
future internet

Article

An Intelligent TCP Congestion Control Method Based on Deep
Q Network

Yinfeng Wang 1, Longxiang Wang 2,* and Xiaoshe Dong 2

����������
�������

Citation: Wang, Y.; Wang, L.; Dong,

X. An Intelligent TCP Congestion

Control Method Based on Deep Q

Network. Future Internet 2021, 13, 261.

https://doi.org/10.3390/fi13100261

Academic Editor: Paolo Bellavista

Received: 31 August 2021

Accepted: 30 September 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Software, Shenzhen Institute of Information Technology, Shenzhen 518116, China;
2011100764@sziit.edu.cn

2 College of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
xsdong@xjtu.edu.cn

* Correspondence: wlx419@xjtu.edu.cn

Abstract: To optimize the data migration performance between different supercomputing centers
in China, we present TCP-DQN, which is an intelligent TCP congestion control method based on
DQN (Deep Q network). The TCP congestion control process is abstracted as a partially observed
Markov decision process. In this process, an agent is constructed to interact with the network
environment. The agent adjusts the size of the congestion window by observing the characteristics
of the network state. The network environment feeds back the reward to the agent, and the agent
tries to maximize the expected reward in an episode. We designed a weighted reward function to
balance the throughput and delay. Compared with traditional Q-learning, DQN uses double-layer
neural networks and experience replay to reduce the oscillation problem that may occur in gradient
descent. We implemented the TCP-DQN method and compared it with mainstream congestion
control algorithms such as cubic, Highspeed and NewReno. The results show that the throughput of
TCP-DQN can reach more than 2 times of the comparison method while the latency is close to the
three compared methods.

Keywords: congestion control; reinforcement learning; TCP

1. Introduction

In recent years, China’s supercomputers have made great progress. The Sunway
TaihuLight and Tianhe have become one of the fastest supercomputers in the world.
However, the storage resources are widely dispersed and autonomous among the national
supercomputing centers. Large-scale computing applications urgently need a global data
space that can support cross-domain unified access, wide area data sharing, storage and
computing collaboration. To solve this problem, we built the virtual data space to aggregate
storage resources among different supercomputing centers. One challenge of virtual data
space is to build a high-performance and reliable network transmission protocol to fit the
demand of Giga Bytes or even Tera Bytes scale data migration.

Congestion control is the key technology to achieve efficient and reliable transmission.
The virtual data space is built on WAN, which is complex and changeable. Although
researchers have proposed a variety of TCP congestion control algorithms in the past
30 years, such as New Reno [1], Vegas [2], Highspeed [3] and cubic [4], etc., these methods
are designed according to the characteristics of the specific network environment and can
only be worked according to a predefined rule. Therefore, these methods are difficult to
adapt to the complex and changeable network environment of virtual data space. Whether
the classic new Reno or cubic algorithm, which is currently used as the default TCP
congestion control algorithm in Linux operating systems, its core idea is to regulate network
congestion parameters based on some predefined rules. These methods are only suitable
for scenarios with relatively stable network conditions. If the network conditions change,
the traditional methods cannot adapt to the new scenarios. Therefore, researchers proposed

Future Internet 2021, 13, 261. https://doi.org/10.3390/fi13100261 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi13100261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13100261
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13100261?type=check_update&version=2

Future Internet 2021, 13, 261 2 of 14

using reinforcement learning (RL) to build a smart congestion control method. As a research
hotspot in the machine learning field, reinforcement learning has been widely used in UAV
control [5], robot control [6], optimization and scheduling [7,8] and computer games [9].
The basic idea of RL is to construct an agent to interact with the environment, and to learn
the optimal strategy by maximizing the cumulative reward obtained by the agent from
the environment. Compared with the traditional method, the congestion control method,
based on reinforcement learning, has better adaptability and can learn a new strategy from
the changed network environment. Li et al. [10] proposed QTCP, which is a TCP congestion
control method based on Q-Learning (QTCP). The core idea of Q-learning method [11] is
to estimate the Q value of all state-action pairs (s, a). Q represents the expected reward that
can be obtained by taking action a from the current state s until the episode ends. If the
Q value of all state-action pairs (s, a) is estimated, the optimal congestion control strategy
is trivial. It can be achieved by always selecting the action a which can maximize the Q
value at every step. However, the state space of TCP congestion control is too large. If all
Q values of (s, a) pairs are saved as a two-dimension table in memory, it will overfit the
memory. It is difficult to implement and unnecessary in practice. At present, the solution
to this problem is to use a function to approximate the Q value table. QTCP uses the
Kanerva coding function to approximate the Q value. However, the Q-learning method
converges slowly after approximating the Q-value table with functions. Since the purpose
of Q-learning method is to find the unbiased Q value of all state action pairs (s, a), the exact
value of Q needs to be estimated by iterating on Bellman equation. However, if the Q-value
table is approximated by a function, the Bellman equation will be bootstrapped. When
the Q-value changes slightly, it may lead to severe oscillations during the training process.
Moreover, when the action space of Q-learning method is large, it is easy to converge
to a local optimal solution. Therefore, the QTCP does not work very well. Compared
with NewReno, QTCP improves the throughput by 59.5%. The results may look good;
however, it has been 20 years since the NewReno method was proposed in 1999. The
NewReno method has been deprecated in practice. The cubic algorithm, which is used
as the default congestion control method in Linux OS, improves the throughput by 200%
compared with NewReno. Compared with the cubic method, QTCP has little advantage.
To build a more efficient congestion control method by leveraging reinforcement learning,
we propose TCP-DQN, which is a congestion control method based on the DQN algorithm,
to implement efficient and reliable data migration in virtual data space. DQN [9] is the
state-of-the-art method of the Q-learning family. DQN uses experience replay and target
network to reduce the correlation between training data, solving the oscillation problem in
the traditional Q-learning method. The main contributions of this paper are as follows

(1) We propose TCP-DQN. By leveraging the state-of-the-art DQN algorithm, the training
of the congestion control is more stable and faster than the conventional Q-learning
method.

(2) We implemented TCP-DQN and compared it with the cubic method, which is the
state-of-the-art congestion control algorithm and is used as the default congestion
control method in Linux kernel. The results show that TCP-DQN can improve the
throughput by 200% compared with cubic.

2. Related Works
2.1. Traditional Congestion Control Protocols

Improving network performance is a hot research topic [12,13]. Over the years,
researchers have proposed various congestion control algorithms. They can be roughly
divided into four types according to design principles: loss-based, delay-based, capacity-
based, and hybrid.

Reno, NewReno, and BIC are representatives of loss-based congestion control mecha-
nisms. They both use packet loss to detect congestion and reduce the congestion window
(CWND) to reduce network congestion when congestion is detected, where Reno and
NewReno halve CWND only when three duplicate ACKs are detected, while cubic uses the

Future Internet 2021, 13, 261 3 of 14

cubic function to adjust CWND. Loss-based congestion control mechanisms use packet loss
as the only signal to detect congestion. When the receive buffer is large, the data will not be
lost until the buffer is full. During this period, the sender continues to increase its sending
rate. In this case, there is a long time difference between the occurrence of congestion and
the awareness of network congestion by the congestion control mechanism.

Delay-based congestion control mechanisms can solve the above problems by using
delays instead of packet loss as the congestion signals. Vegas [14] is the representative
of delay-based congestion control protocol. When Vegas detects that RTT exceeds the
threshold value, it starts decreasing CWND.

Capacity-based congestion control mechanisms use the estimation of link sending
capability as the basis for congestion control. Westwood [15] is improved from NewReno,
which measures ACK packets to determine an appropriate send speed and adjusts CWND
and slow start thresholds.

The Hybrid congestion control mechanism combines the above two congestion control
mechanisms to get their own advantages and further improve the congestion control.
Compound [16], BBR [17] belong to Hybrid congestion control mechanism.

Each of the above congestion control mechanisms has its own unique attributes,
advantages, and disadvantages. However, since traditional congestion control mechanisms
use a set of rules to control CWND and other related parameters, it is difficult for traditional
congestion control protocols to adapt to the complexity and rapid development of modern
networks.

2.2. Reinforcement Learning and Its Applications

Reinforcement learning (RL) is a subarea of machine learning. The basic idea of RL is to
construct an agent to interact with the environment and learn the best policy to achieve the
goal by maximizing the cumulative reward that the agent receives from the environment.
In essence, network congestion control can be regarded as an optimization problem [18–20].
Reinforcement learning has been widely used in many important areas. Y Ji et al. [21]
proposed a novel energy management approach for real-time scheduling of an microgrid.
Y. Fang et al. [22] proposed a reinforcement learning method to optimize the XSS detection
model to defend against adversarial attacks. In the past, researchers have proposed
a large number of optimization methods, such as NSGA-III variants [23]. Compared
with traditional congestion control algorithms, the congestion control algorithm based
on reinforcement learning has better adaptability and can learn new congestion control
policies from the network environment independently. Due to this feature, reinforcement
learning has become an important tool for network and protocol designers in recent years.
The study of congestion control based on reinforcement learning has become a hot spot
and has been applied in various areas. For example, Le T. et al. [24] suggests learning
channel allocation decisions by using a linear bandit model to minimize total switching
costs in multichannel wireless networks. N. Liu et al. [25] uses deep reinforcement learning
(DRL) to deal with large and complex state spaces when solving cloud resource allocation
and power management problems. Xu et al. [26] presents a DRL-based framework for
energy-efficient resource allocation in cloud RAN. Lu et al. [27] propose a reinforcement
learning-based decision method for electricity pricing plan selection by smart grid end
users. Pérez et al. [28] present a deep reinforcement learning method for energy-conscious
optimization of edge computing. Jung et al. [29] propose a deep inverse reinforcement
learning method for autonomous driving in an urban environment. Deltetto et al. [30]
present a reinforcement learning (rl) control strategy for the participation in an incentive-
based demand response program of a cluster of commercial buildings. Fischer et al. [31]
use a reinforcement learning method to address the question of whether they can predict
reaching movements in a full skeletal model of the human upper extremity. In addition,
there are many algorithms based on reinforcement learning to improve the quality of
service of network applications. Habachi et al. [32] presented an algorithm based on RL to
generate congestion control rules to optimize QoE for multimedia applications. Hemmati

Future Internet 2021, 13, 261 4 of 14

et al. [33] defines the network resource allocation problem as a DEC-POMDP model in a
multiuser video stream, and applies a distributed RL algorithm to solve the problem. Hooft
et al. [34] uses RL algorithm to improve the QoE of video streams by adaptively changing
parameter configurations. Its limitation is the use of a table-based algorithm, thereby
limiting their application to large continuous domains. Cui et al. [35] presented Hd-TCP: a
custom congestion control algorithm that uses deep reinforcement learning to deal with the
poor network experience caused by frequent network switching on high-speed networks
from a transport layer perspective.

All above scenarios are task driven. They are designed for specific applications and
cannot be applied directly to congestion control problems. QTCP [10] is the first solution to
directly apply RL to TCP congestion control protocol design. QTCP continuously updates
the values of possible state-action pairs of protocols based on measurements of performance
indicators collected from the network environment and uses the Q-Learning algorithm to
search for the best action, that is, how to adjust CWND. In a particular state, maximize the
long-term return of the sender. However, QTCP may cause repeated oscillations during
training, and it is easy to converge to the local optimal solution when the Q-Learning
method has a large space of motion.

TCP-Drinc [36] is a model-free intelligent congestion control algorithm based on deep
reinforcement learning, which gets experience from past network states and determines
how to adjust the CWND based on the experiences. The experimental results show that
TCP-Drinc congestion control algorithm achieves a balance between throughput and RTT.
It has a more stable and average performance than NewReno, Vegas, and other algorithms,
but there is no significant improvement in throughput.

Rax [37] uses online reinforcement learning to maintain the best congestion window
based on the received reward from the network environment. It has a lower packet loss
rate, but less throughput improvement than Reno, PCC, and other congestion control
algorithms. VNE-TD [38] uses TD Learning to solve the Virtual Network Embedding.

Q-learning algorithm is widely used in congestion control. However, when the action
space of Q-learning algorithm is large, Q-learning is very easy to converge to the local
optimal solution. To solve this problem, we propose a DQN based network congestion
control method. Compared with the traditional Q-learning algorithm, DQN converges
more quickly, has much better performance.

3. Background
DQN

Q-learning [11] is a value-based reinforcement learning algorithm, which is the basis
of DQN. Generally speaking, reinforcement learning interacts and learns from the envi-
ronment by using an agent. The agent tries to generate a suitable action to maximize the
received reward in a particular state, and finally learns the optimal control policy. The
core idea of reinforcement learning is trial and error mechanism and policy optimization.
Agents improve their policy by trying various actions to learn the good action that can get
more reward from the environment.

In Q-learning, a greedy policy is used to generate the action a, which means the agent
will always choose the action that can obtain the maximum Q value in each state s. The
core idea of Q-learning is the Q(s, a) function. The Q(s, a) function represents the cumulated
reward until the current episode ends after choosing an action a in state s. According to the
Bellman equation, the Q value can be iteratively calculated by Equation (1).

Q(st, at)← Q(st, at) + α(R(st, at) + γmaxaQ(st+1, a)−Q(st, at)) (1)

where α is the learning rate; R is the reward value obtained after performing the action at;
γ represents the discounting factor, which determines the importance of future rewards. In
theory, all Q(s, a) values can be held in a two-dimensional table, and all the exact Q values
can be calculated by iterating enough times according to Equation (1). After calculating all
Q values in the Q table, the optimal control policy is trivial, which can be implemented by

Future Internet 2021, 13, 261 5 of 14

choosing the action a which can maximize the Q value at each state. However, in practical,
the Q table is too large to hold in memory. Therefore, a function is used to approximate the
Q table, which means the Q value can be estimated if a (s, a) pair is inputted to the function.
The simplest way is using a linear function to approximate the Q table. To get a better
result, a non-leaner function such as artificial neural network can be used to approximate
Q table. However, with function approximation, the oscillation problem may be occurred
during the training process.

As shown in Figure 1, DQN [12] is the development of Q-learning algorithm [13],
which is a new algorithm combining deep learning with reinforcement learning. DQN
solves the oscillation problem during training by experience replay and dual neural net-
work. Different from Q-learning, the parameters are updated immediately after gaining
experience in each step, DQN saves the experience et = (st, at, rt, st+1) obtained in each
step to an experience pool, which is formalized as Dt = {e1, . . . , et}. DQN will randomly
sample experience from the experience pool to update the parameters. This mechanism
has three advantages:

(1) Each experience may be used for multiple parameter updating. Combing with the
experience replay, the learning is more effective.

(2) The samples of Q-learning learning are generated in continuous actions, which makes
the samples have strong correlation with each other and result in oscillation in training.
DQN randomly samples from the experience pool to eliminate the correlation between
continuous samples and enhance stability of the training process.

(3) DQN randomly picks samples from the experience pool for training, which avoids
the problem that Q-learning may fall into a local optimal solution. In addition, DQN
constructs two neural networks with the same structure for learning. They are: Q-
network and target-Q network. Samples are generated by the target-Q network, and
the Q-network is used for parameter update. After c-time parameter update, the
parameters of Q-network are copied into target-Q network. This leads to more stable
training because it keeps the target function fixed (for a while). The algorithm of DQN
is described as follows (Algorithm 1):

Algorithm 1. DQN

Initialize replay memory D to capacity N
Initialize action value function Q with random weights θ

For episode = 1, M do
Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
For t = 1, T do

With probability ε select a random action at
Otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in emulator and observe reward rt next state xt + 1
Set st+1 = st, atxt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D

Sample random minibatch of transitions
(

φj, aj, rj, φj+1

)
from D

Set yj =

{
rj if episode terminates at step j+1
rj + γmaxa′Q(φj+1, a′; θ) otherwise

Perform a gradient descent step on
(

yj −Q(φj, aj; θ)
)2

with respect to the
network parameters θ

End for
End for

xt represents the observation at the time-step t. θ is used as the weights of the
neural network in DQN. φ is the preprocessing function. The DQN algorithm is originally
proposed to play the Atari games. Working directly with raw Atari frames, which are
210 × 160-pixel images with a 128 color palette, can be computationally demanding, so
DQN applies a basic preprocessing step aimed at reducing the input dimensionality. In our
implementation, the input data are small. Therefore, we do not’ use a preprocess function.

Future Internet 2021, 13, 261 6 of 14

T represents the terminate time-step. The agent will select a random action to explore the
environment with probability ε, which can be preset by the user.

Figure 1. Q-learning vs. DQN.

4. Framework

The TCP-DQN framework is shown in Figure 2. The core of reinforcement learning
is to abstract the environment and agent. We take the virtual data space network as
the environment, and the agent adjusts the congestion window by observing the state
information in the environment to optimize the performance of the virtual data space
network. After making the action and interacting with the environment, the agent gains the
reward from the environment. The agent updates the artificial neural network parameters
to maximize the Q value.

Future Internet 2021, 13, 261 7 of 15

4. Framework

The TCP-DQN framework is shown in Figure 2. The core of reinforcement learning

is to abstract the environment and agent. We take the virtual data space network as the

environment, and the agent adjusts the congestion window by observing the state infor-

mation in the environment to optimize the performance of the virtual data space network.

After making the action and interacting with the environment, the agent gains the reward

from the environment. The agent updates the artificial neural network parameters to max-

imize the Q value.

Observation of
the current state

Experience
pool

Congestion
window

Solve the
optimized

control
policy

V
irtu

al d
ata sp

ace(En
viro

n
m

en
t)

DQN

Adjust window size Get reward

Sampling
experience to
update DQN
parameters

Agent

Figure 2. TCP–DQN framework.

4.1. Problem Formulation

The TCP congestion control process can be abstracted as a partially observable Mar-

kov decision process, which is defined as a quintuple {S, A, R, P, γ}. Where S is the set of

all states. st ∈ S is the state observed at time t, and the initial state is s0; A is the set of

actions, and at ∈ A is the action taken at time t; R is the reward function defined as

1R(,)=E(| ,)t t t t ts a R s a (2)

According to Equation (2), if the agent is in state st at time-step t, and selects the

action at, then the reward Rt+1 is received from the environment at time-step t + 1; P is the

transition probability matrix, defined as

' 1(' | ,)a

ss t t ts s s s a a P P (3)

Equation (3) represents the probability from the state s’ to the state s if the action a is

chosen at time t. γ ∈ [0,1] is the discounting factor, which reflects the decay rate of the

future rewards. The discount factor reflects the design idea of the reinforcement learning

algorithm, which means the reward that can be obtained immediately is preferred.

Whereas the reward obtained in the future will be decayed by a certain proportion.

The reinforcement learning algorithm starts from an initial state s0. According to the

observed state st, the action at is selected by a policy function π (at | st). According to the

state transition matrix P (st+1| st, at), the reinforcement learning algorithm gets the reward

Rt + 1 from the environment. The goal of reinforcement learning is to optimize the strategy

function to maximize the expected reward, which is defined as

2

1 2 2

1

1

+ + ...

 =

T

t t t t t

T k t

kk t

G R R R R

R

 (4)

In Equation (4), T is the time-step at which the episode terminates.

Figure 2. TCP–DQN framework.

4.1. Problem Formulation

The TCP congestion control process can be abstracted as a partially observable Markov
decision process, which is defined as a quintuple {S, A, R, P, γ}. Where S is the set of all
states. st ∈ S is the state observed at time t, and the initial state is s0; A is the set of actions,
and at ∈ A is the action taken at time t; R is the reward function defined as

R(st, at) = E(Rt+1|st, at) (2)

Future Internet 2021, 13, 261 7 of 14

According to Equation (2), if the agent is in state st at time-step t, and selects the
action at, then the reward Rt+1 is received from the environment at time-step t + 1; P is the
transition probability matrix, defined as

Pa
ss′ = P(st+1 = s′

∣∣st = s, at = a) (3)

Equation (3) represents the probability from the state s′ to the state s if the action
a is chosen at time t. γ ∈ [0, 1] is the discounting factor, which reflects the decay rate
of the future rewards. The discount factor reflects the design idea of the reinforcement
learning algorithm, which means the reward that can be obtained immediately is preferred.
Whereas the reward obtained in the future will be decayed by a certain proportion.

The reinforcement learning algorithm starts from an initial state s0. According to the
observed state st, the action at is selected by a policy function π (at|st). According to the
state transition matrix P (st+1|st, at), the reinforcement learning algorithm gets the reward
Rt+1 from the environment. The goal of reinforcement learning is to optimize the strategy
function to maximize the expected reward, which is defined as

Gt = Rt + γRt+1 + γ2Rt+2 . . . + γTRt+2
= ∑T

k=t+1 γk−t−1Rk
(4)

In Equation (4), T is the time-step at which the episode terminates.

4.2. State Space

Designing a reasonable state space st is the key to achieve an efficient reinforcement
learning goal. Only by observing enough information, the reinforcement learning algo-
rithm can choose good actions. However, too much state information will increase the
computation cost and slow down the learning speed. Therefore, we design the state space
st including the following parameters:

(1) The relative time t. The time that has been elapsed since the TCP connection was
established. In cubic algorithm, the window size is designed as a cubic function
of time t. Therefore, we consider t as an important parameter to determine the
congestion window.

(2) Congestion window size. Congestion control algorithm needs to adjust the new
window size based on the current one. If the current congestion window is small, the
agent will increase the window faster; else if the window is large, the agent will stop
increasing the window size or slowly increasing the window size.

(3) Number of unacknowledged bytes. The number of bytes sent but not confirmed
by the receiver. If the network link is compared to a water pipe, the number of
unacknowledged bytes can be understood as the water stored in the pipeline. If there
is enough water in the pipeline, the water injected into the pipeline should be stopped
or reduced, else the water should be injected more. Therefore, the water injection
rate (congestion window size) should be determined according to the water volume
(number of unacknowledged bytes) in the pipeline.

(4) Number of ACK packets. This parameter can indirectly reflect the congestion situation.
If the number of received ACK packets is normal, it indicates that the network is
in a good condition and congestion has not occurred. The size of the congestion
window can be increased. Otherwise, it indicates that the network is congested and
the congestion window should be maintained or reduced.

(5) Average RTT (round trip time) value. The average RTT value in the observation
period. RTT refers to the total time spent from sending to receiving ACK for a data
packet. The RTT value is closely related to the network congestion. If the network
congestion is serious, the RTT value will increase significantly. Therefore, RTT value
can reflect the network congestion. The congestion control algorithm should adjust
the congestion window according to RTT value.

Future Internet 2021, 13, 261 8 of 14

(6) Throughput. The throughput during the observation period. Throughput is defined
as the number of data bytes confirmed by the receiver per second. This parameter
directly reflects the network status. High throughput indicates that enough packets
have been sent into the network link. Otherwise, it indicates that the current network
bandwidth is more redundant, and more packets can be sent on the link.

(7) Number of lost packets. The number of lost packets indicates the congestion situation
of the current network. If the number of lost packets is small, the agent should
increase the congestion window. Otherwise, the agent should decrease the congestion
window.

4.3. Action Space

at is defined as the adjusting action of the congestion window at time T. We define the
action as the increase in n segments to the congestion window, as shown below

cwnd = cwnd + n ∗ segment (5)

A segment is the unit of end-to-end transmission in the TCP protocol. A segment
consists of a TCP header followed by application data. A segment is transmitted by
encapsulation inside an IP datagram.

The action is defined as the choice of n, which is a one-dimensional discrete vector. Its
value range is set to (−50, 50).

The design idea of Equation (5) is to provide a generalized equation to determine
the growth rate of congestion window according to the observed state information. In
different network scenarios, the agent should choose reasonable strategies to effectively
utilize the network bandwidth. In a high bandwidth environment, the congestion window
grows exponentially by adjusting n > 1, Otherwise, in a low bandwidth environment, the
congestion window grows linearly by adjusting n = 1. In case of network congestion, the
agent adjusts n < = 0 to keep or reduce the congestion window and relieve the congestion
pressure.

4.4. Reward Function

rt is defined as the reward received from the environment at time t. The reward
function is shown in Equation (6).

rt = α

(
T− Tmin

Tmax − Tmin

)
− (1− α)

(
rtt− rttmin

rttmax − rttmin

)
(6)

T represents the current observed throughput. Tmax represents the historically ob-
served maximum throughput. rtt represents the average round trip time during the
observation period. rttmin represents the minimum round-trip time observed during the
observation period. α is the weight factor, which is a super parameter, reflecting the weight
ratio of throughput and RTT to the reward value. α determines that the optimization goal
of congestion control algorithm is more focused on throughput or RTT. In the experiment,
α = 0.5 is chosen to balance throughput and RTT.

5. Results and Discussion
5.1. Experimental Environment

A high-performance server is used to measure and compare the performance of
TCP-DQN

(1) CPU: Intel (R) Xeon (R) silver 4110 CPU @ 2.10 GHz processor;
(2) Memory: 32 g DDR4 memory;
(3) GPU: NVIDIA Titan V;
(4) Operating system: Red Hat 4.8.5-28.

Future Internet 2021, 13, 261 9 of 14

We implemented TCP-DQN method and tested its performance in virtual data space.
The TCP-DQN is compared with the representative TCP congestion control algorithms
such as cubic, NewReno, and HighSpeed. NewReno is a classic congestion control algo-
rithm; HighSpeed is a congestion control algorithm designed for the high-speed network
environment; cubic is the default TCP congestion control algorithm since Linux kernel
version 2.6.19. According to our real test, the average network bandwidth of virtual data
space is close to 67.8 Mbps, the delay is close to 56 ms, and the packet loss rate is close
to 0.01%. The time step of TCP-DQN is set to 0.1 s. After training with 60,000 steps, the
reward obtained has become stable, indicating that the algorithm has converged.

As shown in Figure 3, we use a simple Muti-Layer Perception to build our DQN
network architecture. There are two hidden layers and each layer has 64 nodes. The
input layer has seven nodes, which are used to observe the current state. The output layer
has 101 nodes, each represents the Q value of the corresponding action. The first node
represents the action −50, the second node represents the action −49, . . . , and the last
node represents the action 50. If exploration is not triggered in the current time-step, then
the action with max Q value will be selected. For example, if the first output node has the
max Q value, then the action −50 is selected. According to Equation (5), the cwnd should
be reduced by 50 segments.

Figure 3. DQN architecture.

We set the core parameters of DQN as follows: gamma = 0.99, learning_rate = 0.0005,
buffer_size = 50000, exploration_fraction = 0.1, exploration_final_eps = 0.02, exploration_in
itial_eps = 1.0. The exploration_fraction indicates the fraction of entire training period over
which the exploration rate is annealed; exploration_final_eps indicates the final value of
random action probability; exploration_initial_eps indicates the initial value of random
action probability. At the first time-step, the agent will definitely explore the environment
because the initial value of random action probability is set to 1. Then, the exploration rate
will be annealed. When the exploration terminates (the exploration fraction reaches up to
10%), the exploration rate is annealed to 0.02.

5.2. Throughput Comparison

We define the throughput as the size of the bytes acknowledged by the sender per
second. As shown in Figure 4, the network throughput of TCP-DQN is about twice than
that of HighSpeed and cubic methods, and is about three times than that of NewReno
method. In addition, the throughput of TCP-DQN is quite stable compared with the
other three methods. Figure 5 shows the cumulative probability density function curve

Future Internet 2021, 13, 261 10 of 14

of throughput to compare the four congestion control methods. The TCP-DQN performs
much better than the other three methods. About 80% of the sampling points of TCP-
DQN have a throughput of more than 6 MB/s. The result suggests that the traditional
congestion control algorithms, such as NewReno, cannot adapt to the WAN environment
of virtual data space, and is not suitable for data migration in virtual data space. Cubic
and HighSpeed have significant performance improvements over NewReno, but they still
cannot make full use of the available bandwidth to realize high-speed transmission. While
TCP-DQN has the best performance; after a certain amount of learning, it can make full
use of network bandwidth to realize efficient data migration in virtual data space.

Figure 4. Throughput performance comparison.

Figure 5. Comparison of cumulative probability density distribution of throughput.

5.3. RTT Comparison

RTT represents the amount of time it takes for a packet to be sent plus the amount
of time it takes for an acknowledgement of that packet to be received, which reflects
the network delay. As shown in Figure 6, in general, the RTT values of TCP-DQN and
HighSpeed method are lower than that of the other two methods. This is because the
TCP- DQN tries to balance the throughput and RTT. Figure 7 shows the comparison of
cumulative probability density functions of RTT values. TCP-DQN and HighSpeed have
better network latency. In total, 90% RTT of TCP-DQN and HighSpeed are less than

Future Internet 2021, 13, 261 11 of 14

58 ms, whereas only 82% RTT of cubic are less than 58 ms; 76% RTT of NewReno are
less than 58 ms. The result suggests that the traditional NewReno algorithm not only has
poor throughput, but also has poor time latency. The time latency of cubic is better than
NewReno, but still can be improved. HighSpeed works well on WAN. TCP-DQN has a
same time latency compared with Highspeed.

Figure 6. RTT comparison.

Figure 7. Throughput performance comparison.

5.4. Packet Loss Rate Comparison

We compared the packet loss rate of the four algorithms. As shown in Figure 8, the
packet loss rate of the four algorithms is close to 0.01%, which is consistent with the packet
loss rate of the WAN. The packet loss rate of TCP–DQN is 0.0124%, which is slightly higher
than that of the other three algorithms. This is because TCP–DQN sends the most packets,
and some packets are discarded because the router cache is full, resulting in packet loss.

Future Internet 2021, 13, 261 12 of 14

Figure 8. Comparison of packet loss rate.

6. Conclusions

Virtual data space is of great significance for aggregating national high-performance
computing resources. Efficient and reliable data transmission is the core technology of
building virtual data space. We propose a TCP congestion control algorithm based on
near-end policy optimization algorithm to achieve efficient and reliable data migration in
virtual data space.

The main conclusions are as follows:

(1) This paper proposes a TCP congestion control algorithm based on a DQN algorithm,
which abstracts the TCP congestion control process based on reinforcement learning
into a partially observable Markov decision process. By referring to the mainstream al-
gorithm, the state space and action space are reasonably designed, and the reasonable
reward function is designed.

(2) The throughput of DQN is up to 7 MB/s on average when the bandwidth is 10 MB/s.
Compared with highspeed, cubic and NewReno algorithms, the throughput of TCP-
DQN can reach more than 2–3 times. The RTT of DQN is 58 ms on average when the
minimal RTT of the physical link is 56 ms.

In the future, we will test the performance of TCP-DQN method to obtain more results,
and further propose optimization methods according to the test results to better serve the
national high-performance computing environment.

Author Contributions: Conceptualization, Y.W.; methodology, L.W.; software, L.W.; validation, X.D.;
writing—original draft preparation, Y.W.; writing—review and editing, L.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Floyd, S.; Henderson, T. RFC2582: The NewReno Modification to TCP’s Fast Recovery Algorithm. 1999. Available online:

https://dl.acm.org/doi/10.17487/RFC2582 (accessed on 29 September 2021).
2. Brakmo, L.S.; Peterson, L.L. Tcp Vegas—End-to-End Congestion Avoidance on a Global Internet. IEEE J. Sel. Areas Commun. 1995,

13, 1465–1480. [CrossRef]
3. Floyd, S. HighSpeed TCP for Large Congestion Windows. Rfc: 2003. Available online: https://www.hjp.at/doc/rfc/rfc3649.html

(accessed on 29 September 2021).
4. Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high-speed TCP variant. ACM Sigops Oper. Syst. Rev. 2008, 42, 64–74.

[CrossRef]
5. Xiao, L.; Lu, X.; Xu, D.; Tang, Y.; Wang, L.; Zhuang, W. UAV Relay in VANETs Against Smart Jamming with Reinforcement

Learning. IEEE Trans. Veh. Technol. 2018, 67, 4087–4097. [CrossRef]

https://dl.acm.org/doi/10.17487/RFC2582
http://doi.org/10.1109/49.464716
https://www.hjp.at/doc/rfc/rfc3649.html
http://doi.org/10.1145/1400097.1400105
http://doi.org/10.1109/TVT.2018.2789466

Future Internet 2021, 13, 261 13 of 14

6. Niroui, F.; Zhang, K.; Kashino, Z.; Nejat, G. Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration
in Unknown Cluttered Environments. IEEE Robot. Autom. Lett. 2019, 4, 610–617. [CrossRef]

7. Huang, S.; Lv, B.; Wang, R.; Huang, K. Scheduling for Mobile Edge Computing with Random User Arrivals: An Approximate
MDP and Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 7735–7750. [CrossRef]

8. Cao, Z.; Lin, C.; Zhou, M.; Huang, R. Scheduling Semiconductor Testing Facility by Using Cuckoo Search Algorithm with
Reinforcement Learning and Surrogate Modeling. IEEE Trans. Autom. ENCE Eng. 2019, 16, 825–837. [CrossRef]

9. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

10. Li, W.; Zhou, F.; Chowdhury, K.R.; Meleis, W.M. QTCP: Adaptive Congestion Control with Reinforcement Learning. IEEE Trans.
Netw. Sci. Eng. 2018, 6, 445–458. [CrossRef]

11. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
12. Sun, G.; Zhou, R.; Sun, J.; Yu, H.; Vasilakos, A.V. Energy-efficient provisioning for service function chains to support delay-

sensitive applications in network function virtualization. IEEE Internet Things J. 2020, 7, 6116–6131. [CrossRef]
13. Sun, G.; Li, Y.; Yu, H.; Vasilakos, A.V.; Du, X.; Guizani, M. Energy-efficient and traffic-aware service function chaining orchestration

in multi-domain networks. Future Gener. Comput. Syst. 2019, 91, 347–360. [CrossRef]
14. Brakmo, L.S.; O’Malley, S.W.; Peterson, L.L. TCP Vegas: New techniques for congestion detection and avoidance. In Proceedings

of the Conference on Communications Architectures, Protocols and Applications, London, UK, 31 August–2 September 1994;
pp. 24–35.

15. Gerla, M.; Sanadidi, M.; Wang, R.; Zanella, A.; Casetti, C.; Mascolo, S. TCP Westwood: Congestion window control using
bandwidth estimation. In Global Telecommunications Conference, 2001. GLOBECOM ’01; IEEE: New York, NY, USA, 2001; Volume 3,
pp. 1698–1702.

16. Tan, K.; Song, J.; Zhang, Q.; Sridharan, M. A compound TCP approach for high-speed and long distance networks. In Proceedings
of the IEEE INFOCOM 2006, Barcelona, Spain, 23–29 April 2006.

17. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. Queue 2016, 14, 20–53.
[CrossRef]

18. Busch, C.; Kannan, R.; Vasilakos, A.V. Approximating Congestion+ Dilation in Networks via “Quality of Routing” Games. IEEE
Trans. Comput. 2011, 61, 1270–1283. [CrossRef]

19. Liu, L.; Song, Y.; Zhang, H.; Ma, H.; Vasilakos, A.V. Physarum optimization: A biology-inspired algorithm for the steiner tree
problem in networks. IEEE Trans. Comput. 2013, 64, 818–831.

20. Dvir, A.; Vasilakos, A.V. Backpressure-based routing protocol for DTNs. In Proceedings of the ACM SIGCOMM 2010 Conference,
New Delhi, India, 30 August–3 September 2010; pp. 405–406.

21. Ji, Y.; Wang, J.; Xu, J.; Fang, X.; Zhang, H. Real-time energy management of a microgrid using deep reinforcement learning.
Energies 2019, 12, 2291. [CrossRef]

22. Fang, Y.; Huang, C.; Xu, Y.; Li, Y. RLXSS: Optimizing XSS detection model to defend against adversarial attacks based on
reinforcement learning. Future Internet 2019, 11, 177. [CrossRef]

23. Yi, J.-H.; Xing, L.-N.; Wang, G.-G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover operators in NSGA-III for
large-scale optimization problems. Inf. Sci. 2020, 509, 470–487. [CrossRef]

24. Le, T.; Szepesvári, C.; Zheng, R. Sequential learning for multi-channel wireless network monitoring with channel switching costs.
IEEE Trans. Signal Process. 2014, 62, 5919–5929. [CrossRef]

25. Liu, N.; Li, Z.; Xu, J.; Xu, Z.; Lin, S.; Qiu, Q.; Tang, J.; Wang, Y. A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning. In Proceedings of the 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 372–382.

26. Xu, Z.; Wang, Y.; Tang, J.; Wang, J.; Gursoy, M.C. A deep reinforcement learning based framework for power-efficient resource
allocation in cloud RANs. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

27. Lu, T.; Chen, X.; McElroy, M.B.; Nielsen, C.P.; Wu, Q.; Ai, Q. A Reinforcement Learning-Based Decision System for Electricity
Pricing Plan Selection by Smart Grid End Users. IEEE Trans. Smart Grid 2021, 12, 2176–2187. [CrossRef]

28. Sp, A.; Paa, B.; Jmma, B. Energy-conscious optimization of Edge Computing through Deep Reinforcement Learning and two-phase
immersion cooling. Future Gener. Comput. Syst. 2021, 125, 891–907.

29. Jung, C.; Shim, D.H. Incorporating Multi-Context into the Traversability Map for Urban Autonomous Driving Using Deep Inverse
Reinforcement Learning. IEEE Robot. Autom. Lett. 2021, 6, 1662–1669. [CrossRef]

30. Deltetto, D.; Coraci, D.; Pinto, G.; Piscitelli, M.; Capozzoli, A. Exploring the Potentialities of Deep Reinforcement Learning for
Incentive-Based Demand Response in a Cluster of Small Commercial Buildings. Energies 2021, 14, 2933. [CrossRef]

31. Fischer, F.; Bachinski, M.; Klar, M.; Fleig, A.; Müller, J. Reinforcement learning control of a biomechanical model of the upper
extremity. Sci. Rep. 2021, 11, 14445. [CrossRef] [PubMed]

32. Habachi, O.; Shiang, H.-P.; Van Der Schaar, M.; Hayel, Y. Online learning based congestion control for adaptive multimedia
transmission. IEEE Trans. Signal Process. 2013, 61, 1460–1469. [CrossRef]

http://doi.org/10.1109/LRA.2019.2891991
http://doi.org/10.1109/TVT.2020.2990482
http://doi.org/10.1109/TASE.2018.2862380
http://doi.org/10.1038/nature14236
http://doi.org/10.1109/TNSE.2018.2835758
http://doi.org/10.1007/BF00992698
http://doi.org/10.1109/JIOT.2020.2970995
http://doi.org/10.1016/j.future.2018.09.037
http://doi.org/10.1145/3012426.3022184
http://doi.org/10.1109/TC.2011.145
http://doi.org/10.3390/en12122291
http://doi.org/10.3390/fi11080177
http://doi.org/10.1016/j.ins.2018.10.005
http://doi.org/10.1109/TSP.2014.2357779
http://doi.org/10.1109/TSG.2020.3027728
http://doi.org/10.1109/LRA.2021.3059628
http://doi.org/10.3390/en14102933
http://doi.org/10.1038/s41598-021-93760-1
http://www.ncbi.nlm.nih.gov/pubmed/34262081
http://doi.org/10.1109/TSP.2012.2237171

Future Internet 2021, 13, 261 14 of 14

33. Hemmati, M.; Yassine, A.; Shirmohammadi, S. An online learning approach to QoE-fair distributed rate allocation in multi-user
video streaming. In Proceedings of the 2014 8th International Conference on Signal Processing and Communication Systems
(ICSPCS), Gold Coast, Australia, 15–17 December 2014; pp. 1–6.

34. Van Der Hooft, J.; Petrangeli, S.; Claeys, M.; Famaey, J.; De Turck, F. A learning-based algorithm for improved bandwidth-
awareness of adaptive streaming clients. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 131–138.

35. Cui, L.; Yuan, Z.; Ming, Z.; Yang, S. Improving the Congestion Control Performance for Mobile Networks in High-Speed Railway
via Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2020, 69, 5864–5875. [CrossRef]

36. Xiao, K.; Mao, S.; Tugnait, J.K. TCP-Drinc: Smart congestion control based on deep reinforcement learning. IEEE Access 2019, 7,
11892–11904. [CrossRef]

37. Bachl, M.; Zseby, T.; Fabini, J. Rax: Deep reinforcement learning for congestion control. In Proceedings of the ICC 2019–2019 IEEE
International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

38. Wang, S.; Bi, J.; Wu, J.; Vasilakos, A.V.; Fan, Q. VNE-TD: A virtual network embedding algorithm based on temporal-difference
learning. Comput. Netw. 2019, 161, 251–263. [CrossRef]

http://doi.org/10.1109/TVT.2020.2984038
http://doi.org/10.1109/ACCESS.2019.2892046
http://doi.org/10.1016/j.comnet.2019.05.004

	Introduction
	Related Works
	Traditional Congestion Control Protocols
	Reinforcement Learning and Its Applications

	Background
	Framework
	Problem Formulation
	State Space
	Action Space
	Reward Function

	Results and Discussion
	Experimental Environment
	Throughput Comparison
	RTT Comparison
	Packet Loss Rate Comparison

	Conclusions
	References

