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Abstract: Improving the energy efficiency of the building sector has become an increasing concern in
the world, given the alarming reports of greenhouse gas emissions. The management of building
energy systems is considered an essential means for achieving this goal. Predicting indoor tempera-
ture constitutes a critical task for the management strategies of these systems. Several approaches
have been developed for predicting indoor temperature. Determining the most effective has thus
become a necessity. This paper contributes to this objective by comparing the ability of seven machine
learning algorithms (ML) and the thermal gray box model to predict the indoor temperature of a
closed room. The comparison was conducted on a set of data recorded in a room of the Laboratory of
Civil Engineering and geo-Environment (LGCgE) at Lille University. The results showed that the
best prediction was obtained with the artificial neural network (ANN) and extra trees regressor (ET)
methods, which outperformed the thermal gray box model.

Keywords: energy efficiency; prediction; indoor temperature; machine learning; gray box model

1. Introduction

Improving buildings’ energy efficiency is a priority area for progress. The design
and the implementation of efficient energy management strategies to balance energy
consumption and occupant comfort have a particular interest in this domain. The indoor
temperature is a major key to such a strategy, being one of the most critical parameters
affecting energy consumption and personal comfort. In this context, predicting the indoor
temperature is an essential task.

Temperature forecasting has been considered an interesting subject, widely studied in
the literature [1–4]. Moreover, it has also been integrated into predictive control models,
developed to optimize energy devices [5,6].

The estimation of indoor temperature has been tackled with different approaches,
classified according to their foundations in two main categories: the physical approach
and the data-driven approach [7]. Physical modeling uses detailed equations based on
physical engineering principles [8]. This approach requires thorough knowledge of the
overall structure of the building, its components, and energy systems and has a reasonably
high computational cost [8–10]. The data-driven approach allows the dynamic system to
be written in purely mathematical relations expressing the output data as a function of the
input data. The adopted mathematical functions can have a physical meaning; it is then
a gray box model, or they may not carry any physical sense, and the model will then be
known as a black box.

The black box model forgoes the need for detailed input data of the simulated building
and focuses on learning from the available historical data [11]. This approach has been
used in a wide variety of building energy performance applications. It has proven its
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applicability in the modeling of building thermal behavior [12] as well as the forecast of
the energy consumption [13–15] and the energy demand of buildings [16,17].

Machine learning methods, a branch of artificial intelligence (AI), are considered an
effective tool for black-box modeling. In the past decade, these algorithms have experienced
remarkable progress [18]. They have offered a promising pathway for the development of
prediction models [19]. Scholars have reported their application in the energy prediction of
buildings due to their ability to overcome the limits encountered by existing models [20–23].

Several AI-based techniques have been used to improve buildings’ energy perfor-
mance. The study conducted in [24] tested the capacity of various AI-based algorithms
(ANN, fuzzy logic ((FL)), and adaptive neuro-fuzzy inference systems (ANFIS)) to control
the thermal conditions and optimize heating loads in double-skin buildings. The study
results showed that the selection of the optimal algorithm depends on the objective of the
control strategy. ANN was the most suitable energy-saving strategy, while the others were
more adapted to thermal comfort strategies. Cotrufo et al. [23] proposed a methodology
for the development of an AI-based model for the thermal control of institutional buildings.
The results showed that the Gaussian process regression (GPR) outperformed the ANN,
support vector machine (SVM), decision tree (DT), and random forest (RF) models.

Sholuhadin and Han [25] used two ANN models to predict hourly heating loads using
fewer meteorological parameters. Li et al. [26,27] applied an SVM-based model to predict
the hourly cooling load of an office building. The developed model outperformed the
back propagation neural network (BPNN) and the radial basis function neural network
(RBFNN) techniques. Chammas et al. [22] developed a system based on a multi-layer
perception neural network (MLP) to predict energy consumption using data collected from
wireless sensors in a two-story building. Compared to four algorithms (linear regression,
SVM, RF, and gradient boosting (GB)), the model had improved performance. This model,
enhanced with deep learning capabilities, has also outperformed SVM, LR, regression trees
(RT), ensemble boosting, and GPR in predicting buildings’ aggregated energy demand [28].
In [29] a DT algorithm showed its ability to predict the energy demand of a residential
building accurately. Wang et al. [30] demonstrated the superiority of the RF algorithm
compared to the RT and the support vector regressor (SVR) methods.

Mba et al. [20] demonstrated that ANN is a powerful modeling tool for hourly fore-
casting of indoor temperature and other thermal parameters in modern buildings one day
to one month in advance using only the twelve last indoor and outdoor air temperature
and relative humidity values. Özbalta et al. [31] developed ANN and multiple regression
models to predict the daily indoor temperature and relative humidity in an educational
building. The study showed that the ANN successfully predicted the thermal parameters
and outperformed the multiple regression model. Considering the capacity of the ANN
method to deal with time-series data, it has also been used in [32] to predict the indoor
temperature in an institutional building. The study highlighted the importance of selecting
the relevant input parameters and a suitable training algorithm to improve the prediction
results. Potočnik et al. [33] conducted short-term prediction of indoor temperature using
three ML methods (NN, autoregressive models with exogenous inputs (ARX), and extreme
learning machine models ((ELM)). The NN model achieved the best prediction. Results
also showed that the use of future weather data improves prediction performance. Qi
et al. [21] showed that using SVR effectively predicts the indoor temperature of an office
building and that it is more accurate than BPNN. The study carried out by Mateo et al. [34]
confirmed the validity of several linear (autoregressive methods and robust multiple linear
regression) and non-linear techniques (ELM and non-linear autoregressive exogenous
multilayer perceptron) for predicting indoor temperature. Paul et al. [35] used an approach
combining the Internet of Things (IoT) and ML methods to predict the indoor temperature
in a smart building. Results showed that the RF, SVM, and NN methods gave accurate re-
sults. Aguilera et al. [36] showed the accuracy of a thermal model based on a DT algorithm
using the weather data and occupants’ feedback to predict the indoor temperature.
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The gray box model involves both physical and black-box modeling [37]. This
approach is based on the thermal modeling of buildings by analogy with an electrical
resistance-capacity circuit [38]. The buildings are modeled by a set of dynamic differential
equations representing the phenomenon of conduction, convection, and capacitive phe-
nomenon. Several scholars used this approach in research about building energy efficiency.
Berthou et al. [17] tested the capacity of four gray box models to predict heating and
cooling demands of a multi-zone occupied office building to determine the best model
architecture. The results showed that a second-order model was able to well represent the
thermal behavior of the office building. Cui et al. [3] developed a hybrid model to predict
the average temperature in two-story houses. Tests conducted on the 24 h data horizon
gave satisfactory results. Ogunsola et al. [39] created a time-series model to estimate the
indoor temperature’s real-time cooling load. Two gray box models were combined for the
building envelope and the internal thermal mass. The relevance of the model was checked
on light, medium, and heavy constructions. A reasonably high degree of precision was
obtained for the studied cases.

The studies mentioned above focused on using either the machine learning technics or
the gray box approach for the thermal building modeling. This paper presents a comparison
of the performances of a set of data-driven models in these two categories.

The remainder of this paper is organized as follows: Section 2 outlines the research
methodology and material; Section 3 presents and discusses the prediction results., Section 4
summarizes the conclusions and highlights the primary outcome of this research.

2. Methodology and Materials
2.1. Methodology

This research aimed to compare the ability of different ML algorithms and a gray
box model to predict indoor temperature. During this investigation, data on the thermal
environment were first collected from a heating experiment in a closed room in the LGCgE
laboratory using an intelligent monitoring system. The recorded datasets served as a basis
for the development and training of ML algorithms, and the evaluation of their predictive
performance in terms of root mean square error (RMSE) and coefficient of determination
(R2). For detailed information about the dataset see the Supplementary Material.

A gray box model was also established and compared to the ML algorithms to cover
the statistical and hybrid aspects of data-driven modeling.

Figure 1 summarizes the methodology applied in this study. More explicit descriptions
of the experiment, intelligent algorithms, and evaluation criteria are presented below.

Figure 1. Research Methodology.
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2.2. Material

The study was conducted in an unoccupied closed room in the LGCgE Laboratory at
Lille University. The closed room has an area of 9 m2 and a height of 2.3 m. It is furnished
and does not have a facade or windows (Figure 2).

Figure 2. Reference room in LGCgE laboratory.

To model the thermal environment of the room, an intelligent monitoring system
composed of a wireless network sensor connected to a micro-computer (Raspberry-pi)
was implemented.

The main objective of these sensors was to track indoor comfort parameters. They pro-
vided measurements of four environmental variables: temperature, humidity, luminosity,
and noise (THLN). In our work, we focused on the temperature readings. Sensors were
installed as shown (Figure 2) on the internal and external faces of the walls of the room and
another sensor was suspended at the center to assess the indoor temperature. A standard
methodology for monitoring cannot be found in the scientific literature. Therefore, the
number of sensors and their positions were based on empirical approaches [40]. However,
several studies have developed models to determine the optimal location of sensors to
control energy consumption and thermal comfort [41–43]. In this research, the position of
the thermal sensors was determined based on a study carried out in the LGCgE laboratory
about the optimal sensor position that can provide representative data of the indoor room
environment. Therefore, a sensor was suspended through a wire in the center of the room
at a height of 1.5 m above the ground. The position of the sensors recording the temperature
of the internal and external faces of the walls was determined based on the manufacturer’s
recommendations [44]. Two sensors per wall were installed on the internal and external
faces of the walls in a neutral zone at the same height above the ground (1.5 m).

Reliability analysis of the sensors was carried out before their use. A set of sensors
was located at the same position. Based on the obtained temperature profiles, these were
classified into four groups (Figure 3). The maximum temperature difference between these
groups, shown in Figure 4 (0.4 ◦C), did not exceed the precision range set at 0.4 ◦C. These
results confirm the reliability of the sensors and their use in the experiments carried out.
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Figure 3. Recorded data by groups of sensors located at the same position.

Figure 4. Temperature difference for the groups of sensors located at the same position.

The closed room was heated using a 2000 W power radiator for several hours. The
temperatures at the center and on the walls, recording measurements at an interval of
10 min during the experiment, served as a dataset for the applied thermal algorithms.

Data were checked before their use in numerical modeling for the identification of
missing data or abnormal values. Missing data were identified easily since data were
recorded at a given time interval. Abnormal values were identified if they exceeded
maximum expected values. In these two cases, data were identified and reported as unac-
ceptable data. Since our experiments were conducted in controlled conditions, collected
data were exempt from missing data or abnormal values. In the future, techniques based
on machine learning will be used to identify and treat missing data and abnormal values.

The variation of these parameters, as well as the heating period, are illustrated
in Figure 5.

2.3. Selection of Predictive Models

In this study, a set of AI-based algorithms and a gray box model were compared
to identify the most suitable model to predict the indoor temperature of the room. Fur-
thermore, these models were evaluated according to their forecast accuracy and their
performance. A detailed description of the adopted models will be presented below.

2.3.1. ML Methods

A variety of ML algorithms are found in the literature. Some of these algorithms
(Table 1) have been frequently used and have shown reliable results in predicting buildings’
thermal and energy variables.
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Figure 5. Recorded parameters of the heating experiment.

Table 1. Machine learning-based thermal prediction.

Reference Predicted
Variables

ML
Algorithms

Input
Variables

Data
Source

Key
Finding

Performance
Evaluation

[9] Building energy
needs

Multiple linear
regression

(MLR)

Cooling and
heating degree day,

external
temperature, shape

factor, opaque
surface, and

surface of glazed
component

Non-residential
building stock

MLR is a
promising

alternative in
the field of

building energy
performance

Mean absolute
error (MAE),
mean square
error (MSE),

RMSE,
R2,

mean absolute
percentage

error (MAPE)

[22] Energy
consumption

MLP, LR
SVM, GB

RF

Meteorological
data, temporal data,

appliances, and
light energy

consumption

Two story
building

MLP
outperforms all

other models

R2,
RMSE, MAE,

MAPE

[45] Indoor
temperature

MLP, radial
basis function

(RBF),
group method

of data
handling
(GMDH)

Solar irradiation,
environmental
temperature,

outdoor relative
humidity, wind
speed, working

hours, and
occupancy

Laboratory of a
university

MLP achieved
the highest
estimations

Coefficient of
correlation,

RMSE

[46]

Next day daily
peak demand

and
consumption

MLR, RF
MLP, boosting

tree (BT)
SVR, K-nearest

neighbors
(K-NN),

multivariate
adaptive

regression
splines (MARS)
autoregressive

integrated
moving average

(ARIMA)

Building power
consumption,

meteorological
data,

time of
observations,

High-class
skyscraper

The ensemble
model produces

better
generalization
performance

MAPE,
RMSE,

MAE, R2
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Table 1. Cont.

Reference Predicted
Variables

ML
Algorithms

Input
Variables

Data
Source

Key
Finding

Performance
Evaluation

[47] Comfort index

LR, DT, RF,
GB, naive Bayes
(NB), Logistic

regression
(LoR)

ANN, SVM
K-NN

adaboost (AB)

Indoor
environment,

meteorological
data, personal

factors, building
information

ASHRAE
global thermal

database

RF model has
shown better

prediction
accuracy

MSE, R2

accuracy

[48] Heating and
cooling loads RF, ET, GB Building features 12 buildings

typologies

Tree-based
ensemble

learning is able
to accurately
model and

predict building
loads

MSE, MAE,
MAPE

[49]
Hourly HVAC

energy
consumption

ANN, RF

Meteorological
data, time of
observations,

number of guests
for the day, number

of rooms booked

Hotel in Spain

Both models
have

comparable
predictive

power

Mean absolute
percentage
deviation
(MAPD),
median
absolute
deviation
(MAD),
MAPE,

coefficient of
variation of root

mean square
error

(CV-RMSE), R 2

[50] Heating energy
consumption

RF, GB
SVR

extreme
gradient

boosting (XGB)

Meteorological
data,

occupancy data,
time of day,

historical heating
consumption

Residential
quarter

XGB exhibits
the optimal
efficiency

RF exhibits
optimal average

accuracy
The robustness

of RF is the
highest

RMSE, MAPE
MAE,

CV-RMSE

An artificial neural network (ANN) is a system whose functioning is inspired by the
neurons of the human brain. Multi-layer perception (MLP) is the most popular structure
among the forwarding propagation methods in ANN and has been the subject of several
types of research. MLP has an input layer, an output layer, and a hidden layer in which each
neuron is connected to the mentioned layers. This architecture has been used as a powerful
method to predict the indoor temperature and energy consumption of buildings [22,45,51]
and assess the occupants’ thermal comfort [52,53]. This research started with an MLP
model with one hidden layer and four neurons. This number was selected after a set
of tests conducted with several neurons ranging from 4 to 10. The study conducted
in [51] also supports this number. The training process was carried out by considering
the Levenberg–Marquardt algorithm, which has proven to be effective with convergence
towards a minimal root mean square [52,53]. The transfer function sigmoid was used for
the hidden layer, while a linear transfer function was used for the output layer. Several
tests were carried out to obtain a reliable prediction. These tests were characterized by
similar training times. The best prediction was obtained for a test with 32 epochs and four
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neurons in the hidden layer. Appendix A summarizes the different tests conducted to
estimate the number of neurons and to obtain the best prediction performance.

Multiple linear regression (MLR) is a mathematical regression method that extends
simple linear regression. It has demonstrated its ability to solve complex problems, in
particular a building’s energy balance and energy planning [9], daily peak demand and
consumption [46], and annual energy consumption [54].

A decision tree (DT) is a technique based on partitioning the dataset into groups in the
form of a flowchart. This technique has been widely used in predicting buildings’ energy
consumption [14,55] and user comfort indices [47], as well as modeling buildings’ energy
demands [56].

Ensemble learning has also been applied in monitoring building energy performance,
especially bagging and boosting algorithms.

Random forest (RF) and extra trees (ET) are representative techniques of the bagging
family, which combine a multitude of decision trees. These algorithms have proven their
efficiency in predicting a building’s cooling and heating loads [48] and energy consump-
tion [49,57], as well as personal thermal comfort [58,59].

Gradient boosting (GB) and extreme gradient boosting (XGB) methods also belong
to the ensemble learning method. Their basic idea is to combine several simple models
called weak learners to obtain a strong model with an improved prediction error. These
methods appeared as a promising alternative in the domain of building energy efficiency.
Several studies have confirmed their effectiveness in predicting energy consumption [50,60]
and building energy loads [48,61], establishing predictive energy models [62] as well as
detecting faults in HVAC systems [63].

These supervised ML algorithms were selected in this research due to their popularity.
The dataset was divided into two subsets to train and test the chosen algorithms. The
70% and 80% training proportions are most often used in the literature [46–48,64,65]. To
determine the most appropriate ratios for the dataset, values ranging from 50% to 80%
were tested in this study. The results confirmed the use of the two proportions mentioned
above. Similar performances in terms of RMSE and R2 were observed for these proportions
(see Appendix B).

ANN modeling was conducted using the neural network toolbox in MATLAB-based
software, considering a dataset divided into 70% for training, 15% for validation, and
15% for testing. All the other algorithms were developed based on the python statistical
computation language. The hyper-parameters were maintained at their default values,
considering a dataset distribution of 70% for training and 30% for testing.

The input and output variables used for the models are summarized in Table 2. The
temperature history is a matrix of parameters with a difference of 30 min between its
different columns. For example, if the temperature was recorded at a time t, the history
corresponds to t-0.5 h, t-1 h, t-1.5 h, and t-2 h.

Table 2. Input and output parameters of the ML methods.

Input Parameters Output Parameters

Heat Power
Indoor Temperature (at the center)

Outdoor Temperature Wall 1

Outdoor Temperature Wall 2
Indoor Temperature Wall 1

Outdoor Temperature History Wall 1

Outdoor Temperature History Wall 2
Indoor Temperature Wall 2

Indoor Temperature History

The accuracy of these forecasting models was evaluated, and their performances were
compared based on the following criteria:
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The root mean square error (RMSE) that can provide information on the magnitude of
the deviations [3,65,66]:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(1)

The coefficient of determination (R2) that can be a measure of the adequacy between
the predicted and the observed data [16,52,55]:

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(2)

where ŷ is the predicted vector, y is the reference vector, and n is the number of parameters.

2.3.2. Gray Box Model (GBM)

Hybrid models have been the subject of numerous studies. They have been widely
used in the field of predictive control [67–69] as well as in the area of predicting building
thermal load [70,71] and indoor temperature forecasting [3]. The most common method
for creating this model is applying a resistance-capacity (RC) form based on physical and
statistical approaches [38,72–74]. The thermal resistance R represents the component to
resist the heat flux, and the thermal capacity C describes its storage capacity.

In this work, a simplified (RC) model (Figure 6) was developed to thermally model
the considered room.

(T1, T2) are the respective outdoor and indoor temperatures of the first wall, (T5, T4)
the respective outdoor and indoor temperatures of the second wall, and T3 the indoor air
temperature. Qh is the heat source power.

[Qh T1 T5] and [T2 T3 T4] represent the RC model’s input and output vectors, respec-
tively.

The model’s parameters (R1, C1), (R2, C2), and (R3, C3) respectively designate the
thermal resistance and capacity of the first wall, the indoor air, and the second wall.

Figure 6. 3R3C room model.

The model can be expressed as a linear stochastic differential equation written into
a matrix form for state-space representation by applying Kirchoff’s balance laws to the
circuit [75]. In addition, it includes a state equation and an output equation:

.{ .
T = AT + BU
Y = CT + DU

}
(3)

The T vector contains the node temperatures, U the controllable inputs and distur-
bances, Y the measured output; A, B, C, D matrices have the RC parameters to be identified.
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As for the parameters of the models, they are determined using the grayest function in
MATLAB. The initial values of (R2, C2) and (R1, R3) were selected by applying the French
thermal code (RT 2005-2012), while those of (C1, C3) were estimated based on the equations
characterizing the walls mentioned in the building thermal code [66,76] (see Appendix C).

3. Results and Discussion

The tested algorithms’ performance has been evaluated using the coefficient of deter-
mination (R2), and the root mean square error (RMSE). The obtained values are illustrated
in Table 3. This part focuses on the results of the prediction of the temperature at the center
of the room only, since similar results were obtained for the prediction of the temperature
of the internal faces of the walls.

Table 3. Prediction performance of predictive models.

ML Algorithms RMSE R2

ANN 0.081 0.99965

MLR 0.332 0.99415

DT 0.268 0.99618

RF 0.295 0.99539

ET 0.159 0.99864

GB 0.218 0.99748

XGB 0.229 0.99721

GBM 0.842 0.96237

The used ML algorithms have been sorted in decreasing order based on their per-
formance in each experiment, in other words, by increasing RMSE and decreasing R2, as
shown in Figure 7.

The proposed algorithms have shown their efficiency in the prediction of the indoor
temperature of the room, given the values of the performance indices (RMSE <1 and
R2 > 0.8) [47,77]. Even though these algorithms seem powerful, they do not all have the
same prediction accuracy. In fact, the best result for predicting the indoor temperature
was provided by the ANN (RMSE = 0.081 and R2 = 0.99965) and ET (RMSE = 0.159 and
R2 = 0.99864) algorithms. Boosting algorithms (GB and XGB) have shown fairly close
performance. DT, RF, and MLR were less high performing than the previous algorithms
despite the acceptable values of the performance criteria.

Figure 7. Performance criteria of ML algorithms (RMSE and R2 coefficient).
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The RC model also exhibited acceptable values of performance criteria (RMSE < 1
and R2 > 0.8). These are compared to those of the ML algorithms in Figure 8, which
illustrate the ranking of the gray box model against the lower- and the best-performing
ML algorithms. This figure shows that the AI-based algorithms outperformed the gray
box model in predicting the indoor temperature. The lower-performing algorithm MLR
(Figure 6) showed improved performance criteria values (RMSE = 0.332 and R2 = 0.99415)
compared to those of the RC model (RMSE = 0.842 and R2 = 0.96237).

The results of this research were compared to other investigations in the literature. [65]
compared the performance of 20 families of ML methods in predicting the indoor temper-
ature of an intelligent building. The ET algorithm provided the best performances. This
research partially agrees with this study: the ET method was among the best performing
methods, but the ANN model outperformed the ET method. Wang and Chen [78] com-
pared three data-driven models, a linear black-box model (ARX), a non-linear black-box
model (ANN), and a gray box model in predicting the indoor temperature of a single-zone
house. The performance of the gray box model was intermediate between the other two
models. Our research also confirms the improved performance of the ANN and the linear
black-box models over the gray box model. Indeed, in our study, even the simple MLR
model outperformed the gray box model.

Figure 8. Data-driven models’ performance comparison.

Our study compared the two aspects of the data-driven approach (black and gray box
models) on their abilities to provide a reliable prediction of indoor temperature. It employed
emerging predictive models in a straightforward manner using a limited number of input
parameters necessary to achieve accurate prediction results. The obtained results were
based on a heating experiment conducted in a closed room in a laboratory environment.
This comparison is helpful as it provides a preliminary idea of the most relevant model
in indoor temperature prediction that can be employed in energy system management
strategies aimed at improving the energy performance of existing buildings.

Although the obtained results are exciting and some are confirmed by other research,
this research has some limitations, which are related to the conditions of the experimen-
tation. Indeed, the prediction of the indoor temperature was limited to the use of the
following input parameters: heat power, outdoor wall temperatures, and indoor tempera-
ture history. In the future, this approach could be generalized by integrating additional
input parameters such as the occupants’ behavior and the building exposure. The case
study in this work was done in a room that was unoccupied and has no facade. This can be
viewed as a limitation of this study due to the additional input parameters, whose influence
on the models needs to be investigated. The use of variables related to the occupancy and
exposure of the room might be necessary to establish a more generalized approach.



Future Internet 2021, 13, 242 12 of 18

4. Conclusions

Forecasting indoor temperature in buildings constitutes a central task in the optimal
energy control in buildings and ensuring comfort and health conditions for users. This
prediction combines technical parameters such as building characteristics and their energy
system, environmental parameters such as the outdoor temperature and humidity, and
social parameters. Considering these techno-social issues in the thermal modeling of
buildings requires advanced methods such as machine learning methods. In addition, the
consideration of complex building assets and the integration of unstructured data such as
those recorded by cameras requires the use of Big Data tools. This paper contributes to
the first objective by comparing AI-based technics and a gray box model to predict indoor
temperature. This subject is helpful for the assessment of thermal comfort conditions and
for reducing energy consumption.

The analysis was conducted on temperature datasets collected in a closed room of the
LGCgE laboratory at Lille University using MATLAB and python statistical computation
language simulations.

The adopted models exhibited a favorable prediction capacity in terms of root mean
square error (RMSE < 1) and coefficient of determination (R2 > 0.8). Among these models,
ANN and ET emerged as the most suitable algorithms for indoor temperature forecasting,
thus surpassing the other ML algorithms and the gray box model. These algorithms were
followed by the boosting algorithms that exhibited approximately similar behavior. This
research shows that a simple AI-based model could provide accurate forecasting of indoor
temperature. It also offers an idea of the effective predictive models to be used in energy
management strategies.

However, more efforts should be considered in the future to improve the research
findings. In addition, this research should be extended to other data collected from other
experimentations operating under various conditions with additional parameters such as
occupancy and buildings’ exposure. The use of these different data will help generalize the
results of this research and their use in practical applications.

Furthermore, we suggest extending this research to the prediction of the operative
temperature. Indeed, although the air temperature is the commonly used parameter in the
control of energy systems, the international standards use the operative temperature for
the thermal comfort control.
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Appendix A

Table A1. Prediction performance of ANN based on the number of epochs and neurons.

Neurons Epochs RMSE R2

4

12 0.274 0.996

16 0.311 0.99487

18 0.244 0.9968

22 0.222 0.99738

26 0.143 0.99891

29 0.142 0.99893
32 0.081 0.99965
37 0.117 0.99927

43 0.179 0.99829

54 0.41 0.9911

59 0.257 0.99648

62 0.1 0.99946

82 0.211 0.9976

94 0.095 0.99952

139 0.191 0.9981

5

9 0.327 0.99433

11 0.244 0.99685

15 0.219 0.99745

21 0.351 0.99349

26 0.172 0.99843

30 0.279 0.99587
41 0.0806 0.99965
57 0.146 0.99886

61 0.251 0.99665

87 0.326 0.99436

6

11 0.303 0.99513

16 0.165 0.99854

20 0.158 0.99866

25 0.152 0.99878
28 0.148 0.99883
34 0.358 0.99317

43 0.235 0.99705

73 0.151 0.99879

81 0.231 0.99714

159 0.311 0.99487
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Table A1. Cont.

Neurons Epochs RMSE R2

7

13 0.291 0.9955
17 0.085 0.99961
20 0.206 0.99774

24 0.317 0.99467

28 0.175 0.99836

32 0.181 0.99826

49 0.218 0.9974

91 0.121 0.99921

120 0.11 0.99935

8

15 0.278 0.9959

19 0.265 0.99627

23 0.234 0.99711

33 0.167 0.99851

41 0.229 0.99722

55 0.352 0.9934

69 0.213 0.9976
74 0.123 0.99919
111 0.239 0.99697

9

14 0.135 0.99903
19 0.12 0.99923
25 0.229 0.99722

28 0.217 0.9975

38 0.282 0.99578

43 0.243 0.99684

55 0.131 0.9991

73 0.166 0.99853

10

12 0.165 0.99854
14 0.089 0.99957
19 0.161 0.99831

27 0.277 0.99591

31 0.265 0.99627

53 0.266 0.99623

66 0.178 0.99831

72 0.3202 0.99456
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Appendix B

Table A2. Prediction performance based on training proportion.

50% 60% 70% 80%

RMSE R2 RMSE R2 RMSE R2 RMSE R2

ANN 0.248 0.99672 0.235 0.9971 0.081 0.99965 0.059 0.99981

MLR 0.347 0.99359 0.336 0.99398 0.332 0.99415 0.331 0.99419

DT 0.52 0.98561 0.332 0.9945 0.268 0.99618 0.237 0.99702

RF 0.395 0.99171 0.353 0.99337 0.295 0.99539 0.278 0.99589

ET 0.198 0.99791 0.166 0.99852 0.159 0.99864 0.139 0.99898

GB 0.297 0.99531 0.269 0.99614 0.218 0.99748 0.191 0.9981

XGB 0.304 0.9951 0.282 0.99578 0.229 0.99721 0.219 0.99743

Appendix C

The heat balance at each node of the room model is described using the following set
of first-order differential equations.

C1
dT2

dt
=

T1 − T2

R1
+

T3 − T2

R2
(A1)

C2
dT3

dt
=

T2 − T3

R2
+

T4 − T3

R2
(A2)

C3
dT4

dt
=

T3 − T4

R2
+

T5 − T4

R3
+ Qh (A3)

The initial values of (R1, C1), (R2, C2), and (R3, C3) were determined using the following
equations:

R2 =
1

hint × Sint
(A4)

where hint is the coefficient of internal convection, and Sint is the internal exchange surface.

C2 = ρair × Cair × Vint + Mob × Sh (A5)

where ρair is the air density, Cair air mass capacity, Vint indoor air volume, Mob is the impact
of the furniture on the air capacity, and Sh is the heated surface.

R1, R3 =
(

Rsi +
e
λ
+ Rse

)
× 1

S
(A6)

where Rsi and Rse are the wall’s inner and outer surface resistances, respectively, e is the
depth of the wall, S its surface, and λ its thermal conductivity.

C1, C3 = m × Cp (A7)

where m is the mass of the wall and Cp is its specific heat.
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