomics’ and ‘Montage’
were taken, and they represented the workflow real-world problems of genomics and
astronomical Image Mosaic Engine. Firstly, the comparison metrics termed scheduling
length ratio (SLR), for the proposed and existing algorithms were described.

Schedule Length Ratio (SLR):
This is one of the main measures of makespan (schedule length) of its output schedule.

Schedule length ratio:
Makespan

∑niεRPMIN
min

pj ∈ T
{CC(i, j)} (17)

where Makespan [21] is the total implementation time, and RPMIN signifies the minimum
of the critical path. The denominator is the totality of all implementation costs of the tasks
on the minimum critical path. Since the denominator is the lower bound, the schedule
length ratio cannot be smaller than one. The performance of all three algorithms has been
evaluated with some of the scientific workflows, namely Montage and Epigenomics. The
total count of the tasks in each workflow is taken as Epigenomics: 30, 50, 100, 1000, and
Montage: 30, 50, 100, and 1000. The simulation environment consists of a heterogeneous
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system with 20 virtual machines. The target system is generated based on ‘Workflowsim’,
which is a Java framework.

Epigenomics: The average SLR results for Epigenomics are shown in Figure 4. The
performance of the proposed algorithm using Epigenomics is shown in Figure 4. The
average SLR shows 3.2% for 30 tasks, 3.29% for 50 tasks, 3.68% for 100 tasks, and 14.7% for
1000 tasks for the POTC algorithm. Thus, POTC for 50 tasks has improved by 6.4% over
ELSH, and for 1000 tasks it has increased by 3.5%. In addition, POTC for 1000 tasks has
improved by 6.9% over MOPT.
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Montage: Figure 5 shows the average SLR of the real-world scientific workflow
application Montage. Again, the POTC algorithm has shown a better performance when
compared to the ELSH, MOPT, PEFT, and BDHEFT algorithms. Thus, for 30 tasks, POTC
has improved its performance by 9.4% over MOPT, for 50 tasks POTC has improved its
performance by 6.1% over MOPT, for 100 tasks POTC has improved its performance by
1.9% over MOPT, and for 1000 tasks POTC has improved its performance by 3.5% over
MOPT, and thus POTC gives better performance over ELSH. Moreover, for 100 tasks,
POTC has improved its performance by 30.4% over BDHEFT, and for 1000 tasks POTC has
improved its performance by 11.3% over BDHEFT. Thus POTC, has a better performance
than BDHEFT.

Depending on these outcomes, with the results for DAG with a small and large task
number, the POTC algorithm surpassed ELSH, MOPT, PEFT, and BDHEFT for both the
Epigenomics and Montage workflow. For a huge graph, the POTC algorithm has a better
performance. Table 2 shows how the processor is selected based on the rank and cost of
various processors.

Speedup: The speedup for any given graph is obtained by the division of the cumula-
tive implementation time of the tasks in the graph by the length of the schedule. In other
words, it is the sequential implementation time to the parallel implementation time. The
sequential time is calculated by allocating all tasks to a single processor that reduces the
implementation costs. If the total sum of the implementation costs is increased, it results in
a larger speedup. Figure 6 shows the Speedup of the proposed algorithm compared with
existing algorithms [27,28].
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Table 2. Selection of task and processor in each iteration of the algorithm.

Step Ready List Selected Task EFT_P1 EFT_P2 EFT_P3 Selected Processor

1 T1 T1 24 23 38 P2

2 T3,T6,T2,T5,T4 T3 24 20 20 P2

3 T6,T2,T5,T4 T6 34 29 45 P2

4 T2,T5,T4 T2 9 12 6 P3

5 T5,T4,T8 T5 31 29 37 P2

6 T4,T8,T7 T4 28 19 26 P2

7 T8,T7,T9 T8 16 27 32 P1

8 T7,T9 T7 31 25 38 P2

9 T9 T9 17 23 10 P3

10 T10 T10 15 18 35 P1
Note: The earliest finish time is calculated for the workflow given in Figure 3a and the processor specification for
Figure 3b based on the formula specified in Equations (11), (12) and (16).

Speedup =
minpj ∈ P

{
∑niεV CC(i, j)

}
Total No. o f Tasks

(18)

Efficiency: It is given by the ratio of speedup to the number of VMs used.

Efficiency =
Speedup

No.o f processors used in each run
(19)

Figure 7 shows the efficiency of the BDHEFT, PEFT, MOPT, ELSH, and POTC algo-
rithms. It shows that the performance of PEFT is very similar to that of MOPT. Higher
values of efficiency are obtained by the proposed algorithm. For every algorithm, the
makespan decreases as the number of processors is increased.

Successful Rate: the successful rate (SR) is given as a ratio of the successful planning
to the total number in the experiment.

SR = Succes f ul Planning/Number o f total Experiments (20)
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The graph of SR as in Equation (16) is captured with around 50 runs of simulations.
The BDHEFT, PEFT, MOPT, ELSH, and POTC algorithms are selected for comparison. The
processors that are supported by Workflowsim have processors with varying configurations,
and their time and cost parameters vary. The deadline ratio (Kd) and Budget ratio (Kb)
values are considered as Kd ε {0.3, 0.5, 0.7 } and Kb ε {0.3, 0.5, 0.7 }. Some of the real-
world applications, such as Epigenomics (I/O intensive workflow) and Montage (compute
intensive workflow), are taken for analysis with 100 tasks, as shown in Figures 8 and 9.
Montage has a high communication to computation ratio (CCR) [29–31], and epigenomics
has a low communication to computation ratio (CCR). The success rate is always inversely
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proportional to CCR. For Epigenomics, as shown in Figure 8, POTC has obtained a
performance similar to those of MOPT and PEFT for the deadline (kd) = 0.7. The obtained
performance using POTC is better when compared to BDHEFT for large budgets (kb).
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Figure 9. Success rate of the montage workflow.

Figure 9 shows the success rate of the montage workflow. PEFT, MOPT, ELSH, and
POTC show a lower performance for lower values of budget (kb). The performance is
similar to MOPT and ELSH for large values of the deadline (kd).

In order to compare the execution cost of various scientific workflows, we assume
VMs of five different types with the processing speed of 1000–10,000 MIPS in a single data
center. On the basis of the processing capacity, the task processing time was estimated. The
cost varies between 2 and 10 units, and the time interval used in this tool is 1 h, which
is similar to the Amazon cloud, which uses a pay-as-you go model. The metrics used to
capture time and cost minimization are normalized schedule length (NSL) and normalized
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schedule cost (NSC) [32,33]. The NSL is defined by the ratio of the total execution time to
the workflow execution time by executing them on the fastest resource.

NSL = Total Execution time/Tf (21)

where Tf is the time required to execute the workflow tasks on the fastest resource.
NSC is defined by the ratio of the total cost to the workflow execution cost by executing

them on the cheapest resource.

NSC = Total Cost/Tc (22)

where Tc is the execution cost of the workflow while executing them on the cheapest
resource.

Using 50 runs of simulations, both NSL and NSC are captured. Figures 10–13 show
the NSL and NSC of POTC-generated schedules with respect to ELSH, MOPT, PEFT, and
BDHEFT. The deadline factors Kd and Kb are set as 0.3, 0.5, and 0.7. The budget is relaxed by
fixing the deadline Kd and varying the budget for different values of Kb = 0.3, 0.5, and 0.7.
To assign the workflow tasks, the scheduler chooses the fastest or the expensive resources.
Thus, for the created schedule under the same deadline, NSC tends to increase with the
decrease in NSL [34].
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Figures 10 and 12 show the average execution times of the Montage and Epigenomics
workflows, and Figures 11 and 13 show the average execution costs of the Montage and
Epigenomics workflows. As the value of Avg. NSC increases, the execution cost decreases
and NSL increases. When budget (Kb) is fixed, the deadline is relaxed by varying the
deadline from 0.3 to 0.7. Subsequently, the inexpensive or the slowest resources are chosen
by the scheduler. Thus, under the same budget, NSC is minimized and the NSL of the
workflow decreases as shown in Figures 9–12. Furthermore, by varying the budget ratio
and the fixed deadline, for each of these values, the budget is relaxed. Now according to
the user preference, the scheduler is able to choose the fastest resource or the inexpensive
resource.

From the above results, it has been found that the average cost of the proposed method
is minimized for montage by 7.1% and about 3.2% more for makespan with respect to
BDHEFT. For the Epigenomics workflow, the average cost is minimized by 8.3%, with
about 4.1% more for makespan. The overall results show that the proposed method (POTC)
outperforms ELSH, MOPT, PEFT, and BDHEFT under the same budget and deadline by
minimizing the average cost while improving the makespan, similar to the one given by
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BDHEFT. Thus, this method can handle various workflow applications of Amazon EC2
instances with varying capacities and cost.
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6. Conclusions

In this article, the Predict Optimistic Time and Cost (POTC) algorithm has been
proposed for scheduling scientific workflows onto heterogeneous systems more effectively.
The proposed algorithm is tested with some of the real-world scientific workflows, namely
the Epigenomics and Montage workflows. The proposed POTC algorithm has significantly
outperformed the other existing algorithms, namely ELSH, MOPT, PEFT, and BDHEFT,
in terms of performance metrics and cost metrics, such as schedule length ratio, speedup,
efficiency, and normalized schedule cost. The main contribution of this proposed algorithm
is the introduction of ranking before scheduling and performing the execution of tasks
based on ranks which are based on cost and time. In addition to ranking the scheme and
processor selection scheme, the deadline and budget are also considered in this work to
improve the speed of the overall execution of tasks. From the experiments conducted in this
work, it is proven that the proposed ranking scheme minimizes the processing time and
cost and assigns the best processors for each of the tasks. Instead of considering only the
earliest finish time, the selection phase also considered the processor with minimum cost
for executing the task. All processors are tested, and the processor which takes minimum
time and minimum cost is selected in this algorithm. Moreover, the forecast feature has
been proposed in the algorithm while maintaining the same quadratic complexity. The
proposed POTC algorithm outclassed all other scheduling algorithms with respect to the
scheduling length ratio and cost. Statistically, POTC has the lowest average schedule
length ratio, the lowest cost, and better speedup and efficacy. Thus, considering the results,
it is concluded that for the DAGs in a heterogeneous environment, the proposed static
scheduling algorithm named POTC exhibits an improved performance.

In the future, more experiments based on the various real workflows with many
characteristics can be conducted. Energy consumption is also one of the crucial user
requirement in clouds. As a future study, we plan to integrate this objective in the proposed
algorithm. We are also interested in implanting this algorithm onto hybrid cloud platforms
in addition to edge-cloud computing systems.
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