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Abstract: Recommendation systems have overcome the overload of irrelevant information by
considering users’ preferences and emotional states in the fields of tourism, health, e-commerce, and
entertainment. This article reviews the principal recommendation approach documents found in
scientific databases (Elsevier’s Scopus and Clarivate Web of Science) through a scientometric analysis
in ScientoPy. Research publications related to the recommenders of emotion-based tourism cover
the last two decades. The review highlights the collection, processing, and feature extraction of
data from sensors and wearables to detect emotions. The study proposes the thematic categories of
recommendation systems, emotion recognition, wearable technology, and machine learning. This
paper also presents the evolution, trend analysis, theoretical background, and algorithmic approaches
used to implement recommenders. Finally, the discussion section provides guidelines for designing
emotion-sensitive tourist recommenders.

Keywords: tourist recommender system; emotion recognition; sentiment analysis; machine learning;
deep learning; wearable device; physiological signals

1. Introduction

Nowadays, people find various information related to service portfolios (for instance,
books, videos, and tourist attractions) to choose the most relevant to their personal needs.
Although many times, the choice of a service or product does not generate the expected
results. For this reason, Recommender Systems (SR) are valuable tools that provide adequate
and contextualized items to the users’ preferences. Emotion Recognition (ER) [1–3] and
sentiment analysis [4–6] are vital contextual factors to improve user satisfaction and accuracy
in tourist recommendations. So the user’s affective context has been inferred from social
network reviews [7–9]. Emotion detection, based on the physiological signals collected from
wearable devices, has been used to personalize the user’s context [10–12].

As a result, RS’s implementation is considered an interdisciplinary field of research
that involves data collection, information preprocessing, the definition of Machine Learning
(ML) approaches, and specification of recommendation services [4,13,14]. Such as the
recommenders of movies [9,15,16], music [8,12,17], tourist attractions [18–22], and medical
care [23–25].

In recent years, the development and use of wearable technology have increased [26–28].
In particular, CCS Insight predicted that by 2021 technology companies will produce around
185 million wearable devices (such as a smartwatch, bracelet, cameras, audible devices,
footwear, glasses, and jewelry) [29]. A wearable device is worn on the body. It has
computational capabilities to detect, process, store, and communicate data [30,31]. They
are also equipped with sensors to capture physiological data [17,32,33] and data about the
user’s environment [34,35]. Therefore, this data collection and processing have become a
tremendous technological challenge to improve the user experience using the ER [10–12,36].
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Therefore, the purpose of this study is to provide an overview and understanding of
the theoretical background, approaches, models, and methods for the implementation of
ER-based tourism recommender systems. This document presents a scientometric review
that covers the analysis of research documents published from 2000 to 2019. Figure 1 shows
the organization of this paper. Section 2 details the materials and methods used in the
preprocessing and analysis of bibliographic datasets. Sections 3–6 address the four main
categories around the classification of recommender systems, emotional detection based
on wearable sensors’ data, and proposed machine learning approaches. Besides, Section 7
presents the relationship between the thematic clusters with the recommendation, tourism,
and emotions systems. Finally, Section 8 summarizes the main findings found in this work.

Paper organization
Section 2 Materials and Methods
Section 3 Recommender Systems

Section 3.1 Content-Based Filtering
Section 3.2 Collaborative Filtering
Section 3.3 Knowledge-Based
Section 3.4 Tourist Context
Section 3.5 Context-Aware
Section 3.6 Emotion-Based
Section 3.7 Sentiment Analysis-Based
Section 3.8 Evaluation of Recommender

Section 4 Emotion Recognition
Section 4.1 Emotion Models
Section 4.2 Emotion Measurement

Section 5 Wearable Technology
Section 5.1 Devices
Section 5.2 Sensors

Section 5.2.1 Physiological
Section 6 Machine Learning

Section 6.1 Classification
Section 6.2 Clustering
Section 6.3 Deep Learning

Section 7 Clusters Mapping
Section 8 Discussion
Section 9 Conclusions

Figure 1. Paper organization.

2. Materials and Methods

This section describes the bibliographic dataset collection, the preprocessing, and the
review methodology applied to this review’s bibliographic dataset.

2.1. Dataset Collection

Initially, a specialized search of scientific papers from the Clarivate Web of Science
and Elsevier’s Scopus platforms was performed. These bibliographic databases contain
information on high-quality multidisciplinary research published in scientific journals of
meaningful global impact and allowed the consolidation of a dataset to contribute to this
study. The search string was “(((recommender OR recommendation) AND system) AND
(tourist OR tourism OR emotion OR physiological OR affective OR wearable))”. The first
part of the string refers to the recommender systems, and the second part mentions the
recognition of emotions. The information was extracted from the bibliographic platforms
on 15 July 2020, filters were applied to the search chain by subject (Computer Science,
medicine, engineering, business, telecommunications, artificial intelligence, psychology,
multidisciplinary and tourism ) and by years (2001 to 2020) A representative dataset of
1829 documents was obtained, corresponding to 33.6% from WoS and the remaining from
Scopus (see Table 1).
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Table 1. Filters applied to the search string. The documents correspond to the WoS and Scopus dataset.

Filter Scopus WoS Documents

By years: Limit-to 2001 to 2020 2001 to 2020 (4308, 1623)

By subject area: Limit-to Computer Science, Medicine, Engineering, Psychology,
and Business.

Computer Science Information Systems, Artificial Intelligence,
Engineering, Tourism, Telecommunications, and, Psychology. (3637, 570)

By subject area: Exclude Mathematics, Social Sciences, Decision Sciences, Biochem-
istry, Nursing, Health, among others. - (2030, 570)

By document type: Exclude Exclude Short Survey, Note, Editorial, and Letter. - (2016, 570)

By language: Limit-to English English (1861, 551)

By keywords: Exclude Human, article, priority journal, female, review, male, adult,
adolescent, among others. - (1303, 551)

By source title: Exclude Advanced Materials Research, Information Japan, Applied
Mechanics, among others. - (1278, 551)
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The bibliographic dataset preprocessing was generated with the ScientoPy tool [37].
Table 2 shows a summary of the preprocessing of the duplicate documents that were removed
from the consolidated Scopus and WoS dataset. Besides, it presents the bibliographic
dataset statistical information filtered by type of documents (conference papers, articles,
reviews, proceedings papers, and articles in press) and duplicate records in the DOI match.
In particular, the first column of information describes the input dataset. The second
column specifies the number of published documents and the number of papers resulting
from the duplicate filter. Finally, the third column shows the relative percentages before
and after the filter.

Table 2. Preprocess brief with ScientoPy for the dataset obtained from WoS and Scopus.

Information Number Percentage

Total loaded documents 1829
Omitted documents by type 200 10.9%
Total documents after omitted documents removed 1629
Loaded documents from WoS 547 33.6%
Loaded documents from Scopus 1082 66.4%

Duplication removal statics:
Duplicated papers found 180 11.0%
Removed duplicated papers from WoS
Removed duplicated papers from Scopus 180 16.6%
Total papers after remove duplicates 1449
Papers from WoS 547 37.8%
Papers from Scopus 902 62.2%

The bibliographic dataset is available in the repository (https://github.com/luzsant
amariads4a/carswearable), so researchers interested in this knowledge domain can use
this resource.

2.2. Review Methodology

The research field was systematically determined as following the scientometric review
methodology [38]:

• First, the subject of the review was searched in the Scopus and WoS databases.
The search string was designed according to the research topic of recommendation
systems in the tourism domain based on recognizing emotions from wearable devices’
physiological data.

• Secondly, the scientometric tool ScientoPy [37] was used, which pre-processed these
two bibliographic databases’ files. In this way, several clusters were determined,
and the categories related to the research topic were formed. Besides, the lead authors’
first 1000 keywords were chosen from this dataset consisting of 1449 documents. Then,
the most relevant author keywords from this list were analyzed to consolidate 16
categories (recommender system, tourism, emotion recognition, machine learning,
social media, user modeling, collaborative filtering, mobile application, context, per-
sonalization, sentiment analysis, wearable, healthcare, ontology, affective computing,
and physiological signal). Later, the categories presented in the graphics cluster the
similar author keywords that belong to the same topic (such as words in plural/singular,
acronyms, classes, or category types). For instance, the RS topic includes the keywords
(recommender system, recommendation system, recommendation, recommendation
systems, recommendations, and others), and the deep learning topic includes the
keywords (convolutional neural networks, convolutional neural network, CNN, deep
neural network, LSTM, and others).

• Third, it shows the statistical graphs of the bar and parametric trend analysis con-
structed with the indicators of Average Documents per Year (ADY) and Percentage of

https://github.com/luzsantamariads4a/carswearable
https://github.com/luzsantamariads4a/carswearable
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Documents in Recent Years (PDLY) [37]. It is interesting to highlight the rise of the RS
and tourism as transversal and thematic axes. Figure 2 shows the trend bar graph
of the main categories and highlights in the orange bar the documents published
in the last four years in sentiment analysis, wearable devices, physiological signals,
and use of ML algorithms in the ER. Also, it includes the value of PDLY (2016–2019).
Similarly, the trend analysis in Figure 3 uses the ADY and PDLY indicators to describe
the behavior of the strongly related themes to SR-based research. The graph on the
left shows the evolution of the S curve of technology or category calculated by the
number of documents accumulated per year (logarithmic scale). It represents the
initial evolution, the period of growth, and the boom of the publication of documents
related to research topics. While the parametric scatter graph located on the right side
visualizes the growth of publications in recent years (2016–2019). New themes have
emerged to support tourism SR development, such as sentiment analysis, wearable
devices, social networks, and ML algorithms. The thematic axes of ER, affective
computing, and collaborative filtering are of great interest to recommenders.

• Fourth, the trend analysis of research belonging to these clusters was carried out with
the WoSViewer (Section 7) and ScientoPy tools, which determined that the boom
in these clusters’ publications began in 2016 (see Figures 2 and 3). These figures
show the boom of 2016, especially in the clusters of collaborative filtering, wearables,
physiological signals, sentiment analysis, healthcare, affective computing, and social
networks. The topics mentioned are included in Sections 3–6. In each section, reference
is made to the documents most relevant to SR, ER, wearable technology, and ML.

Figure 2. Research topics related to recommender systems, tourism, and emotion detection between 2001 and 2019.
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Figure 3. Machine learning, sentiment analysis, and wearable technology applications trends in recommenders system
research.

3. Recommender Systems

SRs are software tools and techniques that provide suggestions for items that are likely
to be of interest to a particular user. The documents cited in this section are related to
recommendations for tourism, videos, music, content-based filtering, and collaborative
filtering (see Figure 4). Although the search spanned the last two decades, most of the
papers related in this section have been published in the last five years and have the highest
PDLY. The RS landscape has been diverse in developing research prototypes that integrate
Web technologies, mobile computing, and social networks in tourism [39–41]. Furthermore,
RS approaches have evolved concerning the application, the business model, the user
profile, the techniques, and the algorithms implemented.

The RS architecture integrates data collection, preprocessing, prediction models,
and recommendation services [4,13,14]. Each stage was focused on the referenced pa-
pers according to the recommendation process’s applicability and functionality (see
Table 3). Moreover, the preprocessing stage extracts the relationship between the user,
the item, and the contextual features represented in a data model (vector or tensor matrix).
The prediction stage then generates a relevant list of items calculated with algorithms
and recommendation models based on similarity. Finally, the recommender specifies the
services related to the users’ interests, such as listing the most innovative items and adapted
to the users’ demand.



Future Internet 2021, 13, 2 7 of 37

2008 2010 2012 2014 2016 2018 2020

2

20

Tourism Recommender Systems

Context-aware recommendation

Music recommendation

Travel recommendation

Content-based filtering

Personalized recommendation

Video recommendation

Tour recommendation

Cold start

Publication Year

A
c
c
u

m
u

la
ti
v
e

 N
u

m
b

e
r 

o
f 

D
o

c
u

m
e

n
ts

45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

0

1

2

3

4

5

6

7

Percentage of documents published between 2016 - 2019
A

v
e

ra
g

e
 d

o
c
u

m
e

n
ts

 p
e

r 
y
e

a
r 

(2
0

1
6

-2
0

1
9

)

Figure 4. Trends of approaches, frameworks, and applications in recommendation systems research.

3.1. Content-Based Filtering

A typical recommendation approach shares a mechanism to describe the detailed
features of items that may be of particular interest to a user [42]. Based on the representation
of these items, a user preference profile is built. Through an ML algorithm, it compares the
item features with the user’s profile and generates the recommendation list. The items’
similarity is calculated based on the attributes associated with the compared items. For ex-
ample, in a music recommender, a user rates a relaxation song with a high estimate, then
the system learns to suggest other songs of the same emotional state. The song features
can describe both structured data (song title, singer name, music genre, year of release,
and emotional state) and unstructured data (user comments and song description).

Some studies have used the Cosine Similarity (CS) metric [6,43,44] to determine
the similarity of the items represented in the n-dimensional space vectors (for example,
a matrix of similarity between songs and emotional state). In contrast, the Euclidean
Distance (ED) [45–48] was used to measure the actual distance between the elements and
the user’s profile. The recommenders’ implementation based on content emerges as an
alternative to personalize the multimedia, tourist, and entertainment content available
on the Web. Emotions have aroused intense interest in the design of user preference
models. For example, the influence of affective metadata on image rating performance
using the Support Vector Machine (SVM) algorithm [49]. The travel profiles’ definition
using a multiple regression model implicitly obtained the users’ preferences through the
POI images [45].

Due to the semantic ambiguity of unstructured data, Probabilistic Latent Semantic
Analysis (PLSA) techniques have been proposed for POI image annotation and ontological
representation of user profile data [50–52]. Also, [53,54] described a tourism approach
based on social relationships and user preference profiles to calculate the similarity of POIs.
A hybrid approach in [7] compared the Rocchio algorithm for customizing required queries
in the classification of candidate POIs with the k-Nearest Neighbors (kNN) weighted
classifier query builder.
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Although content-based approaches have limitations for predicting novel items,
they have datasets that enrich domain knowledge and avoid cold start problems [55].
To overcome the problems of prediction accuracy, some researchers have proposed hybrid
approaches. In particular, [56] presented a framework of tourist’ mobile services based on
the semantic relationship of the agreement of words and frequency of terms to determine
the item’s similarity to recommend. The architecture of a content-based and semantic-
conscious SR [57] described the components from a computational perspective. It introduced
a cleaning user-profile method and overcame the magic barrier problem by detecting the
semantic similarity between the item and the profile. Besides, it used a filtering component
to generate the recommendation list appropriate to the user’s preferences.

3.2. Collaborative Filtering

Unlike content-based filtering, Collaborative Filtering (CF) automatically learns the
relationship of items, extracts their features, and discovers new interest items to users [55].
FC methods generate user-specific item recommendations based on rating patterns from
multiple users who share similar preferences [42]. The data sources indicate the behaviors
and interests that users have had in the past concerning the products. These can be implicit
(for example, tourist attraction reviews, review history, and search patterns) and explicit
(for example, scaling from 1 to 5 to quantify liking for a tourist site). The ratings recorded
by users are related to the dataset elements and form a two-dimensional matrix. CF
recommendation models calculate similarity weights between users and items [58].

User-Based Collaborative Filtering (UBCF), also known as neighborhood-based,
establishes a target user’s neighborhood by analyzing historical behavior and preferences to
find the best similarity between other users’ items similar to the liked target user [8,15,16,59].
In comparison, Element Based Collaborative Filtering (IBCF) predicts the rating of a new
item and weights the ratings of the item set by the similarity of the target user behavior [8,17].
The CF approaches used Pearson’s Correlation Coefficient (PCC) [7,14,16,59–61] and
CS [4,8,13,62] metrics to generate a list of product recommendations of interest to the
target user.

The recommenders, faced with the problem of cold start and the scarcity of user
behavior data, have implemented mining and affective computing techniques to obtain
implicit information [4,14,16,63]. In personalization of tourist attractions and multimedia
content, CF hybrid models merged the emotions of user comments, contextual data,
and explicit’s ratings available on online social networks [7,53,64,65]. Tourist destination
recommenders used CF review extraction methods to refine user preferences and article
reputation [4,54].

In contrast to CF algorithms, model-based approaches are categorized into factoring
machine, matrix factoring, and ML algorithms. These models are scalable and handle sparse
data [42,58]. The Factoring Machine (FM) is a general-purpose regression method that
models the interaction between contextual variables [42]. The Stochastic Gradient Descent
(SGD) algorithm with regularization hyperparameters optimized the recommenders’ FMs
that integrated tourist attractions’ features and affective factors [63,66,67]. Too, Matrix
Factorization (MF) is a model of latent factors represented in a three-dimensional grade
cube denoted by users, items, and values of the contextual dimension [4,42,58,68,69].

Furthermore, the Singular Value Decomposition (SVD) algorithm transforms the origi-
nal rating matrix R = users ∗ items into a matrix of users with latent features U = users ∗
latent f actors. Then, it calculates the transpose of the original rating matrix RT = items ∗users
and generates a matrix of items with latent features RT = items ∗ latent f actors. Lastly,
the prediction function for a specific user rating is given by R = U ∗MT [14,58,70]. Simulta-
neously,The SVD ++ algorithm is a specific variant of SVD that handles both implicit and
explicit interactions [42,58]. Some studies [71] modified the SVD ++ model by merging
user sentiment and tourist destinations’ temporal influence in the POI recommendation.
Also, [72] used the emotion label’s weighting as a tensor value of the High-Order Sin-
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gular Value Decomposition (HOSVD) method to consider the preference and interest in
movies’ suggestion.

Recently, the research challenge of developing recommendation models with a contex-
tualized approach arises to overcome users’ limitations in terms of geographic coverage
and social interaction [55]. Most recommender architectures are hybrid because they
combine various approaches with IBCF and UBCF [73]. In particular, [74] proposed a
tourist system that matches the user’s location with the top-k recommendations through a
linear distance for the contents and the CS for the relationship between the user profiles.
Also, [75] developed an approach to extract information from users’ preferences of a website,
established the similarity of users, and generated a tourist attraction with the Slope One
algorithm. Considering the problem of cold start and the scarcity of the CF algorithms’
information, in [76] developed an architecture of a deep neural network based on an MF of
latent characteristics of the project developers, their tasks, and their relationships.

3.3. Knowledge-Based

A knowledge-based recommender (KB) consolidates data on user preferences, re-
strictions, and needs essential for item suggestions [77,78]. Knowledge-based systems
satisfy user preferences using knowledge bases that associate item features with user
requirements [79–81]. KB recommender in [54] compared user requirements with candidate
travel destinations by assigning a score to each dimension (location, tourist profile, type of
attraction, transportation costs). Then It performed a weighted average predicts the rating.

Online social networks provide information related to the profile, location, and feelings
of users for the construction of ontologies that have been used in the monitoring of emotional
health [82]. However, the recommendation’s performance depends on the knowledge base,
and its implementation is costly due to the quality of the information [83].

3.4. Tourist Context

This section details the recommenders’ categories of the tourism context. Although the
search spanned the last two decades, most of the mentioned papers in this section have
been published in the last five years and have the highest PDLY. Travel planning and
e-tourism documents are closely related to emerging topics of Point of Interest (POI), tourist
trip design problem, travel, and smart tourism (see Figure 5).

In the tourism sector, experiences are the main product and directly impact receptive
tourist satisfaction [84,85]. For this, stakeholders prepare the tourist destination to have
positive experiences in the social and physical context [21,86,87]. One experience is
inherently personal and can involve an individual on different rational, emotional, sensory,
physical, and spiritual levels [88]. Smart tourism transformed information services to
support the design of personalized tourism experiences in a ubiquitous context [22,79,89].
Therefore, recommender as technology tools provides valuable suggestions on tourist
attractions tailored to personal preferences and restrictions.

In fact, in a smart tourism ecosystem [79,90], wearable devices’ sensory technology can
be considered the enabling layer that supplies the context factors and user data. Meanwhile,
the recommender displays the suggested contents about the tourist experience and is
part of the facilitation layer. Precisely, mobile tourism [89,91–94] is an emerging field that
combines various ubiquitous devices, technologies, and services necessary to provide
well-being to tourists in the destination. Precisely, the heterogeneous data extracted in a
smart city favor the design of tourism behavior models based on digital patterns of travel
routes [95]. Furthermore, [96] proposed a cultural heritage route recommender with a user
theme similarity model and a mean-shift clustering algorithm for visitor location.

Location-based tourism recommenders [18–20,64] have used the technological capa-
bilities of mobile devices to provide information to the user on points of interest (POI)
near your geographic position. In [97] developed a recommender based on a clustering
algorithm to discover user preferences’ behavior. It used the CS technique to extract
the unvisited places from the profiles. Then, it visualized the maps with the cartesian
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coordinates of the most novel interest points for users. Furthermore, [98] proposed a
context-sensitive itinerary recommender based on a routing algorithm that used the user’s
social information, popularity, and distance from the POI. Mobile communications and
social media allowed users to share ratings and experiences related to POI comments based
on their preferences [13,99–101].
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Figure 5. Point of Interest, tourist trip design problem, travel, and smart tourism in tourist recommender research.

The problem of tourist travel design [19,44,102–106] has involved the implementation
of tourist route planning to meet the trip’s expectations, the novelties in the destination,
and the visitor’s satisfaction. For instance, the routing model based on metaheuristics made
it possible to search for POIs located on the journey routes [107,108]. The recommender
based on Dijkstra’s algorithm [105] constructed short tourist trips within a feasible time
frame according to the user’s preferences and context. While in [109] proposed a POI
recommender based on MF algorithms and an enriched cultural typology.

The trip planning of itineraries to tourist places has incorporated the user’s rele-
vance, location, and travel time between POI [110–112]. Some travel recommendation
methods [113–115] generated a list of POIs that matched the user’s preferences obtained
from geotagged photographs and comments from tourist experiences posted on social
media. Hybrid location-based recommenders considered dynamic user interaction to
suggest custom POI using an intelligent swarm algorithm [59] and hybrid selection scoring
algorithm [116].

On the other hand, the destination recommenders have guided the tourists in the
trip purpose, adapting their personal needs and preferences [106]. In recent years, travel
destination recommenders have extracted user sentiment trends toward preferred items
from social media and addressed data scarcity limitations [4,54,71]. In [117] proposed
a cultural, social recommender based on a heterogeneous and directed social graph
with a CF algorithm. Other studies identified an emerging destination with intangible
dimensions related to the destination’s features, spatial coverage, and demand for tourist
attractions [118–121].
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Recently, rural tourism is a field that offers exciting challenges in the context of
recommending rural tourism experiences [122]. Some studies [66,123] proposed methods
for the extraction of geographic features from rural tourism attractions. Besides, medical
tourism recommenders have supported users in health care and medical care while
traveling [124]. For instance, the health-conscious ubiquitous context approach used
visitor physiological sensor data [125]. And the social trust-based approach developed an
anthology to generate suggestions for medical tourism services [81].

3.5. Context-Aware

In recent years, contextual information has been significant in describing current
user behavior, scenarios, and mobile recommenders’ application domain [89,126–128].
Contextual information can involve various contexts related to user features, technological
resources, and physical conditions [42,58,129]. The first involves user interaction on social
media, mood, experiences, and preferences. The second describes the communication and
computing capabilities of the user’s ubiquitous devices. The last one specifies using the
sensors to measure the climate, the weather, and the recommendation’s location. For the
above, some studies proposed a multi contextual perspective of mobile tourism SR by
integrating users’ location with environmental, temporal, and social factors to generate
more effective predictions [93,130–133].

Unlike traditional recommendation approaches, the Context-Aware Recommender
System (CARS) added contextual information to the multidimensional classification predic-
tion function user ∗ item ∗ context −→ rating [42]. The three CARS categories that adapted
the user’s contextual information in a prediction model are pre-filtering, post-filtering,
and contextual modeling [42,58]. Pre-filtering, preference data is selected according to
the context before algorithms calculate predictions [22]. In post-filtering, context is used
to filter recommendations once predictions have been calculated with a traditional ap-
proach [22]. In contrast, contextual models incorporate contextual data directly into the
prediction model.

Some studies [15,134] demonstrated better results in the suggestion of movies by incor-
porating contextual dimensions of the emotional [135] to the context-sensitive algorithms
(items, users and User Interface, UI), Differential Relaxation Context (DCR), and Differential
Context Weighting (DCW). Similarly, [16] used a hybrid CF approach based on mood,
the fusion of preferences, and users’ ratings with similar interests. While [70] adopted
multiclass classification algorithms (Decision Tree - DT, Random Forest - RF and SVM)
to predict interactive emotional states. Furthermore, musical CARS investigations [8,17]
have used CF approaches to extract emotional labels from songs associated with users’
physiological states. Also, they implemented neural network models for the representation
of the users’ musical sequences [136].

Semantic Web techniques have enabled recommenders to add reasoning ability to
context information. Ontologies semantically describe the concepts for modeling the
features of user profiles, preferences, and items [80,81]. The personalized recommenders of
tourist activities are based on ontologies built from various data sources (travel motivations,
user opinions, geographic information, ratings, among others) [137]. Particularly [61]
proposed a travel SR based on the contextual information of emotions [138] extracted
from social networks with semantic analysis techniques. Additionally, [139] proposed a
cultural hybrid SR of personalized itineraries based on social networks’ activities, the linked
open data, and the physical context. For this, it implemented the semantic-based match
algorithm for the user’s profile.

Also, POI recommenders have implemented mining techniques to identify contextual
user preferences in social media reviews. In [116] generated the candidate POIs with the
Adaptive KNN and Social Pertinent Trust Walker (SPTW) algorithms. Then, it displayed
the recommendations with the Hybrid Selection Score (HSS) method. Another study [59]
incorporated pre-filtering user preferences and a CF algorithm based on its proximity.
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On the other hand, [69] proposed the Largest Deviation technique to estimate the selective,
parsimonious, and most relevant context of user preferences when rating POI items.

Compared to traditional SR frameworks, the majority of CARS research demonstrated
better performance on prediction results when implementing sentiment analysis and senti-
ment mining techniques [140]. Besides, some studies described recommended architectures
in various tourist settings. In [141] presented a POI itinerary recommender architecture
sensitive to the user’s physical and social context. It used semantic similarity algorithms
based on a graph for the extraction and filtering of the multimedia content of LinkedGeo-
Data. Likewise, in [142] designed a travel itinerary recommender based on dimension
trees of contextual features, an inferential tourist guide engine, and a recommendation
engine. In [143] proposed a recommender of cultural routes based on the geotagged photos’
content, the temporal context, and the geographical location. For this, it used a thematic
model based on the PLSA of POIs and visitors. On the other hand, [144] designed a mobile
system to detect danger sources in the tourist destination. The system integrated the risk
analysis component of technological, socio-political, and natural situations to generate
recommendations for a safe trip.

The analysis of user behavior is very relevant for constructing service frameworks and
personalized applications in the tourism field. In [95] proposed an ontological framework
for predicting temporal events based on tracking tourist behavior changes. It used a data
lake repository to store contextual information, implemented neural networks to classify
the level of satisfaction from road trips, and grouped tourists into five clusters.

3.6. Emotion-Based

Affective computational models are increasingly efficient in generating personalized
recommendations by detecting the user’s emotions. Understanding and predicting user
behavior is vital to an affect-sensitive recommendation system. Emotions are closely
related to people’s physical features and are considered a relevant contextual factor in
the recommendations [46,49,145,146]. Some studies [147,148] designed user models based
on personality traits and emotional states. These models comprise a conceptual level
composed of profile data, physiological measures, contextual data, and subjective user
attributes. In contrast, the specific domain level defines the connection between emotional
states and affective elicitation attributes that can influence the recommendation process.

The emotional information of users can be obtained with explicit and implicit methods
and in a non-intrusive way. In [63] integrated the prediction model of long-term users’
moods, and the fashion recommendations improved compared to short-term emotions.
In [67] presented a recommendation system sensitive to affect that infers the emotional
features [135] of multimedia contents. It used a cluster-based Latent Bias Model (LBM) to
predict the probability that a user would click on images taking into account emotional
contexts, mobile behavior, and social closeness.

The exponential growth of content on online social networks has made it possible to
identify users’ affective features to improve recommendation quality. Emotional data is
restricted by the scarcity and noise of user reviews. However, emotional information extrac-
tion avoids negative posts with the probability of increasing precision in the prediction [83].
In [13] developed a recommendation sensitive to the effect with a lexicon of emotions [135]
extracted from the comments of the location social networks [102], and based on the
emotional context, it generated a list of points of interest. In [14], a recommender based on
implicit feedback data merged social information, rating, and emotion, maximizing the
probability of user selection behavior through hybrid features.

Some emotion-sensitive SR approaches use social information to prompt users to
provide implicit feedback on an item’s rating. In [73] presented an algorithm that extracts
emotional information from a social network’s digital element rating. Then, it used the
user satisfaction scale to generate a list of neighbors based on the similarity of emotions.
In addition to the products’ rating, both the textual emotion analysis that detects affective
polarization and the extraction of the labels (user preferences and intrinsic attributes
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of the product) favor user satisfaction when purchasing products [60,62,72]. In [149]
defined emotional contagion and user satisfaction in a group recommender that suggests
sequences of items obtained with emotion decay and mood assimilation that impact future
items’ satisfaction.

Emotion-sensitive SR architectures improve the user experience by implementing
services adapted to the current emotional state. In [150] developed a song recommender
based on contextual data, current emotion, and musical preferences. It showed a better
prediction when incorporating the emotions (happy, neutral, and sad) concerning the
recommenders of similarity of content and feedback of the electroencephalogram signals.
In particular, [151] designed a platform sensitive to emotions to improve people’s pro-
ductivity in smart offices. It proposed a module that recognizes the emotional context
by obtaining data from sensors (temperature and humidity), detecting emotions (facial
expression, voice and text analysis), and information from the Internet. Then, semantic
rules were used in the task automation module.

3.7. Sentiment Analysis-Based

Social networks’ affective content is an indispensable source of data to determine
users’ point of view concerning a product or service. Emotion information can be
extracted with sentiment analysis techniques to infer the user’s emotional context [7–9].
Hybrid recommender approaches reduce the cold start problem using data from users
posted on social media [4–6,152,153]. Opinion mining detects and extracts affective states
subjectively expressed by users in reviews, texts, and documents shared on online social
networks [77,82,154,155]. Preprocessing can use many techniques such as tokenization
and stemming that remove irrelevant data, divide text reviews into small parts (tokens),
and classify them by the highest frequency into emotional polarity (positive, negative,
or neutral) [72,156].

Some studies have used emotion analysis to predict online product tastes and musical
choices of users [14,157]. The Word2Vec and fastText techniques generated the corpus
of embeddings of words to suggest smartwatches [158] and the concatenation of specific
information from the corpus of words grouped by sentiments [159]. The Term Frequency -
Inverse Document Frequency (TF-IDF) technique was used to weigh the review features
of tourist destinations [4,43,61], measure the relevance of POI tags [54], and the vector
representation of social data [6,48]. In [71] identified the text clauses’ polarity and calculated
the trend value of tourist destinations’ sentiment. In [116] built a hybrid user preference
algorithm based on a multi-criteria technique and used an affective lexicon. Then, analyzed
reviews to determine the likelihood of a new POI feeling.

RS approaches based on data mining techniques take advantage of accessing large
amounts of user comments shared on social media. Researchers highlight the relevance
of incorporating rich text sources to discover emotional patterns using natural language
processing techniques, opinion mining, and ML [140]. Ref. [160] proposed a structured
music recommender in a content analyzer component that labels an emotion from a
thesaurus and a user preferences model. Also, [161] specified a framework for analyzing of
negative emotions disseminated on social networks. Then, it used a corpus for community
detection of affective nodes defined with a frequency of word co-occurrence. Unlike
previous techniques, in [162] considered a multi-tag toxic comment classification approach
with the Apache Spark Framework ML library. The results demonstrated better precision
in word embeddings compared to a bag of words.

3.8. Evaluation of Recommender

The evaluation datasets were extracted from social networks and publicly shared
databases. The data has an overview of recommended items, user preferences, and historical
reviews from visitors. Depending on the experimental design, the algorithms can implement
cross-validation techniques. Initially, the item review dataset is split into a significant
percentage to train the recommender and the other to test the model’s performance.
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Some studies used the k-fold Cross-Validation (CV) technique [4,11,12,50,63] to verify the
precision of each fold of the comparative methods. On the other hand, the Leave-One-Out
Cross-Validation (LOOCV) technique [4] eliminates each user’s item that ensures the
impartiality of the system to recommend items that were left out of the training data.

The challenge of providing high-quality recommendations involves using evalua-
tion methods to extract value from the prediction from a technical and experimental
POI [42,58,83]. In general, the recommendation and affective detection models according
to the performance indicators used accuracy metrics (MAE and RMSE) [59], decision
support metrics calculated in the confusion matrix (precision, recovery, and F1 score)
[8,13,59,72,136,158], and metrics with recognition of range (MRR and NDCG) [7].

• Accuracy: Measures the ratio of suggestions for relevant items compared to actual
user ratings. Besides, it indicates the proximity of the results concerning the right
recommendations. The precision metric was implemented in the works of [6,14,50,62,
67,70,82,159,163,164].

• Mean Absolute Error (MAE) and Root Mean Square Error (RMSE): Compare the
predicted scores’ closeness to the actual ones and estimate the mean model’s prediction
error. In particular, RMSE assesses all rating inaccuracies, while MAE measures the
average magnitude of prediction errors. Some RS investigations implemented these
metrics [4,6,12,53,68,116,155,159,165,166].

• Precision: Calculates the percentage of selected items that are relevant to the user’s
recommendation [7,13,112,116]. Also, the Metric Media Precision (MAP) metric
compares the generated recommendation list with the list of relevant recommendations
for users [17,109].

• Area Under the Curve (AUC): Shows the relation between True Positive rates and
False Positive rates. This metric is used as the recommender performance measure
with a value close to 1 [13,16,63].

• Mean Reciprocal Rank (MRR): Identifies the first relevant item’s location in the
recommendation list. The elements relevant to the user must be located in the notable
positions of the generated list [7,109].

• Normalized Discounted Cumulative Gain (NDCG): Use a gain factor to consider the
position in which each suggestion was relevant [7,70].

• Hit rate: Represents the fraction of hits of the items in the recommendation list.
Besides, it contains the preferred items associated with the current context of the
user [8,13,116,136].

Table 3 compares some recommender implementations that involved emotional data
in the personalization of music, movies, tourist attractions, and online products. Initially,
the recommended approaches were described previously (Content-based filtering CB,
Knowledge-based KB, and Collaborative-Filtering CF). The data collection section lists the
user model features and the datasets that provided the recommendation process’s contextual
factors. Then, the algorithms of the context-aware recommender system approaches were
specified (pre-filtering PRE, post-filtering POST, contextual modeling CM, based on emotion
EM, and SA sentiment analysis). Finally, in the machine learning section, the algorithms,
similarity metrics (Sim), validation (Valid), and evaluation of the proposed recommendation
models’ performance results were synthesized.
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Table 3. Implementation of recommendation systems based on emotions in various contexts

Period Research
Approach Data Collection CARS Machine Learning

C
B

K
B

C
F Item User Model Dataset

PR
F

PO
S

C
M

EM SA Algorithms Sim Valid Result

2010 Wang et al. [16] X Movie Mood and preferences.
Moviepilot: 4.544.409
ratings, 105.137 users,
and 25.058 movies.

X
UBCF, Similarity Fusion (SF),
and Rating Fusion (RF) based
on KNN.

PCC With other methods. AUC: 0.71 UBCF, 0.72 SF,
and 0.73 RF.

2013

Alhamid et al. [17] X
Music
and
movies

Profile, HRV, and stress
status.

Last.fm: 192 users,
2509 items, 15 contexts,
and 11632 assignments.

X X CARS: User CS and IBCF. CS With other methods. MAP: 0.25 CARS, 0.2 UBCF
and 0.23 ItemRank.

Tkalcic et al. [46,49] X X Image User personality. LDOS PerAff-1 and Cohn-
Kanade. X

SVM emotion classifier and
UBCF. ED - Mean accuracy: 0.77 SVM

and 0.72 relevant content.

2015 Pliakos and
Kotropoulos [50] X POI Profile, emotion and test

imagen input. Flickr images 150000. X
SVM images classifier, PLSA,
and geo-cluster. HD 5-fold CV with SVM. MAP: 0.82 SVM, 0.92 maxPLS,

and 0.86 TF-IDF.

2016

Zheng et al. [15,134] X Movie
Emotional state (mood,
dominant emotion,
and end emotion).

LDOS - CoMoDa: 113
users, 1186 items, 2094 rat-
ings, and 12 contexts.

X X X
Context-aware: item, user,
and UI Splitting. UBCF: DCR
and DCW.

User context 5-fold CV.
RMSE Splitting: 0.94 all
contexts, 0.95 emotions only,
and 0.98 no emotions.

Wu et al. [67] X Image
Emotion, mobile behavior
pattern, and social close-
ness.

Flickr images and 16.952
people Twitter traces. X

Social friendship K-means,
cluster-based LBM, SGD, LR,
and SVM.

User cluster With other methods. Accuracy: 0.82 LBM, 0.71 LR,
and 0.68 SVM.

Christensen
et al. [53] X X Tours Individual profile and

group profile. 1300 tours and 800 users. X X
KNN CF rating, demographic
rating, and CB rating. PCC With other methods. MAE: 0.55 CF, 0.45 CB, and,

0.4 Hybrid.

Zheng et al. [4] X Tourism Profiles of user prefer-
ences and item opinion.

312.896 Tongcheng re-
views and 5.722 destina-
tions.

X

UBCF, IBCF, and TF-IDF
(scenery, cost, traffic, infras-
tructure, lodging, and travel
sentiments).

CS LOOCV for the items. 5-
fold CV.

MAE and RMSE: Hybrid CF:
0.63 and 0.97 TopicMF: 0.76
and 1.04.

2017

Piazza et al. [63] X
Fashion
prod-
uct

Profile, mood (PANAS),
and emotion (SAM).

337 users,64 products,
and 1081 ratings. X X

Vector representation of the
user, item, and context. FM
and SGD.

User, item,
and context 10-fold CV. AUC: FM: 0.85 PANAS, 0.73

SAM, and 0.89 only ratings.

Logesh et al. [13] X POI User Emotion, location,
and time.

TripAdvisor and Yelp:
48.253 POI, 33.576 users,
and 738.995 ratings.

X X
Emotion Induced UBCF and
Emotion Induced IBCF. CS With other methods. Precision: 0.74 UBCF, 0.66

IBCF, and 0.67 Hybrid.

2018

Zheng et al. [71] X Tourism User preferences
312.896 Tongcheng re-
views and 5.722 destina-
tions.

X X
Syn-ST SVD++
model:vsentiment tendency
and temporal factors dynamic.

PCC Latent factors vector
(f = 50).

MAE and RMSE: Syn-ST
SVD++: 1.04 and 0.91 SVD++:
1.17 and 0.96.

Arampatzis and
Kalamatianos [7] X X POI Profile and positive and

negative rated.
TREC Contextual Sugges-
tion: 1.235.844 POI. X

Weighted kNN and Rated Roc-
chio. PCC With other methods.

Precision and MRR: Rroc-
chio: 0.47 and 0.68. WkNN:
0.46 and 0.66.

Contratres et al. [6] X Product Emotion and social net-
works profile.

12.172 Facebook and Twit-
ter; reviews, 163 users,
and 1758 documents.

X
TF-IDF: vector space, SVM:
emotions classifier, and NB:
product category classifier.

CS - Accuracy: 0.8 SVM and 0.93
NB. RMSE: 1.22 RS.

2019

Qian et al. [14] X
Song
book

Social network, rating,
and reviews (sentiment).

Watercress: 346.242 musi-
cal acts and 373.648 behav-
ior of several books.

X

UBCF: user-friendly collec-
tion, IBCF: user behavior his-
tory items, sentiment lexicon,
and SVD.

PCC With two methods.
F-measure: 0.55 UBCF, 0.56
IBCF, and 0.70 emotion-
aware.

Logesh et al. [116] X POI
Demographic, social,
contextual, behavioral,
and categorical.

TripAdvisor and Yelp:
48.253 POI, 33.576 users,
and 738.995 ratings.

X X
Fuzzy C-means: user. HSS:
AKNN and SPTW. AbiPRS:
Fuzzy-C-means.

User cluster With other methods.
Precision, MAE, and Hit rate:
HSS: 0.81, 0.63, and 81%.
AbiPRS: 0.77, 0.73, and 76%.
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4. Emotion Recognition

This section describes the diverse approaches supported by technology and emotional
models to identify people’s emotions. Although the search for the documents spanned
the last two decades, most of the documents related in this section have been published
in the last five years and have the highest PDLY (see Figure 6). Also, the ER based
on physiological signals and brain activity (see Table 3) has involved knowing different
areas and the specification of a framework for analyzing and detecting the emotional
patterns [10–12,36]. Initially, the experimental design definition enables collecting objective
and subjective data from the participants exposed to stimuli in a controlled environment.
The application of preprocessing techniques to reduce noise and artifacts of physiological
signals. The extraction of relevant features applying statistical and mathematical models.
The identification of ML algorithms for the detection of the emotional states of the
participants. Finally, the application of performance metrics to validate and evaluate the
prediction results.
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Figure 6. Evolution and relevance of emotions in affective recognition.

In particular, [167] provided recommendations related to affective detection using
a multimodal human-computer interaction system [168,169]. These automated systems
can recognize and interpret the emotional states of a person through physical and phys-
iological measures. Physical conditions represent communicative signals such as facial
expressions [46,170,171], speech detection (speech) [47,172], body gestures [47,173], and eye-
tracking when viewing interactive content [32,174]. Whereas the physiological measure-
ments involve the recording of bodily variations such as the change in temperature and
the increase in blood pressure [1–3]. Physiological information collected from wearable
devices can be used as personalized multisensory emotional support in the user’s context.

4.1. Emotion Models

Emotion is a conscious and subjective experience associated with moods, physiological
changes, and behavioral responses [175]. Affective states can be classified into a categorical
model of emotions made up of basic emotions and a dimensional model of emotions
represented in a coordinate map.
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In the categorical model, human beings’ basic emotions generate automatic and
temporary reactions to stimuli in the environment, daily life events, physical activities,
or personal memories [176]. Ekman [135] proposed six discrete categories of emotions
(anger, disgust, fear, sadness, happiness, and surprise) associated with facial expressions.
Emotions are related to physiological variations. For instance, the state of fear increases
heart rate measurements and, skin conductance compared to the state of disgust [175].
In [138] developed the eight emotion wheel (anticipation, joy, trust, fear, surprise, sadness,
disgust, and anger) and can lead to more complex emotions. Also, physiological measures
are vital indicators for detecting stress and emotions that a person feels [177,178].

The dimensional model conceptualizes emotions in continuous data in the two-
dimensional central affect space of arousal and valence [11]. In the arousal dimension,
the autonomic nervous system (ANS) regulates the physiological changes of the human body,
and the sympathetic nervous system (SNS) responds to an emotional activation produced by
a threatening or challenging situation [176]. Sympathetic activation increases electrodermal
activity, respiratory and heart rates associated with “fight or flight” reactions [179]. These
responses lead to the suppression of systems that are not essential for immediate survival.
In contrast, the parasympathetic nervous system (PNS) keeps the body in a state of
relaxation by decreasing physiological measurements’ frequency. The valence dimension
indicates the degree of pleased or displeased in response to emotional motivation [147].

Additionally, the multidimensional model incorporated arousal, valence, and dom-
inance, the latter defining emotional experience (on a scale from low to high) [163,180].
Essentially, Russell’s circumflex model [181] has significantly influenced the studies pro-
posed for ER (see Table 3). This model defines a two-dimensional circular structure that
interrelates emotional states with discrete measurements on the axes of arousal (Low to
High) and valence (Low to High). There is an inverse correlation between the quadrants’
emotions on the other side of the circle structure (HAHV quadrant: happy emotion with
LALV quadrant: sad emotion and HALV quadrant: anger emotion with LAHV quad-
rant: calm emotion) [172]. The emotion recommenders use the multidimensional model
for statistical calculations of emotions, although they are not understandable. For this
reason, the basic model provides a mapping of the emotions collected from users to a
multidimensional model [172].

4.2. Emotion Measurements

Most of the studies used various stimuli to provoke the emotional states of the par-
ticipants. Various methods have been described, including viewing video clips [11,163,
165,173,182–184], images [27,49,169], listen to music [8,12,185,186], read texts [6,32], and do-
ing physical activities [177,187,188]. Emotions can be assessed through subjective and
objective methods.

In the first method, people record subjective measurements on Positive and Negative
Affect Schedule (PANAS), and Self-Assessment Manikin (SAM) instruments [63,173,189].
During the process of eliciting emotional states, the user performs a self-analysis of what
“he/she feels” and assigns the ratings to each of the SAM parameters (arousal, valence,
or dominance) on a nine-point scale. Meanwhile, PANAS evaluates two 10-item scales
(rating from 1: not at all to 5: very much) to estimate positive affect on the vertical axis and
negative affect on the horizontal axis. Furthermore, valence and arousal dimensions are in
a 45-degree rotation about these axes [190].

The second method uses sensors or wearable devices for the measurement of phys-
iological signals, as in [12] defined a framework that recommends songs based on the
variability of the heart rate of users, a music database classified into four categories based
on the degree of arousal (0 extremely low HRV to 1 extremely high HRV ) and in the degree
of valence (1 very negative to 5 very positive). Also, in [47] used four domains of the
emotional semantic space model (arousal, valence, sense of control, and ease of finding a
goal) [181] to categorize users’ affective states interacting with a video game.
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Alternatively, the consolidation of multimodal datasets has prompted the analysis
of emotional stimuli with publicly available physiological data such as the Database for
Emotion Analysis Using Physiological Signals (DEAP) shared by Koelstra et al. [180],
The International Affective Picture System (IAPS) published by Lang et al. [191] and
Nencki Affective Picture System (NAPS) proposed by Marchewka et al. [192]. Particularly
DEAP [180] contains information on peripheral physiological signals, brain activity signals,
levels of arousal, valence, and dominance, and the subjective rating of the emotions
perceived by 32 participants during video viewing. Based on DEAP in [184] proposed
a music recommendation framework, and in [163] developed an emotional model on
users’ behavior in an educational environment. While IAPS [191] and NAPS [192] have a
repository of photographs with the arousal and valence scores registered in SAM.

In conclusion, these datasets have been used to design affective models for images
classification [27,49] and in the simulation of quantifiable emotional stimuli to obtain
physiological data [27].

5. Wearable Technology

There are multiple applications supported in sensors and wearable devices for the
collection of user data. Mainly, this section includes the use of physiological sensors for
the ER. Although the search for the documents spanned the last two decades, most of the
documents related in this section have been published in the last five years and have the
highest PDLY. Besides, Figure 7 shows the recent trend of wearable technology used in
monitoring and tracking user activities.
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Figure 7. Evolution and relevance of the application of technology and wearable devices.

The convergence of wearable devices and the Internet of Things (IoT) has had enormous
potential as a source of data to provide personalized and contextualized services that
operate on cloud computing, edge computing, and mobile computing platforms [26–28,193].
Big Data and multilayer modeling architectures validated the data collected from sensors
using edge and cloud computing to be more efficient in the music information system’s
performance and storage capacity [185,194] and tourist attractions [22,94,195]. Furthermore,
smart devices’ selective suggestion was based on a trusted IoT edge computing system [196]
and a corpus of reference phrases to recommend smartwatches to users [158,193].
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Regarding the framework design using wearables, in [197] proposed a generic sensor
framework for personalizing medical care based on household monitoring of physiological
measurements. Each sensor used a java component to store data records and manage access
to the system. Also, in [198] defined an IoT services framework with a semantic component
for detecting falls and recognizing stress. Besides, it used a notifications component to
generate statements resulting from health monitoring. On the other hand, a data model
supported on wearable devices [199] identified the physiological conditions related to
health in the context of tourism.

5.1. Devices

Wearable technology is an emerging trend that enables digital traces of people to
provide contextualized and personalized information. The study of these digital life records
has promoted recommenders’ development that positively affects people’s lives [200,201].
Such as the suggestion of activities based on timeline sequences [34,202,203], the sentiment
analysis of registered users in health trackers’ reviews [204]. Besides, other studies
use physical activity and patient health history data to predict clinical diagnoses in
healthcare [23–25,198,205–208].

While the evolution of wearable and ubiquitous computing has enriched the con-
struction of user models with data obtained from information systems, social networks,
and the context of people’s daily lives [195,209–211].Wearable devices’ sensors collect this
individual data related to the user’s behavior, physical and physiological states. Precisely,
data modeling provides the knowledge of users essential in the design of personalized ser-
vices oriented to favor well-being in health [212–214], the location of tourist activities [199],
and travel by public transport [215].

On the other hand, wearable wristbands and smartphones have supported monitoring
the user’s activities in real-time with the data obtained by the accelerometer, proximity
sensor, skin temperature (TEMP), and calorie consumption [30]. Some studies involve the
identification of physical activities to improve their lifestyle [31,34,216]. Also of interest
is detecting emotional activation using biosensors [32,187,217,218] in the performance of
high-stress computing tasks and for personalization of musical preferences.

Eventually, augmented reality integration to smart glasses [219] has favored developing
applications related to the personalization of real-time conversations [220], tourist activities
guide [221], and specialized remote assistance [222,223].

5.2. Sensors

Wearable devices incorporate various sensors to collect and process data to monitor hu-
man activities and affective detection [166,184,205]. Some studies have developed wearable
prototypes to measure physiological signals based on emotional elicitation [187,188], whose
purpose is to improve the user experience [11,224] and provide personalized emotional
support in the educational field [1,2].

Additionally, the users’ physical activities have been monitored with inertial locomo-
tion sensors such as the accelerometer, gyroscope, and magnetometer with mechanisms
to collect data to monitor people’s movement [34,35,225]. Also, in [30,31,216,226]used
the data collected from inertial sensors to extract the features required in recognition of
human activity.

Physiological

Affective states and physiological data are closely related to the elicitations that people
perceive in daily life [179]. The following describes the detection of the emotional patterns
extracted from the features of the physiological signals:

• The ANS directs the physiological responses associated with emotional ones derived
from stimuli from the external environment or the human body’s reactions [11].

• Physiological indicators are monitored through various sensors that measure cardiac
and electrodermal activity [176,179].
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• The raw physiological data is processed by applying resampling and filters to re-
duce noise, detect the affective components in the signals captured within a time
window [187].

• Manual or automatic feature extraction methods facilitate the detection of emotional
states. Depending on the classifier’s approach, statistical, frequency, and non-linear
techniques can be used for the physiological segments [36,184].

Eventually, the analysis of the features in the time domain shows the change of
affective patterns in a temporal sequence calculated by parametric methods such as the
mean, minimum (min), maximum (max), variance (var), Standard Deviation (SD ) and
mediate. Also, the Frequency Domain (DF) features are derived from the Fourier transform
and the power’s spectral density [227].

The cardiac monitoring sensors capture the heart rate (HR) of the beats per minute and
the time recording of the intervals between beats (IBI) of the heart rate variability (HRV)
[17,32,228]. The analysis of emotions derives from the features extraction in time series
and different rhythms of the Electrocardiogram (ECG) and Photoplethysmogram (PPG)
signals. The ECG measures the heart muscle’s electrical activation, and the PPG measures
the arterial volume through the skin [217,229]. The parameters in the time domain of the
IBIs established SD in RR intervals (SDNN) applying Levene’s test, and t-test to the data
by gender [12]. Also, in [17,27] used Root Mean Square of the Successive Differences and
percentage of adjacent RR intervals that differ by more than 50 milliseconds (pNN50).
It should be noted that the detection of the R peaks resulted in different features of the
intervals between the peaks of the signals [36,166,187]. Regarding the spectral analysis of
the HRV time series, in [12] used the band’s high-frequency HF (0.15–0.4 Hz), low-frequency
LF (0.04–0.15 Hz), very low frequency, and VLF (0.003–0.04 Hz).

Also, Electrodermal Activity (EDA) or Galvanic Skin Response (GSR) signals to measure
the skin’s electrical conductivity variations produced by the sweat glands. The features of
Skin Conductance Response (SRC), Skin Conductance Level (SCL), and the detection of
EDA peaks recorded the changes in the affective states of the people [32,33,188,230]. While,
in the EDA and HR signals [11], applied a moving window for the extraction of features,
the principal component analysis (PCA), and the selection of the features with a priority of
weighting of the input variables ( calculated with PCC, minimum redundancy maximum
relevance and joint mutual information).

However, Electroencephalogram (EEG) signals calculate electrical variability in the
brain using ionic current-voltage fluctuations within neurons. The EEG features used to
operate in the delta (1–4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (13–29 Hz), and gamma
(30–47 Hz) frequency bands. The last three bands seem to differentiate the affective
conditions better [10,11,231]. The original signals were pre-processed with downsampled
techniques, and the bandpass filters extracted the artifacts and noise from the EEG [189].
Statistical methods and wavelet transformation [163] supported the feature extraction
process. Some studies found a strong relationship between the EEG and the musical
categorization by emotions [163,231], the communication of emotional states transmitted
by movements, and people’s sign language [173].

Table 4 consolidates some works on non-intrusive sensors for emotion recognition
of participants (pt) based on physiological signals and EEG features. The experimental
designs were focused on evaluating the performance of emotional estimators according to
the measurement of emotions (Arousal A and Valence V), the stimuli for the participants’
affective elicitation, subject (Sb), and the physiological responses collected with the sensors.
Affective detection implies the adaptation of computational processes that have enabled the
interpretation of emotions related to users within a specific application context [169]. EDA
and HR signals displayed better accuracy to predict arousal [11], while EEG signals were
more effective with valence. Also, [36] presented representative results to predict arousal
with ECG signals and detect valence with GSR signals. The comparison of the classification
algorithms [12,163,173,184] allowed to validate the emotional detection performance.
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Table 4. Emotion recognition studies are based on data from wearable devices.

Period Research
Experiment Data Physiologic Signals Classifiers

Emotion Measuring Elicitation Sb Device Sensor Features Algorithm Result

2016 Matsubara et al. [32] Emotional arousal. A: 10 points scale. Comic reading. 5 E4 Wristband and
RED250

EDA, BVP, HR,
TEMP, and pupil
diameter.

SCL, SCR, and HR. SVM Accuracy: 0.58 A.

2017

Hassib et al. [173] Amused, sad, an-
gry, and neutral.

Emotions: Likert
scale. AV: SAM 9
point scale.

FilmStim movie
clips database. 10 Emotiv EPOC EEG Min, max, mean, me-

dian, and SD. RF Accuracy: 0.72 AV.

Chiu and Ko [12] Sleep, boredom,
anxiety, and panic. AV point scale. 15 song. 30 Gear live smart-

watch HRV SDNN, pNN50, ULF,
VLF, LF, and HF. DT and LR. 5-fold CV.

MAE: DT: 0.82 A and
0.26 V. LR: 1.77 A and
0.32 V.

2018

Dabas et al. [163] VA and dominance. AV: SAM 9 point
scale. 40 videos. 32 DEAP Dataset EEG Wavelet function and

mean. NB and SVM
Accuracy: 0.78 NB and
0.58 SVM of emotional
states eight.

Ayata et al. [184] Four quadrants in
VA dimension.

AV: SAM 9 point
scale. 40 videos. 32 DEAP Dataset GSR and PPG

Mean, min, max, var,
SD, median, skewness,
kurtosis, moment, 1
and 2 degree differ-
ence.

RF, SVM, and KNN. 10-
fold CV.

Accuracy: RF: 0.72 A
and 0.71 V.

Mahmud et al. [187] Stress Emotion survey. Exercise (cycling
task). 43 SensoRing EDA, HR, TEMP,

and ACC
R-peaks, SRC, SCL.
Mean RR and STD RR. Signal processing.

Correlation: 0.9 Mea-
sured data from Sen-
soRing with BITalino.

2019 Santamaria- Grana-
dos et al. [36]

Arousal and va-
lence: Low and
High.

AV: SAM 9 point
scale. 16 short videos. 40 AMIGOS Dataset ECG and GSR R peaks and SCR

peaks. CNN
Accuracy: 0.76 A and
V 0.73 in ECG and
GSR signals.

2020 Dordevic et al. [11] Arousal and va-
lence.

V: SAM 9 point
scale. 3D video contents. 18

EDA and ECG
Electrodes Emotiv
EPOC

HR, EDA, and EEG

HR: median, SD,
and PCA. EDA: me-
dian, SD, and SCR.
EEG: mean, median,
and SD.

MLP and GRNN. 9-
fold CV.

RMSE: MLP: 0.05 A
and 0.024 V. GRNN:
0.12 A and 0.14 V. In HR
and EDA signals.
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6. Machine Learning

This section outlines the ML techniques and algorithms used to implement SR (see
Table 3) and ER (see Table 4). Although the search for the documents spanned the last
two decades, most of the documents associated in this section have been published in the
last five years and have the highest PDLY. Figure 8 highlights the implementation of deep
learning approaches for sentiment analysis and RE as an emerging issue.
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Figure 8. The relevance of machine learning approaches in the implementation of recommendation and emotion recognition
systems.

6.1. Classification

In Section 3, research related to SR approaches to tourism is defined. The recom-
mendation models used ML algorithms to validate and compare the performance of the
classifiers of emotions, tourist attractions, and multimedia content (see Table 3). Some
studies used KNN and SVM algorithms for POI classification [7,53,116] and image classifi-
cation [46,49,67]. Moreover, [232] proposed an approach based on a decision tree that uses
the users’ predictions and historical interests to generate movie recommendations. Other
studies used Linear Regression (LR) and neuronal network algorithms to classification trip
profiles [45] and road trips [95].

The integration of wearable technology with ML approaches is being used to identify
patterns that support personalized clinical diagnoses for health care systems [229] through
kNN algorithms [205] and DT [206,233,234]. The users’ lifestyle was supported in physical
activity recommenders based on SVM algorithms, RF [30,235,236], kNN [225], and LR [31].
Some affective recognition studies based on data collected from sensors used decision
rule classifiers, and DT required in the music recommendation [12,185,188]. In particular,
the analysis of physiological signals [180] with the techniques of Naïve Bayes (NB), RF,
and SVM was used in the emotional detection [32,70,163,173,184].

On the other hand, a multimodal approach for collecting affective responses (facial
movements, speech, and interactive activities in a video game) demonstrated greater



Future Internet 2021, 13, 2 23 of 37

efficiency with the use of multiple sensors in SVM and DT emotion classifiers [47].
The direct measurement of physiological signals from visual stimuli made it possible
to design an estimator of emotional state based on the Artificial Neural Network (ANN)
of Multilayer Perceptron (MLP) and Generalized Regression Neural Network (GRNN)
[11]. While, in [166] extracted the peaks features of the physiological signals (ECG and
PPG), estimating the blood pressure with the ANN, SVM, and Least Absolute Shrinkage
and Selection Operator (LASSO) regression models. Regarding affective recognition in the
video analysis in [165], the SVM algorithms were used to classify the input hybrid features
and the regression of support vectors in the arousal detection.

6.2. Clustering

RS approaches have implemented clustering algorithms as an alternative to overcome
data scarcity problems and reduce the response time of predictions [55]. The grouping
of users based on the features extracted from the datasets of social networks has made it
possible to detect the relationships between user interests, affective states, and the similarity
of POIs. Just like, the k-means and k-modes methods customized the grouping of users
with standard profiles and felt [64,67,112]. Besides, the fuzzy c-means algorithm used
demographic and preference data to construct the behavior profile of user activities [116].
The hierarchical grouping algorithm has grouped the geotagged images of the tourist
destinations based on Haversine Distance (HD) [50]. Another SR [95] travel study presented
a tourist clustering based on preferred attractions, travel expenses, route features, ratings,
and tourist sites reviews. To do this, it defined a neural network model to simplify user
parameters on a two-dimensional map.

6.3. Deep Learning

Recent studies used Deep Learning Networks (DLN) to construct recommendation
models for automatic notifications, content classification, and pattern recognition [65,68,155].
DLNs differ from ANNs by the interconnection of multiple layers that handle various
weights and trigger functions between the hidden layers’ inputs and outputs. The deep
architecture allows forward or backward propagation with adjustment of weights during
feature learning and detection. Loss functions are used in classification or regression tasks
to determine the difference between the labels predicted by the DLN and the actual labels
in the dataset. Unlike ML, DLN models use unstructured data, reduce computational costs,
and the performance scale is directly proportional to the data amount [237].Considering
the cold start problem and the scarcity of CF algorithms’ information, [76] developed a
recommender based on a DLN and an MF of latent features to manage software projects.

Convolutional Neural Networks (CNN) are DLN used to identify patterns in input
data segments that operate in one, two, or three dimensions. Unlike classical ML ap-
proaches, CNN uses filters to automatically extract features, reduce complexity, and overfit
with pooling layers [112,186]. The specific class classification process is supported in
Fully Connected Layers (FCL). Particularly in [226] used CNN to extract features from
georeferenced images used to recognize human activities. Also, [36] proposed combining
CNN and FCL models to extract affective features from physiological signals (ECG and
GSR), surpassing traditional techniques’ precision. These models (CNN and FCL) extracted
affective features from multimedia text [156] and discriminatory features from optical
flow images [165]. A hybrid CNN model [159] used one-hot vectors in the prediction of
sentiment polarity.

The Long Short-Term Memory (LSTM) approach is a version of the Recurrent Neural
Network (RNN) that overcomes gradients’ problems by remembering long-term sequential
data, with its structure that includes inputs, outputs, and gates of forgetfulness regulated
with the sigmoid function [237]. Specifically, in [164] integrated the 3DCNN and LSTM
algorithms to extract Spatio-temporal features in gesture detection. Some affective semantic
analysis studies used the CNN and LSTM RNN algorithms in the classification of emotions
from movie comments [9] and the detection of stress in psychological phrases [82]. Addi-
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tionally, [48] proposed the CNN and LSTM algorithms to extract the contextual features
of tourist attractions’ sentences. In [158], the CNN and RNN techniques were used to
predict the phrases related to the users’ perception and intention to recommend smart
wearable devices.

Lately, the integration of ML algorithms and chatbots has enormous potential for
recommending tourist destinations. In [238] designed a POI recommendation architecture
based on decision trees to establish the profile of the user of a social network with the
history of visits. Besides, in [239] proposed an LSTM RNN model to detect the users’
interests based on the history of preferences. The query chatbot provided travel options
based on the detected profile.

Most studies showed better performance in emotion-sensitive SR when using DLN
algorithms. In [150] customized an emotion-sensitive using a DCNN to classify songs in
a dataset based on user profile and history of preferences. It defined latent features and
musical relationships with the Weighted Feature Extraction (WFE) algorithm based on a
weighted MF.

7. Clusters Mapping

This section analyzes the co-occurrence mapping to identify the themes related to SR
and tourism’s transversal axes. For this purpose, the dataset preprocessed with SientoPy
(which unifies Scopus and WoS) was used to generate a network map with the VOSViewer
tool [240]. Initially, the author keyword co-occurrence map was created by setting up a
thesaurus file to combine standard terms of technologies and algorithms to implement
recommenders based on emotions. Also, 35 words unrelated to the theme described were
filtered. The network map formed five clusters from selecting 52 keywords merged based
on the co-occurrence links’ total strength values. The merged network characterizes the
thematic areas’ development over time (2000 to 2019), showing the most meaningful traces
of the related research documents (see Figure 9). Each point represents a node in the
network, and the lines connecting the nodes are co-occurrence links. The five clusters show
homogeneity with the thematic categories considered in the sections preceding.

• The first red cluster focuses on implementing machine learning algorithms to recognize
emotions based on physiological data from wearable devices [11,12,32,36,184,187] and
social networks’ affective data [15,16,46,49,63]. The emerging IoT topic encourages
collecting large datasets analyzed in big data architectures that support smart tourism
applications [22,94,195] and health care recommenders [24,25,198,206,208].

• The second green cluster considers the implementation of on-line product recom-
mender systems [6,14–17,46,49,63,67], tourism recommenders [4,48,53,61,71,113–115],
and user modeling using clustering algorithms [64,112,116]. The pop-up theme is
oriented to the recommendation of interest points based on data from social net-
works [7,13,50,99–101,116].

• The third purple cluster emphasizes sentiment analysis using data mining algorithms
to process and extract contextual features in social network datasets [43,77,82,154,155].
The emerging topic of deep learning applied to the recommendation based on
emotions [9,36,82,156,159] is highlighted.

• The fourth yellow cluster establishes the relationship between collaborative filtering
and semantic web techniques in the definition of user-profiles and the construction
of the recommender systems’ ontologies. [4,54,80–82,137]. An emerging approach
is content-based filtering that leverages the knowledge base in the recommendation
process [45,50–54].

• The fifth blue cluster is oriented to implementing recommenders and context-sensitive
mobile applications supported in the ubiquitous computing infrastructure [89,93,126–
128,130–133]. It is worth highlighting the importance of the user’s context in the
planning of tourist trips [44,59,104,105,110–112].
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Wearable device

Wearable technology

Figure 9. It is a co-occurrence network mapping of author keywords related to the RS, tourism, ER, and ML. Also, it displays
five color clusters made up of nodes identified by labels. The grouping of relevant documents defines the nodes’ size and
the lines between the nodes.

8. Discussion

The key challenges identified in the evolution, trends, and co-relationships of SR in the
domain of emotion-based tourism are described below. This paper provides an overview
of the background, algorithmic approaches, data models, and emerging technologies
involved in sentiment analysis and affective recognition. These guidelines for the design of
tourist recommenders with affective contextual information are aimed at the academic and
scientific community.

First, challenging the emotional context leads to improved user experience and
accuracy of travel recommenders. Initially, Section 3 analyzes the dominance of SR
architecture approaches, platforms, and components [4,13,14,50]. Table 3 chronologically
summarizes some studies on CARS with data sources, user models, algorithms, similarity
metrics, and performance evaluation. It shows that most of the works used sentiment
analysis techniques to extract the emotional context of the users’ comments posted on
social networks.

However, the collection of physiological data with wearable devices for emotional
recognition in tourism has been little explored. Also, rural tourism emerges as an area
of interest in planning personalized trips to manage geographical, emotional, and en-
vironmental factors. Additionally, both wearable, IoT, and Big Data technologies are
emerging in smart tourism to implement recommenders of positive and satisfactory
tourism experiences [22,93,94,94].
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Second, the emotion recognition of Section 4 describes the framework for the anal-
ysis of physiological signals, affective detection, and validation of the classifier’s results.
The relationship between physiological changes and emotional models was evidenced,
emphasizing Russell’s circumflex [181]. In particular, the measurement of the dimensions
of arousal and valence in the face of short-term stimulus elicitation in a controlled lab-
oratory environment. Additionally, Table 4 chronologically summarizes some studies
with the experimental design of the collection of affective data, extraction of features from
physiological signals, and prediction algorithms.

As a result, the detection of arousal achieved similar or better accuracy than the
detection of valence [11,36,184]. However, in the tourism domain, emotions are considered
a relevant contextual factor in the recommendation’s satisfaction. For this reason, there is
the challenge of proposing well-defined experimental designs to obtain physiological data
and measurements of emotions in everyday life.

Third, wearable technology and IoT environments have supported the infrastructure for
data collection to personalize healthcare services [24,25], music recommendations [185,194],
and suggestions of e-commerce products [158,196]. In particular, Section 5 related recent
studies of emotion recognition based on data from physiological sensors (see Table 4),
recognition of human activity using inertial sensors [30,226], and augmented reality
applications supported on Smart devices Glasses [221,222].

Besides, the investigations evidenced the correlation between emotions and data from
the physiological sensors of Empatica E4 wristband devices (EDA and HR) [32], Gear live
smartwatch [12] (HRV) and electrodes (ECG, GSR, and EDA) [11,36]. Hence, in the tourism
domain, wearable sensors’ integration could improve the recommenders’ prediction by
defining a user model with various contextual factors.

Fourth, the ML approaches referenced in Section 3 and Section 6 were organized
into classification, clustering, and Deep Learning Network (DLN) algorithms. First,
the classification approaches in most of the studies described in Table 4 used classical ML
algorithms based on feature extraction engineering (KNN, SVM, and RF). Besides, in the
personalization of clinical diagnoses [205,233], physical activities [225,235], and multimodal
approaches for affective prediction (MLP, ANN, and GRNN) [47,166].

Also, in Table 3, they implemented classic ML algorithms to classify candidate
films, images, travel profiles, and POIs. Second, the clustering algorithms (k-means,
k-modes, and Fuzzy-C-means) made it possible to design the users’ preference models
(see Table 3). Third, unlike previous algorithms, DLNs lower computational costs and
require large datasets. Recent studies (see Table 3 and Table 4) used CNN to extract affective
features from physiological data [36], detect human activities in images [226], and analyze
feelings in comments of tourist attractions [82,159]. Consequently, the challenge arises to
propose deep learning approaches to extract emotional pattern features from online social
media datasets and multimodal physiological signals to improve the quality of tourist
recommendation services.

Finally, future trends in recommendation platforms are oriented towards collaborative
environments to support accessible tourism [241,242], and POI recommenders based
on the contextual data gathering of the users lifelogs [200,201]. Besides, developers
could propose real-time recommendation approaches that are more efficient, and that
solve data scarcity problems using cloud computing, edge computing, big data, and IoT
platforms [26,27,95,196,243].

9. Conclusions

This paper presents a review of the literature related to emotion-sensitive SR in the
tourism domain. The analysis carried out showed several heterogeneous data sources drawn
from wearable devices, IoT, and social networks. The user profiles’ definition contains
explicit and implicit information collected from daily life records about emotional states,
physiological signals measurements, geographical location, and tourist attractions reviews.
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This definition could be applied in the design of behavior models and recommendations
according to the user’s preferences, based on recognizing emotions.

The scientometric review focused on analyzing technological research on users’
emotions in the framework of tourist recommenders. The architectures proposed in the
RS investigations that develop efficient approaches to processing, data storage, and access
to services in mobile or cloud computing environments were considered. In tourism,
the need to develop personalized and innovative applications to help users suggest travel
experiences is highlighted. User emotions are closely related to positive satisfaction with
a recommendation. Therefore, the research challenge arises from integrating data from
IoT sensors, wearable devices, smartphones (heart rate, EDA, and affective states) into the
recommendation process.

Based on the analysis of the research works listed in Table 3, the following findings
were identified that should be taken into account in the construction of emotion-aware SR:

• User models are the starting point of research approaches and, based on contextual
data, recommendation services are defined in various application domains. User
models have evolved by delving into daily life data obtained from ubiquitous devices.
Although in medical tourism, physiological measures have already been used for
health care. The user models have not yet been enriched with the data recorded
from the wearables devices intended to design personalized services according to the
tourist’s affective state.

• The tourist information sources come mainly from user reviews on social networks
and openly available datasets. There is a limitation in using other sources to discover
contextual patterns that enrich the data models. Furthermore, the restriction of
heterogeneous information access on tourist behavior directly impacts the performance
of the ML models.

• Approaches based on user emotions increased the predictive capacity of recommenda-
tion models by fusing contextual features and sentiment analysis. Also, the emotions
polarity, POI ratings, and contextual factors infer behavior from user preferences.
In most researches, affective states were taken into account for the recommendation
process’s implicit feedback.

Table 4 consolidates some research of emotion recognition with data from wearable
devices useful in designing SR frameworks in the tourism domain. Affective sensing
systems extract emotional patterns from non-intrusive sensor signals associated with heart
activity, electrodermal activity, and brain variability. The research opportunity arises to
deepen the relationship of affective with physiological changes and emotional models.
The experiments carried out with physiological datasets reported better results in predicting
emotions with deep learning algorithms.

There are research gaps focused on developing secure tourism recommenders with
models for detecting danger sources to mitigate tourists’ risks in the destination. Besides,
the implementation of interest detection algorithms for travel planning, using chatbot
applications and deep learning techniques. The recommenders require algorithms to deter-
mine affective similarity and detect the emotions resulting from tourist preferences and the
construction of user-profiles based multimodal approaches that allow the extraction of emo-
tional features from speech analysis, physiological measurements, and facial recognition.

Author Contributions: L.S.-G., J.F.M.-M., and G.R.-G. proposed the concept of this research. G.R.-G.
contributed to the design of the different sections. L.S.-G. and J.F.M.-M. designed the scientometric
analysis. L.S.-G. wrote the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: The research project was funded by the Departamento Administrativo de Ciencia, Tec-
nología e Innovación (733-2015), and by the Universidad Santo Tomás Seccional Tunja. This paper
was funded by the Universidad del Cauca (501100005682).

Conflicts of Interest: The authors declare no conflict of interest.



Future Internet 2021, 13, 2 28 of 37

References
1. Omata, M.; Iuchi, M.; Sakiyama, M. Comparison of eye-tracking data with physiological signals for estimating level of

understanding. In Proceedings of the 30th Australian Conference on Computer-Human Interaction, OzCHI 2018, Melbourne,
Australia, 4–7 December 2018; pp. 563–567. [CrossRef]

2. Aljawarneh, S.; Anguera, A.; Atwood, J.W.; Lara, J.A.; Lizcano, D. Particularities of data mining in medicine: Lessons learned
from patient medical time series data analysis. Eurasip J. Wirel. Commun. Netw. 2019, 2019. [CrossRef]

3. Uria-Rivas, R.; Rodriguez-Sanchez, M.C.; Santos, O.C.; Vaquero, J.; Boticario, J.G. Impact of Physiological Signals Acquisition in
the Emotional Support Provided in Learning Scenarios. Sensors 2019, 19, 4520. [CrossRef] [PubMed]

4. Zheng, X.; Luo, Y.; Xu, Z.; Yu, Q.; Lu, L. Tourism Destination Recommender System for the Cold Start Problem. Ksii Trans.
Internet Inf. Syst. 2016, 10, 3192–3212. [CrossRef]

5. Yeh, D.Y.; Cheng, C.H. Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid
techniques. Tour. Manag. 2015, 46, 164–176. [CrossRef]

6. Contratres, F.; Alves-Souza, S.; Filgueiras, L.; DeSouza, L. Sentiment analysis of social network data for cold-start relief in
recommender systems. In Proceedings of the 6th World Conference on Information Systems and Technologies, Naples, Italy,
27–29 March 2018.

7. Arampatzis, A.; Kalamatianos, G. Suggesting Points-of-Interest via Content-Based, Collaborative, and Hybrid Fusion Methods in
Mobile Devices. ACM Trans. Inf. Syst. 2018, 36. [CrossRef]

8. Deng, S.; Wang, D.; Li, X.; Xu, G. Exploring user emotion in microblogs for music recommendation. Expert Syst. Appl. 2015,
42, 9284–9293. [CrossRef]

9. Li, S.; Yan, Z.; Wu, X.; Li, A.; Zhou, B. A Method of Emotional Analysis of Movie Based on Convolution Neural Network and
Bi-directional LSTM RNN. In Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace, Shenzhen,
China, 26–29 June 2017.

10. Alarcao, S.; Fonseca, M. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2017. [CrossRef]
11. Dordevic, C.D.; Barreda-Angeles, M.; Kukolj, D.; Le, C.P. Modelling effects of S3D visual discomfort in human emotional state

using data mining techniques. Multimed. Tools Appl. 2020. [CrossRef]
12. Chiu, M.C.; Ko, L.W. Develop a personalized intelligent music selection system based on heart rate variability and machine

learning. Multimed. Tools Appl. 2017, 76, 15607–15639. [CrossRef]
13. Logesh, R.; Subramaniyaswamy, V. Learning Recency and Inferring Associations in Location Based Social Network for Emotion

Induced Point-of-Interest Recommendation. J. Inf. Sci. Eng. 2017, 33, 1629–1647. [CrossRef]
14. Qian, Y.; Zhang, Y.; Ma, X.; Yu, H.; Peng, L. EARS: Emotion-aware recommender system based on hybrid information fusion. Inf.

Fusion 2019, 46, 141–146. [CrossRef]
15. Zheng, Y.; Burke, R.; Mobasher, B. The role of emotions in context-aware recommendation. In Proceedings of the 3rd Workshop

on Human Decision Making in Recommender Systems, Decisions@RecSys 2013—In Conjunction with the 7th ACM Conference
on Recommender Systems, Hong Kong, China, 12 October 2013.

16. Wang, L.; Meng, X.; Zhang, Y.; Shi, Y. New approaches to mood-based hybrid collaborative filtering. In Proceedings of the
RecSys’2010 ACM Challenge on Context-Aware Movie Recommendation, CAMRa2010, Barcelona, Spain, 10 September 2010;
pp. 28–33. [CrossRef]

17. Alhamid, M.; Rawashdeh, M.; Al, O.H.; El, S.A. Leveraging biosignal and collaborative filtering for context-aware recommendation.
In Proceedings of the 1st ACM International Workshop on Multimedia Indexing and Information Retrieval for Heathcare, MIIRH
2013—Co-located with ACM Multimedia 2013, Barcelona, Spain, 22 October 2013; pp. 41–48. [CrossRef]

18. Noguera, J.M.; Barranco, M.J.; Segura, R.J.; Martinez, L. A mobile 3D-GIS hybrid recommender system for tourism. Inf. Sci. 2012,
215, 37–52. [CrossRef]

19. Lass, C.; Worndl, W.; Herzog, D. A multi-tier web service and mobile client for city trip recommendations. In Proceedings of the
8th EAI International Conference on Mobile Computing, Applications and Services, Cambridge, UK, 30 November–1 December
2016. [CrossRef]

20. Lass, C.; Herzog, D.; Worndl, W. Context-aware tourist trip recommendations. In Proceedings of the 2nd Workshop on
Recommenders in Tourism, Como, Italy, 27 August 2017; Volume 1906, pp. 18–25..

21. Khadra, J.; Goncharova, N.; Radwan, Y. Regional aspects Tourism Destination Management. In Proceedings of the 33rd
International Business Information Management Association Conference: Education Excellence and Innovation Management
through Vision 2020, Granada, Spain, 10–11 April 2019; pp. 1360–1363..

22. Su, X.; Sperli, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An Edge Intelligence Empowered Recommender System
Enabling Cultural Heritage Applications. IEEE Trans. Ind. Informatics 2019, 15, 4266–4275. [CrossRef]

23. Ryu, B.; Kim, N.; Heo, E.; Yoo, S.; Lee, K.; Hwang, H.; Kim, J.W.; Kim, Y.; Lee, J.; Jung, S.Y. Impact of an Electronic Health
Record-Integrated Personal Health Record on Patient Participation in Health Care: Development and Randomized Controlled
Trial of MyHealthKeeper. J. Med Internet Res. 2017, 19. [CrossRef] [PubMed]

24. Dufour, S.; Fedorkow, D.; Kun, J.; Deng, S.X.; Fang, Q. Exploring the Impact of a Mobile Health Solution for Postpartum Pelvic
Floor Muscle Training: Pilot Randomized Controlled Feasibility Study. JMIR Mhealth Uhealth 2019, 7. [CrossRef]

25. Selvan, N.S.; Vairavasundaram, S.; Ravi, L. Fuzzy ontology-based personalized recommendation for internet of medical things
with linked open data. J. Intell. Fuzzy Syst. 2019, 36, 4065–4075. [CrossRef]

http://dx.doi.org/10.1145/3292147.3292233
http://dx.doi.org/10.1186/s13638-019-1582-2
http://dx.doi.org/10.3390/s19204520
http://www.ncbi.nlm.nih.gov/pubmed/31627443
http://dx.doi.org/10.3837/tiis.2016.07.018
http://dx.doi.org/10.1016/j.tourman.2014.07.002
http://dx.doi.org/10.1145/3125620
http://dx.doi.org/10.1016/j.eswa.2015.08.029
http://dx.doi.org/10.1109/TAFFC.2017.2714671
http://dx.doi.org/10.1007/s11042-020-08844-3
http://dx.doi.org/10.1007/s11042-016-3860-x
http://dx.doi.org/10.6688/JISE.2017.33.6.15
http://dx.doi.org/10.1016/j.inffus.2018.06.004
http://dx.doi.org/10.1145/1869652.1869657
http://dx.doi.org/10.1145/2505323.2505332
http://dx.doi.org/10.1016/j.ins.2012.05.010
http://dx.doi.org/10.4108/eai.30-11-2016.2267194
http://dx.doi.org/10.1109/TII.2019.2908056
http://dx.doi.org/10.2196/jmir.8867
http://www.ncbi.nlm.nih.gov/pubmed/29217503
http://dx.doi.org/10.2196/12587
http://dx.doi.org/10.3233/JIFS-169967


Future Internet 2021, 13, 2 29 of 37

26. Ali, F.; Islam, S.M.R.; Kwak, D.; Khand, P.; Ullah, N.; Yoo, S.j.; Kwak, K.S. Type-2 fuzzy ontology-aided recommendation systems
for IoT-based healthcare. Comput. Commun. 2018, 119, 138–155. [CrossRef]

27. Yadav, N.; Keshtkar, F.; Schweikert, C.; Crocetti, G. Cradle: An IOMT psychophysiological analytics platform. In Proceedings of
the Workshop on Human-Habitat for Health: Human-Habitat Multimodal Interaction for Promoting Health and Well-Being
in the Internet of Things Era, H3 2018—20th ACM International Conference on Multimodal Interaction, Boulder, Colorado,
16 October 2018. [CrossRef]

28. Mohamed, W.; Abdellatif, M. Telemedicine: An IoT Application for Healthcare systems. In Proceedings of the 8th International
Conference on Software and Information Engineering, Cairo, Egypt, 9–12 April 2019; pp. 173–177. [CrossRef]

29. CCSInsight. Forecast Reveals Steady Growth in Smartwatch Market; Technical Report; CCSInsight: London, UK, 2017.
30. Cvetkovic, B.; Szeklicki, R.; Janko, V.; Lutomski, P.; Lustrek, M. Real-time activity monitoring with a wristband and a smartphone.

Inf. Fusion 2018, 43, 77–93. [CrossRef]
31. Angelides, M.C.; Wilson, L.A.C.; Echeverria, P.L.B. Wearable data analysis, visualisation and recommendations on the go using

android middleware. Multimed. Tools Appl. 2018, 77, 26397–26448. [CrossRef]
32. Matsubara, M.; Augereau, O.; Kise, K.; Sanches, C. Emotional arousal estimation while reading comics based on physiological

signal analysis. In Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding, Cancun,
Mexico, 4 December 2016. [CrossRef]

33. Barral, O.; Kosunen, I.; Ruotsalo, T.; Spape, M.M.; Eugster, M.J.A.; Ravaja, N.; Kaski, S.; Jacucci, G. Extracting relevance and affect
information from physiological text annotation. User Model. User-Adapt. Interact. 2016, 26, 493–520. [CrossRef]

34. Dharia, S.; Jain, V.; Patel, J.; Vora, J.; Chawla, S.; Eirinaki, M. PRO-Fit: A personalized fitness assistant framework. In Proceedings
of the 28th International Conference on Software Engineering and Knowledge Engineering, Redwood City, SA, USA, 1–3 July
2016; Volume 2016, pp. 386–389. [CrossRef]

35. Pinardi, S.; Sartori, F.; Melen, R. Integrating knowledge artifacts and inertial measurement unit sensors for decision support.
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, Porto, Portugal, 9–11 November 2016; Volume 3, pp. 307–313. [CrossRef]

36. Santamaria-Granados, L.; Munoz-Organero, M.; Ramirez-Gonzalez, G.; Abdulhay, E.; Arunkumar, N. Using Deep Convolutional
Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS). IEEE Access 2019, 7, 57–67. [CrossRef]

37. Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field Programmable Gate Array Applications—A Scientometric Review.
Computation 2019, 7, 63. [CrossRef]

38. Mooghali, A.; Alijani, R.; Karami, N.; Khasseh, A. Scientometric Analysis of the Scientometric Literature. Int. J. Inf. Sci. Manag.
2011, 19–31.

39. Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. Mobile recommender systems in tourism. J. Netw. Comput. Appl.
2014, 39, 319–333. [CrossRef]

40. Borras, J.; Moreno, A.; Valls, A. Intelligent tourism recommender systems: A survey. Expert Syst. Appl. 2014, 41, 7370–7389.
[CrossRef]

41. Jia, Z.; Yang, Y.; Gao, W.; Chen, X. User-based collaborative filtering for tourist attraction recommendations. In Proceedings of the
2015 IEEE International Conference on Computational Intelligence and Communication Technology, Cluj-Napoca, Romania,
13–14 February 2015; pp. 22–25. [CrossRef]

42. Ricci, F.; Rokach, L. Recommender Systems Handbook Second Edition, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015.
43. Sappelli, M.; Kraaij, W.; Verberne, S. Recommending personalized touristic sights using Google Places. In Proceedings of the 36th

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, Dublin, Ireland, 28
July–1 August 2013; pp. 781–784. [CrossRef]

44. Dietz, L.; Weimert, A. Recommending Crowdsourced Trips on wOndary. Available online: http://www.ec.tuwien.ac.at/rectour201
8/wp-content/uploads/2018/09/RecTour2018_Proceedings.pdf#page=22 (accessed on 1 August 2020).

45. Neidhardt, J.; Seyfang, L.; Schuster, R.; Werthner, H. A picture-based approach to recommender systems. Inf. Technol. Tour. 2015,
15, 49–69. [CrossRef]

46. Tkalcic, M.; Kosir, A.; Tasic, J. The LDOS-PerAff-1 corpus of facial-expression video clips with affective, personality and
user-interaction metadata. J. Multimodal User Interfaces 2013, 7, 143–155. [CrossRef]

47. Goncalves, V.P.; Costa, E.P.; Valejo, A.; Filho, G.P.R.; Johnson, T.M.; Pessin, G.; Ueyama, J. Enhancing intelligence in multimodal
emotion assessments. Appl. Intell. 2017, 46, 470–486. [CrossRef]

48. An, H.W.; Moon, N. Design of recommendation system for tourist spot using sentiment analysis based on CNN-LSTM. J. Ambient
Intell. Hum. Comput. 2019. [CrossRef]

49. Tkalcic, M.; Burnik, U.; Kosir, A. Using affective parameters in a content-based recommender system for images. User Model.
User-Adapt. Interact. 2010, 20, 279–311. [CrossRef]

50. Pliakos, K.; Kotropoulos, C. Building an Image Annotation and Tourism Recommender System. Int. J. Artif. Intell. Tools 2015, 24.
[CrossRef]

51. Chen, L.; Chen, G.; Wang, F. Recommender systems based on user reviews: The state of the art. User Model. User-Adapt. Interact.
2015, 25, 99–154. [CrossRef]

52. Pliakos, K.; Kotropoulos, C. PLSA Driven Image Annotation, Classification, and Tourism Recommendation; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 3003–3007. [CrossRef]

http://dx.doi.org/10.1016/j.comcom.2017.10.005
http://dx.doi.org/10.1145/3279963.3279970
http://dx.doi.org/10.1145/3328833.3328881
http://dx.doi.org/10.1016/j.inffus.2017.05.004
http://dx.doi.org/10.1007/s11042-018-5867-y
http://dx.doi.org/10.1145/3011549.3011556
http://dx.doi.org/10.1007/s11257-016-9184-8
http://dx.doi.org/10.18293/SEKE2016-174
http://dx.doi.org/10.5220/0006091203070313
http://dx.doi.org/10.1109/ACCESS.2018.2883213
http://dx.doi.org/10.3390/computation7040063
http://dx.doi.org/10.1016/j.jnca.2013.04.006
http://dx.doi.org/10.1016/j.eswa.2014.06.007
http://dx.doi.org/10.1109/CICT.2015.20
http://dx.doi.org/10.1145/2484028.2484155
http://www.ec.tuwien.ac.at/rectour2018/wp-content/uploads/2018/09/RecTour2018_Proceedings.pdf#page=22
http://www.ec.tuwien.ac.at/rectour2018/wp-content/uploads/2018/09/RecTour2018_Proceedings.pdf#page=22
http://dx.doi.org/10.1007/s40558-014-0017-5
http://dx.doi.org/10.1007/s12193-012-0107-7
http://dx.doi.org/10.1007/s10489-016-0842-7
http://dx.doi.org/10.1007/s12652-019-01521-w
http://dx.doi.org/10.1007/s11257-010-9079-z
http://dx.doi.org/10.1142/S0218213015400217
http://dx.doi.org/10.1007/s11257-015-9155-5
http://dx.doi.org/10.1109/ICIP.2014.7025607


Future Internet 2021, 13, 2 30 of 37

53. Christensen, I.; Schiaffino, S.; Armentano, M. Social group recommendation in the tourism domain. J. Intell. Inf. Syst. 2016,
47, 209–231. [CrossRef]

54. De Pessemier, T.; Dhondt, J.; Martens, L. Hybrid group recommendations for a travel service. Multimed. Tools Appl. 2017,
76, 2787–2811. [CrossRef]

55. Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation Systems: Algorithms, Challenges, Metrics, and
Business Opportunities. Appl. Sci. 2020, 10, 7748. [CrossRef]

56. Mahmood, F.; Bin, A.S.Z. A conceptual framework for personalized location-based Services (LBS) tourism mobile application
leveraging semantic web to enhance tourism experience. In Proceedings of the 2013 3rd IEEE International Advance Computing
Conference, IACC 2013, Ghaziabad, India, 22–23 February 2013; pp. 287–291. [CrossRef]

57. Boratto, L.; Carta, S.; Fenu, G.; Saia, R. Semantics-aware content-based recommender systems: Design and architecture guidelines.
Neurocomputing 2017, 254, 79–85. [CrossRef]

58. Aggarwal, C. Recommender Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [CrossRef]
59. Ravi, L.; Subramaniyaswamy, V.; Vijayakumar, V.; Chen, S.; Karmel, A.; Devarajan, M. Hybrid Location-based Recommender

System for Mobility and Travel Planning. Mob. Netw. Appl. 2019, 24, 1226–1239. [CrossRef]
60. Poirson, E.; Da Cunha, C. A recommender approach based on customer emotions. Expert Syst. Appl. 2019, 122, 281–288.

[CrossRef]
61. Ishanka, U.; Yukawa, T. User Emotion and Personality in Context-aware Travel Destination Recommendation. In Proceedings of

the 5th International Conference on Advanced Informatics: Concepts Theory and Applications, Krabi, Thailand, 14–17 August
2018; pp. 13–18. [CrossRef]

62. Wang, Y.; Zhou, J.T.; Song, X. A RaaS Model Based on Emotion Analysis and Double Labeling Applied to Mobile Terminal. IEEE
Access 2018, 6, 70974–70982. [CrossRef]

63. Piazza, A.; Krockel, P.; Bodendorf, F. Emotions & fashion recommendations: Evaluating the predictive power of affective
information for the prediction of fashion product preferences in cold-start scenarios. In Proceedings of the 16th IEEE/WIC/ACM
International Conference on Web Intelligence, Thessaloniki, Greece, 23–26 August 2017; pp. 1234–1240. [CrossRef]

64. Gavalas, D.; Kenteris, M. A web-based pervasive recommendation system for mobile tourist guides. Pers. Ubiquitous Comput.
2011, 15, 759–770. [CrossRef]

65. Huang, T.H.D.; Kao, H.Y. C-3PO: Click-sequence-aware deeP neural network (DNN)-based Pop-uPs recOmmendation I know
you’ll click. Soft Comput. 2019, 23, 11793–11799. [CrossRef]

66. Zhang, X.; Yu, L.; Wang, M.; Gao, W. FM-based: Algorithm research on rural tourism recommendation combining seasonal and
distribution features. Pattern Recognit. Lett. 2019. [CrossRef]

67. Wu, C.; Jia, J.; Zhu, W.; Chen, X.; Yang, B.; Zhang, Y. Affective contextual mobile recommender system. In Proceedings of the
24th ACM Multimedia Conference, Amsterdam, Netherlands, 15–19 October 2016; pp. 1375–1384. [CrossRef]

68. Tallapally, D.; Sreepada, R.; Patra, B.; Babu, K. User preference learning in multi-criteria recommendations using stacked auto
encoders. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018;
pp. 475–479. [CrossRef]

69. Braunhofer, M.; Ricci, F. Selective contextual information acquisition in travel recommender systems. Inf. Technol. Tour. 2017,
17, 5–29. [CrossRef]

70. Zheng, Y. Affective prediction by collaborative chains in movie recommendation. In Proceedings of the 16th IEEE/WIC/ACM
International Conference on Web Intelligence, Thessaloniki, Greece, 23–26 August 2017; pp. 815–822. [CrossRef]

71. Zheng, X.; Luo, Y.; Sun, L.; Zhang, J.; Chen, F. A tourism destination recommender system using users’ sentiment and temporal
dynamics. J. Intell. Inf. Syst. 2018, 51, 557–578. [CrossRef]

72. Lim, H.; Kim, H.J. Item recommendation using tag emotion in social cataloging services. Expert Syst. Appl. 2017, 89, 179–187.
[CrossRef]

73. Alhijawi, B. Improving collaborative filtering recommender system results and performance using satisfaction degree and
emotions of users. WEB Intell. 2019, 17, 229–241. [CrossRef]

74. Baba-Hamed, L.; Bourenane, D.; Hamoudi, L. Point-of-interest recommendation in a city. In Proceedings of the 3rd Edition of the
National Study Day on Research on Computer Sciences, Saida, Algeria, 27 April 2019; Volume 2351.

75. Ben, K.F.; Elkhleifi, A.; Faiz, R. Improving Collaborative Filtering Algorithms. In Proceedings of the 12th International Conference
on Semantics, Knowledge and Grids, Beijing, China, 15–17 August 2016; pp. 109–114. [CrossRef]

76. Xie, X.; Wang, B.; Yang, X. SoftRec: Multi-Relationship Fused Software Developer Recommendation. Appl. Sci. 2020, 10, 4333.
[CrossRef]

77. Fong, A.C.M.; Zhou, B.; Hui, S.C.; Tang, J.; Hong, G.Y. Generation of Personalized Ontology Based on Consumer Emotion and
Behavior Analysis. IEEE Trans. Affect. Comput. 2012, 3, 152–164. [CrossRef]

78. Alemu, T.; Tegegne, A.; Tarekegn, A. Developing knowledge based recommender system for tourist attraction area selection
in Ethiopia: A case based reasoning approach. In Proceedings of the 1st International Conference on Information and
Communication Technology for Development for Africa, Bahir Dar, Ethiopia, 25–27 September 2018; Volume 244, pp. 112–128.
[CrossRef]

79. Li, Y.; Hu, C.; Huang, C.; Duan, L. The concept of smart tourism in the context of tourism information services. Tour. Manag.
2017, 58, 293–300. [CrossRef]

http://dx.doi.org/10.1007/s10844-016-0400-0
http://dx.doi.org/10.1007/s11042-016-3265-x
http://dx.doi.org/10.3390/app10217748
http://dx.doi.org/10.1109/IAdCC.2013.6514237
http://dx.doi.org/10.1016/j.neucom.2016.10.079
http://dx.doi.org/10.1007/978-3-319-29659-3
http://dx.doi.org/10.1007/s11036-019-01260-4
http://dx.doi.org/10.1016/j.eswa.2018.12.035
http://dx.doi.org/10.1109/ICAICTA.2018.8541322
http://dx.doi.org/10.1109/ACCESS.2018.2880738
http://dx.doi.org/10.1145/3106426.3109441
http://dx.doi.org/10.1007/s00779-011-0389-x
http://dx.doi.org/10.1007/s00500-018-03730-5
http://dx.doi.org/10.1016/j.patrec.2018.12.022
http://dx.doi.org/10.1145/2964284.2964327
http://dx.doi.org/10.1145/3240323.3240412
http://dx.doi.org/10.1007/s40558-017-0075-6
http://dx.doi.org/10.1145/3106426.3106535
http://dx.doi.org/10.1007/s10844-018-0496-5
http://dx.doi.org/10.1016/j.eswa.2017.07.046
http://dx.doi.org/10.3233/WEB-190415
http://dx.doi.org/10.1109/SKG.2016.024
http://dx.doi.org/10.3390/app10124333
http://dx.doi.org/10.1109/T-AFFC.2011.22
http://dx.doi.org/10.1007/978-3-319-95153-9_11
http://dx.doi.org/10.1016/j.tourman.2016.03.014


Future Internet 2021, 13, 2 31 of 37

80. Omar Colombo-Mendoza, L.; Valencia-Garcia, R.; Rodriguez-Gonzalez, A.; Alor-Hernandez, G.; Javier Samper-Zapater, J.
RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 2015,
42, 1202–1222. [CrossRef]

81. Frikha, M.; Turki, H.; Mhiri, M.B.A.; Gargouri, F. Trust Level Computation based on Time-aware Social Interactions for
Recommending Medical Tourism Destinations. J. Inf. Assur. Secur. 2019, 14, 86–97.

82. Rosa, R.L.; Schwartz, G.M.; Ruggiero, W.V.; Rodrigue, D.Z. A Knowledge-Based Recommendation System That Includes
Sentiment Analysis and Deep Learning. IEEE Trans. Ind. Inform. 2019, 15, 2124–2135. [CrossRef]

83. Mizgajski, J.; Morzy, M. Affective recommender systems in online news industry: How emotions influence reading choices. User
Model. User-Adapt. Interact. 2019, 29, 345–379. [CrossRef]

84. Buhalis, D.; Amaranggana, A. Smart Tourism Destinations Enhancing Tourism Experience Through Personalisation of Services.
In Proceedings of the Information and Communication Technologies in Tourism 2015, Lugano, Switzerland, 3–6 February 2015.
[CrossRef]

85. Kim, J.Y.; Canina, L. An analysis of smart tourism system satisfaction scores: The role of priced versus average quality. Comput.
Hum. Behav. 2015, 50, 610–617. [CrossRef]

86. Richards, G. Tourism attraction systems: Exploring Cultural Behavior. Ann. Tour. Res. 2002, 29, 1048–1064. [CrossRef]
87. Ram, Y.; Björk, P.; Weidenfeld, A. Authenticity and place attachment of major visitor attractions. Tour. Manag. 2016, 52, 110–122.

[CrossRef]
88. Volo, S. Emotions in Tourism: From Exploration to Design. In Design Science in Tourism; Springer: Berlin/Heidelberg, Germany,

2017; pp. 31–40. [CrossRef]
89. Tussyadiah, I.P.; Wang, D. Tourists’ Attitudes toward Proactive Smartphone Systems. J. Travel Res. 2016, 55, 493–508. [CrossRef]
90. Tussyadiah, I. Expectation of Travel Experiences with Wearable Computing Devices. In Proceedings of the Information and

Communication Technologies in Tourism 2014, Dublin, Ireland, 21–24 January 2014. [CrossRef]
91. Liang, S.; Schuckert, M.; Law, R.; Masiero, L. The relevance of mobile tourism and information technology: An analysis of recent

trends and future research directions. J. Travel Tour. Mark. 2017, 34, 732–748. [CrossRef]
92. Herzog, D.; Sikander, S.; Worndl, W. Integrating route attractiveness attributes into tourist trip recommendations. In Proceedings

of the 2019 World Wide Web Conference, San Francisco, California, 13–17 May 2019; pp. 96–101. [CrossRef]
93. Anacleto, R.; Figueiredo, L.; Almeida, A.; Novais, P. Mobile application to provide personalized sightseeing tours. J. Netw.

Comput. Appl. 2014, 41, 56–64. [CrossRef]
94. Artemenko, O.; Pasichnyk, V.; Korz, H.; Fedorka, P.; Kis, Y. Using Big Data in E-tourism Mobile Recommender Systems: A

project approach. In Proceedings of the 1st International Workshop IT Project Management, Slavsko, Lviv region, Ukraine, 18–20
February 2020; Volume 2565, pp. 194–204.

95. Mikhailov, S.; Kashevnik, A. Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study. Future
Internet 2020, 12, 165. [CrossRef]

96. Alexandridis, G.; Chrysanthi, A.; Tsekouras, G.; Caridakis, G. Personalized and content adaptive cultural heritage path
recommendation: An application to the Gournia and Catalhoyuk archaeological sites. User Model. User-Adapt. Interact. 2019,
29, 201–238. [CrossRef]

97. Roy, A.; Arefin, M.; Kayes, A.; Hammoudeh, M.; Ahmed, K. An Empirical Recommendation Framework to Support Location-Based
Services. Future Internet 2020, 12, 154. [CrossRef]

98. D’Agostino, D.; Gasparetti, F.; Micarelli, A.; Sansonetti, G. A Social Context-Aware Recommender of Itineraries Between Relevant
Points of Interest. In Proceedings of the International Conference on Human-Computer Interaction, Toronto, ON, Canada, 17–22
July 2016.

99. Yang, W.S.; Hwang, S.Y. iTravel: A recommender system in mobile peer-to-peer environment. J. Syst. Softw. 2013, 86, 12–20.
[CrossRef]

100. Biuk-Aghai, R.; Fong, S.; Si, Y.W. Design of a recommender system for mobile tourism multimedia selection. In Proceedings of
the IMSAA’08—2nd International Conference on Internet Multimedia Services Architecture and Application, New York, NY,
USA, 10–12 December 2008. [CrossRef]

101. Hwang, S.Y.; Yang, W.S. On-tour attraction recommendation in a mobile environment. In Proceedings of the 2012 IEEE
International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2012, Lugano,
Switzerland, 19–23 March 2012; pp. 661–666. [CrossRef]

102. Kikuhara, K.; Kiyoki, Y. Context-Oriented Tour Planning System in Physical and Emotional Distance. In Proceedings of the 29th
International Conference on Information Modeling and Knowledge Bases, Lappeenranta, Finland, 3–7 June 2019; Volume 321,
pp. 519–530. [CrossRef]

103. Herzog, D.; Worndl, W. A travel recommender system for combining multiple travel regions to a composite trip. In Proceedings
of the 1st Workshop on New Trends in Content-Based Recommender Systems, CBRecSys 2014, Co-located with the 8th ACM
Conference on Recommender Systems, Sillicon Valley, CA, USA, 6 October 2014; Volume 1245, pp. 42–47.

104. Herzog, D. Recommending a sequence of points of interest to a group of users in a mobile context. In Proceedings of the 11th
ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 402–406. [CrossRef]

105. Woerndl, W.; Hefele, A.; Herzog, D. Recommending a sequence of interesting places for tourist trips. Inf. Technol. Tour. 2017,
17, 31–54. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2014.09.016
http://dx.doi.org/10.1109/TII.2018.2867174
http://dx.doi.org/10.1007/s11257-018-9213-x
http://dx.doi.org/10.1007/978-3-319-14343-9_28
http://dx.doi.org/10.1016/j.chb.2015.02.070
http://dx.doi.org/10.1016/S0160-7383(02)00026-9
http://dx.doi.org/10.1016/j.tourman.2015.06.010
http://dx.doi.org/10.1007/978-3-319-42773-7_3
http://dx.doi.org/10.1177/0047287514563168
http://dx.doi.org/10.1007/978-3-319-03973-2_39
http://dx.doi.org/10.1080/10548408.2016.1218403
http://dx.doi.org/10.1145/3308560.3317052
http://dx.doi.org/10.1016/j.jnca.2013.10.005
http://dx.doi.org/10.3390/fi12100165
http://dx.doi.org/10.1007/s11257-019-09227-6
http://dx.doi.org/10.3390/fi12090154
http://dx.doi.org/10.1016/j.jss.2012.06.041
http://dx.doi.org/10.1109/IMSAA.2008.4753931
http://dx.doi.org/10.1109/PerComW.2012.6197597
http://dx.doi.org/10.3233/FAIA200035
http://dx.doi.org/10.1145/3109859.3109860
http://dx.doi.org/10.1007/s40558-017-0076-5


Future Internet 2021, 13, 2 32 of 37

106. Fesenmaier, D.R.; Wöber, K.W.; Werthner, H. Destination Recommendation Systems: Behavioural Foundations and Applications;
Available online: https://www.cabi.org/cabebooks/ebook/20063136636 (accessed on 1 August 2020).

107. Gavalas, D.; Kasapakis, V.; Konstantopoulos, C.; Pantziou, G.; Vathis, N.; Zaroliagis, C. The eCOMPASS multimodal tourist tour
planner. Expert Syst. Appl. 2015, 42, 7303–7316. [CrossRef]

108. Tenemaza, M.; Lujan-Mora, S.; De Antonio, A.; Ramirez, J. Improving Itinerary Recommendations for Tourists Through
Metaheuristic Algorithms: An Optimization Proposal. IEEE Access 2020, 8, 79003–79023. [CrossRef]

109. Konstantakis, M.; Alexandridis, G.; Caridakis, G. A Personalized Heritage-Oriented Recommender System Based on Extended
Cultural Tourist Typologies. Big Data Cogn. Comput. 2020, 4, 12. [CrossRef]

110. Taylor, K.; Lim, K.; Chan, J. Travel Itinerary Recommendations with Must-see Points-of-Interest. In Proceedings of the 27th
International World Wide Web, Lyon, France, 23–27 April 2018; pp. 1198–1205. [CrossRef]

111. Benouaret, I.; Lenne, D. A Composite Recommendation System for Planning Tourist Visits. In Proceedings of the 2016
IEEE/WIC/ACM International Conference on Web Intelligence, Omaha, NE, USA, 13–16 October 2016; pp. 626–631. [CrossRef]

112. Parikh, V.; Keskar, M.; Dharia, D.; Gotmare, P. A Tourist Place Recommendation and Recognition System. In Proceedings of the
2nd International Conference on Inventive Communication and Computational Technologies, Namakkal, India, 20–21 April 2018;
pp. 218–222. [CrossRef]

113. Majid, A.; Chen, L.; Chen, G.; Mirza, H.T.; Hussain, I.; Woodward, J. A context-aware personalized travel recommendation
system based on geotagged social media data mining. Int. J. Geogr. Inf. Sci. 2013, 27, 662–684. [CrossRef]

114. Memon, I.; Chen, L.; Majid, A.; Lv, M.; Hussain, I.; Chen, G. Travel Recommendation Using Geo-tagged Photos in Social Media
for Tourist. Wirel. Pers. Commun. 2015, 80, 1347–1362. [CrossRef]

115. Majid, A.; Chen, L.; Mirza, H.T.; Hussain, I.; Chen, G. A system for mining interesting tourist locations and travel sequences from
public geo-tagged photos. Data Knowl. Eng. 2015, 95, 66–86. [CrossRef]

116. Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Li, X. Efficient User Profiling Based Intelligent Travel Recommender System
for Individual and Group of Users. Mob. Netw. Appl. 2019, 24, 1018–1033. [CrossRef]

117. De Angelis, A.; Gasparetti, F.; Micarelli, A.; Sansonetti, G. A Social Cultural Recommender based on Linked Open Data. Available
online: https://dl.acm.org/doi/abs/10.1145/3099023.3099092 (accessed on 1 August 2020).

118. Shih, H.Y. Network characteristics of drive tourism destinations: An application of network analysis in tourism. Tour. Manag.
2006, 27, 1029–1039. [CrossRef]

119. Paul, V.; Trillo-Santamaria, J.M.; Haslam-Mckenzie, F. The invention of a mountain tourism destination: An exploration of
Trevinca—A Veiga (Galicia, Spain). Tour. Stud. 2019, 19, 313–335. [CrossRef]

120. Sutjiadi, R.; Trianto, E.; Budihardjo, A. Surabaya tourism destination recommendation using fuzzy c-means algorithm. J.
Telecommun. Electron. Comput. Eng. 2018, 10, 177–181.

121. Loehr, J. The Vanuatu Tourism Adaptation System: A holistic approach to reducing climate risk. J. Sustain. Tour. 2020, 28, 515–534.
[CrossRef]

122. Wang, M.j.; Chen, L.H.; Su, P.a.; Morrison, A.M. The right brew? An analysis of the tourism experiences in rural Taiwan’s coffee
estates. Tour. Manag. Perspect. 2019, 30, 147–158. [CrossRef]

123. Santana-Jimenez, Y.; Sun, Y.Y.; Hernandez, J.M.; Suarez-Vega, R. The Influence of Remoteness and Isolation in the Rural
Accommodation Rental Price among Eastern and Western Destinations. J. Travel Res. 2015, 54, 380–395. [CrossRef]

124. John, S.P.; Larke, R. An analysis of push and pull motivators investigated in medical tourism research published from 2000 to
2016. Tour. Rev. Int. 2016, 20, 73–90. [CrossRef]

125. Lo, C.C.; Chen, C.H.; Cheng, D.Y.; Kung, H.Y. Ubiquitous Healthcare Service System with Context-awareness Capability: Design
and Implementation. Expert Syst. Appl. 2011, 38, 4416–4436. [CrossRef]

126. Zeng, J.; Li, F.; Li, Y.; Wen, J.; Wu, Y. Exploring the Influence of Contexts for Mobile Recommendation. Int. J. Web Serv. Res. 2017,
14, 33–49. [CrossRef]

127. Rosmawarni, N.; Djatna, T.; Nurhadryani, Y. A mobile ecotourism recommendations system using cars-context aware approaches.
Telkomnika 2013, 11, 845–852. [CrossRef]

128. Magrin, E.; Seychell, D.; Briffa, D. Evaluating the use of mobile sensors in improving the user model in mobile recommender
systems. In Proceedings of the 8th IADIS International Conference on Information Systems, Madeira, Portugal, 14–16 March
2015; pp. 153–160.

129. Ashley-Dejo, E.; Ngwira, S.; Zuva, T. A survey of Context-Aware Recommender System and services. In Proceedings of the
International Conference on Computing, Communication and Security, Patna, India, 4–5 December 2015. [CrossRef]

130. Meehan, K.; Lunney, T.; Curran, K.; McCaughey, A. Aggregating social media data with temporal and environmental context for
recommendation in a mobile tour guide system. J. Hosp. Tour. Technol. 2016, 7, 281–299. [CrossRef]

131. Papadimitriou, G.; Komninos, A.; Garofalakis, J. An investigation of the suitability of heterogeneous social network data for use
in mobile tourist guides. In Proceedings of the 19th Panhellenic Conference on Informatics, Athens, Greece, 1–3 October 2015;
pp. 283–288. [CrossRef]

132. Najafian, S.; Worndl, W.; Braunhofer, M. Context-aware user interaction for mobile recommender systems. In Proceedings of the
24th ACM Conference on User Modeling, Adaptation and Personalisation. Available online: http://ceur-ws.org/Vol-1618/HAAPI
E_paper2.pdf (accessed on 1 August 2020).

https://www.cabi.org/cabebooks/ebook/20063136636
http://dx.doi.org/10.1016/j.eswa.2015.05.046
http://dx.doi.org/10.1109/ACCESS.2020.2990348
http://dx.doi.org/10.3390/bdcc4020012
http://dx.doi.org/10.1145/3184558.3191558
http://dx.doi.org/10.1109/WI.2016.0110
http://dx.doi.org/10.1109/ICICCT.2018.8473077
http://dx.doi.org/10.1080/13658816.2012.696649
http://dx.doi.org/10.1007/s11277-014-2082-7
http://dx.doi.org/10.1016/j.datak.2014.11.001
http://dx.doi.org/10.1007/s11036-018-1059-2
https://dl.acm.org/doi/abs/10.1145/3099023.3099092
http://dx.doi.org/10.1016/j.tourman.2005.08.002
http://dx.doi.org/10.1177/1468797619833364
http://dx.doi.org/10.1080/09669582.2019.1683185
http://dx.doi.org/10.1016/j.tmp.2019.02.009
http://dx.doi.org/10.1177/0047287513517423
http://dx.doi.org/10.3727/154427216X14713104855810
http://dx.doi.org/10.1016/j.eswa.2010.09.111
http://dx.doi.org/10.4018/IJWSR.2017100102
http://dx.doi.org/10.12928/telkomnika.v11i4.1209
http://dx.doi.org/10.1109/CCCS.2015.7374144
http://dx.doi.org/10.1108/JHTT-10-2014-0064
http://dx.doi.org/10.1145/2801948.2801970
http://ceur-ws.org/Vol-1618/HAAPIE_paper2.pdf
http://ceur-ws.org/Vol-1618/HAAPIE_paper2.pdf


Future Internet 2021, 13, 2 33 of 37

133. Alghamdi, H.; Zhu, S.; El, S.A. E-tourism: Mobile dynamic trip planner. In Proceedings of the 18th IEEE International Symposium
on Multimedia, Guangzhou, China, 11–13 December 2016; pp. 185–188. [CrossRef]

134. Zheng, Y.; Mobasher, B.; Burke, R. Emotions in Context-Aware Recommender Systems; Available online: https://link.springer.com/ch
apter/10.1007/978-3-319-31413-6_15 (accessed on 1 August 2020).

135. Ekman, P. Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. Available on-
line: https://www.nomos-elibrary.de/10.5771/1865-4789-2015-1-2-68/politische-entscheidungen-muessen-nachvollziehbar-sein
-volume-7-2015-issue-1-2?hitid=4&search-click (accessed on 1 August 2020).

136. Wang, D.; Deng, S.; Xu, G. Sequence-based context-aware music recommendation. Inf. Retr. J. 2018, 21, 230–252. [CrossRef]
137. Moreno, A.; Valls, A.; Isern, D.; Marin, L.; Borras, J. SigTur/E-Destination: Ontology-based personalized recommendation of

Tourism and Leisure Activities. Eng. Appl. Artif. Intell. 2013, 26, 633–651. [CrossRef]
138. Plutchik, R. A psychoevolutionary theory of emotions. Soc. Sci. Inf. 1982, 21. [CrossRef]
139. Sansonetti, G.; Gasparetti, F.; Micarelli, A.; Cena, F.; Gena, C. Enhancing cultural recommendations through social and linked

open data. User Model. User-Adapt. Interact. 2019, 29, 121–159. [CrossRef]
140. Sundermann, C.; Domingues, M.; Sinoara, R.; Marcacini, R.; Rezende, S. Using Opinion Mining in Context-Aware Recommender

Systems: A Systematic Review. Information 2019, 10, 42. [CrossRef]
141. Fogli, A.; Sansonetti, G. Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquitous Comput. 2019, 23.

[CrossRef]
142. Castillo, M.; Clarizia, F.; Colace, F.; Lombardi, M.; Pascele, F.; Santaniello, D. An Approach for Recommending Contextualized

Services in e-Tourism. Information 2019, 10, 180. [CrossRef]
143. Michalakis, K.; Alexandridis, G.; Caridakis, G.; Mylonas, P. Context Incorporation in Cultural Path Recommendation Using Topic

Modelling. In Proceedings of the 1st International Workshop on Visual Pattern Extraction and Recognition for Cultural, Pisa,
Italy, 30 January 2019.

144. Savchuk, V.; Vykyuk, Y.; Pasichnyk, V.; Holoshchuk, R.; Kunanets, N. The Architecture of Mobile Information System for
Providing Safety Recommendations During the Trip. In Proceedings of the 2nd International Conference on Computer Science,
Engineering and Education Applications, Barcelona, Spain, 26–27 January 2020; Volume 938, pp. 493–502. [CrossRef]

145. Kaklauskas, A.; Zavadskas, E.; Bardauskiene, D.; Cerkauskas, J.; Ubarte, I.; Seniut, M.; Dzemyda, G.; Kaklauskaite, M.;
Vinogradova, I.; Velykorusova, A. An Affect-Based Built Environment Video Analytics. Autom. Constr. 2019, 106. [CrossRef]

146. Kaklauskas, A.; Seniut, M.; Zavadskas, E.; Dzemyda, G.; Stankevic, V.; Simkevicius, C.; Ivanikovas, S.; Stankevic, T.; Matuliauskaite,
A.; Zemeckyte, L. Recommender system to analyse students’ learning productivity. In Proceedings of the 2011 3rd International
Asia Conference on Informatics in Control, Automation and Robotics, CAR 2011, Shenzhen, China, 24–25 December 2011; Volume
133 LNEE, pp. 161–164. [CrossRef]

147. Gonzalez, G.; Lopez, B.; De, L.R.J. Managing emotions in smart user models for recommender systems. In Proceedings of the
ICEIS 2004—Proceedings of the Sixth International Conference on Enterprise Information Systems, Porto, Portugal, 14–17 April
2004; pp. 187–194.

148. Tkalcic, M.; Kosir, A.; Tasic, J. Affective recommender systems: The role of emotions in recommender systems. In Proceedings of
the Joint Workshop on Human Decision Making in Recommender Systems, Decisions@RecSys 2011 and User-Centric Evaluation
of Recommender Systems and Their Interfaces-2, UCERSTI 2—Affiliated with the 5th ACM Conference on Recommender Systems,
RecSys 2011, Chicago, IL, USA, 23–26 October 2011; Volume 811, pp. 9–13.

149. Masthoff, J.; Gatt, A. In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender
systems. User Model. User-Adapt. Interact. 2006, 16, 281–319. [CrossRef]

150. Abdul, A.; Chen, J.; Liao, H.; Chang, S. An Emotion-Aware Personalized Music Recommendation System Using a Convolutional
Neural Networks Approach. Appl. Sci. 2020, 8, 1103. [CrossRef]

151. Munoz, S.; Araque, O.; Sánchez-Rada, J.; Iglesias, C. An Emotion Aware Task Automation Architecture Based on Semantic
Technologies for Smart Offices. Sensors 2018, 18, 1499. [CrossRef] [PubMed]

152. Long, J.; Wang, Y.; Yuan, X.; Li, T.; Liu, Q. A Recommendation Model Based on Multi-Emotion Similarity in the Social Networks.
Information 2019, 10, 18. [CrossRef]

153. Ludewig, M.; Jannach, D. Learning to rank hotels for search and recommendation from session-based interaction logs and meta
data. In Proceedings of the 2019 ACM Recommender Systems Challenge Workshop, RecSys Challenge 2019, Held at the 13th
ACM Conference on Recommender Systems, Copenhagen, Denmark, 20 September 2019. [CrossRef]

154. Sun, J.; Wang, G.; Cheng, X.; Fu, Y. Mining affective text to improve social media item recommendation. Inf. Process. Manag. 2015,
51, 444–457. [CrossRef]

155. Hendry; Chen, R.C.; Li, L.H.; Zhao, Q. Using deep learning to learn user rating from user comments. Int. J. Innov. Comput. Inf.
Control 2018, 14, 1141–1149. [CrossRef]

156. Shrivastava, K.; Kumar, S.; Jain, D.K. An effective approach for emotion detection in multimedia text data using sequence based
convolutional neural network. Multimed. Tools Appl. 2019, 78, 29607–29639. [CrossRef]

157. Zangerle, E.; Chen, C.; Tsai, M.; Yang, Y. Leveraging Affective Hashtags for Ranking Music Recommendations. IEEE Trans. Affect.
Comput. 2018. [CrossRef]

158. Muzaffar, S.; Shahzad, K.; Malik, K.; Mahmood, K. Intention mining: A deep learning-based approach for smart devices. J.
Ambient Intell. Smart Environ. 2020, 12, 61–73. [CrossRef]

http://dx.doi.org/10.1109/ISM.2016.76
https://link.springer.com/chapter/10.1007/978-3-319-31413-6_15
https://link.springer.com/chapter/10.1007/978-3-319-31413-6_15
https://www.nomos-elibrary.de/10.5771/1865-4789-2015-1-2-68/politische-entscheidungen-muessen-nachvollziehbar-sein-volume-7-2015-issue-1-2?hitid=4&search-click
https://www.nomos-elibrary.de/10.5771/1865-4789-2015-1-2-68/politische-entscheidungen-muessen-nachvollziehbar-sein-volume-7-2015-issue-1-2?hitid=4&search-click
http://dx.doi.org/10.1007/s10791-017-9317-7
http://dx.doi.org/10.1016/j.engappai.2012.02.014
http://dx.doi.org/10.1177/053901882021004003
http://dx.doi.org/10.1007/s11257-019-09225-8
http://dx.doi.org/10.3390/info10020042
http://dx.doi.org/10.1007/s00779-018-01189-7
http://dx.doi.org/10.3390/info10050180
http://dx.doi.org/10.1007/978-3-030-16621-2_46
http://dx.doi.org/10.1016/j.autcon.2019.102888
http://dx.doi.org/10.1007/978-3-642-25992-0_23
http://dx.doi.org/10.1007/s11257-006-9008-3
http://dx.doi.org/10.3390/app8071103
http://dx.doi.org/10.3390/s18051499
http://www.ncbi.nlm.nih.gov/pubmed/29748468
http://dx.doi.org/10.3390/info10010018
http://dx.doi.org/10.1145/3359555.3359561
http://dx.doi.org/10.1016/j.ipm.2014.09.002
http://dx.doi.org/10.24507/ijicic.14.03.1141
http://dx.doi.org/10.1007/s11042-019-07813-9
http://dx.doi.org/10.1109/TAFFC.2018.2846596
http://dx.doi.org/10.3233/AIS-200545


Future Internet 2021, 13, 2 34 of 37

159. Chen, H.; Xie, H.; Li, X.; Wang, F.; Rao, Y.; Wong, T.L. Sentiment strength prediction using auxiliary features. In Proceedings of
the 26th International World Wide Web Conference, Perth, Australia, 3–7 April 2019; pp. 5–14. [CrossRef]

160. Narducci, F.; De, G.M.; Lops, P. A general architecture for an emotion-aware content-based recommender system. In Proceedings
of the 3rd Workshop on Emotions and Personality in Personalized Systems, Vienna, Austria, 16–20 September 2015; pp. 3–6.
[CrossRef]

161. Alsagri, H.; Ykhlef, M. A framework for analyzing and detracting negative emotional contagion in online social networks. In
Proceedings of the 7th International Conference on Information and Communication Systems, Bangkok, Thailand, 5–7 April
2016; pp. 115–120. [CrossRef]

162. Carta, S.; Corriga, A.; Mulas, R.; Recupero, D.; Saia, R. A Supervised Multi-class Multi-label Word Embeddings Approach for
Toxic Comment Classification. In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management (KDIR-2019), Vienna, Austria, 17–19 September 2019.

163. Dabas, H.; Sethi, C.; Dua, C.; Dalawat, M.; Sethia, D. Emotion classification using EEG signals. In Proceedings of the 2nd
International Conference on Computer Science and Artificial Intelligence, CSAI 2018, New York, NY, USA, 8–10 December 2018;
pp. 380–384. [CrossRef]

164. Hakim, N.L.; Shih, T.K.; Arachchi, S.P.K.; Aditya, W.; Chen, Y.C.; Lin, C.Y. Dynamic Hand Gesture Recognition Using 3DCNN
and LSTM with FSM Context-Aware Model. Sensors 2019, 19, 5429. [CrossRef]

165. Zhu, Y.; Tong, M.; Jiang, Z.; Zhong, S.; Tian, Q. Hybrid feature-based analysis of video’s affective content using protagonist
detection. Expert Syst. Appl. 2019, 128, 316–326. [CrossRef]

166. Yang, S.; Zaki, W.S.W.; Morgan, S.P.; Cho, S.Y.; Correia, R.; Zhang, Y. Blood pressure estimation with complexity features from
electrocardiogram and photoplethysmogram signals. Opt. Quantum Electron. 2020, 52. [CrossRef]

167. Pantic, M.; Rothkrantz, L. Toward an affect-sensitive multimodal human-computer interaction. Proc. IEEE 2003, 91, 1370–1390.
[CrossRef]

168. Scheirer, J.; Fernandez, R.; Klein, J.; Picard, R. Frustrating the user on purpose: A step toward building an affective computer.
Interact. Comput. 2002, 14, 93–118. [CrossRef]

169. Al-Omair, O.; Huang, S. A comparative study on detection accuracy of cloud-based emotion recognition services. In Proceedings
of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 28–30 November 2018;
pp. 142–148. [CrossRef]

170. Kaklauskas, A.; Gudauskas, R.; Kozlovas, M.; Peciure, L.; Lepkova, N.; Cerkauskas, J.; Banaitis, A. An Affect-Based Multimodal
Video Recommendation System. Stud. Inform. Control 2016, 25, 5–14. [CrossRef]

171. Tkalcic, M. Emotions and personality in recommender systems. In Proceedings of the 12th ACM Conference on Recommender
Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 535–536. [CrossRef]

172. Rho, S.; Yeo, S.S. Bridging the semantic gap in multimedia emotion/mood recognition for ubiquitous computing environment. J.
Supercomput. 2013, 65, 274–286. [CrossRef]

173. Hassib, M.; Pfeiffer, M.; Schneegass, S.; Rohs, M.; Alt, F. Emotion actuator: Embodied emotional feedback through electroen-
cephalography and electrical muscle stimulation. In Proceedings of the 2017 ACM SIGCHI Conference on Human Factors in
Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 6133–6146. [CrossRef]

174. Raptis, G.; Fidas, C.; Katsini, C.; Avouris, N. A cognition-centered personalization framework for cultural-heritage content. User
Model. User-Adapt. Interact. 2019, 29, 9–65. [CrossRef]

175. Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983.
[CrossRef]

176. Johnston, E.; Olson, L. The Feeling Brain: The Biology and Psychology of Emotions. Available online: https://psycnet.apa.org/record/2
014-37586-000 (accessed on 1 August 2020).

177. Kaklauskas, A.; Zavadskas, E.K.; Seniut, M.; Dzemyda, G.; Stankevic, V.; Simkevicius, C.; Stankevic, T.; Paliskiene, R.;
Matuliauskaite, A.; Kildiene, S.; et al. Web-based Biometric Computer Mouse Advisory System to Analyze a User’s Emotions
and Work Productivity. Eng. Appl. Artif. Intell. 2011, 24, 928–945. [CrossRef]

178. Ganster, D.; Crain, T.; Brossoit, R. Physiological measurement in the organizational sciences: A review and recommendations for
future use. Annu. Rev. Organ. Psychol. Organ. Behav. 2018, 5, 267–293. [CrossRef]

179. Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K. Wearable-Based Affect Recognition—A Review. Sensor 2019, 19, 79. [CrossRef]
[PubMed]

180. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for
Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [CrossRef]

181. Russell, J.A. A circumplex model of affect. Journal of Personality and Social Psychology. J. Pers. Soc. Psychol. 1980, 39, 1161–1178.
[CrossRef]

182. Odic, A.; Tkalcic, M.; Tasic, J.; Kosir, A. Personality and social context: Impact on emotion induction from movies. In Proceedings
of the 21st Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, 10–14 June 2013; Volume 997.

183. Oliveira, E.; Chambel, T.; Ribeiro, N. Sharing video emotional information in the web. Int. J. Web Portals 2013, 5, 19–39. [CrossRef]
184. Ayata, D.; Yaslan, Y.; Kamasak, M.E. Emotion Based Music Recommendation System Using Wearable Physiological Sensors.

IEEE Trans. Consum. Electron. 2018, 64, 196–203. [CrossRef]

http://dx.doi.org/10.1145/3041021.3054149
http://dx.doi.org/10.1145/2809643.2809648
http://dx.doi.org/10.1109/IACS.2016.7476096
http://dx.doi.org/10.1145/3297156.3297177
http://dx.doi.org/10.3390/s19245429
http://dx.doi.org/10.1016/j.eswa.2019.03.017
http://dx.doi.org/10.1007/s11082-020-2260-7
http://dx.doi.org/10.1109/JPROC.2003.817122
http://dx.doi.org/10.1016/S0953-5438(01)00059-5
http://dx.doi.org/10.1145/3297067.3297079
http://dx.doi.org/10.24846/v25i1y201601
http://dx.doi.org/10.1145/3240323.3241619
http://dx.doi.org/10.1007/s11227-010-0447-6
http://dx.doi.org/10.1145/3025453.3025953
http://dx.doi.org/10.1007/s11257-019-09226-7
http://dx.doi.org/10.1126/science.6612338
https://psycnet.apa.org/record/2014-37586-000
https://psycnet.apa.org/record/2014-37586-000
http://dx.doi.org/10.1016/j.engappai.2011.04.006
http://dx.doi.org/10.1146/annurev-orgpsych-032117-104613
http://dx.doi.org/10.3390/s19194079
http://www.ncbi.nlm.nih.gov/pubmed/31547220
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.4018/ijwp.2013070102
http://dx.doi.org/10.1109/TCE.2018.2844736


Future Internet 2021, 13, 2 35 of 37

185. Sartori, F.; Melen, R.; Redaelli, S. A multilayer intelligent system architecture and its application to a music recommendation
system. In Proceedings of the 17th International Conference on New Trends in Intelligent Software Methodology Tools and
Techniques, Granada, Spain, 26–28 September 2018; Volume 303, pp. 271–284. [CrossRef]

186. Gilda, S.; Zafar, H.; Soni, C.; Waghurdekar, K. Smart music player integrating facial emotion recognition and music mood
recommendation. In Proceedings of the 2nd IEEE International Conference on Wireless Communications, Signal Processing and
Networking, Chennai, India, 22–24 March 2017; Volume 2018, pp. 154–158. [CrossRef]

187. Mahmud, M.; Wang, H.; Fang, H. SensoRing: An Integrated Wearable System for Continuous Measurement of Physiological
Biomarkers. In Proceedings of the 2018 IEEE International Conference on Communications, Kansas City, MO, USA, 20–4 May
2018. [CrossRef]

188. Alvarez, P.; Beltran, J.; Baldassarri, S. DJ-Running: Wearables and Emotions for Improving Running Performance. In Proceedings
of the 1st International Conference on Human Systems Engineering and Design: Future Trends and Applications, Reims, France,
25–27 October 2019; Volume 876, pp. 847–853. [CrossRef]

189. Sergeev, A.; Bilyi, A. Data collection and processing problems in automatic EEG emotion recognition. In Proceedings of the 11th
Majorov International Conference on Software Engineering and Computer Systems, Saint Petersburg, Russia, 12–13 December
2019; Volume 2590.

190. Watson, D.; Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 1985. [CrossRef]
191. Lang, P.; Bradley, M.; Cuthbert, B. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual.

Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-28099-8_42-1 (accessed on 1 August 2020).
192. Marchewka, A.; Zurawski, L.; Jednorog, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction to a novel,

standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 2013. [CrossRef]
193. Qu, Q.X.; Song, Y. Using ubiquitous data to improve smartwatches’ context awareness: A case study applied to develop wearable

products. Int. J. Ad Hoc Ubiquitous Comput. 2020, 33, 1–10. [CrossRef]
194. Roy, S.; Sarkar, D.; De, D. Entropy-aware ambient IoT analytics on humanized music information fusion. J. Ambient Intell.

Humaniz. Comput. 2020, 11, 151–171. [CrossRef]
195. Cena, F.; Likavec, S.; Rapp, A. Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and

Ubiquitous Computing State of the Art and Future Directions. Inf. Syst. Front. 2019, 21, 1085–1110. [CrossRef]
196. Sun, C.; Li, H.; Li, X.; Wen, J.; Xiong, Q.; Zhou, W. Convergence of Recommender Systems and Edge Computing: A Comprehensive

Survey. IEEE Access 2020, 8, 47118–47132. [CrossRef]
197. Beckmann, S.; Lahmer, S.; Markgraf, M.; Meindl, O.; Rauscher, J.; Regal, C.; Gimpel, H.; Bauer, B. Generic sensor framework

enabling personalized healthcare. In Proceedings of the 1st International IEEE Life-Science Conference, Sydney, Australia, 13–15
December 2017; Volume 2018, pp. 83–86. [CrossRef]

198. Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.L. Contextual activity based Healthcare Internet of Things,
Services, and People (HIoTSP): An architectural framework for healthcare monitoring using wearable sensors. Comput. Netw.
2018, 145, 190–206. [CrossRef]

199. Roy, R.; Dietz, L. Modeling Physiological Conditions for Proactive Tourist Recommendations. Available online: https:
//dl.acm.org/doi/abs/10.1145/3345002.3349289 (accessed on 1August 2020).

200. Koelle, M.; Wolf, K.; Boll, S. Beyond LED status lights—Design requirements of privacy notices for body-worn cameras. In
Proceedings of the 12th International Conference on Tangible, Embedded, and Embodied Interaction, Stockholm, Sweden, 18–21
March 2018; pp. 177–187. [CrossRef]

201. Lidynia, C.; Heek, J.V.; Ziefle, M. Nudging vs. Budging - Users’ Acceptance of Nudging for More Physical Activity. In Proceedings
of the AHFE International Conference on Human Factors and Wearable Technologies, 2019 and the AHFE International Conference
on Game Design and Virtual Environments, Washington, DC, USA, 24–28 July 2019; Volume 973, pp. 20–33. [CrossRef]

202. Kumar, G.; Jerbi, H.; Gurrin, C.; O’Mahony, M. Towards activity recommendation from lifelogs. In Proceedings of the 16th
International Conference on Information Integration and Web-Based Applications and Services, Hanoi, Vietnam, 4–6 December
2014; pp. 87–96. [CrossRef]

203. Dharia, S.; Eirinaki, M.; Jain, V.; Patel, J.; Varlamis, I.; Vora, J.; Yamauchi, R. Social recommendations for personalized fitness
assistance. Pers. Ubiquitous Comput. 2018, 22, 245–257. [CrossRef]

204. Issa, H.; Shafaee, A.; Agne, S.; Baumann, S.; Dengel, A. User-sentiment based evaluation for market fitness trackers: Evaluation of
fitbit one, Jawbone up and nike+ fuelband based on Amazon.com customer reviews. In Proceedings of the 1st International
Conference on Information and Communication Technologies for Ageing Well and e-Health, Lisbon, Portugal, 20–22 May 2015;
pp. 171–179.

205. Lopez, B.; Pla, A.; Mordvanyuk, N.; Gay, P. Knowledge representation and machine learning on wearable sensor data: A study
on gait monitoring. In Proceedings of the 1st International Conference on Data Science, E-Learning and Information Systems,
Madrid, Spain, 1–2 October 2018. [CrossRef]

206. Gerdes, M.; Martinez, S.; Tjondronegoro, D. Conceptualization of a personalized ecoach for wellness promotion. In Proceedings
of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May
2017; pp. 365–374. [CrossRef]

207. Toledo, R.Y.; Alzahrani, A.A.; Martinez, L. A Food Recommender System Considering Nutritional Information and User
Preferences. IEEE Access 2019, 7, 96695–96711. [CrossRef]

http://dx.doi.org/10.3233/978-1-61499-900-3-271
http://dx.doi.org/10.1109/WiSPNET.8299738
http://dx.doi.org/10.1109/ICC.2018.8423001
http://dx.doi.org/10.1007/978-3-030-02053-8_128
http://dx.doi.org/10.1037/0033-2909.98.2.219
https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-28099-8_42-1
http://dx.doi.org/10.3758/s13428-013-0379-1
http://dx.doi.org/10.1504/IJAHUC.2020.104707
http://dx.doi.org/10.1007/s12652-019-01261-x
http://dx.doi.org/10.1007/s10796-017-9818-3
http://dx.doi.org/10.1109/ACCESS.2020.2978896
http://dx.doi.org/10.1109/LSC.2017.8268149
http://dx.doi.org/10.1016/j.comnet.2018.09.003
https://dl.acm.org/doi/abs/10.1145/3345002.3349289
https://dl.acm.org/doi/abs/10.1145/3345002.3349289
http://dx.doi.org/10.1145/3173225.3173234
http://dx.doi.org/10.1007/978-3-030-20476-1_3
http://dx.doi.org/10.1145/2684200.2684298
http://dx.doi.org/10.1007/s00779-017-1039-8
http://dx.doi.org/10.1145/3279996.3280041
http://dx.doi.org/10.1145/3154862.3154930
http://dx.doi.org/10.1109/ACCESS.2019.2929413


Future Internet 2021, 13, 2 36 of 37

208. Maghawry, N.; Ghoniemy, S. A proposed internet of everything framework for disease prediction. Int. J. Online Biomed. Eng.
2019, 15, 20–27. [CrossRef]

209. Gautam, B.; Basava, A.; Singh, A.; Agrawal, A. When and where?: Behavior dominant location forecasting with micro-blog
streams. In Proceedings of the 18th IEEE International Conference on Data Mining Workshops, Singapore, 17–20 November 2018;
pp. 1178–1185. [CrossRef]

210. Cena, F.; Rapp, A.; Likavec, S.; Marcengo, A. Envisioning the Future of Personalization Through Personal Informatics: A User
Study. Int. J. Mob. Hum. Comput. Interact. 2018, 10, 52–66. [CrossRef]

211. Ge, M.; Massimo, D.; Ricci, F.; Zini, F. Integrating wearable devices into a mobile food recommender system. In Proceedings of
the 7th International Conference on Mobile Computing, Applications, and Services, Kraków, Poland, 12–13 November 2015;
Volume 162, pp. 335–337.

212. Yoo, H.; Chung, K. Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer-
Netw. Appl. 2018, 11, 1309–1320. [CrossRef]

213. Munoz, J.; Cameirao, M.; Bermudez, i.B.S.; Rubio, G.E. Closing the loop in exergaming—Health benefits of biocybernetic
adaptation in senior adults. In Proceedings of the 5th ACM SIGCHI Annual Symposium on Computer-Human Interaction in
Play, Ottawa, ON, Canada, 28–31 October 2018; pp. 329–339. [CrossRef]

214. Xu, C.; Zhu, J.; Huang, J.; Li, Z.; Fung, G. A health management tool based smart phone. Multimed. Tools Appl. 2017,
76, 17541–17558. [CrossRef]

215. Chow, V.; Sung, K.; Meng, H.; Wong, K.; Leung, G.; Kuo, Y.H.; Tsoi, K. Utilizing real-time travel information, mobile applications
and wearable devices for smart public transportation. In Proceedings of the 7th International Conference on Cloud Computing
and Big Data, Sydney, Australia, 16–18 November 2016; pp. 138–144. [CrossRef]

216. Yingling, L.R.; Brooks, A.T.; Wallen, G.R.; Peters-Lawrence, M.; McClurkin, M.; Cooper-McCann, R.; Kenneth L.J.; Mitchell,
V.; Saygbe, J.N.; Johnson, T.D.; et al. Community Engagement to Optimize the Use of Web-Based and Wearable Technology
in a Cardiovascular Health and Needs Assessment Study: A Mixed Methods Approach. JMIR Mhealth Uhealth 2016, 4, 38–55.
[CrossRef]

217. Akbar, F.; Mark, G.; Pavlidis, I.; Gutierrez-Osuna, R. An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress
Detection in Computer Work. Sensors 2019, 19, 3766. [CrossRef]

218. Barile, N.; Sugiyama, S. The Automation of Taste: A Theoretical Exploration of Mobile ICTs and Social Robots in the Context of
Music Consumption. Int. J. Soc. Robot. 2015, 7, 407–416. [CrossRef]

219. Brusie, T.; Fijal, T.; Keller, A.; Lauff, C.; Barker, K.; Schwinck, J.; Calland, J.; Guerlain, S. Usability evaluation of two smart glass
systems. In Proceedings of the 2015 Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 24
April 2015; pp. 336–341. [CrossRef]

220. Nguyen, T.; Nguyen, D.; Iqbal, S.; Ofek, E. The known stranger: Supporting conversations between strangers with personalized
topic suggestions. In Proceedings of the 33rd Annual CHI Conference on Human Factors in Computing Systems, Glasgow, UK,
18–23 April 2015; pp. 555–564. [CrossRef]

221. Fujita, S.; Yamamoto, K. Development of Dynamic Real-Time Navigation System. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 116–130.
[CrossRef]

222. Koh, W.; Kaliappan, J.; Rice, M.; Ma, K.T.; Tay, H.; Tan, W. Preliminary investigation of augmented intelligence for remote
assistance using a wearable display. In Proceedings of the 2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November
2017; pp. 2093–2098. [CrossRef]

223. Demir, F.; Ahmad, S.; Calyam, P.; Jiang, D.; Huang, R.; Jahnke, I. A Next-Generation Augmented Reality Platform for Mass
Casualty Incidents (MCI). J. Usability Stud. 2017, 12, 193–214.

224. Tanenbaum, K.; Hatala, M.; Tanenbaum, J.; Wakkary, R.; Antle, A. A case study of intended versus actual experience of adaptivity
in a tangible storytelling system. User Model. User-Adapt. Interact. 2014, 24, 175–217. [CrossRef]

225. Fergus, P.; Hussain, A.J.; Hearty, J.; Fairclough, S.; Boddy, L.; Mackintosh, K.; Stratton, G.; Ridgers, N.; Al-Jumeily, D.; Aljaaf, A.J.;
Lunn, J. A machine learning approach to measure and monitor physical activity in children. Neurocomputing 2017, 228, 220–230.
[CrossRef]

226. Mario, M.O. Human Activity Recognition Based on Single Sensor Square HV Acceleration Images and Convolutional Neural
Networks. IEEE Sens. J. 2019, 19, 1487–1498. [CrossRef]

227. Murakami, M.; Sakamoto, T.; Kato, T. Music retrieval and recommendation based on musical tempo. In Proceedings of the
AHFE International Conference on Affective and Pleasurable; Sheraton Times Square, NY, USA, 21–25 July 2018; Volume 774,
pp. 362–367. [CrossRef]

228. Nirjon, S.; Dickerson, R.; Li, Q.; Asare, P.; Stankovic, J.; Hong, D.; Zhang, B.; Jiang, X.; Shen, G.; Zhao, F. MusicalHeart: A hearty
way of listening to music. In Proceedings of the 10th ACM Conference on Embedded Networked Sensor Systems, SenSys 2012,
Toronto, ON, Canada, 6–9 November 2012; pp. 43–56. [CrossRef]

229. Douglas, M.D. Machine intelligence in cardiovascular medicine. Cardiol. Rev. 2020, 28, 53–64. [CrossRef]
230. Zhang, M.; Dumas, G.; Kelso, J.A.S.; Tognoli, E. Enhanced emotional responses during social coordination with a virtual partner.

Int. J. Psychophysiol. 2016, 104, 33–43. [CrossRef]
231. Kalaganis, F.P.; Adamos, D.A.; Laskaris, N.A. Musical NeuroPicks: A consumer-grade BCI for on-demand music streaming

services. Neurocomputing 2018, 280, 65–75. [CrossRef]

http://dx.doi.org/10.3991/ijoe.v15i04.9834
http://dx.doi.org/10.1109/ICDMW.2018.00169
http://dx.doi.org/10.4018/IJMHCI.2018010104
http://dx.doi.org/10.1007/s12083-017-0620-2
http://dx.doi.org/10.1145/10.1145/3242671.3242673
http://dx.doi.org/10.1007/s11042-016-4220-6
http://dx.doi.org/10.1109/CCBD.2016.036
http://dx.doi.org/10.2196/mhealth.4489
http://dx.doi.org/10.3390/s19173766
http://dx.doi.org/10.1007/s12369-015-0283-1
http://dx.doi.org/10.1109/SIEDS.2015.7117000
http://dx.doi.org/10.1145/2702123.2702411
http://dx.doi.org/10.14569/IJACSA.2016.071116
http://dx.doi.org/10.1109/TENCON.2017.8228206
http://dx.doi.org/10.1007/s11257-013-9140-9
http://dx.doi.org/10.1016/j.neucom.2016.10.040
http://dx.doi.org/10.1109/JSEN.2018.2882943
http://dx.doi.org/10.1007/978-3-319-94944-4_39
http://dx.doi.org/10.1145/2426656.2426662
http://dx.doi.org/10.1097/CRD.0000000000000294
http://dx.doi.org/10.1016/j.ijpsycho.2016.04.001
http://dx.doi.org/10.1016/j.neucom.2017.08.073


Future Internet 2021, 13, 2 37 of 37

232. Pozo, M.; Chiky, R.; Meziane, F.; Métais, E. Exploiting Past Users’ Interests and Predictions in an Active Learning Method for
Dealing with Cold Start in Recommender Systems. Informatics 2018, 5, 35. [CrossRef]

233. Asthana, S.; Megahed, A.; Strong, R. A Recommendation System for Proactive Health Monitoring Using IoT and Wearable
Technologies. In Proceedings of the 6th IEEE International Conference on AI and Mobile Services, Honolulu, HI, USA, 25–30
June 2017; pp. 14–21. [CrossRef]

234. Yang, S.; Zhou, P.; Duan, K.; Hossain, M.S.; Alhamid, M.F. emHealth: Towards Emotion Health Through Depression Prediction
and Intelligent Health Recommender System. Mob. Netw. Appl. 2018, 23, 216–226. [CrossRef]

235. Otebolaku, A.M.; Andrade, M.T. User context recognition using smartphone sensors and classification models. J. Netw. Comput.
Appl. 2016, 66, 33–51. [CrossRef]

236. Reichherzer, T.; Timm, M.; Earley, N.; Reyes, N.; Kumar, V. Using machine learning techniques to track individuals & their fitness
activities. In Proceedings of the 32nd International Conference on Computers and Their Applications, San Diego, CA, USA,
20–22 March 2017; pp. 119–124.

237. Moocarme, M.; Abdolahnejad, M.; Bhagwat, R. The Deep Learning with Keras Workshop. Available online: https://courses.packtpub
.com/courses/deep-learning-with-keras (accessed on 1 August 2020).

238. Arteaga, D.; Arenas, J.; Paz, F.; Tupia, M.; Bruzza, M. Design of information system architecture for the recommendation of tourist
sites in the city of Manta, Ecuador through a Chatbot. In Proceedings of the 14th Iberian Conference on Information Systems and
Technologies, Coimbra, Portugal, 19–22 June 2019. [CrossRef]

239. Acharya, A.; Sneha, Y.; Khettry, A.; Patil, D. AtheNA an avid traveller using LSTM based RNN architecture. J. Eng. Sci. Technol.
2020, 15, 1413–1428.

240. Van, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010. [CrossRef]
241. Ribeiro, F.; Metrolho, J.; Leal, J.; Martins, H.; Bastos, P. A mobile application to provide personalized information for mobility

impaired tourists. In Proceedings of the 6th World Conference on Information Systems and Technologies, Naples, Italy, 27–29
March 2018; Volume 746, pp. 164–173. [CrossRef]

242. Ribeiro, F.R.; Silva, A.; Barbosa, F.; Silva, A.P.; Metrolho, J.C. Mobile applications for accessible tourism: Overview, challenges and
a proposed platform. Inf. Technol. Tour. 2018, 19, 29–59. [CrossRef]

243. Massimo, D.; Not, E.; Ricci, F. User behaviour analysis in a simulated IoT augmented space*. In Proceedings of the 23rd
International Conference on Intelligent User Interfaces, Tokyo, Japan, 7–11 March 2018. [CrossRef]

http://dx.doi.org/10.3390/informatics5030035
http://dx.doi.org/10.1109/AIMS.2017.11
http://dx.doi.org/10.1007/s11036-017-0929-3
http://dx.doi.org/10.1016/j.jnca.2016.03.013
https://courses.packtpub.com/courses/deep-learning-with-keras
https://courses.packtpub.com/courses/deep-learning-with-keras
http://dx.doi.org/10.23919/CISTI.2019.8760669
http://dx.doi.org/10.1007/s11192-009-0146-3
http://dx.doi.org/10.1007/978-3-319-77712-2_16
http://dx.doi.org/10.1007/s40558-018-0110-2
http://dx.doi.org/10.1145/3180308.3180316

	Introduction
	Materials and Methods
	Dataset Collection
	Review Methodology

	Recommender Systems
	Content-Based Filtering
	Collaborative Filtering
	Knowledge-Based
	Tourist Context
	Context-Aware
	Emotion-Based
	Sentiment Analysis-Based
	Evaluation of Recommender

	Emotion Recognition
	Emotion Models
	Emotion Measurements

	Wearable Technology
	Devices
	Sensors

	Machine Learning
	Classification
	Clustering
	Deep Learning

	Clusters Mapping
	Discussion
	Conclusions
	References

