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Abstract: The paper proposes a data-driven strategy for predicting technical ticket reopening in the
context of customer service for telecommunications companies providing 5G fiber optic networks.
Namely, the main aim is to ensure that, between end user and service provider, the Service Level
Agreement in terms of perceived Quality of Service is satisfied. The activity has been carried
out within the framework of an extensive joint research initiative focused on Next Generation
Networks between ELIS Innovation Hub and a major network service provider in Italy over the
years 2018–2021. The authors make a detailed comparison among the performance of different
approaches to classification—ranging from decision trees to Artificial Neural Networks and Support
Vector Machines—and claim that a Bayesian network classifier is the most accurate at predicting
whether a monitored ticket will be reopened or not. Moreover, the authors propose an approach
to dimensionality reduction that proves to be successful at increasing the computational efficiency,
namely by reducing the size of the relevant training dataset by two orders of magnitude with respect
to the original dataset. Numerical simulations end the paper, proving that the proposed approach
can be a very useful tool for service providers in order to identify the customers that are most at risk
of reopening a ticket due to an unsolved technical issue.

Keywords: 5G fiber optic networks; data-driven service assurance; next generation networks;
predictive analytics

1. Introduction

Effective customer care and data-driven service assurance have become a vital need for
telecommunication companies, especially as regards the progression towards automating
the management of technical tickets: in addition, this enables a thorough and objective
evaluation of the performance of the service assurance functions, based on generated
reports and prescribed Key Performance Indicators (KPIs), which implies increased pro-
ductivity, improved quality of service and, in some cases, even personalized satisfaction of
the end user.

More in detail, designing a successful data-driven service assurance system requires:

• in-house design and development in order to offer a solution that is at the same time
cheap and adaptable to all service needs;

• tight integration with the customer portal in order to allow the access to all relevant
online services with the same login credentials;
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• support to all activities that are characteristic of an incident management process,
such as opening, classifying, assigning, solving, closing and archiving an IT incident;

• enabling the exchange of files and comments regarding an IT incident, as this makes
the served customers satisfied by allowing them to interact with IT agents in order to
clarify the problem or understand the solution;

• provision of email notifications that allow for keeping all involved parties informed
on any ticket update;

• automatic classification and ticket rerouting to the relevant IT agents, which is ex-
pected to significantly minimize resolution time of each ticket and consequently
enhance user satisfaction;

• generation of reports to measure the KPIs that are chosen to evaluate the success of
the customer care service.

For detailed references, the advantages and challenges of using data-driven service
assurance in an organization have already been explored in the Information Technology In-
frastructure Library (ITIL) framework of best practices for delivering IT services (see [1–8]).
Moreover, the positive influence of ticketing services on the implementation of the incident
management process is stressed in [1–10]. Indeed, being able to automate several key activ-
ities such as identification, prioritization, assignment, diagnosis and closure of technical
tickets plays a relevant role in enhancing the said process. In addition, data-driven service
assurance (see [4–6]) facilitates the measurement and improvement of several important
KPIs for the IT business processes, such as the percentage of incidents detected and solved
in the first attempt, the mean number of incidents that occurred per day and the average
lifetime of an incident. In particular, in [8], it is clearly stated that automatic incident classi-
fication proves to be extremely effective at minimizing ticket resolution time. Providing an
automated solution to the challenge of ticket classification is a relevant emerging task also
according to [10].

Some related additional features that are in part beyond the scope of this work but
testify the interest of the scientific and industrial community are the multimedia chat
service architecture introduced in [11], as well as rule-based reasoning for fault diagnosis
and visual dashboards for helping desk tickets monitoring, which is illustrated in [12,13].
In addition, a probabilistic framework for IT ticket annotation and search based on natural
language processing is introduced in [14–17]. In [15], a predictive model based on Support
Vector Machines (SVMs) and K-Nearest Neighbours (KNN) is discussed with the aim to
automate incident categorization with the specific help of ticket description and other
relevant ticket attributes. In a similar way, in [18], the dispatch of a ticket to the correct
resolution group is successfully automated by means of a tool that combines SVMs and
discriminative term-based classification techniques. Alternatively, Multinomial Naive
Bayes (MNB) and Softmax Regression Neural Network (SNN) are used in [19] for text
classification purposes aimed at categorizing user tickets. Finally, several methods to detect
duplicate tickets/bugs are proposed in [20–22].

In particular, this paper, with respect to the emerging need for preventing customers
from issuing a request for technical ticket reopening on customer service platforms of
telecommunication companies, provides the following contributions:

• the identification of relevant correlations between the reopening of a technical cus-
tomer service ticket, on the one hand, and Quality of Service (QoS) parameters of the
5G fiber optic networks, on the other hand, based on the actual use the customer is
currently making of the fixed network itself;

• based on such correlations, the design of a data-driven model capable of predicting
whether a customer will call the assistance service once again even though his/her
technical ticket has already been closed.

Incidentally, reopened tickets are to be considered as those tickets that were formerly
solved and have been reopened [23].

The proposed approach may prove particularly useful in the domain of 5G enabling
technologies. Indeed, even with the advent of 5G, optical fiber is the most suitable means
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for wireless backhaul networks. Indeed, even in networks where this is not the case, the
wireless backhaul actually has to be connected into a fiber backhaul. For this reason, fiber
technology is increasingly being preferred for the so-called fronthaul, especially when it
comes to connecting the dense mesh of 5G small cells. There are several benefits, such as
increased speeds matched with lower attenuation, significant immunity with respect to
electromagnetic interference, relatively small size, and practically unlimited potential in
terms of bandwidth. Hence, customer service in order to address any technical issue relative
to the Quality of Service (QoS) perceived in 5G fiber optic networks has a critical role,
especially with the advent of the emerging Fixed Wireless Access (FWA) paradigm [24].

The paper contribution lies in the fact that the effectiveness of the proposed approach
is evaluated on the customer complaints that arise in conditions of intensive usage of the
fixed network of a major Italian network operator. Indeed, according to IBM analyses
in [25] and to [26], by automating up to 85% of the customer service process thanks to the
usage of predictive tools such as the one presented in this work, an increase in efficiency
up to 90% can be obtained, together with a reduction in the operating costs between 25%
and 30%.

Similar machine learning methods have already been used in order to solve resource
allocation problems in order to improve the perceived QoS in [27–29]. In more detail,
Pietrabissa et al. have already focused on distributed load balancing in Software Defined
Networking relying on Lyapunov-based decision-making algorithms in [27], on optimal
buffer allocation for guaranteeing QoS in multimedia Internet broadcasting for mobile net-
works in [28], and on predictor-based control design for improving Quality of Experience
in delay-sensitive Future Internet frameworks in [29]. In contrast with the cited works, this
paper specifically focuses on the prediction of the ticket reopening phenomena that charac-
terize fixed networks and therefore also 5G fiber optic networks. To this aim, we exploited
several machine learning approaches and compared the obtained performance results.

The paper is organized as follows: Section 2 introduces the so-called Analytical Base
Table (ABT), namely the dataset to be given as an input to the predictive model for training
and test purposes, as well as the data collection and preparation activity that has been
carried out to assemble said ABT. Section 3 presents the performance achieved by different
machine learning based classifiers, comparing the results obtained on the original dataset
against those obtained on the reduced dataset. Section 4 discusses a further dimensionality
reduction effort before introducing the Bayesian network classifier whose performance is
the best in class. Concluding remarks end the paper.

2. Data Collection, Data Preparation and Analytical Base Table

With the aim of effectively predicting ticket reopening relative to the QoS perceived
in 5G fiber optic networks—namely, according to the emerging FWA paradigm—the
methodological approach inspiring this work can be structured as follows.

• A first data collection and data preparation effort were made, by collecting, aggregating,
cleaning and preparing the relevant data for the subsequent processing phase, result-
ing in a homogeneous ABT to be fed to the predictive analytics/classification engine
that was subsequently designed and developed. This first activity was carried out in
the framework of an extensive joint research initiative on Next Generation Networks
between ELIS Innovation Hub and Vodafone over the years 2018–2021.

• Then, the KPI definition was necessary, that is, the identification of the relevant KPIs
that allows for quantifying the benefits that are ultimately yielded by the adoption
of the proposed predictive analytics engine. In this respect, we chose to evaluate the
performance of the proposed predictive analytics engine in terms of accuracy, Gini
coefficient, Youden index, and Area Under the ROC Curve (AUC).

• The design and training of the predictive analytics engine followed, together with the
evaluation of the performance obtained on a suitable test dataset.
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In more detail, the relevant input data are collected from two heterogeneous data sources,

1. the former related to the Virtual Unbundled Local Access (VULA) technology—VULA
offers a means to any licensed network operator to effectively join the ultrabroad-
band network infrastructure of the backbone provider by virtually accessing the last
mile only;

2. the latter related to the Sub-Loop Unbundling (SLU) technology—SLU is alternative
to VULA, yet it joins the network infrastructure of the backbone provider only at the
copper section, thus exhibiting lower performance than VULA.

The original dataset X is therefore represented by an m× n× t matrix aggregating the
inputs from both VULA and SLU technologies. After being suitably cleaned, it reports
n = 307 network QoS parameters collected over a period of t = 30 days of intensive usage
for a group of m = 600,000 users.

The i-th row of X (for i = 1, . . . , m),

xi = (xi
u,v) u = 1,..., n

v = 1,..., t
, (1)

associated with a user i that the customer service has already closed a ticket for (since the
aim of the paper is to predict ticket reopening), accounts for the values of the n network QoS
parameters perceived by user i on day v. Among the m users, in the considered period,
25% reopened a ticket due to a technical issue that is still unsolved even though a ticket in
that respect had already been closed. In particular, data collection was carried out with
a specific data matching criterion: namely, in the case of a reopened ticket, only the last
data point—i.e., the last values of the n features—that is, the temporally closest to ticket
reopening for the considered user is collected and stored in the dataset X, whereas, for all
other tickets—that have already been closed and have not been reopened yet—all data in
the time interval between ticket closing and the last possible sampling instant are collected
and stored in the dataset X.

In order to obtain a smaller dataset, with reduced dimensionality (p < n = 307) but
with very similar information content, we first performed feature reduction on the original
dataset X by removing all features with very low variance, i.e., proving to be redundant
when it comes to estimating the probability of ticket reopening.

Then, we carried out a linear correlation analysis among the features which, however,
did not yield any relevant results; this is why we chose to resort to hierarchical clustering in
order to shed light on any existing nonlinear correlations.

The result of hierarchical clustering, performed on the portion of X accounting for
the VULA and SLU inputs alternatively, is represented by the dendrograms shown in
Figures 1 and 2, which represent the resulting hierarchies of clusters, by reporting:

• along the x-axis the logical distance between clusters according to the Manhattan metric;
• along the y-axis the hierarchical level of aggregation (denoted with ’Height’ in

Figures 1 and 2) measured in integer positive values.

In both dendrograms, important correlations emerged—which had not been as evident
from linear correlation analysis at all—between ticket reopening (accounted for by the
‘Repeated ticket’ variable) and some network parameters. The most relevant evidence is
related to the correlations of the Repeated ticket variable with the following:

• Percentage of 3G data availability for backup;
• Alarm tag;
• Number of connected hosts (WiFi);
• Total number of connected hosts.
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Figure 1. Dendrogram showing the results of hierarchical clustering on the VULA portion of the
original dataset X.
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Figure 2. Dendrogram showing the result of hierarchical clustering on the SLU portion of the original
dataset X.

As regards the last two, it is reasonable that the higher the number of connected
devices, the higher the performance degradation.

A specific remark has to be made relative to the tight correlation of the Repeated ticket
variable with the Alarm tag. Indeed, the Alarm tag parameter is a boolean variable which
is valued 1 if the so-called customer-premises equipment parameter hits the alarm and 0
otherwise according to two alarm-triggering rules:
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• if in almost 4 out of 8 measurements, the SAC parameter goes below threshold;
• if in 3 consecutive measurements, the SAC parameter goes below the threshold.

The SAC variable, which specifically accounts for attenuation-related QoS, can have
values in the range from 1 to 6 (where 1 accounts for ‘bad’ and 6 for ‘good’) and is
obtained by comparing other two parameters, namely signal-to-noise ratio (downstream)
and attenuation (downstream), respectively.

The correlation between Repeated ticket and Alarm tag can be considered as primary
since it is the tightest one. Therefore, in addition to the primary correlations highlighted by
the dendrograms, starting from the tight correlation between Repeated ticket and Alarm
tag, other secondary correlations also emerge between the Repeated ticket variable, on the
one hand, and SAC, signal-to-noise ratio (downstream) and attenuation (downstream), on
the other hand. In particular, by observing the relationship among these variables, we can
notice the following high degrees of correlation:

• −47% correlation between Alarm tag and SAC for both VULA and SLU technologies;
• +65% correlation between SAC and signal-to-noise ratio for the SLU technology and

+68% correlation between the same variables for the VULA technology;
• −55% correlation between SAC and attenuation (downstream) for the SLU technology

and −45% between the same variables for the VULA technology.

It is also possible to evaluate the similarity degree between the two dendrograms by
computing the so-called entanglement parameter—ranging from 0, which accounts for no
entanglement—to 1—which accounts for full entanglement. A low entanglement score
implies a good alignment degree between the QoS performance of the two technologies
with respect to the time period and set of users observed. In the considered case, the
entanglement parameter is evaluated to be equal to 0.175, thus allowing us to consider as
ABT a reduced dataset Xred extracted from the original one X. In particular, the Repeated
ticket variable occupies very similar positions in both dendrograms. In light of this, it is
reasonable to adopt the same predictive algorithm to predict ticket reopening for both
VULA and SLU technologies.

As a result, the following lessons can be learned from the data preparation activity
carried out in this section:

• no relevant linear correlations emerge between the Repeated ticket variable and
QoS parameters;

• the variables exhibiting primary nonlinear correlations with the Repeated ticket vari-
able are the percentage of 3G data availability for backup and the Alarm tag;

• the variables exhibiting secondary nonlinear correlations with the Repeated ticket
variable are SAC, signal-to-noise ratio, and attenuation in downstream;

• the datasets related to the VULA and SLU technologies are very much correlated
with each other due to the 0.175 entanglement coefficient computed between the two
dendrograms in Figures 1 and 2.

Hence, the reduced dataset Xred we are going to resort to hereinafter can be regarded
as a p × n × t matrix reporting the following p = 15 network QoS parameters for the
same group of m users at time t: (i) SAC, (ii) signal-to-noise ratio (downstream), (iii)
attenuation (downstream), (iv) constant bitrate (downstream), (v) downstream maximum
rate, (vi) Ethernet bytes (LAN data), (vii) percentage of Ethernet bytes (LAN), (viii)
percentage of WiFi primary data Ethernet bytes (LAN), (ix) attenuation (upstream), (x)
current bitrate (upstream), (xi) upstream maximum rate, (xii) power (upstream), (xiii) UPBO
(upstream power back-off) loop length (dB), (xiv) ticket close code, and (xv) repeated ticket.

The ticket close code has not been mentioned so far but was already also present
in the original dataset X: it testifies that the network operator has acknowledged the
causes that are attributable to the variations in the QoS parameters for which the user
is complaining. The ticket close code variable may take one of the following values:
(a) activity on the OCA protocol, (b) existence of a known problem that is pending for
resolution, (c) line/device problem needing for device reboot, (d) line/device problem
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needing for device reset, (e) unexploited link/GNP (Geographic Number Portability),
(f) LNI-minimum bitrate, (g) maximum obtainable performance, (h) no trouble found,
(i) OLO2OLO problem—OLO2OLO is the Italian platform allowing the migration of access
lines between different network operators insisting on the same network infrastructure—,
(j) performance degradation resulting from monitoring, (k) macroproblem due to the
network infrastructure, (l) known network outage, (m) network outage detected as a
result of monitoring, (n) access degradation of the network infrastructure resulting from
monitoring, (o) access network degradation relative to the backbone provider, (p) access
network degradation relative to the network operator, and (q) wrong assignment of the
network service to a user. For the sake of completeness, in Table 1, we show the relative
frequency of each ticket close code in the considered dataset.

Table 1. Relative frequencies of the values exhibited by the ticket close code variable.

Ticket Close Code Relative Frequency

Known network outage 42.99%
Network outage—monitoring 22.35%
Access network degradation—backbone provider 13.14%
Network infrastructure macroproblem 12.48%
No trouble found 4.10%
Line/device problem—reset device 1.74%
LNI-minimum bitrate 1.71%
Known problem pending for resolution 0.44%
OLO2OLO problem 0.41%
Activity on the OCA protocol 0.30%
Access network degradation—network operator 0.10%
Maximum obtainable performance 0.10%
Network infrastructure access degradation—monitoring 0.04%
Performance degradation—monitoring 0.04%
Unexploited link/GNP 0.03%
Line/device problem—reboot device 0.02%
Wrong assignment 0.02%

We now present our predictive model. In more detail, we are going to address the
following classification problem: is a user at risk of reopening a ticket that was previously closed
even though the related technical issue (in terms of perceived QoS) was still not solved?

3. Classification for Predicting Ticket Reopening

In this section, we show the performance achieved by different machine learning
based classifiers trained both on the original dataset X and on the reduced dataset Xred in
order to predict if a monitored ticket will be reopened or not. This allows us to evaluate
the effectiveness of the dimensionality reduction activity discussed in the previous section.

3.1. Different Approaches to Classification

Machine learning is a branch of artificial intelligence based on the idea that systems
can learn from data and make reasonable decisions with minimal human intervention. In
contrast with many statistical modeling approaches, which generally value inference over
prediction, the focus of machine learning is predictive accuracy (see [30]). High predictive
accuracy is usually achieved by training complex predictive models, often involving
advanced numerical optimization routines, on a very large number of training examples.

According to the survey provided in [31], in this paper, the following supervised
classification techniques are considered: decision tree, random forest, boosting, logistic
regression, Artificial Neural Network (ANN) and SVM.

The chosen architecture for the decision tree based classifier is inspired by [32]. The
random forest based approach to classification follows [33]. The setup for boosting resem-
bles [34], whereas the logistic regression one is inspired by [35].
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Instead, in the case of the ANN, we consider a two-layer fully connected network. For
the hidden layer, we resort to ReLU nonlinearity, whereas, for the output layer, we have a
Softmax loss function. The size of the neural network for the input and output layers is
dependent on the input dataset (X and Xred, alternatively) and classes respectively, while
the hidden layer is arbitrarily set.

Finally, the SVM classifier follows the classical approach from [36].

3.2. Numerical Simulations and Results

In this subsection, we compare the different classification approaches (described in
Section 3.1) in order to predict ticket reopening via supervised learning. According to
Section 2, we consider both datasets: the first one (X) in the original form and the second
one in the reduced form Xred (through feature selection analysis).

Given a month (i.e., 30 days) of data collected according to the format discussed in
Section 2, we reordered the dataset by picking six groups of four days as training sets
(k ∈ {1, 6, 11, 16, 21, 26}), denoting them, with a slight abuse of notation, with Xtraining[k]
in the case of the original dataset and with Xred

training[k] in the case of the reduced dataset,
that is,

Xtraining[k] :=


xi

u,(v=k)
xi

u,(v=k+1)
xi

u,(v=k+2)
xi

u,(v=k+3)

, ∀u, k ∈ {1, 6, 11, 16, 21, 26}, i = 1, . . . , m, (2)

and analogously for Xred
training[k].

We then considered the dataset portion relative to each of the remaining six days of
the considered month (q = k + 4) as a one-day subset of the ABT providing a suitable test
set, denoted with

Xtest[q] :=
[

xi
u,(v=q)

]
, ∀u, k ∈ {1, 6, 11, 16, 21, 26}, i = 1, . . . , m, (3)

in the case of the original dataset, and with Xred
test[q] defined analogously, in the case of the

reduced dataset.
In order to ensure the statistical robustness of the learned models, we proceeded in the

following way. We first trained each classification algorithm on Xtraining[k] and Xred
training[k]

alternatively, in order to obtain the learned models for each iteration k (training phase).
Then, we tested each model learned at iteration k on the one-day test set Xtest[q] in the case
of the original dataset, and on the one-day test set Xred

test[q] in the case of the reduced dataset
(test phase).

Eventually, we measured the KPIs listed below for each couple (k, q) of training and
test sets and we reported in Tables 2 and 3 the average KPI values over all (k, q) couples.

For both data preparation and supervised leaning algorithms, all codes are written in
R. All the simulation runs were performed on a dual-core Intel Core i7-7500U 2.70GHz (up
to 3.50 GHz) processor equipped with 16 GB RAM and running Ubuntu 18.04.

Numerical results are provided in terms of Accuracy, Gini coefficient, Youden index
and AUC.

• Accuracy [37]: the accuracy measure tells how well a machine learner, which learned
the hypothesis h as the approximation of the target classification function V, performs
in terms of classifying a novel unseen example correctly. The true error of hypothesis
h is the probability that it will misclassify a randomly drawn example x, that is,

error(h) = Pr[V(x) 6= h(x)]. (4)
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With this in mind, accuracy has the following definition:

Accuracy =
number o f correct predictions
total number o f predictions

. (5)

For binary classification, as in the considered case, accuracy can also be calculated in
terms of positives and negatives as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives
and false negatives, respectively.

• Gini coefficient [37]: It provides a measure of the degree or probability of the target
variable being wrongly classified. It has values between −1 and 1. The closer it is to 1
the better.

• Youden index [37]: it is a goodness-of-fit index that represents the maximum separation
between the model Receiver Operating Characteristic (ROC) curve and the baseline
ROC curve.

• AUC [37]: an ROC curve shows the probability distribution just for the events, the
positive class. It compares the events predicted correctly (true positives) against the
events predicted incorrectly (false positives). The higher the sensitivity (true positive
rate close to 1) and the lower the false negative rate (specificity close to 1), the better
the model. The AUC gives us the area under the ROC curve: the greater the area, the
higher the index.

Table 2. Numerical results for the dataset X.

Classifier Trained on the
Original Dataset X Accuracy Gini

Coefficient Youden Index AUC

Decision Tree 69% 0 0.18 0.5
Random Forest 75% 0.86 0.80 0.93
Gradient Boosting 71% 0.79 0.79 0.89
Logistic Regression 70% 0 0.18 0.5
ANN 66% 0.05 0.06 0.53
Support Vector Machine 73% 0.79 0.79 0.89

Table 3. Numerical results for the dataset Xred.

Classifier Trained on the
Original Dataset Xred Accuracy Gini

Coefficient Youden Index AUC

Decision Tree 79% 0.1 0.20 0.55
Random Forest 80% 0.9 0.83 0.95
Gradient Boosting 79% 0.8 0.84 0.90
Logistic Regression 81% 0.12 0.25 0.56
ANN 67% −0.12 0.06 0.46
Support Vector Machine 69% 0.78 0.78 0.89

The best one in the first case is the random forest algorithm. In the second case, the
most accurate is the logistic regression algorithm, but the best performing one in general
remains the random forest algorithm.

4. A Bayesian Network Classifier Trained on a Further Reduced Dataset

We now propose another data-driven classification model, namely based on a Bayesian
network, aimed at improving the performance already obtained on the dataset Xred by
means of a further dimensionality reduction, namely resorting to the further reduced
dataset X′red.
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4.1. Bayesian Network Classifier

Based on the reduced dataset, we trained a classifier resorting to a Bayesian network.
A Bayesian network is a probabilistic graphical model that, by representing a set of

variables and their conditional dependencies via a directed acyclic graph G, allows for
predicting the likelihood that one of several possible known causes is the contributing
factor behind the occurrence of a specific event. In the considered case, the aim is that
of predicting if a combination of network QoS parameters belongs to the discrete class
variable Repeated ticket.

In more detail, we learned a Naive Bayes network structure G as in Figure 3, revolving
around the following input variables, which therefore compose the new reduced dataset
X′red as a p′ × n matrix, with p′ = 7:

• Repeated ticket;
• Ticket close code;
• Signal-to-noise ratio (downstream);
• SAC;
• Constant bitrate (downstream);
• Power (upstream);
• Attenuation (upstream).

We set the Upstream Attenuation node as root node and the SAC and Repeated ticket
nodes as leaf nodes.

Figure 3. Naive Bayes network structure G behind the chosen Bayesian network classifier.
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The variables’ alarm tag and percentage of 3G data availability for backup have been
preliminarily excluded from the ABT because, from a statistical viewpoint, they were not
suitable for the algorithm procedure that is behind training a Bayesian network classifier.

In addition, before training the classifier, we chose to perform discretization—referred
to as the process of grouping values into intervals in order to limit the number of possible
states—on the input data according to the type and distribution of each variable, in order
to optimize the performance in the creation of the Bayesian network graph. The following
two methods were applied onto the continuous variables of the ABT: namely, quantile
(subdivision by frequency) and uniform (subdivision into a suitable number of groups of
the same size) discretization.

Quantile discretization was performed onto the constant bitrate (downstream), signal-
to-noise ratio (downstream), attenuation (upstream) and power (upstream) variables, by
grouping the values of each variable into four same size bins, split based on percentiles.

Uniform discretization, instead, was performed onto the ticket close code and SAC,
grouping the values of each variable into four same-width discrete bins depending on the
span of possible values for each considered variable.

The Repeated ticket variable was discretized into two disjoint bins, of which 15% are
repeated tickets and the rest are non-repeated.

Table 4 shows the characteristics of the Bayesian network in detail. The value of
the Pearson correlation coefficient (denoted with ‘Strength’ in the table) indicates the
existing degree of correlation between the variables considered: the closer this value is
to 1, the greater the correlation between the variables. On the other hand, the ‘Direction’
column indicates the degree of reliability of the links that introduce a hierarchy between
the variables: in this case, too, the closer the value is to 1, the more the direction of the link
accounting for the existing relationship between the considered variables is reliable.

Table 4. Pearson correlation coefficient between the variables in X′red and degree of reliability of the
links characterizing the learned Naive Bayes network structure G.

From To Strength Direction

Signal-to-noise ratio
(downstream) SAC 1.0 0.93

Power (upstream) Signal-to-noise ratio
(downstream) 1.0 0.9

Attenuation (upstream) SAC 1.0 1.0
Attenuation (upstream) Power (upstream) 1.0 0.7

Power (upstream) Signal-to-noise ratio
(downstream) 1.0 0.6

Attenuation (upstream) Constant bitrate (downstream) 1.0 1.0
Power (upstream) Constant bitrate (downstream) 0.87 0.85
Constant bitrate (downstream) Ticket close code 0.93 0.9
Ticket close code Repeated ticket 0.93 0.95

It is clear from Figure 3 and Table 4 that the correlation coefficient with the variables
closest to the Repeated ticket variable is always greater than 0.93, which implies that the
proposed tree structure can be considered as highly reliable for our classification purpose.

The combinations of conditional probabilities calculated by the Bayesian network as
a result of discretization generate a number of scenarios to which it is possible to asso-
ciate the probability of occurrence of the event of ticket reopening. For the considered
reduced dataset X′red, more than one thousand different simulation scenarios were gener-
ated. Namely, the 13 intervals shown in Table 5 are combined with the 17 possible causes
identified within the ticket close code variable. Constant bitrate in downstream is measured
in bits per second. Attenuation in upstream is measured in dB and power in upstream is
measured in dBmV.
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Table 5. Relevant distributions of the variables of X′red into suitable bins as a result of discretization.

Variable Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Constant bitrate (downstream) [bits per sec] <36,200 [36,200; 54,000] [54,000; 64,200] [64,200; 87,100] >87,100
Attenuation (upstream) [dB] <10.2 [10.2; 16.1] [16.1; 21.1] >21.1 -
Power (upstream) <−19.2 [−19.2; −8.6] [−8.6; −0.7] >0.7 -

Remark 1. The number of relevant scenarios may vary depending on the discretization type and
the number of tickets associated with the different combinations. This has proven to be the best
choice, given the characteristics of the considered dataset.

4.2. Model Performance Evaluation and Discussion on the Results

For the purpose of evaluating the model performance, we adopted the same approach
as discussed at the beginning of Section 3.2. However, in order to further test the robustness
of the Bayesian network classifier, we also carried out the experiment of creating 1000
random pairs of training/test sets according to the 70/30 rule, i.e., 70% of the X′red dataset
was used for training purposes and the rest for testing. The measured KPIs were very
similar, thus testifying the effectiveness of the Bayesian network classifier as well as its
robustness. The average values of the KPIs measured throughout these tests are reported
below in Table 6 in order to compare them with the results of the different classifiers trained
in Section 3.

The validation process was completed by comparing the accuracy measure achieved
by the Bayesian network classifier against the performance of the other classifiers.

From Table 6, it is clear that the Bayesian Network classifier trained on X′red outper-
forms the classifiers introduced in Section 3.

Table 6. Numerical results for the second dataset.

Trained Classifier Accuracy Gini
Coefficient

Youden
Index AUC

Decision Tree trained on Xred 79% 0.1 0.2 0.55
Random Forest trained on Xred 80% 0.9 0.83 0.95
Gradient Boosting trained on Xred 79% 0.8 0.84 0.90
Logistic Regression trained on Xred 81% 0.12 0.25 0.56
ANN trained on Xred 67% −0.12 0.06 0.46
Support Vector Machine trained on Xred 69% 0.78 0.78 0.89
Bayesian Network classifier trained on X′red 96% 0.90 0.79 0.95

Among the trained classifiers, according to the accuracy and AUC measures, the
Bayesian Network classifier proves to be the most effective at minimizing the error (8).

From the results obtained, we also infer the combinations of features in X′red that are
most probably the reason for ticket reopening: namely, they are the events listed below:

(1) Ticket close code (d) AND Constant bitrate (downstream) in bin 2 AND Power
(upstream) in bin 4 AND Attenuation (upstream) in bin 3;

(2) Ticket close code (k) AND Constant bitrate (downstream) in bin 1 AND Power
(upstream) in bin 1 AND Attenuation (downstream) in bin 3;

(3) Ticket close code (i) AND Constant bitrate (downstream) in bin 4 AND Power (up-
stream) in bin 3 AND Attenuation (upstream) in bin 3;

(4) Ticket close code (i) AND Constant bitrate (downstream) in bin 3 AND Power (up-
stream) in bin 3 AND Attenuation (upstream) in bin 4;

(5) Ticket close code (i) AND Constant bitrate (downstream) in bin 2 AND Power (up-
stream) in bin 2 AND Attenuation (upstream) in bin 3;

(6) Ticket close code (i) AND Constant bitrate (downstream) in bin 3 AND Power (up-
stream) in bin 2 AND Attenuation (upstream) in bin 1;

(7) Ticket close code (p) AND Constant bitrate (downstream) in bin 2 AND Power
(upstream) in bin 3 AND Attenuation (upstream) in bin 3;
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(8) Ticket close code (p) AND Constant bitrate (downstream) in bin 3 and Power (up-
stream) in bin 4 AND Attenuation (upstream) in bin 4;

(9) Ticket close code (p) AND Constant bitrate (downstream) in bin 4 AND Power
(upstream) in bin 1 AND Attenuation (upstream) in bin 2.

Table 7 reports them with the corresponding number of occurrences of such combina-
tions of QoS parameters.

Table 7. Combinations of features in X′red that are most probably the reason for ticket reopening
according to the predictions of the Bayesian Network classifier.

Event Number of Occurrences in X′
red

Percentage of Events Causing a
Repeated Ticket

Event (1) 7 42.86%
Event (2) 29 34.48%
Event (3) 17 29.41%
Event (4) 107 20.56%
Event (5) 102 17.65%
Event (6) 102 12.75%
Event (7) 372 12.37%
Event (8) 447 10.96%
Event (9) 504 10.12%

In general, as can be seen from Table 7, the trained classifier provides the customer
service of a network operator with a reliable tool for effectively monitoring customer tickets
that, despite being already closed, are at risk of being reopened due to unsolved technical
issues related to the perceived QoS.

The complexity of the Bayesian Network classifier, namely the most successful one, is
linear in the number of training examples and in the number of features characterizing each
training example. Instead, almost all other methods exhibit increased runtime complexity:
more precisely, the Decision Tree, Random Forest and Gradient Boosting approaches are
such that their complexity is logarithmic in the number of training examples, whereas the
complexity of the SVM approach is quadratic in the number of training examples. Only the
ANN and the Logistic Regression techniques have comparable computational complexity
with respect to the Bayesian Network classifier, but with lower predictive performance (as
shown in Table 6).

5. Conclusions

The paper proposes a data-driven approach based on machine learning for predicting
technical ticket reopening in customer service platforms of telecommunications companies
providing 5G fiber optic networks, namely with respect to ensuring that, between end user
and service provider, the Service Level Agreement in terms of perceived Quality of Service
is satisfied.

The activity was carried out within the framework of an extensive joint research
initiative on Next Generation Networks between ELIS Innovation Hub and a major network
service provider in Italy over the years 2018–2021.

The authors compare the performance of different approaches to classification—
ranging from decision trees to Artificial Neural Networks and Support Vector Machines—
and establish that a Bayesian network classifier is the most accurate at predicting whether
a monitored ticket will be reopened or not.

In addition, the authors propose a suitable dimensionality reduction strategy that
proves to be successful at increasing the computational efficiency by reducing the size of the
relevant training dataset by two orders of magnitude with respect to the original dataset.

Numerical simulations show the effectiveness of the proposed approach, proving it
can be a very useful tool for service providers in order to identify the customers that are
most at risk of reopening a ticket due to an unsolved technical issue.
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As future work, the authors look forward to testing the proposed method on Quality
of Service datasets coming from additional sources and/or related to other 5G networks,
as well as to testing the same method on even larger datasets in orders to further assess its
scalability properties.
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