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Abstract: Satellite–terrestrial integrated networks (STINs) are regarded as a promising solution to
meeting the demands of global high-speed seamless network access in the future. Software-defined
networking and network function virtualization (SDN/NFV) are two complementary technologies
that can be used to ensure that the heterogeneous resources in STINs can be easily managed and
deployed. Considering the dual mobility of satellites and ubiquitous users, along with the dynamic
requirements of user requests and network resource states, it is challenging to maintain service
continuity and high QoE performance in STINs. Thus, we investigate the service migration and
reconfiguration scheme, which are of great significance to the guarantee of continuous service
provisioning. Specifically, this paper proposes a dynamic service reconfiguration method that can
support flexible service configurations on integrated networks, including LEO satellites and ground
nodes. We first model the migration cost as an extra delay incurred by service migration and
reconfiguration and then formulate the selection processes of the location and migration paths of
virtual network functions (VNFs) as an integer linear programming (ILP) optimization problem.
Then, we propose a fuzzy logic and quantum genetic algorithm (FQGA) to obtain an approximate
optimal solution that can accelerate the solving process efficiently with the benefits of the high-
performance computing capacity of QGA. The simulation results validate the effectiveness and
improved performance of the scheme proposed in this paper.

Keywords: satellite–terrestrial integrated networks; quantum genetic algorithm; service migration;
SDN/NFV

1. Introduction

With the rapid development of micro satellite systems and internet technology, inte-
grating terrestrial networks and satellite networks that are able to cover multiple natural
environments, such as space, air, earth, maritime, and deep space environments, and that
can provide seamless high-speed network access, satellite–terrestrial integrated networks
(STINs) have gradually become one of the most important research fields in the current
industry and academic community [1]. The combination of emerging network technologies,
such as SDN/NFV [2], 5G [3], edge computing [4], and the Internet of Things [5], also
ensure that STINs are efficient and have convenient management and control abilities as
well as flexible and expandable network service support [6]. Under the STIN architecture,
differentiated independent network slices are provided according to a user’s actual traffic
demands and service requirements, or corresponding Virtual Network Functions (VNFs)
are deployed. These aim to use limited network resources or service resources in order to
meet the diverse traffic and service requirements of different users as well as to obtain a
better network resource configuration and better service experience. However, the dynamic
network topology of the STIN itself, as well as the changes in user traffic requests and
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task requirements, mean that one-time resource deployment and optimization strategies
are no longer able to adapt to the dynamic network states, resulting in the deterioration
of network performance, the decline of user service quality experience, the increase in
network operation, and maintenance costs, etc.

The main reasons for the dynamics that are observed in STINs are the dual mobility
of satellites and mobile users with varying requirements. For example, when the LEO
satellites offering on-board services move out of the reachable range, the on-board services
need to migrate to another satellite that is moving into range. Additionally, users change
their access location and network requests along with the real-time tasks and the deployed
service may not be able to meet the changing request, so it also needs to be reconfigured.
That is, when facing the dynamics caused by user or node mobility that may seriously
affect service traffic transmission or service deployment quality, it is necessary to find new
adjustment methods to maintain the continuity and quality assurance of traffic transmission
and service provisioning.

Thus, we need to design a new adjustment method that is able to manage service
migration and reconfiguration in STINs and that is able to alleviate problems of load
imbalance, degradation, or service quality interruptions to a certain extent [7]. Specifically,
the proposed method migrates and deploys the VNFs on the original service node to a
new service node that has more sufficient resources or more reasonable paths. Then, the
service traffic would be guided according to the new location and would be transmitted by
the new service path. Differently to the general network framework of mobile networks,
the dual mobility and high dynamics of STINs increase the difficulty of solving the above
problem [8].

Therefore, we focus on the service migration and reconfiguration caused by the
dual mobility and dynamics under the STIN architecture, and the main contributions are
as follows:

• Considering the dual mobility and high dynamics of STINs, we propose a detailed sys-
tem model and problem statement for service migration in STINs, and the migration
location and path selection problem is modeled and formulated as a classic integer
linear programming (ILP) problem.

• To achieve the optimal objective efficiently, we propose a novel fuzzy logic quantum
genetic algorithm-based dynamic service migration and reconfiguration (FQGA-SR)
method that uses its quantum coding and parallel computing advantages to solve the
optimization problem.

• Finally, the effectiveness and efficiency of the proposed algorithm are verified through
simulation experiments. The proposed FQGA-SR can speed up the convergence and
can better outperform the other three methods used in our scenarios in terms of
various important service migration metrics.

The rest of this paper is organized as follows. In Section 2, we summarize previous
studies that are related to the present topic, and in Section 3 we then present descriptions
of service migration and reconfiguration problems as well as the network modeling and
optimal objective formulation used in STINs. In Section 4, the FQGA-SR migration and
reconfiguration algorithm is proposed with detailed basic steps and descriptions. Finally,
simulations are presented in Section 5, which is followed by the conclusion and plans for
future steps in Section 6.

2. Related Works
2.1. Service Migration in Mobile Edge Networks

At present, there are many well executed, relevant studies in the fields of mobile edge
networks, the Internet of things, fog computing, and in the multi-source heterogeneous and
dynamic STIN, its research is still in the start-up stage. As an example, in [9], the service
migration problem in mobile edge computing networks is formulated as a Markov decision
process (MDP). The work in [10] models the VNFs migration problem as an integrated
linear programming (ILP) problem and proposed a greedy algorithm to minimize the
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migration cost while satisfying the computing and network resource capacity constraints.
The mobile edge computing scenario service migration cost is studied in [11]. In this work,
they take into account the service migration revenue and total cost of service at the same
time and design a dynamic service migration algorithm based on deep reinforcement
learning. On the premise of guaranteed service continuity and quality of service, this
algorithm is used to optimize the service migration cost and total cost of network operation.
In [12], the researchers study the service migration of a mobile backhaul network in fog
computing scenarios. In order to meet the continuous network service demands of mobile
terminal users with high capacity and low delay, a delay-awareness bandwidth slicing
technique is proposed to address the service migration traffic limitation problem and to
optimize the network performance of high-priority migration traffic. This study highlights
the priority setting of migrating traffic and non-migrating traffic to optimize the traffic
transmission efficiency of service migration. In [13], service migration in mobile edge
networks is modelled as a reinforcement-learning model to optimize the service migration
strategy and communication strategy in order to improve long-term efficiency. Simulation
results show that the proposed method based on reinforcement learning has better results
than the Q-learning method and the Deep Q-learning network method. The work in [14]
proposed a service migration optimization algorithm based on machine learning, taking
network delay and energy consumption as optimization targets while considering the
changes of network bandwidth and mobile terminal energy. The work in [15] proposed an
online multi-user service migration optimization algorithm based on Lyapunov to solve
the service migration problem in multi-user vehicle scenarios without considering vehicle
trajectory predictions. Considering the mobility of fog nodes, the work in [16] studied
the deployment of application components in NFV-based hybrid cloud–fog computing
system and proposed a component deployment algorithm based on Tabu search to find the
optimal deployment strategy. Nevertheless, the mobility issue studied in this work is the
increasing or decreasing of the number of connected nodes, rather than the mobility model.

The application scenarios of the works mentioned above have several similarities with
the STINs, such as multi-source heterogeneous network architecture and the mobility of
mobile users. However, the mobility of satellites trigger the structure and network state
changes of the STINs, while the network sides of 5G, mobile edge network, and the IoT are
fixed, which makes it different to studies of the service migration problem in STINs.

2.2. Service Migration in STINs

At present, researchers have made some achievements in the studies on the service
migration and reconfiguration of STINs. In [17], the geographic migration model of
computing resources in the scenario of satellite intelligent urban vehicle networking is
established. The road states and vehicle states are known through fog nodes, and a vehicle
route selection scheme based on resource pricing is proposed. Its main innovations are
that of regarding the moving vehicles as computing resources and proposing the pricing
strategy algorithm under diverse demand conditions, while the computational efficiency
of the migration strategy is slightly insufficient. The work in [18] proposes a space-based
edge cloud service on orbit service architecture, which can carry out service migration
dynamically according to the real-time uplink and downlink traffic changes. Aiming at
optimizing the migration node delay and energy consumption, a space-based edge cloud
service migration model is established and verified by simulation. However, the object
and scope of service migration are merely for satellite nodes and their on-orbit services,
and the migration between satellite and ground nodes is not considered. The work in [19]
studied dynamic resource allocation and reconfiguration of communication services in the
space–time network scenario, modelling the on-board user resource allocation problem as
a multi-period generalized allocation problem, and proposed a deep Q-learning control
framework to optimize resource allocation and reconfiguration. Considering the dynamics
of the Internet of vehicles scenario, [20] studied the online dynamic VNF mapping and
scheduling problem in the Internet of vehicles scenario of space–time cooperation, and
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proposed two VNF mapping and rescheduling algorithms based on Tabu search algorithm,
which can effectively obtain the approximate optimal VNF migration scheme. In the
5G heterogenous scenario, the work in [21] focuses on the power control problem in
5G heterogeneous cells, proposes a novel deep reinforcement learning (DRL) scheme,
which can efficiently configurate the cells power to gratify the user demand. In [22], the
resource allocation problem in multi-cell networks was studied, a deep neural network for
training the allocation model was proposed, and simulation results show the accuracy of
its allocation method.

It seems that the DRL algorithms continually interact with environments to obtain the
optimal solution, and, for the most part, performed well in large scale optimal problems
such as resources allocation in 5G multi-cell networks or mobile edge networks, whose
user side is mobile, while the network side is fixed and possesses ample computing
capacity. However, while the necessary and frequent interaction of DRL may lead to
more consumption of communication and computing resources, it is still worth discussing
whether it is suitable for the STINs scenario with limited on-board resources and longer
communication delay.

Although some researchers have studied the service migration and reconfiguration
of STINs and similar network architectures from various perspectives, their pertinence
and optimization effect are slightly insufficient and required further discussing. Especially
since there is a high dynamicity coupled with dual mobility both in the network side
and the user side of STINs, which makes it challenging to obtain an efficient service
migration and reconfiguration method. The quantum computing algorithms have higher
computational efficiency than other iterative-based algorithms, since the superposition
coding manner of quantum computing supports parallel computing capability [23]. Thus,
in this work, a novel optimal method FQGA-SR with STIN model is proposed, so as to
achieve higher computational efficiency and better performances in service migration and
reconfiguration problems.

3. Problem Descriptions
3.1. Problem Statement of Service Migration in STINs

Figure 1 shows the service migration and reconfiguration process of STINs. The
basic architecture of a STIN is a three-layer network structure composed of a satellite
network, a high-altitude platform (HAP), and a terrestrial network, as well as a two-layer
control structure composed of a ground management control center (GMCC) and GEO
satellite controller. Assuming that LEO satellite edge nodes and ground edge nodes have
certain computing and storage resources, they can carry a variety of VNFs according to
the deployment strategy, and can provide users with high-speed network access, edge
computing service, data relay, and backhaul capabilities. At the same time, both UAV
nodes and satellite nodes have communication relay and backhaul capabilities. Due to the
limitations of energy and load, UAV nodes are not considered as edge nodes in this paper,
but only work as data relay and forwarding functions. The satellite nodes in the satellite
network layer are connected with each other by directional wireless communication links
and can afford high-speed data transmission.

The upper part of Figure 1 shows the basic process of a service request made by a STIN
user. At present, the object of service provisioning is mobile vehicle end users. Vehicle
users drive from core urban areas to remote areas. At present, the service function chains
(SFCs) required by the vehicle users are sequential virtual network functions (VNFs), as an
example, VNF-1, VNF-2, and VNF-3.

Before the vehicle user moves, there is a nearby access point of a ground edge node
N3, and it can provide sufficient edge computing capability and service support. The data
flow initiates from the source node N3 and reaches the destination node N4 through the
service function path (SPF) of the SPF1 (N3-N1-N2), while the VNF-1, VNF-2, and VNF-3
are deployed at nodes N3, N1, and N2.
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Figure 1. Service migration and reconfiguration process in satellite–terrestrial integration networks.

After the vehicle user moves to the remote area, it loses the access point and service
support from the ground edge node. The management and control plane run the service
migration and reconfiguration algorithm to obtain the optimal migration location and
migration path according to the real-time network states and vehicle user service request.
For example, VNF-1 on ground edge node N3 is migrated to satellite edge node N9, VNF-2
on N1 is migrated to satellite edge node N7, while the migration path is the shortest path.
Furthermore, the data flow of the migrated user’s vehicle reaches the destination node N4
through the new path SFP2 (N9-N7-N2), so as to satisfy the requirement of vehicle users
and maintains the continuity and reliability of communication and service.

As mentioned above, the key contribution of this paper is to find the appropriate
migration location for VNF through service migration and reconfiguration algorithms,
and solve the optimal migration strategy with specific objectives and constraints of the
STIN system.

3.2. Workflow of Service Migration and Reconfiguration

The service migration and reconfiguration process of the STIN can be divided into
two main steps, the migration awareness stage and the execution stage. The flowchart is
shown in Figure 2.

(1) Migration awareness stage

Due to the periodic movement of satellite nodes in the STIN and the mobility of
users, both satellite edge nodes and ground edge nodes may experience service migration
and reconfiguration. First, the global states awareness ability of SDN/NFV is used to
obtain external and internal environmental states of the current STIN system as well as
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the previous services that are already deployed, subsequently it decides whether the
service migration is triggered. If the trigger event occurs, the next stage of the algorithm is
execution. If not, there is sustained monitoring as before.
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(2) Migration and reconfiguration execution stage

The second stage mainly uses the service migration reconfiguration algorithm pro-
posed to calculate the new migration location for the services to be migrated, and optimizes
the migration path to meet the reconfiguration requirements with minimizing cost as the
optimal objective.

The service migration strategy is decided by the migration and reconfiguration algo-
rithm, which is running on the control nodes in the STIN, usually on a GMCC or GEO
controller. Additionally, it determines whether the migration needs to be started in the
current network state. If so, the optimal migration strategy is determined, including the
target location of the migration node, the optimal migration path, and the resource recon-
figuration scheme. Once the corresponding satellite nodes have received the determined
migration strategy, it will execute the migrate action that is moving the VNF to the target
location through the optimal migration path. Those migration processes may lead to extra
delays, including the transmission delay of migrating the VNF and the propagation delay
of the migration path. Furthermore, the extra delay would affect the end-to-end delay
of the network users, for which it is important to design an effective service migration
optimal algorithm that can minimize the negative impact of migration.

Additionally, in the process of migration, the data synchronization function of the
GEO satellite is used to save data to ensure the continuity of service and data consistency.
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3.3. Network Models

Assuming that the number of ground edge nodes and satellite edge nodes in the
current STIN is known and fixed, network users and satellite nodes can move with time,
and the connection states and resource states among each node and links can be obtained
through the SDN/NFV global states collecting ability, that is, the network topology states
and network resource states can be known at any time.

(1) Substrate network model

The substrate network in the STIN is modeled as a time-varying weighted undirected
graph Gsn

(
Nt

sn ∪ Nleo
sn , Lsn, An

sn, Al
sn

)
, where Nt

sn ∪ Nleo
sn is the substrate node set composed

of ground edge nodes and satellite edge nodes in the STIN, Lsn is the substrate link between
substrate nodes, An

sn represents the attributes of substrate nodes, while Al
sn is the attributes

of the substrate links. The substrate node attributes include the node type Tyt∪leo
sn , physical

location Loc(ni), and CPU capacity Cpui
sn. The substrate link attributes include physical

distance Dis
(
ni, nj

)
, and bandwidth capacity Bwi,j

sn. The VNFs deployed on the same node
share the resource capacity of the node, the bandwidth capacity of the link is also shared
through multiple service paths of the same substrate link.

(2) Service request

Suppose there is a given set of virtual network service requests Gs, which is a time-
varying weighted digraph Gs

(
Fs, Ls, A f

s , Al
s

)
. For each service request su ∈ Gs, Fu

s is the uth
ordered VNF sequence of su, fk ∈ Fu

s is the kth VNF in the current service request, and Ls is
the virtual link between these VNFs. A f

s refers to the node attributes corresponding to the
VNFs, including the network function type Ty fk

s of the current VNF. Cpu fk
s represents the

required node resources, Msu(ni, fk) is a Boolean variable of a VNF deployed location, while
Msu(ni, fk) = 1 indicates VNF fk is deployed on the substrate node i, and Msu(ni, fk) = 0
means it is not deployed in that location. Al

s refers to the link attributes between the VNFs,
including the bandwidth resources Bw fk , fv

s required by the link, and a Boolean variable
Msu

(
li,j
sn, l fk , fv

s

)
of mapping relationship, while Msu

(
li,j
sn, l fk , fv

s

)
= 1 indicates the virtual link

l fk , fv
s is a mapping on the substrate link li,j

sn, otherwise it is not.
In particular, the deployment states of service requests and the usage of substrate

network resources alter with time. The network states at current can be obtained by using
the SDN/NFV centralized control function. The quantity of user service requests that each
edge node can carry is relevant to the number of remaining resources and specific user
requests. In order to describe the problem easily and clearly the main notation and its
definition are as shown in Table 1.

3.4. Optimal Objective

In order to obtain the optimal location and migration path of service migration, the
selection of service target location and migration path optimization are modeled as an
ILP model for network shortest path optimization. Considering that the user end-to-end
delay in STINs is one of the most important performance indicators affecting the service
experience, and the service migration will generate extra delay based on the original
end-to-end delay, this needs to be considered as the migration cost.

Therefore, the optimization objective of service migration and reconfiguration in
STINs is defined as minimizing end-to-end delay and migration cost while ensuring
service continuity. The following gives the formal definition of end-to-end delay and
migration cost, as well as the optimization objectives and constraints of service migration
and reconfiguration.
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Table 1. Main notation and definition.

Notation Definition

Gsn

(
Nt∪leo

sn , Lsn, An∪l
sn

) Substrate ground nodeNt
sn, satellite node Nleo

sn and substrate link Lsn, and their
corresponding attributesAn

sn and Al
sn.

Gs

(
Fs, Ls, A f

s , Al
s

) Ordered VNF sequence Fs, virtual links between VNF Ls, the VNF attributes An
s

and virtual link attributes Al
s.

Am fl , fv , Dis( fk, fv)
The amount of data Am fl , fv , and physical distance transmitted Dis( fk, fv)between
the service request node fk and fv.

d fk , fv
p (t), d fk , fv

td (t) Processing delay d fk , fv
p (t) and propagation delay d fk , fv

td (t)between service request
nodes fk and fv.

D(t), Dp(t), Dtr(t), Dpr(t)
End-to-end total delay D(t), propagation delay Dp(t), transmission delay Dtr(t),
and processing delay Dpr(t).

Cpui
sn, Cpu fk

s
The CPU capacity Cpui

sn of the substrate node ni and the CPU requirements Cpu fk
s

of the service request node fk.

Bwi.j
sn, Bw fk , fv

s
The bandwidth capacity Bwi.j

sn of the substrate link li,j
sn and the bandwidth requirements

Bw fk , fv
s of the service request link l fk , fv

s .

Msu
(ni, fk)

The deployment relationship between the substrate node ni and the service request
node fk, where 1 represents deployment, while 0 is not.

Msu

(
li,j
sn, l fk , fv

s

) The mapping relationship between the substrate link li,j
sn and the service request link

l fk , fv
s , where 1 represents mapped, while 0 is not.

(1) End-to-end delay

The end-to-end delay is calculated as the delay generated when the user service
request reaches the edge access point and the user data is transmitted through the network
and successively through the node where the service function is located in the service path
to complete all service functions. This mainly includes three parts of propagation delay Dp,
transmission delay Dtr, and processing delay Dpr, which can be expressed as Equation (1):

D(t) = Dp(t) + Dtr(t) + Dpr(t) (1)

Among them, the propagation delay is mainly related to the physical distance Dis( fk, fv)
of satellite–terrestrial and inter-satellite links, which can be expressed as Equation (2):

Dp = ∑
fk , fv∈Fs

Dis( fk, fv)

c
(2)

where fk and fv represent two adjacent VNF nodes in the service request, and c is the speed
of light.

The transmission delay is mainly related to the amount of data transmitted Am fl , fv

and the bandwidth Bw fk , fv
s of satellite–terrestrial and inter-satellite links, which can be

expressed as Equation (3):

Dtr = ∑
fl , fv∈Fs

Am fl , fv

Bw fk , fv
s

(3)

Processing delay is mainly related to the amount of data transmitted Am fl , fv and the

computing ability Cpu fk
s provided by the edge node hosting the service. It can be expressed

as Equation (4):

Dpr = ∑
fl , fv∈Fs

Am fl , fv

Cpu fk
s

(4)
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(2) Migration Cost

The migration cost refers to extra operation cost and overhead caused by the migration
in the course of the service migration of the STIN. Since our study concentrates on the
service migration caused by the mobility of users and satellite nodes, only a single VNF is
considered here. For each service migration, the migration cost mainly includes the cost of
instantiating a new VNF at the migration node and the extra delay caused by migration
path selection. The more routing nodes the service migration passes through and the more
inadequate the available bandwidth of the path, the higher the migration cost and the
longer the service interruption time caused by the migration, which is not conducive to the
user service experience. At the same time, the nodes passing through the migration path
can be replaced by the number of routing hops, and the migration cost can be measured
by the extra propagation delay caused by the number of migration path hops and the
extra transmission delay related to the bandwidth of the migration path. Since the cost of
instantiating a new VNF is independent of the migration location, only the extra delay is
considered, so the migration cost is dwindled. The migration cost Mc can be expressed as
Equation (5):

Mc(t) = ∑
hop( fl , fv)

[
d fl , fv

p (t) + d fl , fv
tr (t)

]
(5)

where hop( fl , fv) represents the number of routing hops between VNF nodes fk and fv,
and d fl , fv

p (t) and d fl , fv
tr (t) represent the extra propagation delay and transmission delay gen-

erated by each hop. Since the forwarding node will not process packets during migration,
it will not increase extra forwarding processing delay.

4. Algorithm Design and Description

Considering the dynamics and mobility of satellite nodes and users, the solution
space of the service migration and reconfiguration optimization problem is large. Many
traditional solutions, such as the classical exact solution, heuristic solution, and meta
heuristic solution algorithms, have limitations to a certain extent, and are not suitable for
large-scale discrete-state space problems [23]. The classical genetic algorithm is a random
heuristic search algorithm. Compared with the accurate solution algorithm, the algorithm
has higher efficiency and the crossover and mutation steps are random, which can avoid the
algorithm falling into local optimization to a certain extent, but a randomness setting that
is too high will increase the solution space and reduce the solution efficiency. Based on the
classical genetic algorithm, the quantum genetic algorithm (QGA) applies the advantages
of quantum superposition states in the quantum algorithm which can be calculated in
parallel to accelerate the solution process to the population coding mode and the evolution
strategy, and further improves the original solution efficiency and global optimization
ability of the genetic algorithm. Moreover, it can make up for the defects of a solution
space that is too large and difficult solutions caused by the randomness of chromosome
combination crossover and mutation, and it has shown good performance. It can quickly
obtain the global optimal solution in a small population size.

Therefore, we combine quantum machine learning with traditional algorithms, and
propose a service migration optimization algorithm based on fuzzy logic (FL) and QGA.
Firstly, the basic steps of the proposed algorithm are described in detail, and the pseudo
code of the algorithm is given.

4.1. Problem Formulation

First, we formulate the service migration and reconfiguration problem in STINs based
on the network models and optimal objectives in Section 3. Considering the service
experience and operation cost of network users, we regard minimizing end-to-end delay
and migration cost as our optimal objective, it can be expressed as:

minCm(t) = min[w1D(t) + w2Mc(t)] (6)
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s.t. ∑ Msu(ni, fk) ≤ 1, ∀ni ∈ Nsn, fk ∈ Fs (7)

∑ Msu

(
li,j
sn, l fk , fv

s

)
≤ 1, ∀li,j

sn ∈ Lsn, l fk , fv
s ∈ Ls (8)

∑ Msu(ni, fk)·Cpu fk
s ≤ Cpui

sn, ∀ni ∈ Nsn, fk ∈ Fs (9)

∑ Msu

(
li,j
sn, l fk , fv

s

)
· Bw fk , fv

s ≤ Bwi,j
sn, ∀ li.j

sn ∈ Lsn, l fk , fv
s ∈ Ls (10)

Msu(ni, fk) = {0, 1}, ∀ni ∈ Nsn, fk ∈ Fs (11)

∑ Msu

(
li,j
sn, l fk , fv

s

)
= {0, 1}, ∀ li,j

sn ∈ Lsn, l fk , f
s ∈ Ls (12)

Equation (6) is the objective function of the optimization problem, which aims to
obtain the optimal migration location and migration path with the minimum end-to-end
delay and migration cost, where w1 and w2 are the correction coefficients of end-to-end
delay D(t) and migration costs Mc(t), which are used to dynamically adjust the different
requirements of different services for delay and migration costs. In this paper, the migration
cost is modeled as extra delay generated by the migration process, for which we should
assign the value of w1 and w2 as 0.5 and 0.5, respectively. Once the migration costs are
modeled as other factors, for example, the joint consumptions of computing resource and
bandwidth resource. The value of w1 and w2 should be assigned by the service request at
present, for example, w1 = 0.2 and w2 = 0.8 for the resources-awareness service request.
Equations (7)–(12) are constraints, which mainly consider the balance between the resource
constraints of the substrate network and the demand for service migration; Equation
(7), (8) ensures that a service migration node and link can only mapped to one substrate
node and link at most; Equation (9) ensures that the computing resource demand of the
service migration node does not exceed the computing resource capacity of the mapped
substrate node; Equation (10) ensures that the bandwidth resource demand of the service
migration link does not exceed the bandwidth resource capacity of the mapped substrate
link; Equation (11) uses Boolean variables to indicate whether the substrate node is selected
as the current service deployment node, 1 means deployed, 0 means its not; Equation (12)
is the same as above, which represents whether the substrate link is selected as the service
request virtual link. The value 1 means mapped, and 0 means its not.

4.2. Basic Steps of FQGA-SR

The basic steps of the service migration and reconfiguration algorithm based on fuzzy
quantum genetic algorithm (FQGA-SR) are as follows:

(1) Establish the shortest path matrix S:

Firstly, the input matrix S of FQGA-SR is established, which is used to represent the
association relationship between any two substrate nodes in the substrate network Gsn, the
ith row and jth column of the matrix S represent the minimum delay between node ni and
node nj of deployed SFCs. The matrix S can be obtained by calculating the shortest path
between two nodes using the k-Dijkstra algorithm.

(2) FQGA-SR algorithm initialization:

The population and individuals are initialized, and the number of observation se-
quences is set as Xc, the qubit probability space is Niche, the coding length of the chro-
mosome qubit is K, and the population size is M. The initial population and individuals
are constructed by quantum bit coding, and the chromosomes are expressed in the form
of quantum superposition state, which can greatly improve the diversity of population
genotypes on the premise of maintaining the population size.

Let N(t) =
{

N(t)
1 , N(t)

2 , . . . , N(t)
M

}
represent the tth generation of the subpopulation,

in which the individual N(t)
m is initialed by Equation (13), and each qubit may be in |0〉,|1〉,

with their entangled states between |0〉 and |1〉, i.e., |ψ〉 = α|0〉+ β|1〉, where α and β are
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the complex coefficient representing the probability amplitude of qubits. In the above
quantum bit coding model, the ith qubits represent the substrate node ni ∈ Nsn states
carrying VNF f ∈ F, i.e., |0〉 represents that node ni does not carry VNF, and |1〉 represents
the node ni carried VNF f ∈ F. In the initialization phase, let all qubits have the same state,
that is α

(0)
mi = β

(0)
mi = 1/

√
2.

N(0)
m =

[
α
(0)
m1

β
(0)
m1

∣∣∣∣∣ α
(0)
m2

β
(0)
m2

∣∣∣∣ . . .
. . .

∣∣∣∣∣ α
(0)
mK

β
(0)
mK

]
=

[
1/
√

2
1/
√

2

∣∣∣∣ 1/
√

2
1/
√

2

∣∣∣∣ . . .
. . .

∣∣∣∣ 1/
√

2
1/
√

2

]
, m = 1, 2, . . . M (13)

(3) Subpopulation evolution:

The FL algorithm fuzzies the discrete data in the form of membership degree and can
define the discrete probability function with a single fuzzy set, so as to obtain more accurate
output results efficiently. Therefore, using the FL algorithm to describe the population
and individuals of quantum bit coding with probability amplitude is helpful to obtain the
evolution of optimized subpopulation. Let H1 represent the ratio between the number
of |1〉 in the subpopulation and the qubits coding length K, which can be expressed as
Equation (14):

H1 =

∣∣∣∣∣
(

α
(0)
m1

β
(0)
m1

∣∣∣∣∣ α
(0)
m2

β
(0)
m2

∣∣∣∣ . . .
. . .

∣∣∣∣∣ α
(0)
mK

β
(0)
mK

)∣∣∣∣∣
1

m

/K (14)

Fitness function Fit(Xc) can be expressed as: Fit(Xc) = [Obj]−1, where the Obj refers
to the optimal objective, that is, to minimize end-to-end delay and migration cost. The
fitness function definition H2, which is used to measure the current closely related to fitness
function, can be expressed as Equation (15):

H2 =
Fit(Xc)− Fit∗(Xb)

‖max(Fit(Xc))−min(Fit(Xc)) ‖
(15)

where Fit∗(Xb) is the highest value of the fitness function. Taking H1 and H2 quantified as
c1 and c2, where the range is [0, 1]. By inputting H1 and H2 into the quantum rotation the
gate phase is obtained ∆θ along with mutation probability Pm.

(4) Adaptive adjustment strategy of quantum rotation gate and mutation:

The chromosome update is realized by quantum rotation gate phase transformation
and mutation operation, which makes the algorithm possess the ability of expansion and
exploration, so as to ensure the rapid convergence of the algorithm. By adjusting the phase
of the quantum rotation gate ∆θ and mutation probability Pm, it can adjust the value of
H1 and H2. Assuming < is a positive real number, if H1 < < and Fit(Xc) > Fit∗(Xb), it
represents that the fitness of the current individual Fit(Xc) is better than the highest fitness
value Fit∗(Xb). At this time, FL is used to increase ∆θ and Pm, in order to increase the
value of H1, while if H1 > < and Fit(Xc) < Fit∗(Xb), it represents that the fitness of the
current individual, Fit(Xc), is lower than the optimal fitness value Fit∗(Xb). Then, the FL
algorithm is used to adjust the ∆θ and Pm respectively, which means decreasing the ∆θ
while increasing Pm, so as to reduce the value of H1.

(5) Quantum mutation operation:

Applying quantum rotation gate to quantum mutation operation can effectively avoid
converging into local optimum. Then, according to the mutation probability Pm, the chro-
mosome coding is selected, and some qubits are randomly selected. If Fit(Xc) < Fit∗(Xb),
then the qubits of an individual are selected to transform the quantum gate and exchange
the two quantum probability amplitudes of the qubits. Otherwise, N(t)

m−i is selected, and its
quantum probability amplitude is exchanged.
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4.3. Algorithm Description

According to the basic steps of the FQGA-SR algorithm, taking the substrate network
Gsn, migration requirements R, chromosome qubit coding length K, and population size M
as the output, the FQGA algorithm can be used to obtain the optimal migration strategy
Xb, where Xb = {x1, x2, . . . , xi, . . . xK} represents the VNF state of the node after service
migration and xi is where the VNF f ∈ F department is deployed on the substrate node
ni ∈ Nsn.

For ease of understanding, the pseudo code of the main steps of FQGA-SR algorithm
is shown in Table 2. The algorithm divides the service migration problem into two parts:
the migration node selection stage and the shortest migration path selection stage. Among
them, line 3 is used to obtain the shortest path matrix S, line 4 is used to initialize the model
parameters of FQGA, lines 5–9 are the population evolution process, and lines 10–13 are
the mutation process of FQGA.

Table 2. FQGA-SR Algorithm Description.

FQGA-SR Algorithm

input Substrate physical network Gsn, service request set Gs, population size M,
chromosome length K, number of evolutionary iterations T

output Optimal migration strategy Xb
1 foreach service request s ∈ Gs do
2 if IsRequestSatisfied (Gsn , Gs) then

3 use k-Dijkstra algorithm to calculate the shortest path and obtain the shortest
path matrix S

4 initialize the quantum gene population according to Equation (14) to obtain N(0)
5 while (t < T) do
6 put H1 and H2 into FL framework
7 population evolution iteration t = t + 1

8 adjusting the phase of quantum rotation gate according to FL strategy∆θ
and mutation probability Pm

9 According to mutation probability Pm select chromosome coding
10 if Fit(Xc) < Fit∗(Xb) then

11 choose the qubits of N(t)
i to achieve quantum gate rotation and exchange

probability amplitude
12 else if
13 choose N(t)

M−i and exchange probability amplitude
14 end while
15 end if
16 end foreach
17 update IsRequestSatisfied (Gsn , Gs)

In addition, combined with the computing power of the cloud computing center and
edge nodes of the ground management control center, the migration strategy optimization
algorithm based on FQGA runs on the control plane of the STIN to collect the whole
network state information in real time through the GEO satellite controller. It can quickly
and effectively obtain the optimal migration decision, realize VNF migration, and reallocate
network resources for the migrating nodes and related links, to complete the service
migration and refactoring steps.

5. Simulation Experiment and Analysis
5.1. Parameter Setting

In order to evaluate the effectiveness and performance of the proposed algorithm in the
service migration optimization problem of STINs, a simulation platform is established. The
simulation experiment runs on the host of Intel Core i7-10710u CPU @ 3.3 GHz and 16GB
Ram. The joint simulation experiment of MATLAB 2018b and STK 11 is used to simulate
the satellite constellation networking and terrestrial network connection states information.
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As shown in Table 3, the satellite network operation in the STIN is simulated through
STK and MATLAB joint simulation, so as to obtain the visibility of satellite nodes at all
times, the sustainable time of satellite–terrestrial and inter-satellite links, and the satellite
connecting to ground nodes. Assuming the SFC reconfiguration scenario is under the STIN
architecture. The service migration simulation parameter settings are shown in Table 3,
which is adjusted on the basis of work [24]. We set 1 core cloud node, 15 ground edge nodes
(MEC nodes), and 3 LEO satellite edge nodes (Leo nodes). The satellite–terrestrial, inter-
satellite, and ground link connections change with the operation of the LEO satellite nodes.

Table 3. Simulation parameters of service migration.

Computing
Resources/Units

Bandwidth
Resources/Mbps Processing Delay/ms

Core cloud node 2000 [800, 1000] [0.1, 0.3]
MEC node [200, 400] [400, 500] [1, 3]
Leo node 200 [200, 300] [2, 5]

SFC request [1, 5] [1, 5] /
VNF [1, 5] [1, 5] /

Assume the SFCs arriving per unit of time follows a Possion distribution, which
has arriving rate λ in range of [0.05, 0.2], each SFC contains [2,6] VNFs, the live time is
[30, 80] ms, and the processing delay generated by each VNF is [120, 200] ns. The above
simulation parameters obey the random distribution of their respective value ranges. The
experimental results are averaged by 10 repeated experiments.

5.2. Result Analysis

Considering the four performance indicators of algorithm convergence, end-to-end
delay, service reconfiguration success rate, and algorithm running time, the proposed
service migration reconfiguration method based on the fuzzy quantum genetic algorithm
(FQGA-SR) is compared with the SEC-SM algorithm [14], TS-MAPSCH algorithm [16], and
MGA algorithm [13] to prove the effectiveness and performance of the proposed algorithm.

From the comparison of algorithm convergence in Figure 3, it can be seen that the
proposed FQGA-SR algorithm converges to a stable state at the fastest speed and tends to be
stable when the number of iterations reaches about 58. The speed of the TS-MAPSCH and
SEC-SM algorithms is second, both tend to be stable when the number of iterations is about
200. The convergence speed of the MGA algorithm is slow and converges at about 280. At
the same time, the proposed FQGA-SR algorithm and TS-MAPSCH algorithm perform well
in the optimization results of end-to-end total delay. The FQGA-SR algorithm introduces
quantum chromosome coding and quantum crossover processes, which greatly improves
the computational efficiency, so the solution effect is the best. The MGA algorithm adopts
the traditional chromosome coding method, which is difficult to solve in the dynamic
network demand and large-scale problem space. In order to avoid converging to the local
optimum, it needs to sacrifice the solution speed to improve the solution accuracy, so the
convergence speed is slow.

Figure 4 shows the change of end-to-end delay with the number of service requests
under different traffic load states, in which Figure 4a,b show the states of 60% and 90%
traffic load, respectively. It can be seen that the optimization results obtained by the
proposed FQGA-SR algorithm are superior to the MAG algorithm, TS-MAPSCH algorithm,
and SEC-SM algorithm. Among them, the convergence speed of the MGA algorithm based
on the genetic algorithm is slightly slower, so the fluctuation range is slightly larger than
that of other algorithms. The node selection of the SEC-SM algorithm mainly depends on
the shortest path algorithm and does not fully consider the resource state, so the end-to-end
delay performance of deployment results is less efficient. Overall, with the increase in the
number of service requests, the remaining resources in the network continue to decrease.
The deployment and migration of subsequent service requests are affected to a certain
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extent, and the value of end-to-end delay increases slightly. Comparing with Figure 4a,b,
when the traffic load reaches 90%, the remaining available resources in the network are
less, and the choice of nodes and links that can be migrated and deployed is less, so the
end-to-end delay increases relatively as a whole.
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Figure 5a,b shows the service reconfiguration request arrival rates, respectively
λ = 0.05 and λ = 0.2, and the service reconfiguration success rate changes with the
number of reconfiguration requests. Taking Figure 5a as an example, it can be seen that
the overall performance of the FQGA-SR algorithm is the best. When the reconfiguration
request reaches 250 it can still maintain the service reconfiguration success rate of 0.847.
The second is the MGA algorithm, the third is the TS-MAPSCH algorithm, and the last
one is the SEC-SM algorithm, with a success rate of only 0.765. The reason is that the
proposed FQGA-SR algorithm fully considers the node mobility and the current network
topology state, so it can better make the migration and reconfiguration decision. The MGA
algorithm and TS-MAPSCH algorithm belong to heuristic algorithms, while the SEC-SM
algorithm mainly considers the traffic change and has no obvious perception of the change
of network topology state, so the effect is poor.

Comparing (a) and (b) in Figure 5, the success rate of service reconfiguration of
the four algorithms decreases, while the request arrival rate increases to λ = 0.2, and
the performance of the MGA algorithm is slightly better than that of the TS-MAPSCH
algorithm. The reason for the decline in reconfiguration success rate is that the migration
reconfiguration algorithm may face the condition that nodes and links are occupied and
computing and bandwidth resources have not been released when tackling service requests
with high arrival density, so its reconfiguration success rate is low. The performance of the
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MGA algorithm is slightly better because the global solution ability and efficiency of the
MGA algorithm based on the genetic algorithm are slightly better than the TS-MAPSCH
algorithm based on the Tabu algorithm.
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Figure 6 shows the algorithm running time under different traffic loads. With the
gradual increase in traffic load, the running time of each algorithm also increases. The
simulation is set between 40–90% of the traffic load. Obviously, the average running
time of the proposed FQGA-SR algorithm is much lower than the MGA algorithm, the
TS-MAPSCH algorithm and the SEC-SM algorithm. Taking 90% load as an example, the
average running time of the FQGA-SR algorithm is 2.27 s, the MGA algorithm is 4.38 s,
the TS-MAPSCH algorithm is 5.15 s, and SEC-SM algorithm is 6.89 s. Compared with
the latter three algorithms, the running time of the former is increased by 48%, 55%, and
67%, respectively. As the FQGA-SR algorithm uses the quantum superposition principle to
accelerate the calculation and can quickly decide the migration and reconfiguration scheme,
the calculation efficiency is much higher than the other three algorithms. The calculation
efficiency of the MGA algorithm is higher than the other two algorithms when the solution
space is large, but the solution obtained at this time may not be the global optimal solution.
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6. Conclusions

This paper provides a novel dynamic service migration and reconfiguration method
to improve the service provisioning quality in STINs. Since the dynamics of user demand
and the mobility of network topology in STINs, and the difficulty of solving this kind
of large-scale formulated problem, we design a joint optimization model to minimize
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the end-to-end delay and migration cost in the service migration problem, and solve
the problem using fuzzy logic combined with the quantum genetic algorithm, which
can provide efficient and paralleled computing capability in solving the optimization
problem. Simulation results reveal that the proposed algorithm has good performance
in convergence, effectiveness, and network performances, and the impacts of different
parameters also have been analyzed. The models provided in this paper could help
researchers to improve their service provision schemes in STINs studies, and could also
help the service providers of STINs to adjust their resource allocation scheme, in order to
improve the resource utilization of STINs.

As future work, we will explore the lightweight framework of the deep reinforcement
learning approach that is suitable for the communication scenario in the urban area of
STINs, which could significantly enhance the performance of the service deployment
scheme or resource allocation method in STINs.
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