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Abstract: Audience attention is vital in Digital Signage Advertising (DSA), as it has a significant
impact on the pricing decision to advertise on those media. Various environmental factors affect
the audience attention level toward advertising signage. Fixed-price strategies, which have been
applied in DSA for pricing decisions, are generally inefficient at maximizing the potential profit
of the service provider, as the environmental factors that could affect the audience attention are
changing fast and are generally not considered in the current pricing solutions in a timely manner.
Therefore, the time-series forecasting method is a suitable pricing solution for DSA, as it improves
the pricing decision by modeling the changes in the environmental factors and audience attention
level toward signage for optimal pricing. However, it is difficult to determine an optimal price
forecasting model for DSA with the increasing number of available time-series forecasting models in
recent years. Based on the 84 research articles reviewed, the data characteristics analysis in terms
of linearity, stationarity, volatility, and dataset size is helpful in determining the optimal model
for time-series price forecasting. This paper has reviewed the widely used time-series forecasting
models and identified the related data characteristics of each model. A framework is proposed to
demonstrate the model selection process for dynamic pricing in DSA based on its data characteristics
analysis, paving the way for future research of pricing solutions for DSA.

Keywords: time-series forecasting; dynamic pricing; digital signage advertising; data characteristics;
model selection

1. Introduction

Audience attention is a factor that has the most significant impact on the pricing
decision of Digital Signage Advertising (DSA) [1]. Generally, the higher the attention level
received by a digital signage advertisement, the higher the profit expectancy. Various
environmental factors can influence the audience attention level, including location popu-
larity, temperature and air humidity, weather condition, social class of the surrounding
community, and others [2]. These factors are important in determining the pricing decision
for DSA to maximize revenue and increase advertising effectiveness.

The current pricing solutions of DSA show some deficiencies in obtaining the optimal
pricing decision. Commonly, the pricing mechanisms applied to DSA are the fixed-price
strategy or the auction-based pricing strategy [1,3]. In a fixed-price strategy, the advertising
spot in a specific digital signage is charged with a fixed predetermined price. It can be
in the form of direct sales or a guaranteed contract from the service provider. The price
is commonly established based on the audience attention level of an advertisement spot.
However, the changes of attention level toward the spot in time due to the changes in the
surrounding environmental factors are not considered, resulting in sub-optimal pricing.
In an auction-based pricing strategy, the price varies based on contextual information
such as the location and time, the number of detected mobile devices nearby, and others.
This information is used as the factors to generate a bid, and the advertising spot will
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be sold to the highest bidders. This approach is beneficial in the sense of better utilizing
the resources of the service provider. However, using such a scheme might be inefficient
for the advertiser because it requires time-consuming bidding actions. Thus, dynamic
pricing solutions need to create a significant benefit to the service provider as well as the
advertiser [4].

With recent technology advancements, more dynamic pricing solutions are emerging,
applying time-series forecasting methods to predict future activities based on historical
data [5]. They provide a strong foundation for time-series forecasting dynamic pricing
solutions using statistical, AI, and hybrid models [6,7]. There are several ways to categorize
the time-series forecasting models. Wang suggested three main categories of time-series
forecasting methods as statistical models, Artificial Intelligence (AI) models, and hybrid
models [6]. On the other hand, Neha Sehgal and Krishan classified the time-series fore-
casting models as stochastic models, AI models, and regression models. However, both
the regression and stochastic models are using similar statistical inferences to establish
the relationship between the price and other relevant factors. Hence, both stochastic and
regression models are classified under the subcategories of statistical models in our re-
view. Figure 1 elucidates the classification tree of the seven most widely used time-series
forecasting models on price estimation.
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The existing price forecasting methods that applied the time-series forecasting models
are exemplified in different domains for its applicability. However, as a real-world problem
is often complicated, no single model can perform the best in every situation [8]. With an
increasing number of models, the model selection decision is also difficult, especially when
vital information and knowledge are insufficient. Hence, a model selection framework is
crucial for identifying a suitable approach for different data characteristics. From the review,
there are four relevant essential data characteristics: namely, data linearity, stationarity,
volatility, and the size of the dataset. These data characteristics are essential factors in
selecting the optimal forecasting model for pricing decisions, particularly in its usage and
interpretability in DSA.

This review aims to structurally analyze the data characteristics of different time-series
forecasting models, along with a proposed framework for the optimal model selection of
dynamic pricing in DSA. The main contributions of this paper are summarized as follows:

- To review the widely used time-series forecasting models, providing an abstract of
the different models that can potentially be applied for dynamic pricing.

- To discuss the relationship of data characteristics to the time-series forecasting models
from each category.

- To investigate the applicability of the model selection framework based on the data
characteristics of the dataset in DSA.
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This paper is divided into four sections. Section 2 presents the review of time-series
forecasting models based on the data characteristics. Section 3 shows a summary of
the suitable data characteristics for the time-series forecasting models and a proposed
framework for optimal model selection based on the data characteristic analysis of DSA.
Conclusions are drawn in Section 4.

2. Review on Time-Series Forecasting Studies

Time-series forecasting is used to predict future activities based on current historical
data [9]. Commonly, the time-series data have the following characteristics: linearity,
stationarity, and volatility. Linearity refers to the linear relationships of the time-series data
to the time [10]. Stationary time-series data can be recognized as a property that does not
depend on the time [11]. Generally, non-stationary time-series data include observations
with trend and seasonality. The trend indicates the general movement of the data in each
observed time frame without considering the data seasonality. Seasonality indicates a peri-
odic fluctuation, which can be affected by time, magnitude, and direction. Volatility refers
to the unexpected rise or fall of time-series data, which is also known as heteroscedasticity,
where the time-series data variance comprises rapid changes between extremely high and
low values [12]. As there are many available time-series forecasting models, the optimal
model selection could be difficult. Thus, the above-mentioned data characteristics are
essential in selecting an optimal time-series forecasting model, as the different models have
different capabilities in handling different data characteristics. Apart from the three data
characteristics, we included the size of the dataset as another consideration in selecting the
optimal model, as it can influence the model performance, as will be seen shortly.

The evolution of seven time-series forecasting models over the past two decades
was studied to discover the popular models for dynamic pricing. Table 1 shows the
listing of the studies. Figure 2 illustrates the distribution of the studies, showing the
evolution of the model application in different domains. The Autoregressive Integrated
Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) regression models, as a subcategory of the statistical models, have been applied
since 2003. The regression model applications spanned over two decades. Stochastic
models, such as Hidden Markov Model (HMM), have been used since 2007. The application
of this model does not show any spike during the studied period. However, it was noted
that the application of both regression and stochastic models were enhanced or combined
with other approaches, such as the AI model, into the hybrid models starting from the
2010s to complement its shortcomings.

Table 1. Review on time-series forecasting studies for dynamic pricing from 2001 to 2021.

Category Model Count Time Range References

Regression Model ARIMA 14 2003–2019 [13–27]
GARCH 9 2005–2021 [12,28–35]

Stochastic Model HMM 8 2007–2016 [36–43]

Machine Learning SVM 12 2005–2021 [44–55]
RF 6 2006–2021 [56–61]

Deep Learning ANN 10 2004–2020 [62–70]
RNN 12 2006–2020 [71–82]

Hybrid Model

Regression + Stochastic 1 2017 [83]
Regression + ML 4 2005–2021 [84–87]
Regression + DL 6 2014–2021 [88–93]
Stochastic + DL 1 2007 [94]

DL + DL 1 2020 [95]
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Machine Learning (ML) models (of the AI models) have been applied since 2006,
including Random Forest (RF) and Support Vector Machine (SVM). It was noted that these
approaches were becoming more widespread in the 2010s as AI receives more attention.
In addition, Deep Learning (DL) models, as a subcategory of the AI models, including
Artificial Neural Network (ANN) and Recurrent Neural Network (RNN), were introduced
in the early 2000s, although not much attention was given to the application of DL models
until the 2010s. From the review, the application of DL models in the 2000s was less than
the application of the regression and stochastic models, as shown in Figure 2a. During
that time, researchers were investigating new ways to improve the model performance.
Thus, different combinations of hybrid models have been proposed and presented. More
attention was given to the hybrid models from the 2010s due to their robustness and the
availability of computing resources.

Notably, the stock and electricity markets have always been a focus of time-series
forecasting, as shown in Figure 2b. Different models have a relatively higher application
count in these two fields, which is likely due to the market complexity that is highly volatile.
It is also noted that the application of time-series forecasting is extending to other domains
for dynamic pricing recently. The following section introduces the statistical model, AI
model, and hybrid model for dynamic pricing solutions.

2.1. Statistical Model

A statistical model is a mathematical model that can be used for time-series forecast-
ing [96]. It is classified into two categories of regression and stochastic models.

2.1.1. Regression Model

A regression model is a statistical technique that is used for finding the relationship
between the data. It is widely applicable as it is simpler to compute [5,10]. This model can
establish the relationship between the time-series data and the predicted price. The most
popularly used regression models, including Autoregressive Integrated Moving Average
(ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH), are
introduced in this section.

Autoregressive Integrated Moving Average (ARIMA)

ARIMA is a linear regression model that works efficiently with stable correlated time-
series data [82]. It can be applied to time-series forecasting problems in any domain based
on the principle of univariate analysis. The model works well on stationary time-series
data. The theoretical background of ARIMA is explained in [97].
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Some studies have exemplified the applicability of ARIMA in forecasting time-series
in different domains such as cryptocurrencies [13], stock [14–16], rubber and latex [17,18],
agricultural and e-commerce products [19–21,27], gold [22,23], and electricity [24–26] from
2003 to 2019 and demonstrated exceptionally promising results. From the studies made,
ARIMA has difficulty when handling non-stationary time-series data, as it is trying to
model the changes based on the historical time-series data with linearity assumptions
when performing forecasting. It is noticed that the following factors will affect the model
performance: sudden fluctuation [23], nonlinear and non-stationary time-series data [21],
and multi-step ahead forecasting [98]. There are other variations of ARIMA introduced,
such as ARIMA with the independent variable (ARIMAX) [17] and Seasonal ARIMA
(SARIMA) [18] for multivariate modeling and seasonal time-series data problems, respec-
tively. It is noticeable that ARIMA produces an exceptional performance when the data are
linear and stationary. Table 2 summarizes the studies applying the ARIMA.

Table 2. ARIMA time-series forecasting from 2003 to 2019.

Domain Author Dataset Model Result

Cryptocurrencies Mittal et al., 2018 [13] Cryptocurrencies (2013 to
May 2018) ARIMA Accuracy of 86.424

Stock

Ayodele et al., 2014 [14] New York Stock Exchange
and Nigerian Stock Exchange ARIMA R2 of 0.0033 and

0.9972

Rotela Junior et al., 2014 [15] Bovespa Index (January 2000
to December 2012) ARIMA MAPE of 0.064

Setyo, 2017 [16] Indonesia Composite Stock
Price Index ARIMA MAPE of 0.8431

Rubber Sukanya and Vichai, 2016 [17]
Bangkok and World natural
rubber price (January 2002 to
December 2015)

ARIMAX MAPE of 1.11

Latex Chalakora and Vichai, 2018 [18] Central Rubber Market of
Hat Yai, Thailand SARIMA MAPE of 24.60 and

RMSE of 14.90

Agricultural and
e-commerce product

Verma et al., 2016 [19]
Agricultural Produce Market
Committee, Ramganj (May
2003 to June 2015

ARIMA MAPE of 6.38

Jadhav et al., 2017 [20] Price of cereal crops in
Karnataka (2002 to 2016) ARIMA

MAPE of 2.993, 1.859,
1.255 paddy, ragi, and
maize, respectively

Carta et al., 2018 [27]
Amazon product’s prices,
with Google Trends data
used as exogenous features

ARIMA
Achieves the lowest
average MAPE of
4.77

Anil Kumar et al., 2019 [21]
Price in market Kadiri, India
(January 2011 to December
2015)

ARIMA MAPE of 2.30

Gold

Banhi and Gautam, 2016 [22]
Multi Commodity Exchange
of India (November 2003 to
January 2014)

ARIMA MAPE of 3.145

Yang, 2019 [23] World Gold Council (July
2013 to June 2018) ARIMA Relative error of less

than 1.2%

Electricity

Contreras et al., 2003 [24] Spanish and Californian
electricity market of 2000 ARIMA Mean errors of less

than 11%

Mingzhou et al., 2004 [25] California power market of
1999 ARIMA MSE of 0.1148

Tina et al., 2011 [26] EPEX power exchange ARIMA MAPE of 3.55
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Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

GARCH is refined from the ARCH model, as proposed by Bollerslev [99]. This model
overcomes the weaknesses of the ARCH model, as the ARCH model is of a very high
order with huge number of parameter estimations [12]. GARCH is widely applied for
economic and financial series forecasting. This model was found to have higher efficiency
in forecasting when working with data of high volatility compared to ARIMA. The latter is
limited in the autoregressive heteroscedasticity (ARCH) effect and is of linear time-series
data, as it is assumed that the future value is in a linear relationship to time [12,100].

From the review, GARCH has been deployed in different domains for forecasting
data with high volatility, such as the prices of gold [28,29], stocks and the financial mar-
ket [30–33], agricultural products [34], and power and electricity [12,35] from 2005 to 2021.
GARCH is proven to have better performance than ARIMA if the data have high volatility.
This can be verified by conducting the Lagrange Multiplier (LM) test [28,34]. The results
indicate that ARIMA cannot predict well due to the volatility of the data. There are different
refinements of GARCH, including Exponential GARCH (EGARCH) [12] (capturing asym-
metric volatility of the data) and nonparametric GARCH (NPGARCH) [33] (removing the
parameterized assumptions, which indicates that the data are in the relationship of square
linear and stochastically volatile). Overall, GARCH is suitable for data with high volatility.
However, for cases where the time-series data have a linear relationship, this model may
not be able to model the time-series data well compared to the ARIMA approach. Table 3
summarizes the review on the studies of GARCH.

Table 3. GARCH time-series forecasting from 2005 to 2021.

Domain Author Dataset Model Result

Oil Lama et al., 2015 [12] Cotlook A (April 1982 to
March 2012) GARCH, EGARCH

EGARCH achieved the
best performance with
RMSE of 14.41

Gold

Ping et al., 2013 [28] Kijaang Emas prices (July 2001
to September 2012) GARCH MAPE of 0.809767

Yaziz et al., 2019 [29] Malaysia gold price (January
2003 to June 2014)

ARIMA, GARCH,
ARIMA-GARCH

ARIMA-GARCH
achieved the most
optimal result with a
price error less than 2

Stock

Xing et al., 2021 [30]
West Texas Intermediate
(January 2015 to May 2018)
and CSI300 (May 2015 to 2016)

GARCH with
nonlinear function

AIC of −1119.77 and
−11373.6 for CSI300
and WTI dataset

Tripathy and Raahman,
2013 [31]

Bombay Stock Exchange and
Shanghai Stock Exchange
(1990 to 2013)

GARCH
AIC of −5.512662 and
−5.260705 for BSE and
SSE dataset

Erica et al., 2018 [32]
Adaro energy share price
(January 2014 to December
2016)

GARCH MAPE of 2.16

Power Hong Li et al., 2008 [33] Power price in California of
2000

NP-GARCH,
GARCH, ARIMA

NP-GARCH achieved
the lowest MPE of 3.62
and 4.86

Agricultural
Product Bhardwaj et al., 2014 [34] Gram price in Delhi (January

2007 to April 2012) GARCH, ARIMA

GARCH achieved the
best performance with
an average error of less
than 2

Electricity Garcia et al., 2005 [35]

Spanish and Californian Power
Market (September 1999 to
November 2000) and (January
2000 to December 2000)

GARCH
FMSE of less than 6 and
69 for Spanish and
Californian market
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2.1.2. Stochastic Model

The stochastic model is widely applied for time-series forecasting [7] to draw infer-
ences of the characteristics of the time-series data [5]. Different from the regression model,
the inferences made using the stochastic model are based on the principles of probabilities.
On the other hand, the regression model is used to identify the linear relationship between
the time-series data and the price outcome. One of the stochastic models, Hidden Markov
Model (HMM) is explained in this section.

Hidden Markov Model (HMM)

HMM was first introduced in 1996 by Baum and Petrie [101]. HMM is a double
stochastic process that introduces the hidden states with the unobservable underlying
stochastic process. HMM has been applied to time-series forecasting in different domains
such as forecasting prices of stock and option [36–38], commodity market [39], electric-
ity [40,41], crude oil [42], and currency exchange rate [43] from 2007 to 2018. As the real-life
market is complex and highly volatile with nonlinear relationships, HMM helps model
the time-series data with the hidden states. The model can find the hidden states of the
time-series data to improve its forecasting capability and accuracy [102]. HMM is suitable
for data with high volatility, as hidden states of the model can simulate different volatility
regimes. In addition, the model considered the times-series data correlation in interpret-
ing the data characteristic. Hence, the model is suitable for dynamic pricing when the
time-series data are non-stationary and high in volatility. It is noticed that HMM has a
better performance compared to regression models such as GARCH when the data are
high in volatility and has a larger sample size [38,103]. HMM can also outperform some
Deep Learning (DL) models due to its utterly probabilistic state architecture [36,104]. In
addition, the model does not require a huge amount of training data as DL models do. In
short, HMM is suitable for nonlinear and highly volatile data, as it can capture the changes
of every time step well. Table 4 summarizes the studies using HMM.

Table 4. HMM time-series forecasting from 2007 to 2018.

Domain Author Dataset Model Result

Stock

Hassan and Nath, 2005 [36] Four airline stock indexes HMM
MAPE of less than
6.850 for included
stocks

Hassan, 2009 [37] Six different stock prices Fuzzy logic
model and HMM

MAPE of less than
4.535

Dimoulkas, 2016 [38] Nordic BM HMM, ARIMA HMM has the best
accuracy of 73%

Commodity Date et al., 2013 [39] Financial market commodity
prices HMM RMSE of 0.08502

Electricity

Valizadeh Haghi and S. M.
Moghaddas Tafresgu,
2007 [40]

Spanish spot market of 2005 HMM

Jianhua Zhang et al.,
2010 [41]

Electricity market data of
August 2009 HMM MAPE of 4.1598

Oil Bon and Isah, 2016 [42] WTI dataset for oil prices of
2015 HMM

Financial Shaaib, 2015 [43]
Foreign currency exchange
rate of Euro against USD
(April 2007 to February 2011)

HMM, ANN
HMM achieved the
best performance with
MSE of less than 0.04
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2.2. Artificial Intelligence Model (AI)

Artificial Intelligence (AI) refers to a machine that can mimic or act like a human when
provided with the human-like capabilities such as perception, manipulation, communi-
cation, learning, and problem-solving [105]. Comparing to the statistical models, the AI
model learns from past data to improve its performance instead of identifying the optimal
parameters based on probability as in the statistical models. In addition, the AI models
are widely applied in time-series forecasting to identify the hidden data patterns to make
an accurate approximation [8]. Two subcategories of AI models are the Machine Learning
(ML) models and Deep Learning (DL) models.

2.2.1. Machine Learning Model (ML)

ML models can produce reliable predictions by identifying the hidden patterns of the
historical data for trends and relationships [106]. It can be used for time-series forecasting
as it can extract the information from the time-series data during the learning process
and learn from the extracted information to perform future forecasting [107]. The two
most widely applied machine learning approaches are Support Vector Machine (SVM) and
Random Forest (RF).

Support Vector Machine (SVM)

V. Vapnik first proposed Support Vector Machine (SVM) in 1995 [108]. SVM is a
type of learning algorithm proposed to improve the neural network’s generalizability
to achieve the global optimum solutions. SVM was first introduced for classification
tasks, and it is extended for regression and time-series forecasting problems with excellent
outcomes [47,109].

SVM has been applied in various domains for price forecasting, such as crude oil [44–47],
rubber [48], gold [49], and electric [50–53], agricultural [54], and stock [55] from 2005 to 2021.
SVM can avoid the over-fitting problem and model the nonlinear relationships stably, as it
applied the risk minimization principle in training. SVM has been tested and compared to
statistical models such as ARIMA and has shown a better performance [47,49]. The interpreted
result suggests that SVM performs better for capturing nonlinear relationships and in
handling irregularities than statistical models. However, SVM has lower transparency with
very high dimensionalities, where the score of the results cannot be represented as a simple
parametric function [110]. The model also requires many steps to get to the best parameters
to fit the model. Nevertheless, SVM generally will not work well on a large dataset, as it is
constrained by time and memory optimization [111]. From the review, the SVM is robust
in modeling the nonlinear data. Table 5 shows the studies on the SVM models.

Table 5. SVM time-series forecasting from 2005 to 2021.

Domain Author Dataset Model Result

Crude oil

Xie et al., 2006 [44] WTI crude oil price (January
1970 to December 2003)

SVM, ARIMA,
BPNN

SVM has the best
performance with
RMSE of 2.1921

Qi and Zhang, 2009 [45] OPEC, DJAIS and AMEX oil
index SVM Error rate of 16.23%

Khashman and Nwulu,
2011 [46]

WTI crude oil price (2002 to
2008) SVM, ANN

SVM has the highest
correct prediction rate
of 81.27

Yu et al., 2017 [47] WTI crude oil price

SVM, ARIMA,
FNN, ARFIMA,
MS-ARFIMA,
Random walk,
SVM

SVM has the best
performance with
highest
Diebold–Mariano test
score
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Table 5. Cont.

Domain Author Dataset Model Result

Rubber Jing Jong et al., 2020 [48] Bulk latex ARIMA
ARIMA-SVM achieved
the lowest MAPE of
0.3535

Gold Makala and Li, 2021 [49] World Gold Council (1979 to
2019) SVM, ARIMA

SVM achieved the best
result with an RMSE of
0.028

Electricity

Swief et al., 2009 [50] PJM (March 1997 to April 1998) SVM MAPE of 1.3847

Mohamed and El-Hawary,
2016 [51]

New England ISO (2003 to
2010) SVM MAPE of 8.0386

Saini et al., 2016 [52] Australian Electrical Market SVM MAPE of less than 1.78

Ma et al., 2018 [53] ERCOT SVM MAPE of 6.57

Agricultural Akın et al., 2018 [54] Raisin World Export dataset SVM, ANN
SVM is better than
ANN with an accuracy
of 0.888

Stock Kumar et al., n.d. [55] Financial time-series data SVM, RF SVM outperform the
RF by 1.04% of hit ratio

Random Forest (RF)

Random Forest (RF) is an ensemble method formed by many decision trees that are
used for both classification and regression processes, which was introduced by Breiman in
2001 [112]. RF has been applied in time-series forecasting for dynamic pricing, including
forecasting the prices of power load [56] and electricity [57], diamond [58], exchange
rate [59], gold [60], and stock [61] from 2006 to 2021. RF works better for data with high
volatility and randomness, such as exchange rate, and it has outperformed the SVM [59].
In addition, RF can work faster and better on large training samples, with the training time
significantly faster than the SVM. However, some studies have shown that RF performed
worse than the regression models in modeling linear data [55,113]. In short, it is suitable
for nonlinear, stationary, and highly volatile data. Table 6 included the studies of the
RF models.

Table 6. RF time-series forecasting from 2006 to 2021.

Domain Author Dataset Model Result

Load Lahouar and Ben Hadj
Slama, 2015 [56]

Tunisian Company of
Electricity and Gas (January
2009 to August 2014)

RF, ANN, SVM
RF has the lowest
MAPE of less than
4.2302

Electricity Mei et al., 2014 [57] NYISO RF, ANN, ARIMA RF has the lowest
MAPE of 12.05

Diamond Sharma et al., 2021 [58] Kaggle

RF, Decision Tree,
Lasso, Ada Boost,
Ridge Gradient
Boosting, Linear
Regression,
Elastic Net

RF has the lowest
RMSE of 581.905423

Exchange rate Ramakrishnan et al.,
2017 [59]

Department of Statistic
Malaysia, World Bank,
Malaysia Palm Oil Council,
Malaysian Rubber Export
Promotion Council, Federal
Reserve Bank

RF, NN, SVM RF has the lowest
RMSE of 0.018
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Table 6. Cont.

Domain Author Dataset Model Result

Gold Liu and Li, 2017 [60] DJIA, S&P500, USDX RF

RF showed a promising
result in predicting the
different datasets, with
prediction performance
up to 0.99

Stock Khaidem et al., 2016 [61] Samsung, GE and, Apple stock RF Accuracy of higher
than 86.8396

2.2.2. Deep Learning Model

Unlike the ML model, the DL model is inspired by the human neurological structure,
and it is composed of a collection of neurons that are connected between layers to form
a network [114]. However, both ML and DL models learn from the data to improve
their performance. In addition, the DL model works exceptionally well compared to the
statistical methods in nonlinear data forecasting [114]. Artificial Neural Network (ANN)
and Recurrent Neural Network (RNN) are explained in the following section.

Artificial Neural Network (ANN)

Warren and Walter proposed the ANN in 1943 [115], which is a computational model
inspired by the human biological nerve system. It is composed of layers of connected
neurons. ANN has been applied in many domains for time-series forecasting, including
the forecasting of prices for the agricultural product [62], electricity [63–66], gold [67],
and stock [68–70] from 2004 to 2020. The application of ANN is more robust than the
statistical models in capturing the trends and seasonality of the data—the non-stationarity
of the data [62]. ANN is proven to work better than the statistical model with the time-
series data that are nonlinear, stationary, and have sudden changes through the layering
hierarchy [70]. Despite its superior result, the one significant drawback of ANN is its
black-box nature [116]. The computational process of ANN is complex, and how the model
decides is hardly understandable. There is also the risk of overfitting when there are too
few data observations. The model will only memorize the unique data features, which
means that it does not learn the underlying relationship of the data, resulting in lower
generalizability. Table 7 summarizes the studies of ANN time-series forecasting.

Table 7. ANN time-series forecasting from 2004 to 2020.

Domain Author Dataset Model Result

Agricultural Jha and Sinha, 2013 [62] Soybean price from SOPA,
rapeseed-mustard from Delhi

ANN, ARIMA,
TDNN

ARIMA obtained better
result for soybean price
forecasting with an RMSE
of 5.43, hybrid
ARIMA-TDNN has better
performance with an
RMSE of 3.46

Electricity

Yamin et al., 2004 [63]
Californian power market
(January 1999 to September
1999)

ANN MAPE of less than 9.23

Ozozen et al., 2016 [64] EPIAS (2014 to 2015) ANN, ARIMA,
ARIMA-ANN

The hybrid model achieved
an MAPE of 4.08

Ranjbar et al., 2016 [65]
Ontario power market
(January 2003 to December
2003)

ANN MAPE of 9.51

Sahay and Singh, 2018 [66] Historical power data (2007 to
2013)

Backpropagation
algorithm MAPE of 6.60
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Table 7. Cont.

Domain Author Dataset Model Result

Gold Verma et al., 2020 [67]
Gold price from investing site,
(January 2015 to December
2018)

GDM, RP, SCG,
LM, BR, BFGS,
OSS

GDM algorithm has the
lowest MAPE of 4.06

Stock

Laboissiere et al., 2015 [68] CEBR3, CSRN3 ANN MAE of 0.0009 and 0.0042
for CEBR3 and CSRN3

Prastyo et al., 2017 [69] Daily stock closing prices from
Wanjawa and Lawrence ANN RMSE of 0.1830

Wijesinghe and
Rathnayaka, 2020 [70] Colombo stock exchange ANN, ARIMA ANN has the lowest MAPE

of 0.1783

Recurrent Neural Network (RNN)

RNN is a variation of ANN [117] with a feedback architecture that contains a feedback
loop for later layers of the network to go back to the input layer. RNN has been proven
to be a suitable method for time-series forecasting, as exemplified by the studies in fore-
casting the prices of stock [71–75], Bitcoin [76], fuel [77], gold [78], electricity [79–81], and
agricultural [82] from 2006 to 2020. The introduced hidden state in RNN with the ability
to memorize previous information helps improve its forecasting capability, even though
the data scale is more extensive [82]. Long short-term Memory (LSTM) is introduced also
as a refinement of RNN in remembering values for longer or shorter times [72]. From
the reviews, RNN has shown an excellent result in nonlinear time-series forecasting as
compared to the statistical model. RNN can model both the nonlinear and high volatile
data well. Therefore, RNN would be a good choice for time-series forecasting for the
above-mentioned data characteristic, provided that there are sufficient data observations.
Table 8 shows the summarized review on the studies of RNN for time-series forecasting.

Table 8. RNN time-series forecasting from 2006 to 2020.

Domain Author Dataset Model Result

Stock

Sun and Ni, 2006 [71] Yahoo Finance (April 2005 to
August 2005) RNN Accuracy of 0.9784

Li and Liao, 2017 [72] China stock market (2008 to
2015)

RNN, LSTM,
MLP

LSTM has the highest
performance with an
accuracy of 0.473

Wang et al., 2018 [73] Yunnan Baiyao stock data LSTM Accuracy of 50–65%

Sima et al., 2018 [74] Yahoo Finance (January 1985
to August 2018) LSTM, ARIMA

ARIMA and LSTM
achieved an RMSE of
5.999 and 0.936,
respectively

Du et al., 2019 [75] American Apple stock data of
2008 LSTM MAE of 0.155

Cryptocurrency Tandon et al., 2019 [76] Coin Market Cap website
LSTM, RF,
Linear
Regression

LSTM has the best
performance with an
MAE of 0.1518

Fuel Chaitanya Lahari et al., 2018
[77]

Historical data from major
metropolitan cities RNN Accuracy of above 90%

Gold S and S, 2020 [78] World Gold Council LSTM RMSE of 7.385
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Table 8. Cont.

Domain Author Dataset Model Result

Electricity

Mandal et al., 2007 [79] PJM RNN MAPE of less than 10

Zhu et al., 2018 [80] New England ISO and PJM LSTM, SVM, DT
LSTM has the best
performance with an
MAPE of lower than 39

Ugurlu et al., 2018 [81] Turkish electricity market of
2016

LSTM, GRU,
ANN

GRU has the best
performance with an
MAE of 5.36

Agricultural Weng et al., 2019 [82] Beijing Xinfadi Market
(August 2015 to July 2018)

RNN, ARIMA,
BPNN

The RNN achieved the
best performance with
the lowest AAE of 0.49,
0.21, 0.15

2.3. Hybrid Model

Hybrid models are generally a combination of two or more models from the statistical
and AI categories. The hybrid model is usually more robust than the single models, as it
combines and complements the advantages of a single model to improve the forecasting ac-
curacy. The hybrid model is widely used in different domains for dynamic pricing schemes,
including the domain of stock [83–85,94,95], crude oil [86,88,89], energy [90], carbon [87,91],
electricity [92], and gold [93] from 2004 to 2021. Different combinations have been proven
to successfully integrate the advantages of different models to improve the performance.
For example, ANN-GARCH [93] accepted data nonlinearity and volatility. The proposed
model demonstrated a significant advantage in modeling highly non-stationary and non-
linear time-series data by outperforming any of the single models. From these studies, the
hybrid model is proven to have better forecasting capability for time-series data.

Although the hybrid model has demonstrated a promising outcome, such a model
is usually highly complex and computationally intensive [118]. The determination of
the models for combination is often tricky and challenging, as it requires an in-depth
understanding of each method. Thus, a strong background of different models should
be mastered and well-understood to decide on a suitable hybrid architecture. The hybrid
models also have lower flexibility, since it is specifically designed to handle a particular
problem. Table 9 shows the reviewed studies for the hybrid models.

Table 9. Hybrid model time-series forecasting from 2004 to 2021.

Domain Author Dataset Model Result

Tang and Diao, 2017 [83] WIND database (January 2010
to September 2016) HMM-GARCH RMSE of 0.0238 and

0.0075

Stock

Pai and Lin, 2005 [85] Ten stocks dataset (October 202
to December 2002)

ARIMA, SVM,
ARIMA-SVM

Hybrid model has the
lowest MAE for the
included ten stocks

Raiful Hassan et al., 2007 [94]
Daily stock price of Apple,
IBM, and Dell from Yahoo
Finance

ANN-GA-
HMM

MAPE of 1.9247, 0.84871,
and 0.699246 for the
stock, respectively

Wang and Guo, 2020 [84] Ten stocks dataset (2015 to
2018)

DWT-ARIMA-
GSXGB

RMSE of less than
20.3013 for the worst case,
the general cases have an
RMSE of less than 0.3

Chen et al., 2020 [95] Yahoo Finance (September
2008 to July 2019)

MLP-Bi-LSTM
with AM MAE of 0.025393
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Table 9. Cont.

Domain Author Dataset Model Result

Crude oil

Shabri and Samsudin, 2014 [88] Brent crude oil prices and WTI
crude oil prices ANN, WANN

WANN has the best
performance with MAPE
of 1.31 and 1.39 for Brent
and WTI dataset

Zhang et al., 2015 [86]
WTI and Brent crude oil
(January 1986 to 2005) and
(May 1987 to June 2005)

EEMD-LSSVM-
PSO-GARCH

MAPE of 1.27 and 1.53
for WRI and Brent
dataset

Safari and Davallou, 2018 [89] OPEC crude oil prices (January
2003 to September 2016)

ESM-ARIMA-
NAR

MAPE of 2.44, obtained
the lowest error
compared to other single
models

Energy Bissing et al., 2019 [90] Iberian electricity market
(February to July 2015)

ARIMA -MLR
and
ARIMA-Holt
winter

ARIMA-Holt Winter has
better performance with
an MAPE of less than
5.07 for different day
forecasting

Carbon

Zhu and Wei, 2013 [87]
European Climate Exchange
(ECX) of December 2010 and
December 2012

ARIMA-
LSSVM

RMSE of 0.0311 and
0.0309 for DEC10 and
DEC12

Huang et al., 2021 [91] EUA futures from Wind
database

VMD-GARCH
and LSTM

VMS-GARCH has the
best performance with
first ranking in terms of
RMSE, MAE and MAPE

Electricity Shafie-khah et al., 2011 [92] Spanish electricity market of
2002

Wavelet-
ARIMA-RBFN

Error variances of less
than 0.0049

Gold Kristjanpoller and Minutolo,
2015 [93]

Gold Spot Price and Gold
Future Price from Bloomberg
(September 1999 to March
2014)

ANN-GARCH MAPE of 0.6493 and
0.6621

3. Discussion

After reviewing the different time-series forecasting models presented in Section 2,
it can be concluded that the data characteristics analysis is an important step in deciding
the optimal model for forecasting, as each of them performs better on particular data
characteristics. Consequently, in order to determine the optimal model selection for DSA,
data characteristics analysis is performed. This section presents a summary of the suitable
data characteristics for the models introduced in Section 2, which is followed by the
DSA data analysis and a proposed framework for optimal model selection based on the
result analysis.

3.1. Summary of Suitable Data Characteristics for the Included Models

In the review of the seven forecasting models, the importance of the different data
characteristics in the optimal model selection for price forecasting is emphasized. Table 10
shows the suitability of data characteristics for each model. Each model has varying
performance for the different data characteristics. The large dataset is generally built up
with more than 100,000 observations, and the small dataset has fewer observations. This
section presents a summary of the strengths and weaknesses of the models.
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Table 10. Optimal model selection with its suitable data characteristics.

Model Linear Nonlinear Stationary Non-
Stationary Volatile Non-

Volatile
Large

Dataset Small Dataset

ARIMA 3 3 3 3

GARCH 3 3 3 3

HMM 3 3 3 3

SVM 3 3 3 3

RF 3 3 3 3

ANN 3 3 3 3

RNN 3 3 3 3

First, for regression models, ARIMA is suitable for linear and stationary data, whereas
the GARCH model has a better performance when the data are high in volatility and
is adaptable to non-stationary data. However, when the data have a linear relationship,
ARIMA will have a better performance than GARCH. The stochastic model, HMM, intro-
duced the hidden states that can simulate different volatility regimes. Therefore, it has
better performance than a regression model such as GARCH when the data are high in
volatility and there is a larger sample size. However, it should be noted that the hidden
parameters of HMM are difficult to determine, and the algorithm will probably stop at a
local maximum before reaching the most satisfactory result. Hence, this results in lower
accuracy in price forecasting.

As one of the ML models, SVM is more effective than statistical models such as
ARIMA and GARCH in the sense of its better capability of working with the nonlinear,
non-stationary, and highly volatile data. Unlike the regression models, SVM is not limited
to working with data having a linear relationship or high volatility, the algorithm is convex
optimized. This means that it can find the global optimum of the result. Therefore, it is
better than HMM in reaching the most promising result. It can generalize well to previously
unseen data, overcoming the existing problems such as forecasting a sudden fluctuation.
However, if the dataset is too large, SVM might not perform well due to the memory and
optimization constraints. The main advantage of RF compared to SVM is its ability in
handling massive datasets. RF has a good capability of avoiding overfitting by limiting
the generalization error with an important requirement of a large dataset with less noise.
However, when estimating the linear data, RF might have lower performance as compared
to SVM and ARIMA due to its random behavior, and the prediction is computed based on
the average values.

DL models such as ANN and RNN are both neural network models inspired by the
human neuro system. They have a few pros and cons in common, such as good generaliz-
ability and good performance on nonlinear and non-stationary data modeling. However,
these models are also black box in nature, which results in low model transparency. Both
DL models have shown better results compared to ML models when the dataset size is
sufficient for training. Among ANN and RNN, RNN has demonstrated a better result than
ANN in forecasting data with high volatility.

Moreover, the hybrid model has demonstrated its robustness as a model that combines
two or more models, complementing the advantages of the single model. Therefore, a
hybrid model can better model the underlying relationship and obtain a more accurate
result than any single model. In the case that any single model cannot take care of the
different data characteristics, the application of the hybrid model is more appropriate.

The discussed models are generally being applied widely in different areas and have
achieved outstanding results. Moreover, different comparative studies have pointed to the
suitability of a particular model on certain data characteristics. In conclusion, this section
has comprehensively shown the suitable data characteristics for each model.
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3.2. DSA Data Analysis and Proposed Framework for Optimal Model Selection

As the data characteristics can influence the model performance, a study is conducted
based on a collected dataset of DSA. As the attention level toward signage can greatly
influence the pricing decision, the dependency and relationship of the environmental
factors related to the attention level should be carefully considered. The environmental
factors included in this study are location, weather, and temperature. These factors have
significant impacts on the attention level and the final pricing decision [2]. Table 11 shows
two examples of how the environmental factors impact the attention level and consequently
the pricing of the DSA.

Table 11. Environmental factors and its impact on the attention level and pricing of DSA.

Factors Example Attention Level Price

Location High popularity, High rating of
surrounding public facilities, business Increase ↑ Increase ↑

Weather and temperature
Raining, extremely high or low
temperature and air humidity Decrease ↓ Decrease ↓

Realizing the environmental factors impacts on the pricing decision, the collected
dataset is composed of three attributes including the temperature, air humidity level,
and the popularity index of the surrounding business environment based on the two
environmental factors, as shown in Table 11. They were collected from 13 locations of digital
signage in Malaysia using data scraping methods from April to June 2021. The temperature
and humidity data were obtained from OpenWeather API, while the popularity index was
scraped from Google Maps.

These data characteristics are used to measure the index representing the attention
level, which indirectly affects the price forecast of the DSA. Thus, this study aims to
investigate the collected DSA data characteristics daily, monthly, and as a whole. The
signage being analyzed was selected randomly. The signage with ID 1000, which was
located at Negeri Sembilan, Malaysia, with coordinates (101.9119, 2.70179) was investigated
in the study. The results for other signages were not presented in this article to avoid
repetitive information.

3.2.1. Location

The location is the most applied factor in the traditional pricing scheme for DSA,
such as a fixed price strategy and auction-based pricing mechanism [1]. The geographical
environment and facilities surrounding the digital signage are the most crucial factors,
as they strongly affect the accessibility and visibility of the digital signage, determining
the audience attention level. For example, a higher rating of surrounding businesses
can increase the crowd of a particular location, which indirectly increases the attention
level toward the advertisement. Thus, the more prosperous a location is, the higher the
attention level that can be obtained to improve the effectiveness of the advertisement.
The different days and times also have a direct impact on the crowd size of the location.
For example, the crowd on weekends will commonly be higher than the working days.
Hence, it increases the demand for a DSA spot and results in higher prices. These indexes
are indeed imperative in affecting the pricing decision. Considering its relationship with
the attention level that can be obtained, the higher the value of these indexes, the higher
the price.

Figure 3 illustrated the comparison of the popularity indices of the signage with ID
1000 for 24 h on weekdays and during the weekend. The popularity indices show different
peak hours of the weekdays and weekend. Notably, the popularity index is higher on
weekends compared to weekdays. Thus, this exemplifies the assumption that the signage
will be attracting higher attention levels during the weekend than on weekdays, resulting
in higher prices for DSA.
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There is clearly a seasonal trend in the monthly and whole-dataset plots of the DSA
data, as shown in Figures 4 and 5. This represents a non-stationary data characteristic.
Generally, both figures show the same seasonal trend, with the popularity index rising and
falling cyclically, affecting the amount of audience attention that can be grabbed. Thus, a
dynamic pricing scheme can be applied for DSA to maximize profit.
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3.2.2. Weather and Temperature

The weather and temperature have a significant impact on the crowd size of a location,
especially for outdoor environments. The changes in the weather include changes in
the air humidity and temperature [119]. The weather can have many changes in a short
duration. With fast-changing weather, an hourly update to precisely calculate the prices
of an advertising spot can be performed. As bad weather will negatively affect outdoor
activities and events, this will result in lower prices of the advertisements at those spots.

The temperature and air humidity data are analyzed. The data are complementary
to each other. When the values of air humidity go down, the values of temperature go
up. Figure 6 shows the changes in temperature and air humidity over 24 h on a randomly
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selected day to illustrate how these attributes change in a day. The data show an irregular
movement in a longer time frame of 30 days and in the plot for the whole dataset, as
shown in Figures 7 and 8, respectively. Generally, the temperature and air humidity show
a movement that is contradictory to each other. The weather can affect the crowd size.
An extremely high or low temperature will result in the crowd of a location to decrease.
Notably, the environmental factors show a different data characteristic.
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for optimal model selection. A list of procedures and tests can be used to determine the
data characteristics. A linearity test can be conducted through data visualization using a
scatter plot by observing if the point cluster forms a diagonal line. The data stationarity
can be checked by using the Augmented Dickey–Fuller (ADF) test [120]. A Lagrange
Multiplier (LM) test is used to check the existence of the ARCH effect to assess the volatility
in the dataset [5]. The p-values of both ADF and LM tests are used to indicate if the
null hypotheses of the test are accepted to determine the stationarity and volatility of the
data. In addition, dataset size is determined based on the number of observations in the
dataset. Based the result from each test, the optimal price-forecasting method for each
case can be determined. Note that the hybrid model is not included in the framework, as
the hybrid models are the combination of two or more single models targeting different
data characteristics, depending on the specific forecasting problems handled. Figure 9
illustrates the proposed framework, with the corresponding tests to determine the optimal
model selection.
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From the above analysis, it is noticeable that each data point has different movements
in time. The linearity, stationarity, and volatility tests for the environmental factors of the
DSA dataset are performed to examine the data characteristics for each. Following the
steps as illustrated in Figure 9, Table 12 shows the test results. Figure 10 shows the data
visualization of the linearity test for the popularity index, temperature, and air humidity
data. Based on Figure 10b,c, it is noticeable that the temperature and air humidity data
show a linear relationship, respectively, as the points cluster along the diagonal line.
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Table 12. Data characteristics tests and results.

Environmental Factor Linearity Stationary Volatility Dataset Size Selected Model

Location Popularity index No No No

≤100 K

SVM

Weather
Temperature Yes Yes No ARIMA

Air humidity Yes Yes No ARIMA
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From the interpreted results, SVM is the optimal model for modeling the popularity
index, while ARIMA is suitable for modeling both temperature and air humidity. Multiple
models can forecast the respective environmental factors instead of using a single model to
fit all the factors. As the environmental factors affect the attention level and consequently
the pricing decisions, using multiple models for different data characteristics is better
in forecasting the future values of the data for pricing decisions. In our case, where the
pricing label is not available, a rule-based system can be applied by setting a threshold
value for each environmental factor to generate the price. This can help effectively forecast
the important factors that will affect the attention level and pricing decision for DSA. With
the optimal models used, a better pricing decision can be made.

4. Conclusions and Future Work

This paper presented a list of widely used time-series forecasting models for dynamic
pricing based on an extensive literature review. These models have been proven to have
outstanding achievement in different domains. From the review, each model has its strength
in dealing with different data characteristics. The advantages and disadvantages of each
model are discussed and presented. In addition, the relationships between the models and
the different data characteristics are investigated to suggest the optimal model selection
for the price forecasting of DSA. From there, an optimal model selection framework is
proposed based on the data characteristics analysis of DSA data. This structured review
provides a solution of dynamic pricing using time-series forecasting, paving the way for
future research on dynamic pricing in DSA.

For future work, an experimental study shall be carried out to examine the applicability
of the proposed optimal model selection framework. More time-series data shall be
collected to conduct the experimental study for dynamic pricing in DSA to investigate the
effectiveness of the optimal model selection framework. Moreover, a customer behavioral
targeting approach can be considered in identifying their preferences for better advertising
effects [121].
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