
future internet

Article

OLP—A RESTful Open Low-Code Platform

Mauro A. A. da Cruz 1,2 , Heitor T. L. de Paula 1, Bruno P. G. Caputo 1, Samuel B. Mafra 1, Pascal Lorenz 2

and Joel J. P. C. Rodrigues 3,4,*

����������
�������

Citation: da Cruz, M.A.A.; de Paula,

H.T.L.; Caputo, B.P.G.; Mafra, S.B.;

Lorenz, P.; Rodrigues, J.J.P.C. OLP—A

RESTful Open Low-Code Platform.

Future Internet 2021, 13, 249.

https://doi.org/10.3390/fi13100249

Academic Editor: Stefano Rinaldi

Received: 2 August 2021

Accepted: 22 September 2021

Published: 25 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí 37540-000, MG, Brazil;
maurocruzter@gmail.com (M.A.A.d.C.); heitortoledo@gec.inatel.br (H.T.L.d.P.);
brunocaputo@gec.inatel.br (B.P.G.C.); samuelbmafra@inatel.br (S.B.M.)

2 Network and Telecommunication Research Group, University of Haute Alsace, 34 Rue du Grillenbreit,
68008 Colmar, France; lorenz@ieee.org

3 Post-Graduation Program in Electrical Engineering, Federal University of Piauí (UFPI),
Teresina 64049-550, PI, Brazil

4 Instituto de Telecomunicações, 6201-001 Covilhã, Portugal
* Correspondence: joeljr@ieee.org

Abstract: Low-code is an emerging concept that transforms visual representations into functional
software, allowing anyone to be a developer. However, building a low-code platform from scratch
can be challenging concerning the scarce available literature about the topic. In this sense, this paper
proposes an Open Low-Code Platform (OLP), a low-code solution that enables regular users to create
applications. Furthermore, it presents low-code’s functional and nonfunctional requirements, as
well as its similarities and its differences with the no-code concept. The experience obtained while
developing OLP was translated into a pipeline that details how code was transformed from the visual
representations into a fully fledged application. The paper demonstrates the solution’s viability and
is especially useful for building a low-code platform from scratch or improving an existing one.

Keywords: low-code; compilers; programming languages; transpiler; Open Low-Code Platform

1. Introduction

The ubiquitous presence and growing popularization of applications driven by the
ease of access to computers and smartphones also increases software development demands
for mobile and desktop applications. Corporations are looking for ways to make software
development faster, more accessible, and more affordable to meet these demands. When a
new application (for desktop or mobile) revolutionizes, creates, or disrupts a particular
market, it is not uncommon for similar applications to be introduced as competitors. The
issue is that these competitors are generally introduced years after the market disruption,
and a monopoly is almost established. One example is the ride-sharing giant Uber, founded
in 2009, while Lyft, its biggest competitor, was founded in 2012.

The delay in introducing competitors, especially in previously inexistent markets such
as ride-sharing, is mainly due to recognizing the potential market, allocating funds for
the project, and development time. Big corporations generally dedicate entire teams to
monitoring these market changes. They can also raise capital with little effort to acquire
a disruptive company or build a similar competitor. However, these big corporations
prefer to acquire these disruptive companies and only create a competitor if the acquisition
does not succeed. They prefer purchasing disruptive companies because building a new
application from scratch demands time and great effort.

Building an application from scratch is challenging because an intuitive and responsive
graphical user interface (GUI) is necessary for widespread adoption. This is the reason
most ride-sharing apps have a similar interface. Another difficulty is that algorithms
should enforce business rules and ensure user satisfaction. For example, when a ride’s
waiting time exceeds a certain amount of time, users get impatient and can move to a

Future Internet 2021, 13, 249. https://doi.org/10.3390/fi13100249 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-9708-4997
https://orcid.org/0000-0003-3346-7216
https://orcid.org/0000-0001-8657-3800
https://doi.org/10.3390/fi13100249
https://doi.org/10.3390/fi13100249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13100249
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13100249?type=check_update&version=2

Future Internet 2021, 13, 249 2 of 14

competitor ride-sharing App. Building software from scratch is also tricky because a
software development team must be assembled, meaning that programming languages to
use must also be decided by the team. Moreover, after a software team is hired, estimating
the development time is also one of the most significant software engineering issues.

A solution to reduce the software development time is the usage of low-code and
no-code software development platforms [1]. These platforms do not require extensive
coding knowledge and can even be used by those with no coding background to generate
basic applications, which can be crucial for companies to adapt, especially in future Internet
applications. Although no-code and low-code are sometimes used as synonyms, they are
different concepts and can even target different user profiles. Despite low-code and no-
code platforms rising in popularity, to the best of the authors’ knowledge, the literature
discussing how to build them is nonexistent, and the advantages and disadvantages are
not well documented. Thus, the main contributions of this paper can be summarized
as follows:

• An in-depth review of the state of the art on low-code and no-code platforms;
• Presentation of low-code functional and nonfunctional requirements;
• Proposal of an architecture for low-code development platforms;
• Proposal, demonstration, and validation of OLP (Open Low-Code Platform), a low-

code solution that enables regular users to create applications;
• Invaluable lessons learned throughout the project.

The remainder of the paper is organized as follows: Section 2 provides a discussion
on low-code and no-code topic, its main benefits and issues, and how easier and faster
software development was always in demand. Low-code functional and nonfunctional
requirements are addressed in Section 3, while Section 4 provides details about the OLP
construction. This low-code platform was created for a better understanding of the practical
difficulties in developing a low-code platform. Section 5 shares relevant lessons and crucial
decisions that were learned while developing the OLP. These lessons are especially useful
for building a new solution from scratch or improving an existing one. Lastly, Section 6
concludes the paper and suggests future work on the topic.

2. No-Code, Low-Code, and Traditional Approaches

In the early days of programming languages, it was common to program in assembly
languages similar to the target machine code instructions designed for specific computer
architectures. These assembly languages are often referred to as low-level and were a nui-
sance because a certain machine program would only run on a machine of the same model.
These difficulties led to high-level programming languages, such as FORTRAN and, later,
COBOL. High-level programming languages abstract from the machine’s hardware details
by using a syntax closer to the human language. Initially, high-level programming was
perceived with skepticism because of its bugs. However, as time passed, the programming
paradigm changed, increasing software developers’ productivity and making coding easier.

The trend to simplify software development has continued up to now in low-code
and no-code software development, which has been increasing in popularity since 2014 [2].
Although their essence is the same (reduce coding and simplify software development), the
two terms are not synonyms, and the difference between them is minimal and, sometimes,
confusing [3]. Low-code and no-code platforms rely on visual application development
without the complexity associated with traditional software development [4], thereby
improving the software development experience [5]. The main difference between low-code
and no-code is that, while low-code reduces code writing, no-code completely eliminates it.

The no/low-code idea derives from the fourth-generation language (4GL) concept,
aiming to provide a higher level of abstraction compared to previous generations of
programming languages [1]. They are often categorized into different types of domain-
specific languages (DSLs), such as data management languages, database management,
Web development, and many more [6]. MDSD (model-driven software development) is a
concept similar to no/low-code in the sense that MDSD refers to automatic source code

Future Internet 2021, 13, 249 3 of 14

generation based on models, and both the model and the generated source code can be
debugged [7]. The main difference between MDSD and low-code is that a no/low-code
platform acts as a black box where a developer has no knowledge about how the source
code was generated, the used frameworks, and, in some cases, even the programming
languages. Low-code is also different from integrated development environments (IDEs)
because IDEs such as Eclipse and VSCode simplify source code writing. In no/low-code,
developers mostly drag objects and hardly come into contact with the generated source
code, unless developers intend to move away from the platform; however, even then,
platform vendors do not always provide the generated source code. Then, in most cases,
developers can only modify applications through the platform, which acts like its own
programming language.

The most significant advantage of no-code and low-code approaches comes from
the fact that it is straightforward to build complex software, allowing organizations to
quickly adapt to the ever-changing market. Moreover, the low and no-code learning curve
is easier when compared to regular programming languages. These characteristics enable
developers to quickly prototype software, translating into faster user feedback and a better
customer experience. Thus, the rapid application development (RAD) methodology is
well suited for this type of development, although any methodology can also be used.
According to Gartner, the low-code market leaders are OutSystems, Mendix, Microsoft
Power Apps, and Salesforce [8], and they are very similar regarding functionalities. The
main difference between them comes from the fact that some have built-in integration with
external systems, such as customer relationship management (CRM), social media, and
payment gateways. According to Gartner, low-code platforms represent approximately
65% of all development activities [9].

Like most dilemmas regarding computer science, determining which solution to use
depends on the scenario and the developer’s strengths. Overall, no-code is considered
simpler than low-code, but this simplicity comes with the cost of less freedom for per-
sonalization in the graphical user interface and advanced business rules. Personalization
limitations can be especially troublesome when integrated with external systems or using
lesser-known protocols that are not supported by the platform. Therefore, it is harder
to develop enterprise-grade software using no-code platforms. Furthermore, due to its
simplicity, no/low-code can be used even by individuals with no programming back-
ground [10], although those with a programming background are more likely to unlock its
full potential.

In no/low-code development, the application development complexity is hidden by
the platform [11], which is simultaneously the biggest benefit and also an issue. Platforms
hide the complexity by providing a database, front-end, backend, and generated source
code, which means developers can do little to nothing to maintain the developed applica-
tions if a platform is discontinued. This happens because the “source code” available from
the developer consists of visual representations that are later transpiled by the platform
into a source code. The lack of a conventional source code can be troublesome for the
developer because the platform generates and optimizes all the source code on the basis
of visual representations. Suppose that the platform wrongly optimizes a code block. In
that case, the developer might not notice until the software has various simultaneous users.
When the developers notice an inefficiency, they can only wait for an update from the
platform vendor. Although advertised as reducing development costs, these platforms can
be costly since their business model is generally based on monthly or yearly subscriptions.

Entirely relying on a third party without a source code also reduces the developer’s
ability to abandon a platform since it could mean rewriting the entire software from scratch.
Therefore, if developers are not satisfied with a platform because of the existing bugs,
lack of new features, or other convenient reasons, abandoning it is hardly an option. This
characteristic can be especially troublesome for entrepreneurs with little coding experience
that decide to jumpstart an innovative idea through no/low-code platforms. Even when an
idea is a success, the platform licensing or hosting cost might not be viable, which means

Future Internet 2021, 13, 249 4 of 14

that it is unlikely that the entrepreneur will migrate the source code or even recover the
database data. The current pricing negates one of no/low-code’s biggest benefits, i.e., the
ability for any person within an organization to build software, since only big corporations
and software houses can afford it.

Allowing any individual within an organization to build software can also present
various security risks. Software developers generally have nearly unlimited access to the
database, meaning that every person can potentially access confidential data (intention-
ally or not). This issue can be nullified through roles that limit the developer access to
specific projects or even databases. Another issue is that software always has vulnerabil-
ities, and most of them are caused by the software developer, especially those with less
experience and knowledge. For example, an application developed by an inexperienced
developer can gain internal popularity (i.e., it is widely adopted within the organization
of the user that created it), and its developer might not even be encrypting passwords.
Since most users tend to repeat passwords, this simple oversight could have severe and
dangerous consequences.

In the early days of low-code, the personalization level compared to traditional
software development was very lackluster. Today, some platforms such as OutSystems
allow developers a high degree of personalization [12]. Overall, the pricing of no/low-
code platforms is a significant barrier to its popularization. Therefore, each corporation
should evaluate the benefits and drawbacks of using this type of solution for software
development. It is hard to imagine that no-code can reach a degree of personalization
comparable to traditional programming, but this was also an issue for low-code in the
past. The next evolution of the no/low-code concept will likely be software developed by
artificial intelligence (AI) solutions where users verbally explain what is desired.

As mentioned above, no/low-code platforms are very similar, and their characteristics
are summarized in Table 1.

Table 1. No/low-code main characteristics.

No-Code Characteristics Low-Code Characteristics

Removes code-writing Reduces code-writing

Low freedom for personalization High freedom for personalization

Easier learning curve when compared to traditional programming

Visual application development

Code optimization

Any person within an organization can build software

Hosting and/or licensing costs

Generally hides the true source code from the user

Less knowledgeable or inexperienced developers are likely to create vulnerabilities due to the
ease of creating applications

Since this work focuses on low-code, only concepts associated with low-code are
addressed, although most of the low-code concepts can also be applied to no-code.

3. Low-Code Platform Requirements and Architecture

Any software project is built on the basis of requirements, which can be functional
or nonfunctional. Nonfunctional requirements focus on the features that applications
should provide to ensure quality of service (QoS), and they are presented in Section 3.1.
Functional requirements describe which application features should be deployed, and they
are presented in Section 3.2. The proposed architecture is showcased in Section 3.3.

Future Internet 2021, 13, 249 5 of 14

3.1. Nonfunctional Requirements

The proposed solution addresses the following nonfunctional requirements:

(1) Ease of use: Since the primary goal of this type of software is to simplify software
development, platforms should be intuitive to handle. In practice, intuitive means
that users should be able to develop applications with minimal training and effort.
This low complexity is achieved by replacing traditional source code with visual
representations that allow users to manipulate system elements graphically instead of
textually. This crucial change is associated with a concept known as visual program-
ming, allowing developers to focus on software functionalities, and it is also good for
educational purposes [13].

(2) Flexibility: Since this software enables users to build other software easily, the platform
must be intuitive. Nevertheless, it should support advanced use-cases and this is only
possible if the platform provides a degree of flexibility to users.

(3) Extensibility: The platform should provide tools or documentation that allow users to
refine or extend the provided functionalities through plugins or other contributions.
This feature is essential because, no matter how flexible the solution is, it is unlikely
to attend to all use-cases.

(4) Interoperability: This software should be able to integrate with external systems [14].
Today, integration with other solutions is generally accomplished through representa-
tional state transfer (REST) application programming interfaces (APIs).

(5) Security: It is common for programmers to have almost unlimited access inside an
organization and with access to privileged information (in smaller organizations,
this is even more common). Therefore, low-code platforms should provide security
mechanisms that can limit access to the source code and allow accountability. In addi-
tion, similar security mechanisms should be easily applied to the developed software,
allowing profile access and methods to encrypt fields within a database securely.

(6) Privacy: The concept of privacy is tightly linked to security because it focuses on
methods and purposes of storing, analyzing, and sharing data by a service provider.
For example, a recent privacy controversy was sparked by WhatsApp, which started
sharing user data with its parent company Facebook. Users were fearful that their
private conversations would be shared and used for targeted advertisement within
Facebook, Instagram, or other third parties. Facebook later reiterated that not even
WhatsApp could access private conversations due to end-to-end encryption, which
meant that such a scenario would not be possible. Knowing which data are shared and
how data are stored could be especially useful in a data breach, because various data
could be compromised directly or indirectly. The General Data Protection Regulation
(GDPR) from Europe [15] and the California Consumer Privacy Act (CCPA) from
California, USA [16] are examples of privacy protection legislation.

(7) Scalability: The platform should provide tools or be compatible with tools that al-
low software to scale vertically and horizontally, adapting to the ever-increasing
demands. Vertical scaling consists of running a solution in hardware with more re-
sources (memory, HDD, CPU cores, and processing power) [17]. Horizontal scaling is
characterized by distributing the workload through various hardware [18]; instead of
having a single server with powerful capabilities, the workload is distributed among
several servers.

(8) Maintainability: Low-code platforms are constantly updated by their developers,
which means that a platform should be constructed in a way that is easy to maintain.
Maintainability is an attribute that describes the simplicity of modifying, fixing bugs,
or improving the performance in a software solution.

(9) Backwards compatibility: Low-code platforms continuously iterate and improve them-
selves, especially regarding usability, while trying to not being so strict that too
much flexibility is lost. When visual code becomes incompatible with its previous
implementation, the platform should automatically upgrade it to end-users. When
done correctly, even visual code from version 2 of a platform that is incompatible

Future Internet 2021, 13, 249 6 of 14

with version 6 can be upgraded to version 3, which can be upgraded to version 4,
and so on.

3.2. Functional Requirements

The functional requirements are the following:

(1) Data management and event management: A software should allow “create, read, update,
and delete” (CRUD) operations performed using a database or an external API. When
manipulating data directly from a database, users should be able to perform advanced
database query operations. These operations will generally require users to write
Structured Query Language (SQL) or even NoSQL statements. Furthermore, modern
systems usually execute or respond to various events automatically, according to the
received data, and the platform should also provide such as a feature.

(2) Code transpiling: Since the source code consists of visual representations instead of
the traditional text, visual representations must be translated into a textual source
code. Then, it can be written in any programming language chosen by the plat-
form developers and should be compiled or interpreted depending on the chosen
programming language.

(3) Correctness: The generated textual source code should not contain errors or bugs, since
most platforms do not offer users the source code. Thus, users will not be able to
edit code that is generated by the platform. This is valid for all the coding aspects,
including a REST API or a script to generate a database.

(4) Code optimization: The generated code should be optimized because, otherwise, the
software that it produces might be difficult to scale. Moreover, the generated source
code should be easily readable by the platform developers because it is likely they
will need to review it in the future.

(5) Code verification: All the generated code should be verifiable through automated tests.
This is valid for the platform itself (when it is being built or modified by develop-
ers), s well as for end-users. The developers need to use or build code verification
tools because modifications to platform code can change internal functionalities and
negatively impact functionalities for the application end-users. The platform should
also provide similar tools for the end-users so they can verify their functionalities,
detecting bugs of their own doing, as well as bugs in the sequence of platform updates.
Furthermore, automated testing is a good practice in software development that saves
time in the long run and ensures product quality [19].

(6) Code compiling/interpreting: After the transpiled source code is verified as being correct
and optimized, it should be compiled or interpreted depending on the programming
language. This is a necessary step in most programming languages because, otherwise,
running the application will not be possible.

(7) Application deployment: Deployment is a process that makes a software available to its
end-users and can vary depending on the targeted end-user. In a mobile application,
a deployment could mean publishing the software on an App store or running the
application on a smartphone. In Web applications, it could mean running on a local
computer or on a cloud server.

(8) Produce adequate messages: A big part of programming is the textual output produced
by compilers, which is generally categorized by (i) information, (ii) warnings, and
(iii) errors. These textual outputs are essential because they give the programmer
important feedback regarding their code. Generally, errors mean that the code will
not compile, and warnings imply that some aspects could be optimized or might not
work as expected. An example of a warning or error (depends on the compiler) could
be the following: variable bar in function foo (Float bar) expects a Float but receives
an Integer when called. The previous example is not a suitable warning because
there is no reference to the file where the error occurred or the line it refers to. Since
low-code movement goals to facilitate programming, the location where the errors

Future Internet 2021, 13, 249 7 of 14

or warnings occur should be easy to identify, and the user should be able to easily
interpret them.

(9) Debugging functionalities: Even the best software presents bugs, and debuggers enable
software developers to identify and remove the source of such bugs. Furthermore,
debuggers allow software to run in a completely controlled environment. In practice,
this means that each line of code can only be executed after programmer presses
a button. In addition, the debugging process enables developers to identify and
monitoring changes in various resources such as variables and should be avoided in
production environments.

(10) Visual-code export/import: The visual code that developers use should be easily ex-
ported (saved), enabling users to import it (load) without losing functionalities.

(11) Textual code writing: Low-code platforms should offer ways to manually write source
code because it is one of its core functionalities (minimize code-writing, but not
eliminate it). However, allowing developers to write traditional source code, the
platform should also have a well-defined syntax and semantic.

(12) Versioning and collaborative development: Most software developers verify the impacts
of their code changes immediately and, with low-code, this aspect will be the same.
In visual programming, it could be easy to modify or remove visual code blocks
and lose functionality, which could worsen if the erased block contains textual code.
Therefore, these platforms should provide version control so that developers can go
back to a previous version. Furthermore, version control allows multiple developers
to simultaneously work on the same project without breaking each other’s code.

(13) Visual data modeling tools: Users should visually configure and assert constraints when
creating entities, their fields, dependencies, and even relationships with other entities.

(14) Visual programming tools: Since low-code programming minimizes code-writing, it
should rely on visual representations that allow users to control program elements
graphically. Among other aspects, these tools should offer users the ability to represent
the most basic aspects of any software: (i) sequences, (ii) selections, and (iii) loops [20].
It consists of a sequence of actions completed in a specified order; in traditional
programming, it executes each line in sequential order (e.g., line 5 only executes after
lines 1, 2, 3, and 4). Selections formulate questions to decide which subsequent lines to
execute. Loops are similar to selections because they continue to formulate questions
and execute subsequent code until a specific condition is reached.

3.3. Architecture

According to the presented requirements, the architecture of the low-code platform
considers the following six main components: (1) visual application modeler, (2) encoder,
(3) decoder, (4) source code generator, (5) compiler, and (6) deployer. These elements are
presented in Figure 1 and are described as follows:

(1) Visual application modeler: The front-end of the low-code platform will interact with
the developers and simplify software development. The visual application modeler is
an enhanced integrated development environment (IDE) that implements most of the
functionalities that developers interact with. These include producing code (graphical
or textual), debugging, modeling data, code verification, testing, versioning, event
management, and many more. The IDE should be simple to use [21], provide a
preview of the developed software, and be located at the client side.

(2) Encoder: The “symbols and codes” used in the visual application modeler must be
imported and exported without losing functionalities. To achieve such a goal, the
“code” produced by the modeler must be expressed in a self-contained representation
easily interpreted by an algorithm. This entity encodes the visual representations into
a flexible format such as JavaScript Object Notation (JSON) or Extensible Markup
Language (XML) that can be transmitted over the Internet. The encoder is located on
the client side.

Future Internet 2021, 13, 249 8 of 14

(3) Decoder: This entity interprets the encodings of the visual representations and is
located on the server side.

(4) Source code generator: After the data are represented in a human-readable way, they
can be transpiled by the source code generator. Transpiling consists of converting
the source code from one language to another. This entity should include scripts to
generate and interact with a database, and it is also responsible for code correctness,
optimization, and verification.

(5) Compiler: This is the entity responsible for compiling the source code, and it also acts
as the final code correctness test.

(6) Deployer: This is the entity responsible for deploying the software into a target plat-
form that will interact with end-users.

Figure 1. The general architecture of low-code platforms.

4. OLP Development and Demonstration

Developing a low-code platform from scratch is challenging because of the scarce
available literature, and architectures are not always easy to interpret in practical scenarios.
To facilitate the development of future low-code projects, the Open Low-Code Platform
(OLP) was created. The scope was limited to Web application development, and data were
persisted and consulted through REST APIs. To develop OLP, the authors drew inspiration
from developing a new programming language, and the first task was to develop a syntax
and, consequentially, the operator precedence. Since graphical visualizations and written
source code must have syntax, it was first represented in EBNF (extended Backus–Naur
form). Formalizing a syntax is helpful because the platform developers can consult it at
any time, enabling productivity and cooperation. EBNF is a meta-syntax used to describe
other syntaxes. A logical or arithmetical expression representation in EBNF is presented
in Code 1. The other representations used in OLP can be found on the GitHub repository
along with its source code [22].

Code 1. EBNF representation of an expression.
expression

= primary
, [binary-op , expression]
;

After establishing the syntax, the developers should define a semantic that will enable
the platform to differentiate between coherent and noncoherent statements. An example

Future Internet 2021, 13, 249 9 of 14

of an incoherent statement could be dividing a String by a number. Lastly, a pipeline that
details how the code will be transformed from the visual representations to a written source
code was established, and it is presented in Figure 2. Such a pipeline was based on the
architecture presented in Figure 1 and considers two parts: IDE and code generator.

Figure 2. Pipeline detailing how the code is transformed from the visual representations into a fully
fledged application.

The IDE supports most of the functions that end-users will interact with and simplifies
software development. These functions include producing code (graphical or textual),
debugging, code verification, testing, versioning, and event management. The IDE also
provides a preview of the software being developed by end-users. In OLP, the IDE is
browser-based and was built using AngularJS. A browser-based IDE was chosen because
Web browsers allow the HyperText Markup Language (HTML) on the screen to be in-
spected; OLP takes advantage of this feature and extracts it, which means that HTML is
obtained directly from the browser. In addition, the code generator will translate the visual
representations into source code in another programming language. When building the
code generator, control flow structures frequently found in imperative languages were
used because this enabled structures with a higher level of abstraction to be defined. In
OLP, the code generator was built using Haskell.

In Figure 2, the upper division of the pipeline describes the processes that occur at the
IDE and the bottom half describes the processes that occur on the code generator. The left
side of the pipeline describes the process of analyzing and converting a low-code program
into a JavaScript file, and it is called the scripting pipeline. The right inside is called the user

Future Internet 2021, 13, 249 10 of 14

interface (UI) pipeline and describes the process of converting the visual representations
built on the IDE into CSS (Cascading Style Sheets) and HTML files. The scripting and UI
pipeline occur simultaneously and are described as follows:

1: The user exports the project and transforms the visual representations into a format
that can be easily encoded and decoded for future usage.

2: Programming languages generally represent data structures in compilers through a
tree data structure because it resembles the production rules for syntax. In the case of
the platform, an abstract syntax tree (AST) was chosen to make this representation.
On the scripting side (left side) of the pipeline, the AST may contain strings because,
even though it is a scripting language, a user is free to type any expression in text
boxes. These expressions typed by the users must be parsed before being converted
into a pure AST. The other side of the tree is already in the correct format as the visual
representations can be converted directly into objects. In the UI (right side) of the
pipeline, the tree is already assembled in the correct format because the user cannot
type custom HTML.

3: The AST is converted to JSON because the AST needs to be represented in a format
that humans can understand, enabling faster debugs. Then, an HTTP request is made
to the compiler, where the encoded JSON is sent to the compiler.

4: The compiler receives the JSON containing the encoded AST, as well as other project
data (name, the user who created it, settings, and other files).

5: On the logic side (left side of the pipeline), the JSON is decoded normally, except in
the parts that were typed by the user; these are not verified by the IDE and need to be
analyzed by the semantic analyzer. The trees are already set up on the UI side (right
side of the pipeline); hence, they are converted directly to ASTs.

6: On the logic side (left side of the pipeline), the semantic analyzer places data type
information in the tree. It also looks at some other inconsistencies and generates
warnings. This step is exclusive to logic.

7: On the logic side (left side of the pipeline), the transpiler converts the AST from step 6
into a JavaScript AST. Aspects such as data types that are supported by the platform
but do not explicitly exist in Javascript are converted in this step.

8: The pretty-printer transforms ASTs into a styled and formatted source code that is
easier to read. The source code is formatted and styled for the sole purpose of faster
debugs, and it is the same on both sides of the pipeline.

9: The linker references the CSS and javascript files in the HTML and compresses them
into a Zip file.

Most of the elements from the architecture presented in Figure 1 can be found on the
pipeline. The visual application modeler represents step 1, the encoder occurs on step 2,
and the decoder occurs on step 3. The source code generator was deployed in steps 4–8. The
compiler from the architecture presented in Figure 1 was not included because Javascript
and HTML source code does not need to be compiled (it is interpreted by the browser).
The deployer will be implemented in future releases.

Demonstration

OLP is a low-code platform built to better understand the practical difficulties of
developing a platform from scratch. Its scope was limited to Web application development,
with data persistence and consultation through REST APIs. Unlike existing platforms, the
code generated is available to the users at any time, which means that users can resume
development if the platform stops being updated. Although the proposed solution was
built as a proof of concept, it is qualified and ready for use. The platform is also open-source
software with a permissive license, allowing any user to contribute to its development
or maintain its own fork. The code generated by the platform means that any user can
continue maintaining his projects, even if the project stops being supported. The solution
and its source code can be downloaded from the GitHub repository [22]. Figure 3 shows
the IDE for an application that pulls the current temperature and displays it on a canvas.

Future Internet 2021, 13, 249 11 of 14

Figure 4 shows the logic part of such an application. Figure 5 shows the main function of
the source code generated by the platform.

Figure 3. Interface creation screen for an application that pulls the temperature from a Website and
displays its value on a canvas.

Figure 4. Logic screen for an application that pulls the temperature from a Website and displays its
value on a canvas.

Figure 5. The main function of the source code generated by the platform from the steps presented
in Figures 3 and 4.

5. Learned Lessons

Researchers and software developers interested in evaluating or developing low-code
platforms can benefit from the findings of this research study and are justified by the fact

Future Internet 2021, 13, 249 12 of 14

that a low-code platform is software used to generate other software. The learned lessons
are the following:

The project scope should be defined as soon as possible: In various projects, scope
definition is one of the most crucial aspects because software is continuously optimized
and new functionalities are added. A scope limitation is especially important in these
projects because the functionalities are limitless, since it is a software that easily allows
users to develop other applications. It considers that all software is unfinished; however,
with low-code, the options are truly unlimited, and, without a clearly defined scope, it
is unlikely that significant progress will be made in development. For example, to build
OLP, the authors limited the scope toward Web applications that run on a Web server, and
data were persisted and consulted through REST APIs. This scope limitation was made
because the goal was to build a functional solution that could be realistically developed
within a year.

The architecture should be flexible and support future modifications: A good archi-
tecture reflects its software requirements. With low-code, it is crucial that the architecture is
flexible and can be applied to various use-cases. To verify the scalability and flexibility, the
developers can discuss which elements of the architecture can be combined or removed.
This aspect related to the architecture is especially valuable in building a low-code platform
because, since it is a software used to build other software, scaling will be an issue that will
arise soon if the architecture is not flexible.

Developers should use tools they are familiar with: Deciding which tools to use is
challenging, especially while developing a low-code platform. The front-end, which will
interact with end-users, might be built in a different programming language from the
backend that will generate the source code. The suggestion is for developers to use tools
they are familiar with because building a low-code platform is a challenging task that will
demand much effort. Then, adding the learning curve of a new programming language
will only make the project more difficult.

The generated source code should be human-readable: The source code generated
from the visual representations must be expressed in a flexible and self-contained manner
that is human-readable. In some cases, the platform should even produce automatic
commentaries because, otherwise, debugging the platform will be very difficult.

Operator precedence and blank spaces can be the source of various bugs: Operator
precedence determines how expressions are evaluated. Therefore, it should be well defined
and tested.

Although low-code is mostly visual, textual representations are still used in the code
generator and in expressions typed by end-users. The code generator uses a textual version
of the visual language to implement functionalities, and the user can type expressions in
text boxes if they wish. In both situations, operators can be used, and their precedence must
be considered. In early development, a mistake while coding the parsing of “XOR” and
“AND” (“AND” was attributed a higher precedence) could cause bugs later. Today, most
programming languages have the same operator precedence, but developers should verify
whether an operator precedence is well defined to minimize bugs on the generated code.
Furthermore, end-users can indent their written code in various ways and the platform
should support the most common blank spaces such as “tab” and “space”.

Platforms should support production and development builds: A production build
is an optimized version of the end-user application. The development build is for de-
velopment and application debug. For example, the most common optimization in Web
applications is removing all the indentation in HTML, javascript, and CSS files because
removing the indentation improves Web page load times. Then, in the production en-
vironment, the generated HTML and CSS should not be human-readable. Furthermore,
removing unused libraries and directing all console logs to a log file can significantly in-
crease performance. This is crucial because it is common for developers to include console
logs or debug entry points to debug the software. Sometimes, these minor aspects slip into
production and a production build could eliminate such things. Since one of the goals of

Future Internet 2021, 13, 249 13 of 14

low-code platforms is to optimize the generated code, a production build option for the
generated code is a necessity.

Write many test programs to test the platform functionalities: Developing tools to
debug and automate testing of the platform functionalities should be a top priority because
it is easy to break code when the application also generates source code. Without such
tools, several bugs will be introduced with each newly added functionality.

6. Conclusions and Future Works

This work described a low-code concept which consists of transforming visual repre-
sentations that are easy to understand into fully fledged applications. The functional and
nonfunctional requirements of low-code, the similarities with the no-code concept, and
how both concepts are different from traditional programming were also explored. The
paper also recognized the difficulty of developing a low-code platform due to the lack of
available literature and proposed the Open Low-Code Platform (OLP), a new low-code
platform. OLP is a low-code platform built to understand the practical difficulties of creat-
ing a low-code platform from scratch. The details of how the visual representations can be
transformed into an application are also presented and explained through a pipeline.

Low-code platforms allow full applications to be developed extremely fast, which is
crucial in today’s world, as well as in the future, with time to market becoming increasingly
important. Low-code projects can always improve, add new functionalities, or integrate
new tools. Regarding OLP, future works can improve usability and support automatic
deployment after generating the project artifacts. The project can also provide native data
storage instead of relying on external REST APIs for such purposes and allow users to
write HTML code. Furthermore, support for other mediums, such as mobile applications,
could vastly improve the solutions’ utility. Perhaps the biggest issue with the low-code
approach comes from the fact that, since source code is generated by the platform, when
the code contains vulnerabilities, every application that uses the platform inherits it.

Author Contributions: M.A.A.d.C. collected and performed a deep analysis and reviewed the
related literature on the topic, wrote the first draft of the document, performed the comparison study
and identified some open research issues. H.T.L.d.P. and B.P.G.C. developed the platform J.J.P.C.R.
supervised the study, consolidated the open issues, reviewed the structure and the text carefully.
P.L. and S.B.M. tested the low-code platform, reviewed the text carefully, and analyzed the issues
identified. All the authors contributed equally to the scope definition, motivation, and focus of the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially funded by the Fundo de Apoio ao Desenvolvimento das Comunicações,
presidential decree no 264/10, 26 November 2010, Republic of Angola; by RNP, with resources from
MCTIC, Grant No. No 01245.010604/2020-14, under the Brazil 6G project of the Radiocommunica-
tion Reference Center (Centro de Referência em Radiocomunicações-CRR) of the National Institute of
Telecommunications (Instituto Nacional de Telecomunicações-Inatel), Brazil; by FCT/MCTES through
national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020; and
by the Brazilian National Council for Scientific and Technological Development-CNPq, via Grants
No. 431726/2018−3 and 313036/2020-9.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Waszkowski, R. Low-Code Platform for Automating Business Processes in Manufacturing. IFAC-PapersOnLine 2019, 52, 376–381.

[CrossRef]
2. Sanchis, R.; García-Perales, Ó.; Fraile, F.; Poler, R. Low-Code as Enabler of Digital Transformation in Manufacturing Industry.

Appl. Sci. 2019, 10, 12. [CrossRef]
3. Villegas-Ch., W.; García-Ortiz, J.; Sánchez-Viteri, S. Identification of the Factors That Influence University Learning with Low-

Code/No-Code Artificial Intelligence Techniques. Electronics 2021, 10, 1192. [CrossRef]

http://doi.org/10.1016/j.ifacol.2019.10.060
http://doi.org/10.3390/app10010012
http://doi.org/10.3390/electronics10101192

Future Internet 2021, 13, 249 14 of 14

4. Sáez-López, J.M.; del Olmo-Muñoz, J.; González-Calero, J.A.; Cózar-Gutiérrez, R. Exploring the Effect of Training in Visual Block
Programming for Preservice Teachers. MTI 2020, 4, 65. [CrossRef]

5. Henriques, H.; Lourenço, H.; Amaral, V.; Goulão, M. Improving the Developer Experience with a Low-Code Process Modelling
Language. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, Copenhagen, Denmark, 14–19 October 2018. [CrossRef]

6. Zaytsev, V. Open challenges in incremental coverage of legacy software languages. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Programming Experience, Vancouver, BC, Canada, 23–27 October 2017. [CrossRef]

7. Völter, M.; Stahl, T.; Bettin, J.; Haase, A.; Helsen, S. MDSD—Basic idea and terminology. In Model-Driven Software Development,
1st ed.; Tickner, S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006.

8. Gartner Magic Quadrant for Enterprise Low-Code Application Platforms. Available online: https://www.gartner.com/en/
documents/4005939 (accessed on 23 August 2021).

9. Woo, M. The Rise of No/Low Code Software Development—No Experience Needed? Engineering 2020, 6, 960–961. [CrossRef]
[PubMed]

10. Ihirwe, F.; Di Ruscio, D.; Mazzini, S.; Pierini, P.; Pierantonio, A. Low-Code Engineering for Internet of Things. In Proceedings of
the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings,
Virtual Event, Canada, 18–23 October 2020. [CrossRef]

11. Bucchiarone, A.; Ciccozzi, F.; Lambers, L.; Pierantonio, A.; Tichy, M.; Tisi, M.; Wortmann, A.; Zaytsev, V. What Is the Future of
Modeling? IEEE Softw. 2021, 38, 119–127. [CrossRef]

12. Martins, R.; Caldeira, F.; Sa, F.; Abbasi, M.; Martins, P. An Overview on How to Develop a Low-Code Application Using
OutSystems. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics
(ICSTCEE), Bengaluru, India, 9–10 October 2020. [CrossRef]

13. Broll, B.; Lédeczi, A.; Volgyesi, P.; Sallai, J.; Maroti, M.; Carrillo, A.; Weeden-Wright, S.L.; Vanags, C.; Swartz, J.D.; Lu, M.
A Visual Programming Environment for Learning Distributed Programming. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, Seattle, WA, USA, 8–11 March 2017. [CrossRef]

14. Sahay, A.; Indamutsa, A.; Di Ruscio, D.; Pierantonio, A. Supporting the Understanding and Comparison of Low-Code Develop-
ment Platforms. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Portoroz, Slovenia, 26–28 August 2020. [CrossRef]

15. Barati, M.; Rana, O.; Petri, I.; Theodorakopoulos, G. GDPR Compliance Verification in Internet of Things. IEEE Access
2020, 8, 119697–119709. [CrossRef]

16. Stallings, W. Handling of Personal Information and Deidentified, Aggregated, and Pseudonymized Information Under the
California Consumer Privacy Act. IEEE Secur. Priv. 2020, 18, 61–64. [CrossRef]

17. Arteaga, C.H.T.; Anacona, F.B.; Ortega, K.T.T.; Rendon, O.M.C. A Scaling Mechanism for an Evolved Packet Core Based on
Network Functions Virtualization. IEEE Trans. Netw. Serv. Manag. 2020, 17, 779–792. [CrossRef]

18. Gouareb, R.; Friderikos, V.; Aghvami, A.H. Placement and Routing of VNFs for Horizontal Scaling. In Proceedings of the 2019
26th International Conference on Telecommunications (ICT), Hanoi, Vietnam, 8–10 April 2019. [CrossRef]

19. Khorram, F.; Mottu, J.-M.; Sunyé, G. Challenges & Opportunities in Low-Code Testing. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Virtual Event, Canada,
18–23 October 2020. [CrossRef]

20. Mouradian, C.; Kianpisheh, S.; Glitho, R.H. Application Component Placement in NFV-Based Hybrid Cloud/Fog Sys-
tems. In Proceedings of the 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN),
Washington, DC, USA, 25–27 June 2018. [CrossRef]

21. Manso, A.; Marques, C.G.; Santos, P.; Lopes, L.; Guedes, R. Algorithmi IDE—Integrated Learning Environment for the Teach-
ing and Learning of Algorithmics. In Proceedings of the 2019 International Symposium on Computers in Education (SIIE),
Tomar, Portugal, 21–23 November 2019. [CrossRef]

22. GitHub—Heitor-Lassarote/Iolp: Inatel Open Low-Code Platform. Available online: https://github.com/heitor-lassarote/iolp
(accessed on 29 July 2021).

http://doi.org/10.3390/mti4030065
http://doi.org/10.1145/3239372.3239387
http://doi.org/10.1145/3167105
https://www.gartner.com/en/documents/4005939
https://www.gartner.com/en/documents/4005939
http://doi.org/10.1016/j.eng.2020.07.007
http://www.ncbi.nlm.nih.gov/pubmed/32837752
http://doi.org/10.1145/3417990.3420208
http://doi.org/10.1109/MS.2020.3041522
http://doi.org/10.1109/icstcee49637.2020.9277404
http://doi.org/10.1145/3017680.3017741
http://doi.org/10.1109/seaa51224.2020.00036
http://doi.org/10.1109/ACCESS.2020.3005509
http://doi.org/10.1109/MSEC.2019.2953324
http://doi.org/10.1109/TNSM.2019.2961988
http://doi.org/10.1109/ict.2019.8798780
http://doi.org/10.1145/3417990.3420204
http://doi.org/10.1109/lanman.2018.8475055
http://doi.org/10.1109/siie48397.2019.8970123
https://github.com/heitor-lassarote/iolp

	Introduction
	No-Code, Low-Code, and Traditional Approaches
	Low-Code Platform Requirements and Architecture
	Nonfunctional Requirements
	Functional Requirements
	Architecture

	OLP Development and Demonstration
	Learned Lessons
	Conclusions and Future Works
	References

