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Abstract: Network function virtualization (NFV) provides flexible and scalable network function
for the emerging platform, such as the cloud computing, edge computing, and IoT platforms, while
it faces more security challenges, such as tampering with network policies and leaking sensitive
processing states, due to running in a shared open environment and lacking the protection of
proprietary hardware. Currently, Intel® Software Guard Extensions (SGX) provides a promising
way to build a secure and trusted VNF (virtual network function) by isolating VNF or sensitive data
into an enclave. However, directly placing multiple VNFs in a single enclave will lose the scalability
advantage of NFV. This paper combines SGX and click technology to design the virtual security
function architecture based on multiple enclaves. In our design, the sensitive modules of a VNF are
put into different enclaves and communicate by local attestation. The system can freely combine these
modules according to user requirements, and increase the scalability of the system while protecting
its running state security. In addition, we design a new hot-swapping scheme to enable the system to
dynamically modify the configuration function at runtime, so that the original VNFs do not need
to stop when the function of VNFs is modified. We implement an IDS (intrusion detection system)
based on our architecture to verify the feasibility of our system and evaluate its performance. The
results show that the overhead introduced by the system architecture is within an acceptable range.

Keywords: NFV; SGX; enclave; hot swapping; click

1. Introduction

In traditional solutions, network functions (NF) are usually deployed in proprietary
hardware devices. They are increasingly unable to meet the flexible and scalable require-
ments for the emerging platform, such as cloud computing, edge computing, 5G [1],
and Internet of Things. Network function virtualization (NFV) [2] as a new type of network
technology can meet these challenges. NFV refers to the use of standard IT virtualization
technology to implement network functions in software and deploy on general purpose
servers, switches, and storage. Security function virtualization (SFV) has also been pro-
posed to provide agile security functions. Although the simplicity and low cost of NFV
accelerate the innovation and market speed of network products, VNFs (virtual network
functions), especially virtual security functions, face more security challenges [3,4] than tra-
ditional network functions because VNFs typically operate in a shared, open environment,
away from the protection of proprietary hardware. Insiders have malicious access to sensi-
tive information such as virtual network function (VNF) codes and states. Moreover, there
is an isolation problem in the NFV architecture itself. Attackers may steal and damage the
data of other virtual machines through VM escape. Recently, Software Guard Extensions
(SGX) [5] proposed by Intel has provided a promising way to solve the security issues of
VNF [6,7]. SGX only trusts the CPU. Even the operating system, driver, BIOS, or virtual
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machine monitor (VMM) cannot access the data and code in the enclave. Therefore, the
VNF can be put into the enclave to ensure its runtime security.

However, previous works [6,8,9] place multiple VNFs in a single SGX enclave which
loses the scalability advantage of NFV. First, users cannot scale in/out a single network
function because multiple VNFs run in an enclave as a whole. Then, users cannot dynam-
ically modify network functions because the network functions protected by SGX need
to be recompiled and redeployed once they are modified. Finally, it makes it difficult to
combine new security services by using the existing modules due to the monolithic design
with a single enclave.

To address these issues, we propose a multi-enclave-based virtual security function
architecture by using the security features of SGX and the modularity of Click [10], which is
a new software architecture for building flexible and configurable network middle-boxes.
In our architecture, the virtual security functions are decomposed into many small elements
and modules and then put into multiple enclaves to provide strong confidentiality and
integrity guarantees. The system can freely combine these modules according to user
requirements, and increase the scalability of the system while protecting its code and
running state security. In addition, we design a new hot-swapping scheme to enable the
system to dynamically modify the configuration function at run time, so that the original
VNFs do not need to stop when the function of VNFs is modified. We implement an
intrusion detection system (IDS) based on our architecture to verify the feasibility of our
system and evaluate its performance. The results show that the overhead introduced by
the system architecture is within an acceptable range.

To our knowledge, our work firstly designs and implements a multi-enclave-based
virtual security function architecture to enable the VNFs to be scaled dynamically with
enclave protection. In this work, we make the following contributions.

(1) Propose a multi-enclave-based virtual security function architecture so that the
different modules running inside enclaves can be freely combined to new security service
according to user requirements.

(2) Design a new hot-swapping scheme to enable users to dynamically modify the
configuration of VNFs at runtime without stopping the original VNFs when the function
of VNFs is modified.

(3) Implement an IDS based on our architecture and evaluate its performance. The re-
sults show that the overhead introduced by the system architecture is within an accept-
able range.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 describes SGX technology and Click. Section 4 presents the system architecture
and key approaches. Section 5 introduces the implementation of our system. The evaluation
of the system is depicted in Section 6. Section 7 concludes this paper.

2. Related Work

Some research efforts have been devoted to building trusted VNFs. Marku et al. [11]
provide a summary of current techniques for establishing trusted NFVs, and summarize
two approaches to protecting NFVs in terms of cryptographic or trusted hardware-based
mechanisms. ESTI [2] proposes to provide trusted protection based on HSM (hardware
security module), TPM (trusted platform module) [12], and vTPM (virtual trusted platform
module) [13]. NetBricks [14] leverages a safe language (Rust) and LLVM [15] to build a zero
copy soft isolation. It provides memory isolation software by using type safe language and
achieves high performance by adopting LLVM as an optimization back-end of compilers.
NetBricks can also ensure that only a single NF can access a packet, so as to guarantee
the packet isolation in common cases. OpenNetVM [16] runs NFs in lightweight Docker
containers based on the NetVM architecture. It provides NF isolation through container
mechanisms, such as namespace and capability.
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In recent years, with the rise of SGX technology, using SGX to protect VNF has also
become a hot research direction. SGX can isolate network functions and sensitive data into
a secure container called enclave.

Coughlin et al. [8] first proposed a new idea of using SGX to protect a virtual network
function. The article proposed to put Click elements into an enclave to provide run-time
isolation and compare the performance overhead of using SGX. Wang et al. [17] analyzed
the security challenge of using SGX to protect VNF. To improve system performance, a
lightweight trusted implementation framework for protecting VNF was proposed based
on SGX and Click, and a fine-grained state migration mechanism was presented. In order
to verify the feasibility of the framework, the article implements a DDoS detection system
based on their architecture. SafeBricks [6] proposed to put all VNFs into an enclave and use
the security features of the Rust language for memory isolation of the VNF, thereby avoiding
the performance overhead between multiple enclaves. S-NFV [9] uses SGX to design a new
architecture to provide integrity protection for NFVs outsourcing. It ensures the stateful
security of NFVs and proposes a remote attestation approach to allow remote parties
to confirm the security of the VNF. Slick [18] proposed a secure middleware framework
for deploying high-performance VNFs on untrusted commercial servers. Slick designs
and implements various VNFs based on Click and runs on top of the Scone architecture.
Scone [19] is a secure Docker container based on SGX that supports user-level threads
and asynchronous system calls to reduce the performance overhead caused by thread
synchronization and system calls in enclaves. Slick also optimizes its performance to keep
the system’s native throughput and latency.

In a word, these solutions combine the security features of NFV technology and SGX in
all aspects and provide a solution for protecting VNF. However, the above work puts VNFs
into a single enclave that affects the scalability of NFVs because users cannot scale in/out a
single VNF. In addition, none of the above work supports the dynamic reconfiguration at
run-time when the original VNFs need to be modified.

Compared with the previous work, we propose a virtual security function architecture
based on multiple enclaves to ensure the security and scalability of VNFs. In our system,
the sensitive modules of VNF can be put in different enclaves and communicate by local
attestation so as to improve the scalability of the system while providing run-time security
protection for VNFs. In addition, we present a new hot-swapping mechanism to enable the
system to be reconfigured at run time without stopping the whole system.

3. Background
3.1. SGX

SGX (Intel® Software Guard Extensions, [5,20]) is a new CPU-based trusted execution
environment technology with the goal of implementing advanced protection for confiden-
tiality and integrity. The overall architecture of SGX is shown in Figure 1. It allocates the
hardware-protected memory for an application code and data in which an isolated enclave
runs [21]. The data in the enclave memory space can only be accessed by code that is also
located in the enclave memory space. The privileged software such as the virtual machine
monitor (VMM), BIOS, and even the operating system outside the enclave cannot directly
access sensitive data and code inside the enclave. SGX has certain hardware limitations
on the size of the protected memory, usually up to 128MB (the available memory for user
data only is ≈93 M) [22]. Therefore, the number of enclaves running in protected memory
is also limited. The use case shows that there are typically 5–20 enclaves that reside in
memory, at the same time depending on the memory usage of each enclave. Enclave can
be called with special instructions.

The SGX architecture includes 17 new instructions, new processor architecture, and
new execution mode. SGX loads the enclave into the protected memory, accesses re-
sources through page table mapping, and executes the enclave application. The system
software still maintains control of the enclave’s access to resources. The entire appli-
cation can be packaged into an enclave, or it can be decomposed into multiple small
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components, and only the critical security components are placed in the enclave. Due to
the limitation of SGX memory size, the latter is our commonly used enclave application
development method.
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Figure 1. Architecture description of Software Guard Extensions (SGX).

EPC. In order to achieve memory protection, SGX requires new hardware and struc-
ture. The enclave pages and SGX structures are stored in a protected memory called the
enclave page cache (EPC). EPC is protected by both hardware and software and is divided
into many EPC pages, each of which is a 4 KB block. Inside the EPC, there are many
different enclaves running when an enclave accesses memory in the EPC; whether to allow
access is determined by the CPU processor. The access control information for each page in
the EPC is maintained in a hardware structure called the enclave page cache map (EPCM)
in the processor.

Enclave created. The enclave binary is loaded into the EPC and an identity for the
enclave binary is established in the creation process. The creation of the enclave includes
the following steps: initialize the enclave control structure, allocate EPC pages and load the
contents of the enclave into the pages, measure enclave content, and eventually establish
the enclave identity.

Enclave exit and entry. The most important thing to maintain the confidentiality and
integrity of the enclave is to control the data into and out of the enclave. The entry process
needs to clear all caches transfers associated with the enclave address area. All memory
accesses in enclaves need to be properly checked. The entry process must confirm that
the processor is inside the enclave, and the processor should transfer control and enable
the enclave execution mode. Before exiting the security zone, all cache translations in the
protected area must be cleared, so that other software cannot use the cache translation to
access the protected memory area of the enclave.

Interrupts, faults, or anomalies may occur when operating in enclave mode. The pro-
cessor can pass the specific fault handling program through the system software tradition-
ally. The fault handler saves the register states, and once the event is processed, the system
software will restore the register state and return control to the point of interruption. SGX
places the system software within the enclave’s trust boundary to allow the system software
to read and modify the enclave’s registration status. Therefore, a new routine is introduced
in SGX to protect the integrity and confidentiality of the enclave.

Intel SGX provides special instructions to enter and exit the enclave: EENTER and
EEXIT. When an enclave exits, the processor will call a special internal routine called
asynchronous exit (AEX), which retains the enclave’s register states, clears the register,
and sets the address of the error instruction to the value defined by EENTER. The ERESUME
instruction is used to restore the state and allow the enclave to continue execution.

SGX attestation. SGX offers two attestation mechanisms-local and remote. Local attes-
tation is used between two enclaves running on the same platform. This paper uses local
attestation to ensure that multiple enclaves run on the same platform and transmit informa-
tion between multiple enclaves through a secure channel established by local attestation.
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3.2. Click

Click [10] is a famous modular routing software architecture proposed by MIT uni-
versity to build flexible and configurable routers. It provides a modular router, allowing
us to compose different elements for easily building different VNFs. Click consists of
fine-grained packet processing modules called elements, each of which implements simple
packet processing functions, such as packet classification, queuing, scheduling, and inter-
face with network devices. Based on the modular and scalable architecture, users can also
write new elements or combine existing elements according to their own needs. Click is
extended as a Linux module on general purpose PC hardware. On the 700 MHz Pentium
III, Click can achieve a maximum lossless forwarding rate of 333,000 64-byte packets per
second. This is about four times the standard Linux router on the same hardware. It proves
that Click’s modularity and flexibility are compatible with good performance.

The Click architecture is inspired by router properties in several ways. First, the packet
switching along the connection can be initiated by the source (push processing) or the
destination (pull processing). This allows for a clear simulation of the packet flow patterns
of most routers, while pull processing can write a combinable packet scheduler. Second,
the flow-based router context mechanism allows elements to automatically locate other
elements it depends on. These features make individual elements more powerful and
configurations easier to write.

The element is the basic unit of packet processing in Click. Each Click element
is often only responsible for a single routing function, and each element has multiple
entries and exits. Multiple elements can be connected to each other’s gateways to form a
complex network function using Click’s own configuration language. These connections
that implement complex network functions are typically stored in a configuration file.
Click can complete the initialization and operation of the network function by parsing the
configuration file.

The most important attributes of the element are as follows.
Element class. Each Click element belongs to an element class. It specifies the config-

uration of the element, initialization, number of exits and entries, and processing of the
packet. In addition to the underlying element class, Click also has a number of other compo-
nents built into it for developers to implement a user-defined element after implementing
these basic virtual functions.

Port. Elements can have any number of input and output ports. Each connection
goes from the output port on one element to the input port on another element. Different
ports can have different semantics. For example, by default, the second output port of each
element is used to send the wrong packet.

Configuration string. Each element of Click needs to be configured successfully before
it can be properly initialized. The configuration string usually includes all the parameters
required for element initialization and the private state of each element. Elements can be
initialized by reading this information from the configuration file.

The new element is created in Click by defining a new class, and the input ports,
output ports, and configuration strings are modified according to the function. Figure 2
shows how we diagram properties for a single element, EleClass(3). The triangular port is
input port and rectangular ports are output ports. EleClass receives data from the input
port and sends the processed data to two output ports. The ’3’ in the brackets represents
the configuration string of EleClass, which represents the total number of input and output
ports (3).

EleClass(3) output portsinput port

element class

configuration string

FromDevice ToDevice
 Packet 
Transform

enclave

Manager

Detector Actor

Policy

Preprocessor

a) A sample element

b) Basic structure of Click protected by SGX

Figure 2. A sample element in Click.
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The Click configuration is written in a simple Click language that consists of two
important structures: a declaration to create elements and a connection. Among them, the
connection statement defines the flow of packets between elements. The Click language
contains an abstraction mechanism called composite elements that allows users to define
their own element classes. A composite element is a configuration fragment of a router
that behaves like an element class. Composite elements can have any number of push/pull
characteristics. At initialization, each use of the composite element is compiled into a
corresponding collection of simple elements.

Click provides a number of basic packet processing elements, such as checking packet
length, packet classification, packet fragmentation, and reassembly, receiving packets from
the network card, constructing packets and controlling the number and rate of packet
transmissions, dropping packets, etc. In recent years, more and more researchers have used
Click’s modular architecture to build many useful middleware platforms [18,23–26].

4. System Design
4.1. System Structure

Our goal is to design and implement a multi-enclave-based virtual security function
architecture based on SGX and Click technology. Click itself can build complex network
functions through many small elements with packet processing capabilities, and Click
supports developers to design new elements according to their own requirements. In
order to ensure the security of VNF, we use SGX technology to protect the VNF in the
enclave. However, if we completely adopt the Click architecture, and put each element
in a separate enclave, there will be too many enclaves, which has large EPC memory and
communication costs, although it can retain its modular advantages. According to our
testing, packet transmission across enclaves can result in significant performance overhead.
When the number of enclaves is too large, the frequency of packets entering and leaving the
enclave is too large, which causes a lot of overhead. Therefore, this paper proposes to split
the overall VNF into multiple small modules according to the packet type and put them
into a single enclave to protect them. Each module is responsible for one feature of packet
processing, and these modules can be freely combined based on user requirements. At this
point, the frequency of data packets entering and leaving the enclave is much smaller than
that of the small element combination, which not only ensures the runtime security of the
VNF but also retains the modular advantage of Click to some extent.

Figure 3 shows the overall architecture of a virtual security function based on multiple
enclaves. The architecture consists of a whole VNF composed of multiple enclaves, local
attestation module, manager module, Log module, system call lib, socket, DPDK, and NICs.

Figure 3. System Architecture.
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Due to the limitations of SGX technology [22], it is impractical to protect all the data
in SGX and we need to classify the data. The architecture is mainly divided into trusted
parts, untrusted parts, and NICs. Among them, the conversion between the trusted part
and the untrusted part needs to perform data interaction through the encapsulated ecall
and ocall of SGX. Ecall and ocall are key factors in the performance of SGX. When the
number of enclaves is too many, the frequent entry and exit of enclaves will cause a lot
of extra overhead. Therefore, we need to control the number of enclaves to ensure high
performance. Ecall is the function call performed by the untrusted part to enter an enclave,
passing some arguments and/or expecting a return value. In addition, ocall is the function
call performed by the enclave to call back to the untrusted part, passing some arguments
and/or expecting a return value.

The manager is a key part of the system and responsible for the secure boot of the
system, mainly including the command line parameters parsing, the enclave configuration
and initialization, the overall operation of the control system, and a management of the
enclave life cycle. The Manager has both trusted and untrusted parts, including the Config-
ure file stored in the trusted part and the hot swapping in the untrusted part to support
hot swapping. The NICs represent network interface controllers, which are responsible for
receiving data frames sent by other devices on the network and reassembling the frames
into packets.

4.1.1. Trusted Part

The trusted part is mainly composed of an overall VNF module, configure and local
attestation. The configuration file stores the configuration information of the virtual net-
work function. The Manager can read the configuration file through ecall and parse the file
according to the file. The local attestation module is mainly responsible for the authentica-
tion between multiple enclaves to ensure that it runs on the same platform, which is also
responsible for the transmission of information between multiple enclaves. This module
also provides a cryptographic function library to encrypt and decrypt sensitive packets.

In addition, an overall VNF consists of multiple modules. In our architecture, the sen-
sitive modules of a VNF should run in the different enclaves. This architecture has three
advantages. Firstly, it can keep sensitive modules secure and prevent sensitive data leakage.
Secondly, it can increase the scalability of the system. Thirdly, since our architecture decom-
poses an overall VNF into several separately deployable and smaller elements, different
elements can be reused to reduce code redundancy, which can further reduce the size of
enclave usage. When enclaves are larger than the total memory available to the enclave
page cache (EPC), EPC paging provided by SGX can evict the rarely used memory pages to
DRAM pages outside the PRM (processor reserved memory) range with encrypted mode.
As shown in Figure 3, the sensitive modules of IDS, such as DNSAnalyzer, HTTPAnalyzer,
FTPAnalyzer, and packet classifier, are running in different enclaves. These enclaves are
freely combined through the Click configuration language and stored in the configure mod-
ule. The enclave also includes a Handler module. The Handler includes a read Handler
and a write Handler. The read Handler can be used to read the information in the enclave.
The write Handler can be used to dynamically modify the configuration parameters inside
the enclave.

4.1.2. Untrusted Part

The untrusted part includes system call library, socket module, DPDK, and log module.
Among them, log module is responsible for recording the log information during the
processing of the data packet. The DPDK is primarily responsible for reading the encrypted
packets from the NICs queue and put into untrusted memory by polling. The system call
library includes multiple ecalls and ocalls functions, which are mainly responsible for the
conversion between the trusted part and the untrusted part of the system. The socket
module is primarily responsible for communication.
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4.2. Secure Boot

The Manager is the core of the system and is responsible for the secure startup of
the system, including configuration file parsing, enclave creation and destruction, and
dynamic configuration modification. The Manager is mainly composed of Manager_Main
(untrusted) and Manager_Enclave (trusted). The Manager_Main is responsible for the static
initialization of Click and the parsing of command line parameters and the configuration
file. The Manager_Enclave is used to protect the lexer (lexer is used to parse Click configu-
ration files) creation, routing generation, elements connection, etc. In order to ensure the
security of the configuration file, we use the SGX seal and unseal functions to seal it. Hence,
Manager_Main will ecall into Manager_Enclave to perform configuration file parsing, lexer,
element and port connections.

Figure 4 is a flow chart of the secure boot. When the system starts executing, the
Manager_Main first initializes the Click static route, which is mainly responsible for the
initialization of parameter types and routing parameters, and the initialization of the global
Handler. Then the Manager will read the command line parameters and the configuration
file encrypted by SGX seal to see if other functions are needed for this operation, such as
whether hot swapping is supported. Next, the Manager will enter Manager_Enclave via an
ecall. Manager_Enclave first unseals the configuration file, then reads the configuration
and parses the configuration file. Manager_Enclave creates a lexer and converts the
configuration file to a String type and passes it as a parameter to the lexer. The lexer creates
a route, then extends the route based on the passed String parameters, sorts and adds
elements and port connections. At this point, Manager_Enclave is executed internally, and
the system will return to Manager_Main to continue execution. Next, the system traverses
the entire route according to the order and configures each element. The configuration
of each element creates an associated enclave, and multiple enclaves need to be locally
authenticated to ensure that they each run on the same platform. This includes local
attestation between enclaves and local attestation between them and Manager_Enclave.
After the local attestation is successful, the Manager_Enclave will communicate with the
enclave running the functions in turn, and perform the configuration and initialization
of the functions in each enclave in this order. In addition, the functions running inside
each enclave are composed of multiple elements of Click. Therefore, when the function in
the enclave is initialized, the enclave internally generates routes, adds elements and port
connections, and executes the elements in turn.

4.3. Hot Swapping

Click provides support for hot swapping [10]. Hot swapping means that when the
system processes packets according to its configuration, the user can dynamically modify
the configuration (such as adding new elements, etc.) without stopping the system. If the
new configuration is resolved correctly, the new configuration will automatically take over
the states of the old configuration and continue processing the packet, for example, any
queued packets will be moved to the new configuration. In this way, Click can implement
the function of dynamically modifying the configuration without terminating the operation.

Hot swapping can modify (add or delete) elements in the configuration file by creat-
ing new routes, hence you need to establish communication through the “ControlSocket
element (an element opens control sockets for other programs)” and pass the modified
configuration information for Click resolution. When we use SGX to guarantee the run-
time security of the elements, it will inevitably cause losing the dynamic configuration
modification function of Click. In this paper, we propose a new hot swapping mecha-
nism based on SGX and Click technology to keep the system to dynamically configure
without termination.
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Figure 5 is a flow chart of the system hot swapping. When a user needs to use the hot
swap function to dynamically modify the configuration, they first add a parameter, such as
-r, and add the ControlSocket element to the configuration file (declare the connection,
type and port number). When the system starts running, it first reads the command
line parameters. According to whether the command line has the -r parameter, it is
determined whether the configuration needs to support the hot swap function. If there is a
-r parameter, the system will add a global write Handler in the Manger main (global write
Handler including element name, Handler name, user data, etc.). After the Handler is
added, the Handler is stored as a global Handler to dynamically modify the configuration
file through the Handler. The system then begins routing initialization. After the route
initialization is complete, the old configuration begins to run normally. At this point, on
the one hand, the system routes the packet through the old configuration. On the other
hand, the ControlSocket in the old configuration is always listening for the connection.
When the user needs to use the hot swap function to modify the running old configuration
file, a new terminal is connected to the port of the old configuration that is running
through the ControlSocket, and the new configuration is sent to the old system through
the ControlSocket connection. When the old system listens to the new connection, it first
parses the new command, matches the parsed Handler with the stored Handler according
to the Handler name, and if the matching is successful, it creates a new lexer and route,
parses the new configuration, and connect the elements and ports. In addition, the enclave
as a Click element is created, configured, and initialized in order based on the contents of
the new configuration file. After all the enclaves in the new configuration are initialized,
the system will destroy the last route used for hot-plugging and copy the newly created
route to the hot-plug route. If the new configuration does not require enclave creation,
it just performs this step directly. Next, the system will set the running state of the newly
created route for subsequent scheduling by the state information. Finally, the system
driver starts the execution of the schedule. It first suspends the old configuration that
is running, and then compare the enclaves in the old and new configuration one by one.
If there is the same enclave, the state information of the enclave in the old configuration is
synchronized by the state synchronization function through a secure channel established
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by local attestation. After the state synchronization is completed, the enclave in the old
configuration can be destroyed, and the new configuration can start running and perform
new routing processing on the data packets.
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Figure 5. Hot Swapping.

4.4. Local Handler

Unlike global handlers that support hot swapping, a local handler is used to modify
the parameters in the same element. However, the local handler of Click cannot support
SGX. Therefore, we modify the Handler function of Click to reimplement a Handler class
for SGX enclaves. Each enclave can pre-set the parameters that it may need to modify,
and set the ecall_write_handler call for the enclave. The modified ecall includes the Handler
name, the read and write permissions of the Handler, and the parameters to be modified.
When users modify the configuration using a local Handler, the enclave name and Handler
name to be modified can be sent to the new running system. The system will also read the
passed parameters and configuration information through the ControlSocket connection,
then parse it, and use the resolved enclave name and handler name for ecall. The enclave
name specifies the eid of the ecall’s enclave. When it reaches an enclave, it is matched by
the handler name, and the new parameter value is assigned to the matched parameter.
In addition to writing Handlers, the read Handlers can also be encapsulated in the form of
an ocall, which is responsible for outputting information to the outside.

5. Implementation

This section first introduces the initialization of the VNF in the enclave and then de-
scribes how to decompose the overall VNF into multiple small packet processing modules,
puts them into different enclaves, and optimize their performance to reduce the perfor-
mance overhead of multi-enclave architecture. The main codes of the manager and each
analyzer in IDS are attached in Appendices A–D.
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5.1. VNF Initialization

Each enclave consists of a virtual function responsible for packet processing and a
local handler for modifying internal parameters and external output. Therefore, when the
virtual function performs initialization, multiple elements of the virtual function running
inside the enclave also need to be initialized. The steps include creating routes, elements
and port connections, and the initialization of each element. (Internal initialization does
not need the lexer to analyze the configuration process because the connections inside each
VNF are fixed). In addition, the packets in the enclave also need to be processed by ecalls.

5.2. The Protection of IDS

We implement multiple enclave protected IDS solutions based on vNIDS [27]. vNIDS
is an innovative NIDS architecture to address the challenges of efficient intrusion detection
and the monolithic NIDS configuration in virtualized NIDS. vNIDS has three microservices:
head-based detection, protocol-based parsing, and payload-based detection. The three
microservices of vNIDS are implemented based on the Click modular router software.
Click provides rich networking processing elements, which can be leveraged to construct
a wide range of network functions. In order to achieve better detection results, vNIDS is
implemented based on ClickOS [26] and ported the event engine of Zeek [28] (previously
named Bro). Zeek is a passive open source network traffic analyzer which supports a
variety of traffic analysis tasks, even outside the security domain. Zeek’s scripting language
facilitates a broader approach to discovering malicious activities, including semantic misuse
detection, anomaly detection, and behavior analysis.

Based on our architecture, we use SGX and Click to implement four different protocol
analyzer elements (HTTPAnalyzer, SSHAnalyzer, FTPAnalyzer, and DNSAnalyzer) to
detect whether it is subject to session hijacking, DNS tunneling attacks, and Trojan horses.
When a packet is sent to the IDS, it is first classified based on the header information.
Packets belonging to different application protocols are sent to different protocol analyzers
for further analysis. The protocol analyzer then generates an event based on the analysis
results. The IDS then passes these events to the event engine. The event engine sends the
packet to the behavior element, such as discard, delay, etc. or sends it to the next virtual
function for further processing.

5.3. Performance Optimization
5.3.1. DPDK

In order to achieve high throughput and low latency, this paper uses a high-performance
packet I/O library-DPDK [29], which is a data plane development tool kit.

In the traditional Click architecture, the FromDevice element, which acts as a sniffer
function, sends packets captured from the NIC to the kernel thread in a hardware inter-
rupt and then processes the packet in the protocol stack. Compared with the traditional
mode, DPDK has the following advantages: (1) DPDK abandons the traditional interrupt
mode and reads the data packet from the network card by polling, avoiding the interrupt
overhead. (2) DPDK allocates large memory pages to replace normal memory and reduce
cache-miss. (3) Using user space I/O technology (UIO) to intercept interrupts, thus by-
passing the subsequent processing of the kernel protocol stack, so as to greatly improve
network performance.

The use of the DPDK causes the system to no longer use the Click buffer, and it can no
longer use Click’s packet object, instead of using the DPDK packet processing mechanism.
Placing the DPDK in the enclave increases the size of the TCB (approximately 516K) [6],
so for reasons of TCB size and performance, we place the DPDK in an untrusted area
outside the enclave.
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5.3.2. Reduced System Calls

First of all, to reduce the number of ecalls and ocalls, multiple elements are put into
different enclaves according to the function rather than in one single enclave. In this way,
the conversion frequency of the enclave can be reduced to some extent.

In addition, the VNF often needs to determine whether it has been attacked based
on the rate of the packet. At this point, we need to get the time through the system call,
but if you put these VNFs into the enclave, getting the trusted time becomes a big problem.
On the one hand, if we frequently use the ocall call to get the time, even if we ignore
the performance overhead, its security cannot be guaranteed. Because the ocall call gives
control to the untrusted part, there is no guarantee that the time acquired by the ocall is
trustworthy, which loses the meaning of determining whether the system is attacked by
the network by calculating the rate. On the other hand, the SGX platform service enclave
(PSE) currently provides trusted time services in seconds only for enclaves [30]. However,
it is obvious that this granularity is far from meeting the current network needs. There are
many alternatives for trusted time, the most common being the time service of the system
through shared memory. In addition, ShieldBox [31] proposes a time source from hardware,
such as a PTP clock on the NIC. This method can achieve a higher time resolution than the
former. However, they all get time from untrusted sources and are therefore vulnerable
to malicious tampering. Zhang et al. [32] proposed to obtain time from a remote trusted
source, but due to the use of a large number of web interfaces, the resolution is still very
low (100 milliseconds). Therefore, providing trusted and high-accuracy time for SGX
applications remains an open question [33].

We use the shared timestamp scheme to provide an untrustworthy timestamp for
VNFs based on the above considerations. When a packet arrives at the FromDevice element,
it uses shared memory to get the timestamp and then write it to the annotation section of the
packet. When the VNF needs to use the timestamp, it can read from the packet annotation
section. In addition, the ocall is also required to maintain log I/O. In order to improve
system performance, we also optimize some code to reduce unimportant log operations.

5.3.3. Batch

We introduce the batch processing function to improve the performance of the system.
The BatchElement class is extended based on the Element class of Click. Similar to the
Element class, BatchElement also extends the push method of the packet, called push_batch,
while the received parameter of this method is no longer Packet * instead of PacketBatch *.
The pull method also has a corresponding pull_batch method that supports batch pro-
cessing. We add batch processing functions to the packet processing elements, such as
packet reception and discarding. In this system, the default value for batch settings is 128.
The system will modify the number of packets per batch based on the packet sending rate.

5.3.4. Shared Memory

In Click architecture, the transmission of data packets in elements is based on the
mechanism of copy-on-write. When a packet needs to be copied, only the header of the
data packet needs to be copied, because most of the processing of the data packet is only
necessary to read the header of the packet instead of the data of the packet. This mechanism
greatly improves the efficiency of Click’s execution.

Based on the above observation, we design our shared memory mechanism for data
packet transmission. In our approach, the DPDK caches packets from network devices in a
memory pool via polling and maintains a pointer queue to the packet buffer. Enclave does
not need to transfer a large number of copied packets through the secure channel estab-
lished by local attestation, instead of passing directly the address of the packet. The enclave
can directly query the DPDK and retrieve the pointer to the next batch of packet buffers,
then directly process the packets without any copy. This solution greatly reduces the
frequent conversion of data packets between multiple enclaves and the frequent copying
of data packets, so as to improve system performance.



Future Internet 2021, 13, 12 13 of 23

6. Result
6.1. Experimental Set-Up

We evaluate our system on the local server with SGX and Click installed. The server
running system version is Ubuntu 18.04.1 LTS, and the CPU is Xeon E3-1280 v6 quad-core
3.9 GHZ.

For testing the system function of detecting packets of different attack types, we use
Scapy as the main tool for traffic generation. Scapy [34] is a powerful Python-based
interactive packet operator and library. It can forge and decode packets of a large number
of protocols, send them over the wire, capture packets, use pcap files to store or read packets,
match requests, and replies. Scapy can handle most network testing tasks, such as scanning,
trace routing, probing, unit testing, attack, or network discovery with a fast sending rate.
Scapy is installed on the same server as our system and sends the generated network
packets to the system. Ten threads of Scapy run at the same time to send packets of a certain
length, and our system is overloaded according to our experiment. Scapy generates TCP
and UDP traffic and sends it to our system, some of which are malicious network traffic
generated by flightsim [35]. We record the data of the system running for 30 minutes and
repeat the test 10 times for each package length, taking the average data of all tests as the
final result.

6.2. Performance of System

We evaluate the performance of our system from various aspects including system
throughput, packet processing time, and CPU occupancy. We consider several cases of
our architecture:

• Baseline represents the unprotected Click-based IDS;
• S-VNFs represents our system with the protection of multiple enclaves.
• S-VNFs (w/opt.) represents an optimized system using DPDK, batch processing, etc.

6.2.1. Throughput

Throughput is the most important performance index in this system. We test the
system throughput in three modes by controlling the byte size of the packet (from 64 bytes
to 1024 bytes). The result is shown in Figure 6. As the byte size of the packet increases,
the throughput increases in the three modes. When the byte size reaches 1024 bytes, the
baseline, S-VNFs, and VNFs (w/opt.) throughputs reach 1550 Mb/s, 1060 Mb/s, and
1250 Mb/s respectively. Compared to baseline, S-VNFs decreased about 31.3% more in
terms of throughput. The throughput of optimized S-VNFs (w/opt.) is about 19.7% lower
than the baseline. The results prove that the use of DPDK, batch processing, and shared
memory can improve the throughput of the system to a certain extent. In addition, the
throughput reduction caused by the multi-enclave-based system architecture proposed in
this paper is within a certain acceptable range. The reason for this decline is mainly due
to the fact that the SGX consumes more CPU and memory, as well as the transmission of
packet addresses between multiple enclaves.
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Figure 6. System throughput at different packet sizes.

6.2.2. Packet Processing Time

Secondly, we use Scapy to construct a variety of packet formats, including TCP, UDP,
HTTP, etc. During the testing, the maximum number of packets sent from Scapy per batch
in batch mode was 32. In three modes, we send packets of different byte sizes to calculate
the average running time of the packet. The result is shown in Figure 7. In the three
modes, the byte size of the packet has little effect on the average running time. In baseline
mode, the average running time of the packet is approximately 3.88 µs. However, the
average run time of S-VNFs is approximately 5.57 µs, and its run time is increased by 43%.
The average run time of optimized S-VNFs (w/opt.) is approximately 4.63 µs, which is
a 16% improvement over pre-optimization, due to the use of shared memory and batch
processing which reduce enclave conversion. Compared with baseline, the optimized
runtime increased by approximately 19%.

Figure 7. Average running time of the system at different packet sizes.

6.2.3. CPU Average Usage

Finally, we generate packets of different byte sizes at the highest rate and compare the
average CPU usage from 64 bytes to 1024 bytes in baseline and S-VNFs (w/opt.) mode.
The result is shown in Figure 8. Under different packet byte sizes, when the same mode
is running, the CPU usage is not much different. In the baseline mode, the average CPU
usage is 10.5%. In S-VNFs (w/opt.) mode, the average CPU usage of the system is 13.7%.
In all, the average CPU usage increased by 30%, mainly due to the use of SGX technology.
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Figure 8. CPU usage of the system at different packet sizes.

6.2.4. Result Analysis

In conclusion, the performance of our system is affected by several factors, and the
additional overhead is caused by SGX protection. Firstly, most of the overhead is caused
by ecall and ocall instruction, which is the most influential factor in the performance of
SGX, according to our test. When the number of enclaves is too large, the performance of
the whole system is seriously affected because of entering and exiting enclaves. Secondly,
the security check will also affect the performance of the system. It is necessary to use
remote attestation and local attestation to ensure that the data will not be tampered with or
stolen. As a result, a series of encryption and decryption operations are used and bring
some extra overhead. Besides, the parameter transmission process also affects system
performance. In our multi-enclave-based design, the result of packet classification needs to
be passed to other enclaves. If the entire packet is transferred between multiple enclaves,
the overhead is too large. Therefore, we have used shared memory to optimize packet
transmission, and a packet pointer is designed to transfer the packet. Besides, there are
three other performance optimizations for improving the performance of the entire system.
By using the high-performance I/O library DPDK, the performance of I/O operations is
improved. Moreover, by reducing the number of system calls, the use of ecall and ocall
instruction can be reduced. Through batch processing, multiple small data packets can be
processed uniformly, which increases the length of data packets processed at one time and
improves efficiency.

6.3. Security Analysis

Putting VNFs into a single enclave that affects the scalability of NFVs, because users
cannot scale in/out a single VNF. In our design, the sensitive modules of a VNF are put
into different enclaves as elements of Click. The system can freely combine these security
modules according to user requirements, and increase the scalability of the system while
protecting its running state security.

The security of our system is protected by Intel SGX technology. The code, sensitive
data, and system configuration of elements in VNF cannot be stolen or modified. In our
experiments, various IDS security rules are put into enclaves for protection. Network
packets are encrypted during the communication between multiple enclaves and are
decrypted only inside enclaves. Therefore, the attackers can only capture the encrypted
traffic, but cannot obtain the content of the packets, and cannot obtain and modify the IDS
rules and detection results. The system is divided into two parts: the trusted part and the
untrusted part. The trusted part stores IDS-related sensitive data, states, and policies in
isolated and secure EPC memory. The code and data in the trusted part cannot be accessed
by the operating system, drivers, BIOS, or VMM. The security of the system depends on
the SGX hardware. Meanwhile, the untrusted part provides the necessary system call
interfaces for the trusted part and the transmission of the packets between them.

In addition, the transmission of information between multiple enclaves is a very
important security issue. In this architecture, multiple enclaves must first pass SGX’s local
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attestation to ensure that they each run on a trusted platform and establish a secure channel.
Thereafter, multiple enclaves must pass this channel for information transmission, ensuring
the security of information transmission.

7. Conclusions

In this paper, we propose a virtual security function architecture based on multiple
enclaves to ensure the security and scalability of VNFs. In our system, the modules of
VNF can be put into different enclaves and the communication can be done through
local attestation to improve the scalability of the system while providing runtime security
protection for VNFs. Furthermore, a new hot swapping mechanism is also presented
to enable the system to be reconfigured at runtime without stopping the whole system.
In order to reduce the overhead caused by SGX protection, we use DPDK to speed up
data packet processing and present the methods of reduced system calls, batch and shared
memory to improve system performance. Finally, an IDS based on our architecture is
implemented and evaluated. The results show that the performance overhead is within an
acceptable range while improving the scalability of VNFs protected by SGX.

To our knowledge, our work is the first attempt to put the elements of virtual network
functions in different enclaves, to protect the security of key modules while supporting the
scalability and composability of virtual network functions. In future work, we will design
more virtual security functions based on our architecture and evaluate their performance.
Moreover, we will optimize the method of hot-swapping and improve its security.
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Appendix A. Manager Code

class Manager : public Element {
public:

Manager() CLICK_COLD;
~Manager() CLICK_COLD;
const char *class_name() const { return "Manager"; }
const char *port_count() const { return PORTS_1_1; }
const char *flags() const { return "A"; }

int configure(Vector<String> &conf, ErrorHandler *errh)
CLICK_COLD;

int initialize(ErrorHandler *) CLICK_COLD;
Packet *simple_action(Packet *);
static void* com_module(void*);
void ocall_to_device(void *packet, int packet_length);
static clock_t beginTime;
static clock_t frontTime;

private:
pthread_t com_thread;
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static Communicate* com;
};

Manager::~Manager()
{

cout<<"there are "<<packet_number<<"packets"<<endl;
cout<<"average time in manager:"<<sum_time/packet_number<<endl;
printf("Manager::~Manager()\n");
if(sgx_destroy_enclave(eid) != SGX_SUCCESS)
{

printf("error: destroying enclave!\n");
}

}

int Manager::configure(Vector<String> &conf, ErrorHandler* errh)
{

printf("Manager::configure\n");
struct controller_ip c_ip;
Args(conf, this, errh)

.read("ip", c_ip.ip)

.read("port", c_ip.port)

.complete();

sgx_launch_token_t token = {0};
sgx_status_t ret = SGX_SUCCESS;
int update = 0;
ret = sgx_create_enclave(ENCLAVE_FILE, DEBUG, &token,
&update, &eid, NULL);

if(ret != SGX_SUCCESS)
{

printf("Manager::error: creating enclave!\n");
exit(Exit_FAILURE);

}
printf("Manager::ok: creating enclave!\n");

//create router
int generate_ret = 0;
ret = ecall_generat_router(eid, &generate_ret);
if(ret != SGX_SUCCESS || generate_ret != 1)
{

printf("Manager::error: generat_router!\n");
exit(Exit_FAILURE);

}
printf("Manager::ok: generat_router!\n");

int conf_size = 0;
char* conf_begin = NULL;
printf("Manager::start: ecall_configure!\n");
int configure_ret = 0;
ret = ecall_configure(eid, &configure_ret, conf_begin,

conf_size);
if(ret != SGX_SUCCESS || configure_ret != 2)
{

printf("Manager::error: ecall_configure!\n");
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exit(Exit_FAILURE);
}
printf("Manager::ok: ecall_configure!\n");
return 0;

}

int Manager::initialize(ErrorHandler* errh)
{

sgx_status_t ret = SGX_SUCCESS;
int initialize_ret = 0;
printf("Manager::initialize start!\n");
ret = ecall_initialize(eid, &initialize_ret);
if(ret != SGX_SUCCESS || initialize_ret != 3)
{

printf("Manager::error: enclave_initialize!\n");
}

}

Packet* Manager::simple_action(Packet* p)
{

sgx_status_t ret =SGX_SUCCESS;
int simple_ret = 0;
beginTime=clock();
frontTime=beginTime;
packet_number++;

ret = ecall_simple_action(eid, &simple_ret,(void *)const_cast
<unsigned char*>(p->data()),p->length());
if(ret != SGX_SUCCESS || simple_ret != 0)
{

printf("Error: ecall_simple_action!\n");
}
clock_t finish=clock();
sum_time += (finish-beginTime)*1000000/CLOCKS_PER_SEC;
return p;

}

CLICK_ENDDECLS
EXPORT_ELEMENT(Manager)
ELEMENT_REQUIRES(userlevel)

Appendix B. DNSAnalyzer Code

class DNSAnalyzer: public Analyzer { public:
~DNSAnalyzer();
const char *class_name() const { return "DNSAnalyzer"; }
virtual void push(int port, Packet *p);

};

void DNSAnalyzer::push(int port, Packet* p)
{

my_printf("dnsanalyzer::push\n");
(void)port;
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const click_dns* dns = p->dns_header();
click_dns_info info;
info.dh_ancount = 0;
if(dns_parse_info((const unsigned char*)(dns+1),

p->end_data(),
dns, &info))

{
LOGE("DNS parse failed, packets may invalid!");
output(1).push(p);

}
if(DNS_TYPE_A==info.dns_type && DNS_CLASS_IN==info.dns_class)
{

uint32_t q_len;
if(info.qname) q_len = strlen(info.qname);
else q_len = 0;

event_t * event = alloc_event_data(2,
sizeof(uint32_t), q_len);
event->event_type = DNS_REQUEST;
event->fill_connect(p);
event_t::DataWriter writer = event->get_writer()(info.

dns_record_ip);
if(info.qname)

writer(q_len, info.qname);

LOG_DEBUG("Save state: dns info %u", info.dns_record_ip);
LOG_DEBUG("Save state: dns qname %s", info.qname);
send_event(event, p->timestamp_anno());

dealloc_event(event);
p->kill();

} else {
output(1).push(p);

}
}

CLICK_ENDDECLS
EXPORT_ELEMENT(DNSAnalyzer)
ELEMENT_REQUIRES(userlevel)

Appendix C. FTPAnalyzer Code

class FTPAnalyzer: public Analyzer { public:
const char* class_name() const { return "FTPAnalyzer"; }
virtual void push(int, Packet*);

};

void FTPAnalyzer::push(int port, Packet* p)
{

my_printf("ftpanalyzer::push\n");

const char* payload = (const char*)p->transport_header() +
(p->tcp_header()->th_off << 2);
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{
LOG("FTP_DOWNLOAD_ZIP");
event_t *event = alloc_event_data(0);
event->event_type = FTP_DOWNLOAD_ZIP;
event->fill_connect(p);
send_event(event, p->timestamp_anno());
dealloc_event(event);
p->kill();

}
}

CLICK_ENDDECLS
EXPORT_ELEMENT(FTPAnalyzer)
ELEMENT_REQUIRES(userlevel)

Appendix D. HTTPAnalyzer Code

class HTTPAnalyzer: public Analyzer { public:
const char *class_name() const { return "HTTPAnalyzer"; }
virtual void push(int port, Packet *p);
typedef stlpmtx_std::map<String, String> HttpHeaders;
static inline const unsigned char* _match_string(const unsigned
char* begin,
const unsigned char* limit,
const unsigned char* pattern,
size_t n);

static inline const unsigned char* _http_parse_version
(const unsigned char* data,
const unsigned char* end);

const unsigned char* _http_parse_status_line
(const unsigned char* data,
const unsigned char* end);

const unsigned char* _http_parse_method
(const unsigned char* data,
const unsigned char* end);

const unsigned char* _http_parse_request_line
(const unsigned char* data,
const unsigned char* end);

const unsigned char* _http_parse_header
(const unsigned char* data,
const unsigned char* end,
HttpHeaders *headers);

int http_parse(const unsigned char* ,
const unsigned char*, HttpHeaders*);

};

void HTTPAnalyzer::push(int port, Packet* p)
{

(void)port;
const unsigned char* payload = (const unsigned char*)p->
transport_header() + (p->tcp_header()->th_off << 2);

HttpHeaders headers;
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if(’M’ == *payload && ’Z’ == *(payload+1))
{

LOG_DEBUG("HTTP_RESPONSE_EXE");
event_t * event = alloc_event_data(0);
event->event_type = HTTP_RESPONSE_EXE;
event->fill_connect(p);
send_event(event, p->timestamp_anno());
dealloc_event(event);
p->kill();

}

if(0 == http_parse(payload, p->end_data(), &headers) &&
headers.size() > 0)

{
String cookie = headers.find("Cookie")->second;
String content_type = headers.find("Content-Type")->second;
if (content_type)
{

LOG_DEBUG("Content-Type: %s", content_type.c_str());
if(strncmp(content_type.c_str(), "text/html", 9) == 0)
{

event_t * event = alloc_event_data(0);
event->event_type = HTTP_RESPONSE_HTML;
event->fill_connect(p);
send_event(event, p->timestamp_anno());
dealloc_event(event);
p->kill();

}
else if(strncmp(content_type.c_str(), "application/octet

-stream",
24) == 0 || strncmp(content_type.c_str(),
"application/x-msdos-program" , 27) == 0)

{
event_t * event = alloc_event_data(0);
event->event_type = HTTP_RESPONSE_EXE;
event->fill_connect(p);
send_event(event, p->timestamp_anno());
dealloc_event(event);
p->kill();

}
else if(strncmp(content_type.c_str(), "application/zip",

15)== 0)
{

event_t * event = alloc_event_data(0);
event->event_type = HTTP_RESPONSE_ZIP;
event->fill_connect(p);
send_event(event, p->timestamp_anno());
dealloc_event(event);
p->kill();

}
}
if(cookie)
{

String useragent = headers.find("User-Agent")->second;



Future Internet 2021, 13, 12 22 of 23

if(!useragent)
useragent = String(click_random());

event_t * event = alloc_event_data(2, cookie.length(),
useragent.length());

event->event_type = HTTP_COOKIE_USERAGENT;
event->fill_connect(p);
event->get_writer()(cookie.length(), cookie.c_str())

(useragent.length(), useragent.c_str());
LOG_DEBUG("save cookie: %s", cookie.c_str());
LOG_DEBUG("save useragent: %s", useragent.c_str());
send_event(event, p->timestamp_anno());
dealloc_event(event);

}
}
p->kill();

}

CLICK_ENDDECLS
EXPORT_ELEMENT(HTTPAnalyzer)
ELEMENT_REQUIRES(userlevel)
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