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Abstract: A stream can be thought of as a very large set of data, sometimes even infinite, which arrives
sequentially and must be processed without the possibility of being stored. In fact, the memory
available to the algorithm is limited and it is not possible to store the whole stream of data which is
instead scanned upon arrival and summarized through a succinct data structure in order to maintain
only the information of interest. Two of the main tasks related to data stream processing are frequency
estimation and heavy hitter detection. The frequency estimation problem requires estimating the
frequency of each item, that is the number of times or the weight with which each appears in the
stream, while heavy hitter detection means the detection of all those items with a frequency higher
than a fixed threshold. In this work we design and analyze ACMSS, an algorithm for frequency
estimation and heavy hitter detection, and compare it against the state of the art ASKETCH algorithm.
We show that, given the same budgeted amount of memory, for the task of frequency estimation our
algorithm outperforms ASKETCH with regard to accuracy. Furthermore, we show that, under the
assumptions stated by its authors, ASKETCH may not be able to report all of the heavy hitters whilst
ACMSS will provide with high probability the full list of heavy hitters.

Keywords: data stream mining; heavy hitters; frequency estimation; sketches

1. Introduction

In the data stream model, data arrives or can be accessed only sequentially and in a given order;
no random access to the data is allowed. This is the reason why we refer to the input data as a stream.
While a stream can be defined as a continuous and unbounded sequence of items, without loss of
generality, we a priori set its length for convenience.

The space available to the algorithm is not enough to store all the data, thus only a single scan of
the data is possible, and each data item has to be processed and then discarded. The model naturally
applies to all data generated at massive volumes as a sequence of elements, such as the values measured
by a sensor, or the TCP/IP packets that traverse a router in a network.

A streaming algorithm maintains a summary (or synopsis) data structure in order to process
the stream. The summary is updated accordingly at each item arrival and requires a bounded amount
of memory, much smaller than that necessary for storing the entire stream. Queries about the data
stream are answered using that summary, and the time for processing an item and computing the
answer to a given query is limited.

Two of the most important and well studied problems in the field of Data Mining are
frequency estimation of data stream items and the detection of heavy hitters, also known as frequent
items. Informally, given a stream of length n consisting of pairs (item, weight) the frequency of
an item is the sum of its weights values; when the weight of all of the items is equal to one
(a common case), the frequency of an item coincides with the number of its occurrences within
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the stream. Similarly, frequent items can be informally defined as those items in the stream whose
frequency exceeds a user’s defined support threshold.

Mining frequent items is also referred to in the literature as market basket analysis [1],
hot list analysis [2] and iceberg query [3,4].

Determining frequent items in a stream is a problem important both from a theoretical perspective
and for its many practical applications; a few examples follows: (i) Popular products—the stream
may be the page views of products on the web site of an online retailer; frequent items are then the
most frequently viewed products; (ii) popular search queries—the stream may consist of all of the
searches on a search engine; frequent items are then the searches made most often; (iii) TCP flows—the
stream may consist of the data packets passing through a network switch, each annotated with a
source-destination pair of IP addresses, and the frequent items are then the flows that are sending the
most traffic.

Additional applications include, for instance, analysis of web logs [5], Computational and
theoretical Linguistics [6] and the analysis of network traffic [7–9].

In this paper we are concerned with the problems of frequency estimation and frequent item
detection in data streams. In particular, we tackle these problems designing and analyzing ACMSS,
a novel algorithm solving both problems. We compare our algorithm to ASKETCH [10], the state of the
art algorithm for these problems and, through extensive experimental results, we show that ACMSS
achieves better accuracy than ASKETCH for the problem of frequency estimation.

The design features leading to the improved accuracy are (i) the use of a sketch based on a space
optimized version of the CMSS sketch [11], (ii) a different sketch update policy called conservative
update [12,13] which is not used neither in CMSS nor in ASKETCH and (iii) a different swap policy to
determine which items must be moved from the filter data structure to the sketch. Moreover, we prove
that our algorithm is able to retrieve with high probability all of the frequent items, owing to the
specific design of our sketch data structure, whilst ASKETCH may not be able in all of the cases to
retrieve all of the frequent items.

Our ACMSS algorithm exhibits a tradeoff between accuracy and speed. Indeed, the experimental
results show that ACMSS provides better accuracy than ASKETCH but at the expense of being slightly
slower. However, in different application fields it is preferable being more accurate (albeit a little slower)
rather than being faster. Here we recall two different application fields in which accuracy is a strict
requirement: Healthcare and security. In healthcare applications [14] accuracy is of paramount
importance; in mission critical applications the human life may be at risk. Regarding security, anomaly
detection [15,16] is one of the most studied topics. Accurately determining the so-called outliers is
crucial for many applications e.g., DDoS (Distributed Denial of Service) [17].

The rest of this paper is organized as follows. Section 2 introduces preliminary definition and
notation, and formally defines the problems of frequency estimation and frequent item detection in
data streams. Section 3 recalls related work. ASKETCH is introduced in Section 4. We present ACMSS
in Section 5. Experimental results are discussed in Section 6. We draw our conclusions in Section 7.

2. Preliminary Definitions

In this Section we briefly recall preliminary definitions and the notation that shall be used
throughout the paper. We begin by defining the frequency of weighted items as follows.

Definition 1. Given a stream σ = {(si, wi)}i=1,2,...,n of n pairs (item, weight) with items drawn from
the universe [m] = {1, 2, . . . , m} and weights which are positive real values, the frequency of an item s is
fσ(s) = ∑

i∈[n]
si=s

wi.

Next, we define the frequency vector.
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Definition 2. A stream σ = {(si, wi)}i=1,2,...,n, whose items are drawn from the universe [m] and whose
weights are positive real values, implicitly defines a frequency vector, f = ( f1, f2, . . . , fm), where fi = fσ(i) is
the frequency of item i.

We can interpret a stream σ as a sequence of updates to the frequency vector f: Initially f is the
null vector, then, for each pair (i, w) in the stream, the entry in f corresponding to the frequency of the
item i is incremented by the corresponding weight w.

We are now ready to define the ε-approximate frequency estimation problem.

Definition 3. Given a stream σ = {(si, wi)}i=1,2,...,n of n pairs (item, weight) with items drawn from the
universe [m] and weights which are positive real values, the frequency vector f defined by σ, and a value
0 < ε < 1, the ε-approximate frequency estimation problem consists in computing a vector f̂ = ( f̂1, f̂2, . . . , f̂m),
so that

∣∣∣ f̂i − fi

∣∣∣ ≤ ε‖f‖`, for each i ∈ [m] where ` can be either 1 or 2.

Next, we define φ-frequent weighted items.

Definition 4. Given a stream σ = {(si, wi)}i=1,2,...,n of n pairs (item, weight) with items drawn from the
universe [m] and weights which are positive real values, and a real value 0 < φ < 1, the φ-frequent items
of σ are all those items whose frequency is above φW, where W = ∑n

i=1 wi, i.e., the elements in the set
F = {s ∈ [m] : fσ(s) > φW}.

We will often refer to the φ-frequent items of a stream simply as frequent items, leaving as
implicit the reference to a φ value. Frequent items are also commonly referred to as Heavy Hitters.
The ε-approximate frequent items problem related to determining φ-frequent weighted items is defined
as follows.

Definition 5. Given a stream σ = {(si, wi)}i=1,2,...,n of n pairs (item, weight) with items drawn from the
universe [m] and weights which are positive real values, a real value 0 < φ < 1 and a value 0 < ε < φ,
the ε-approximate frequent items problem consists in finding the set F, so that:

1. F contains all of the items s with frequency fσ(s) > φW where W = ∑n
i=1 wi (φ-frequent weighted items);

2. F does not contain any item s such that fσ(s) ≤ (φ− ε)W.

3. Related Work

The first algorithm for mining frequent items dates back to 1982, and is due to Misra and Gries [18].
Many years later, the LOSSY COUNTING and STICKY SAMPLING algorithms by Manku et al. [19],
were published in 2002. Interestingly, in 2003, the Misra and Gries algorithm was independently
rediscovered and its computational complexity improved by Demaine et al. [7] and Karp et al. [20].
This algorithm is known in the literature as FREQUENT. Metwally et al. presented a few years later
the SPACE-SAVING algorithm [21], which significantly improves the accuracy. These algorithms
keep track of frequent items through the use of counters, i.e., data structures managing pair
(item, estimated frequency).

Another group of algorithms is based on a sketch data structure, usually a bi-dimensional
array hosting a counter in each cell. Pairwise independent hash functions are used to map stream’s
items to corresponding cells in the sketch. Sketch–based algorithms include COUNTSKETCH by
Charikar et al. [5], GROUP TEST [22] and COUNT-MIN [23] by Cormode and Muthukrishnan,
HCOUNT [24] by Jin et al. and CMSS [11] by Cafaro et al.

Algorithms for Correlated Heavy Hitters (CHHs) have been recently proposed by Lahiri et al. [25]
and by Epicoco et al [26] in which a fast and more accurate algorithm for mining CHHs is presented.

All of the previous algorithms give identical importance to each item. However, in many
applications is necessary to discount the effect of old data. Indeed, in some situations recent data
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is more useful and valuable than older data; such cases may be handled using the sliding window
model [27,28] or the time–fading model [29]. The key idea in sliding window is the use of a temporal
window to capture fresh, recent items. This window periodically slides forward, allowing detection
of only those frequent items falling in the window. In the time–fading model recent items are
considered more important than older ones by fading the frequency count of older items. Among the
algorithms for mining time–faded frequent items we recall λ-HCOUNT [30] by Chen and Mei, FSSQ
(Filtered Space-Saving with Quasi–heap) [31] by Wu et al. and the FDCMSS algorithm [32,33] by
Cafaro et al.

Regarding parallel algorithms, Cafaro et al. [34–36] provide parallel versions of the FREQUENT

and SPACE-SAVING algorithms for message–passing architectures. Shared-memory versions of
LOSSY COUNTING and FREQUENT have been designed by Zhang et al. [37,38], and parallel versions
of SPACE-SAVING have been proposed by Dat et al. [39], Roy et al. [40], and Cafaro et al. [41].
Accelerator based algorithms include Govindaraju et al. [42], Erra and Frola [43] and Cafaro et al. [41,44].
Pulimeno et al. [45] present a message-passing based version of the CHHs algorithm [26]; a parallel
message-passing based version of [32] is presented in [46].

Distributed mining of heavy hitters include algorithms such as [47–51]. In the context of
unstructured P2P networks, gossip–based algorithms have been proposed for mining frequent items
including [52–55].

4. The ASKETCH Algorithm

In most practical cases where an estimate of the frequency is required, the interesting data
is represented by the items prevailing in the stream or of greater weight: In any online shopping
site there is the section “best-selling items”, on YouTube the section “trends”, in Netflix there are
three: “The most viewed on Netflix”, “the headlines of the moment” and “champions of cashiers”.
Instead there are very few contexts in which the attention is focused on uncommon or lighter objects.
It is for this reason that many algorithms have focused mainly on improving the estimation of frequent
items: They are in fact a particular and small group of items whose error strongly affects the accuracy
of the produced summaries.

Given the good answers obtained by COUNT-MIN with a smaller space than that required by the
other algorithms on sketch, and given the guarantee of overestimation, the research started from this
technique and studied the weak points: Collisions with frequent items. The problem is represented
both by collisions between two frequent items and those between frequent and infrequent items; if in
the first case it is the estimates of both items that are affected, in the second case the difficulty is mainly
related to the non frequent item, and the consequent classification error that would make it a false
positive. Such errors may seem insignificant if the objective of the analysis is simply to increase sales
by highlighting what the public appreciates, but if the estimation of frequency is only an intermediate
step, upon which procedures that control thresholds or identify particular statistics must be built,
then such errors become crucial.

From COUNT-MIN study it became clear that removing the frequent items from the sketch would
lead to a marked improvement in the results, because it would prevent them from colliding with the
remaining items, thus eliminating some of the noise. Several approaches have been developed in an
attempt to develop optimal techniques to manage and especially to recognize frequent items; among
these approaches there is Augmented Sketch, known simply as ASKETCH [10].

ASKETCH is an algorithm that dynamically identifies frequent items and moves them from the
main sketch into a structure, called a filter, where no collisions occur. The space is then divided
into filter and sketch; the former is made up of a set of k counters shaped as (item[i], new_count[i],
old_count[i]), where i = 1, 2, . . . , k and item[i] is the item monitored by the i-th counter; the sketch can
take different forms depending on the frequency estimation algorithm on which ASKETCH rests, in the
following we will assume that this is COUNT-MIN. The algorithm is presented as able to solve the
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frequency estimation problem but, because of the duplicity of the structure used, it is suitable also for
heavy hitter detection.

Let d′ and w′ be respectively the number of rows and columns of the sketch and let k be the
number of filter counters, the new_count and old_count components are set to zero and the sketch
is initialized, as shown in Algorithm 1.

Algorithm 1: Initialize
Data: k, filter size; d′, sketch rows; w′, sketch columns
Result: filter and sketch initialized
filter is empty;
for i = 1 to k do

new_count[i] = 0;
old_count[i] = 0;

end
initialize the sketch;

As shown in Algorithm 2, in order to process the pair (s, v) of the stream σ, ASKETCH checks
if s is monitored in one of the filter counters, if so it increases by v the value of the corresponding
new_count variable, leaving old_count unchanged. Otherwise, if there is a free counter in the filter,
the item s is stored in that counter by setting new_count equal to v and old_count equal to zero.

Algorithm 2: Update
Data: (s, v), stream pair to be processed
Result: filter or sketch updated with new pair (s, v)
lookup s in filter;
if item found then

let i be the index of the counter monitoring s;
new_count[i]← new_count[i] + v;

else if filter not full then
let i be the index of a free counter in the filter;
item[i]← s;
new_count[i]← v;
old_count[i]← 0;

else
update sketch with (s, v);
f̂ (s)← CMQUERY(s);
let im be the index of the item with minimum estimated frequency in filter;
if f̂ (s) > new_count[im] then

if new_count[im]− old_count[im] > 0 then
update sketch with (item[im], new_count[im]− old_count[im]);

end
item[im]← s;
new_count[im]← f̂ (s);
old_count[im]← f̂ (s);

end
end

In case the above conditions are not fulfilled, ASKETCH updates the sketch with (s, v) and
estimates the frequency of s using the appropriate Count-Min procedure, denoted by CMQUERY.
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Let f̂ (s) be the value returned by CMQUERY(s) and im be the index of the item in the filter with
minimum new_count value; if f̂ (s) is less than or equal to new_count[im] no other operation is
performed and the next pair is processed. If f̂ (s) is strictly greater than new_count[im], then the
item item[im] is removed from the filter and updated in the sketch with weight given by the difference
between new_count[im] and old_count[im], if that difference is greater than zero and finally s is put into
item[im] and the related new_count[im] and old_count[im] variables are set to the value f̂ (s).

The frequency of an item s is given by the new_count counter if it is monitored in the filter,
otherwise it is computed using the sketch by the Count-Min procedure, as in Algorithm 3.

Algorithm 3: PointEstimate
Data: s, an item
Result: estimation of item s frequency
lookup s in filter;
if item found then

let i be the index of the counter monitoring s;
return new_count[i];

else
return CMQUERY(s);

end

The value stored in the new_count counter is the real frequency of the item only if it has never
been inserted in the sketch, i.e., if old_count is equal to zero. In fact, the difference between new_count
and old_count is the exact weight of the item relative to the period of time it remained in the filter.
Therefore, as the length of time an heavy hitter item stays in this structure increases, the accuracy of its
estimate increases and the possibility of collision with infrequent items decreases. At the same time,
if the frequent items are correctly inserted into the filter, the time needed to process the stream is also
significantly reduced, since there is no need to determine the frequent items images using the hash
functions of the sketch.

ASKETCH can solve, through the Query procedure, the problem of detecting heavy hitters,
using k counters in the filter. Obviously the algorithm can generate false negatives if the filter is not
sized appropriately; in fact, it can happen that a frequent item s is kept in the sketch because the
estimated frequency, although higher than the threshold, does not exceed the value of the minimum
new_count counter.

It is worth noting here that ASKETCH can also return false positives. In case the input is a static
dataset, the problem can be easily solved with a second scan of the dataset, in which the occurrences
of all the items reported in the filter at the end of the first analysis are counted.

After swapping items between the two data structures and removing the item item[im] from
the filter, if the difference between new_count[im] and old_count[im] is positive, ASKETCH needs to
update the counters of the related d′ buckets. However, since there is a collision problem in the sketch,
once the update is done, it could happen that the value returned by CMQUERY(item[im]) is greater
than the new minimum frequency in the filter; then the problem of deciding whether it makes sense to
iterate the exchange procedure arises. The authors of ASKETCH have chosen not to make multiple
exchanges, but at most one exchange for each processed item, after observing that these can only
negatively affect the estimate.

The authors of ASKETCH proved that if multiple exchanges are not allowed, then the maximum
number of exchanges between the sketch and the filter is equal to the length of the stream.

5. The ACMSS Algorithm

Augmented CMSS, or briefly ACMSS, is our randomized algorithm designed to solve the
frequency estimation and the heavy hitter detection problems. Like ASKETCH, its operations are based
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on the use of two data structures: A filter and a sketch. The filter is able to correctly monitor the
frequency of the elements it manages, for this reason the frequent items are inserted in this structure
after being identified as such in the sketch; the two structures therefore communicate dynamically and
exchange the management of the items.

A bucket of the sketch keeps track of three variables: Two frequencies and the identity of the
candidate as majority item in the bucket. Let S be the sum of the frequencies of all of the items mapped
to the bucket by the corresponding hash function; then, the majority item, if it exists, is the item whose
frequency exceeds bS/2c+ 1.

The ACMSS filter consists of (item[i], count[i])-shaped counters, with i = 1, 2, . . . , k; item[i]
denotes the item monitored by the i-th counter and count[i] is its estimated frequency. The sketch,
on the other hand, substantially differs from the ASKETCH data structure: Each bucket consists of a
tuple of values (item[i, j], count[i, j], residue[i, j]) for i = 1, 2, . . . , d and j = 1, 2, . . . , w, where d and w
are respectively the number of rows and columns of the sketch. Through item[i][j] the bucket at row i
and column j keeps track of the majority item of its stream, i.e., all of the items falling in that bucket;
count[i][j] is an estimation of the frequency of item[i][j], whilst residue[i][j] represents an estimation of
the frequency of the other items falling in the bucket. Therefore, by construction, residue[i][j] handles a
frequency that is less than or equal to that in count[i][j].

Let k be the number of filter counters, and φ a fixed support threshold. The size of the sketch is
computed, using the approximation parameters ε and δ and the Formula (2).

Each line of the sketch is associated with a hash function hi : [m] → [w], for i = 1, 2, . . . , d,
randomly extracted from a pairwise independent family, where [m] denotes the universe set of the
stream. The initialization procedure, shown as Algorithm 4, sets to zero all the counters of both the
filter and the sketch. The W value, initialized at zero, is used to keep track of the total weight of the
stream that has already been processed.

Algorithm 4: Initialize
Data: k, filter size; d, sketch rows; w, sketch columns; φ, support threshold
Result: filter and sketch initialized
filter is empty;
for i = 1 to k do

count[i] = 0;
end
for i = 1 to d do

for j = 1 to w do
item[i][j] = 0;
count[i][j] = 0;
residue[i][j] = 0;

end
end
choose d random hash functions h1, h2, . . . , hd : [m]→ [w];
set support threshold to φ;
W ← 0.

As shown in Algorithm 5, in order to process the (s, v) stream pair, where s is an incoming
item and v is its weight, the first data structure to be checked is the filter; if s is already monitored,
its estimated frequency is increased by the weight v; otherwise, if there is a free counter, the item s is
inserted in this structure and the value of the associated frequency counter is equal to v. If none of
the above conditions occur, the pair is processed by the sketch using the UPDATESKETCH procedure,
shown as Algorithm 6.
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Algorithm 5: Update
Data: (s, v), stream pair to be processed
Result: filter or sketch updated with new pair (s, v)
W ←W + v;
lookup s in filter;
if item found then

let i be the index of the counter monitoring s;
count[i]← count[i] + v;

else if filter not full then
let i be the index of a free counter in the filter;
item[i]← s;
count[i]← v;

else
f̂ (s)← SKETCHPOINTESTIMATE(s);
r ← UPDATESKETCH((s, v), f̂ (s));
if r = 1 then

f̂ (s)← f̂ (s) + v;
let im be the index of the item with minimum estimated frequency in filter;
if f̂ (s) > count[im] then

f̂ (item[im])← SKETCHPOINTESTIMATE(item[im]);
if count[im]− f̂ (item[im]) > 0 then

UPDATESKETCH((item[im], count[im]− f̂ (item[im])), f̂ (item[im]));
end
item[im]← s;
count[im]← f̂ (s);

end
end

end

Algorithm 6: UpdateSketch

Data: (s, v), stream pair to be processed; f̂ (s), estimated frequency of s
Result: sketch updated with new pair (s, v); r, boolean variable worth 1 if s is monitored in at

least one bucket
r ← 0;
for i = 1 to d do

j← hi(s);
if item[i][j] = s then

count[i][j]← MAX(count[i][j], f̂ (s) + v);
r ← 1;

else
if f̂ (s) + v > residue[i][j] then

if f̂ (s) + v > count[i][j] then
item[i][j]← s;
residue[i][j]← count[i][j];
count[i][j]← f̂ (s) + v;
r ← 1;

else
residue[i][j]← f̂ (s) + v;

end
end

end
end
return r.
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The update in question is conservative [12,13] since before executing UPDATESKETCH,
the frequency of the item x must be estimated using SKETCHPOINTESTIMATE (shown as Algorithm 7).

Algorithm 7: SketchPointEstimate
Data: s, an item
Result: estimated frequency of item s from sketch
answer ← ∞;
for i = 1 to d do

j← hi(s);
if item[i][j] = s then

answer ← MIN(answer, count[i][j]);
else

answer ← MIN(answer, residue[i][j]);
end

end
return answer.

As in ASKETCH, we evaluate if it is appropriate to pass the management of s to the filter, but,
for this to happen, two conditions must be fulfilled: (i) s must be a majority item in at least one
bucket of the sketch, i.e., at least one value item[i][hi(s)] for i = 1, 2, . . . , d must be equal to the
item s; (ii) the estimated frequency of s in the sketch, indicated with f̂ (s), must be strictly greater
than the minimum frequency in the filter. Assuming that both conditions occur and the minimum
frequency item in the filter is monitored by the counter with index im, we update the sketch using
the item item[im], with weight given by the difference between the value count[im] and the output of
SKETCHPOINTESTIMATE(item[im]), when this difference is positive. Then, we assign s to item[im] and
f̂ (s) to count[im].

The UPDATESKETCH procedure called on the pair ((s, v), f̂ (s)) performs the conservative update
of the sketch for the item s and the weight v, taking into account that the current estimated frequency
for s is f̂ (s).

Let 1 ≤ i ≤ d be the row index, and j the column index of the bucket where s is mapped. In case
the value in item[i][j] coincides with s we have to update, only if necessary, the count[i][j] value, so the
update happens only if the value in count[i][j] is less than the sum of the v weight and the estimated
frequency f̂ (s). If, on the other hand, the item in item[i][j] is different from s, then the residue[i][j]
value should be updated to the new frequency f̂ (s) + v, taking care of replacing the item stored in
item[i][j] if necessary.

So, if updating residue[i][j] is necessary and the new frequency f̂ (s) + v is strictly greater than
the value of count[i][j], the item monitored by item[i][j] is replaced by s, residue[i][j] takes the value
count[i][j] and count[i][j] is updated with the frequency f̂ (s) + v. Note that in the hypothesis just made
the update of residue[i][j] is necessary, otherwise it is possible to underestimate the frequency of the
items mapped in the bucket that are different from s.

The output is the updated sketch and the boolean variable r, whose value is 1 if the item s is the
majority item in at least one bucket of the sketch.

SKETCHPOINTESTIMATE computes the frequency of the item s considering the minimum value of
the estimate obtained scanning the d buckets in which the item is mapped to by the hash functions.
Fixing 1 ≤ i ≤ d, the frequency of s on the i-th row is given by count[i][hi(x)] if item[i][hi(x)] is equal
to s, otherwise it is residue[i][hi(x)].

The POINTESTIMATE procedure, shown as Algorithm 8, returns the estimated frequency of the
item s received as input: We first check if s is monitored in the filter and if so we return the value of
count[i], where i is the index of the filter counter monitoring s, otherwise SKETCHPOINTESTIMATE is
used to estimate the frequency of s in the sketch.
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Algorithm 8: PointEstimate
Data: s, an item
Result: estimation of item s frequency
lookup s in filter;
if item found then

let i be the index of the counter monitoring s;
return count[i];

else
return SKETCHPOINTESTIMATE(s);

end

The QUERY procedure, shown as Algorithm 9, returns the R set of φ-frequent items with their
estimated frequency. R is, initially, the set of items monitored in the filter whose frequency counter
is above the φ ·W threshold. If c, which is the number of pairs in R, is less than the filter size,
the search for φ-frequent items stops. In fact, in that case, at least one counter, the counter with
minimum frequency, is below the φ ·W threshold and we can be sure that all of the frequent candidates
monitored by the sketch with frequency above the threshold have already been inserted in the filter.

Algorithm 9: Query
Data: φ, threshold parameter for frequent items; k, filter size
Result: setR of frequent items
R ← ∅;
c← 0;
forall i in filter do

if count[i] > φ ·W then
R ← R∪ {(item[i], count[i])};
c← c + 1;

end
end
if c = k then

for i = 1 to d do
for j = 1 to w do

if count[i][j] > φ ·W then
s← item[i][j];
f ←SKETCHPOINTESTIMATE(s);
if f > φ ·W then
R ← R∪ {(s, f )};

end
end

end
end

end
returnR.

Instead, if all the monitored items in the filter are inR, then also the minimum counter in the filter
has a value above the threshold and there may be some frequent candidates with frequency above the
threshold among the items monitored by the sketch. Let s be the element monitored in item[i][j]; if the
frequency in count[i][j] and the value returned by SKETCHPOINTESTIMATE(s) are above the φ ·W
threshold, then s is inserted intoR with its estimated frequency.
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It is worth noting that if the number of counters in the filter is at least 1/φ, we never have to
search in the sketch. In fact, in that case, the counter with minimum value in the filter is necessarily
below the threshold φW. The reason why is that the sum of all of the counters in the filter, W f , can not
be greater than W, the total weight of the input stream, for some occurrences are necessarily stored
only by the sketch. Then, if the sum W f is distributed among k counter with k ≥ 1/φ than the counter
with minimum value is at most equal to W f /k ≤ φW f ≤ φW.

Now consider a generic item a mapped to the bucket in row i and column j = hi(a); denoting by
f̂i,a the estimate of a obtained in that bucket and with f (a) the real frequency of a it holds that:

0 ≤ f̂i,a − f (a) ≤ residue[i][j]. (1)

The first inequality is immediate since ACMSS overestimates the frequency of all items. Moreover,
if the item monitored in item[i][j] is different from a, then f̂i,a = residue[i][j] and the second inequality
holds noting that f (a) ≥ 0. Otherwise, if the item in item[i][j] coincides with a, then f̂i,a = count[i][j],
from which the inequality to prove is equivalent to: count[i][j]− f (a) ≤ residue[i][j].

Let us first suppose to make a non conservative update, that is to sum the item’s weight to all of
the buckets in which the item falls: The update is done, in each bucket, exactly as in a summary of
the SPACE-SAVING algorithm consisting of two counters, so the inequality is valid [21]. Now consider
a conservative update: The error, that is the difference count[i][j] − f (a), decreases further, so the
inequality still holds.

Theorem 1. Let ε and δ denote respectively an error tolerance and a probability of failure; moreover, denote by
σ a stream of (item, weight) pairs with total weight W. Then, the ACMSS algorithm making use of a sketch of
d rows and w columns, where:

d = dln(1/δ)e, w =
⌈ e

2ε

⌉
, (2)

solves the (ε, δ)-approximate frequency estimation problem for the stream σ.

Proof. By construction, the error on the frequency estimation of an item can only increase when the
item is monitored by the sketch. In fact, during its permanence into the filter, it is tracked exactly.
This is the reason why only the size of the sketch affects the bound on the estimation error.

Let a be an item of the universe set [m] managed by the sketch of size d× w; let i be a fixed row
index, j = hi(a) the column index where a is mapped on the i-th row by the i-th hash function and
Xi = f̂i,a − f (a) the variable representing the difference between the estimated frequency on the i-th
row and the real frequency of a. Moreover, let Si,j denote the sum of the frequencies of all the items
that fall in the bucket whose row is i and whose column is j. Then, using (1), it holds that:

0 ≤ f̂i,a − f (a) ≤ residue[i][j] ≤
Si,j

2
. (3)

Letting k be a generic [m] item, and letting Ck be the indicator random variable associated to the
event {the item k is managed by the sketch} and considering the indicator random variable

Ii,j,k =

{
1 if hi(k) = j

0 otherwise
, (4)

it holds that:
Si,j = ∑

k∈[m]

f (k)Ii,j,kCk. (5)

Denoting by Ws the total weight managed by the sketch, which is the sum of the weight actually
processed by the sketch and the weight processed by the filter but then inserted in the sketch because
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of the exchange of items between the two data structures, the expectation of Ck can be approximated
with Ws/W. The expectation of Si,j, considering the uniformity of hi and the independence of the
variables Ii,j,k and Ck is:

E[Si,j] = ∑
k∈[m]

f (k)E[Ii,j,kCk] =
1
w

Ws

W ∑
k∈[m]

f (k) =
1
w

Ws

W
W =

1
w

Ws. (6)

From (3) it follows:

E[Xi] = E[ f̂i,a − f (a)] ≤ 1
2
E[Si, j] =

1
2w

Ws. (7)

Applying Markov’s inequality to the positive variable Xi we get: ∀c > 0 P
[

Xi ≥ c 1
2w Ws

]
≤ 1

c .
Recalling that the algorithm computes the frequency as the minimum estimate obtained on the d rows
and exploiting the independence of the variables Xi it holds that:

P
[

f̂ (a)− f (a) ≥ c
2w

Ws
]
= P

[
min

1≤i≤d
f̂i,a − f (a) ≥ c

2w
Ws
]

= P
[

min
1≤i≤d

Xi ≥
c

2w
Ws
]

= P
[ d⋂

i=1

(
Xi ≥

c
2w

Ws
)]

=
d

∏
i=1

P
[

Xi ≥
c

2w
Ws
]
≤ 1

cd .

(8)

By choosing c = e and observing that Ws �W:

P
[

f̂ (a)− f (a) <
e

2w
W
]
≥ P

[
f̂ (a)− f (a) <

e
2w

Ws
]
≥ 1− e−d. (9)

If δ = e−d and ε = e/2w we obtain the formula (2) that allow computing the size of the sketch
from the required approximation parameters.

It should be noted that in the previous proof we did not use the conservative update, therefore,
taking this into account, the error should be further reduced.

Theorem 2. If l is a φ-frequent item and is monitored by the sketch, then l is the majority item in at least one of
the d buckets where it is handled with probability greater than or equal to

1−
( 1

2wφ

)d
. (10)

Proof. Let l be a φ-frequent item mapped in the sketch, l is not recognized as a candidate item to be
moved in the filter if, in all d buckets in which l is mapped, the monitored item is different from l.
The probability of this happening coincides with the probability of the event:

∀ 1 ≤ i ≤ d f̂i,l = residue[i][hi(l)] ≤
1
2

Si,hi(l), (11)

where f̂i,l indicates the estimated frequency of l on the i-th row, while Si,hi(l) represents the sum of
the frequencies of all the items falling into the bucket in row i and column hi(l)). However, l is a
φ-frequent item and the ACMSS algorithm cannot underestimate the frequency of the items, so the
above condition is equivalent to:

∀ 1 ≤ i ≤ d φW < f (l) ≤ f̂i,l = residue[i][hi(l)] ≤
1
2

Si,hi(l), (12)
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where W is the total weight of the stream and f (l) the actual frequency of l. Therefore, setting a row
index i, if f̂i,l = residue[i][hi(l)] then φW < 1

2 Si,hi(l) and

P
[

f̂i,l = residue[i][hi(l)]
]
≤ P

[
φW <

1
2

Si,hi(l)
]
. (13)

Similarly to what we already saw in the previous proof:

E[Si,hi(l)] =
1
w

Ws, (14)

with Ws the total weight in the sketch. Applying Markov’s inequality with c = 2wφ we get:

P
[
Si,hi(l) ≥ 2wφ ·E[Si,hi(l)]

]
= P

[
Si,hi(l) ≥ 2wφ

1
w

Ws
]

= P
[
Si,hi(l) ≥ 2φWs

]
≤ 1

2wφ
.

(15)

Moreover, from the inequality 2φW > 2φWs it follows:

P[2φW < Si,hi(l)] ≤ P[2φWs ≤ Si,hi(l)] ≤
1

2wφ
, (16)

hence
P
[

f̂i,l = residue[i][hi(l)]
]
≤ P

[
2φW < Si,hi(l)

]
≤ 1

2wφ
. (17)

Therefore, the probability that l, a φ-frequent item, is not monitored in the bucket corresponding
to row i, and column hi(l) is at most 1/2wφ. The item l is not a candidate to be moved in the filter if it
is not monitored in any bucket, and the probability of this happening is:

P
[ d⋂

i=1

(
f̂i,l = residue[i][hi(l)]

)]
≤
( 1

2wφ

)d
, (18)

being the rows of the sketch independent.

As a final remark, the following Lemma holds, the proof of which follows straight from the
algorithm’s operations.

Lemma 1. Let l be a φ-frequent item; l is not reported by the QUERY procedure of ACMSS and therefore it
is a false negative if and only if it is not monitored in the filter and it is not a majority item in any bucket of
the sketch.

For what stated by Theorem 2 and Lemma 1 we can be confident that the probability of a
φ-frequent item being a false negative for ACMSS is indeed very low. Furthermore, Theorem 1 provides
assurances on the error in frequency estimation committed by the algorithm. Therefore, we can state
that, with a high probability which depends on the size of the data structures used, ACMSS also solves
the ε-approximate frequent items problem (Definition 5).

6. Experimental Results

We shall compare the experimental results, obtained on synthetic datasets, of the ACMSS and
ASKETCH algorithms.

The hash functions used to manage the data structures are the same for all the algorithms.
In particular, for the rows of the sketch the xxHash function has been chosen; instead, the filter has
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been implemented through a SPACE-SAVING Stream-Summary and the hash31 function has been used
to arrange the items in the hash table.

The algorithms have been implemented in C++; the source code was compiled using the Intel
c++ v19.0.4 compiler on linux CentOS 7 with the following flags: -O3 -std=c++14. The tests were
performed on a workstation with 64 GB RAM and two 2.0 GHz Intel Xeon exa-core E5-2620 CPUs with
15 MB cache level 3.

The metric used to evaluate the efficiency of the algorithms is stream processing throughput,
corresponding to the average number of pairs (items, weight) processed per time unit and measured
in items per millisecond.

In order to evaluate the accuracy of the algorithms with regard to the frequency estimation
problem, the following metrics have been used:

• average absolute error, given by the sum, obtained on all the items of the whole universe [m],
of the difference between estimated frequency and real frequency of the item, divided by the

cardinality of the whole [m]: AverageAbsoluteError =
∑

i∈[m]
| f̂ (i)− f (i)|

m ;
• absolute maximum error, i.e., the maximum variation between estimated and real frequency,

recorded on all items in the universe as a whole;
• average relative error which is given by the ratio between the sum of relative errors on items with

positive frequency and the number of items that satisfy the latter condition. The relative error
of an item is the difference between the estimated and the actual frequency, divided by its exact

frequency: AverageRelativeError =
∑

i∈[m]: f (i)>0
| f̂ (i)− f (i)|/ f (i)

|i∈[m]: f (i)>0| ;

• maximum relative error, i.e., the maximum relative error obtained on items whose frequency
is positive.

The precision and recall metrics instead allow evaluating the accuracy with regard to the problem
of determining the heavy hitters.

In order to obtain a fair comparison, exactly the same amount of memory was used for the two
algorithms; in particular the number of rows d of all sketches was set to 4, as this value corresponds to
a very small δ probability of failure.

The number of filter counters, denoted by k, has also been set to 32 for both algorithms.
The authors of ASKETCH have in fact observed that this value represents a threshold: A further
increase of the filter size would lead to a reduction of f ilterselectivity, that is the ratio between the weight
processed by the sketch and the total weight of the stream, really negligible, while it would continue to
increase the error in the sketch due to the collisions.

Considering finally w, which is the number of columns used in ASKETCH, the value of the
corresponding parameter for ACMSS, denoted by w′, has been obtained using the formula w′ =
2w/5 + 2k/5d.

The values of w and w′ used in the tests are listed in Table 1. The ASKETCH QUERY procedure
used to detect heavy hitters has been slightly modified with regard to the corresponding pseudo-code
reported in [10]. In fact, the function has been implemented in order to return only the items contained
in the filter with estimated frequency strictly higher than φW, where W represents the total weight of
the stream. In this way QUERY works similarly to the corresponding function of the other algorithm.

Table 1. Number of columns used.

w (ASKETCH) 250 500 750 1000 1250

w′ (ACMSS) 103 203 303 403 503
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The synthetic datasets, on which the tests were conducted, have a zipfian distribution; the items
are represented by unsigned int variables requiring 32 bits, while the associated weights have all been
fixed, without loss of generality, to 1.

The seed, used for the pseudo-random number generator associated to the distribution, has been
varied between 10 possible values, taking care to use in each experiment the same identical value for
both the algorithms to test.

The comparison between the algorithms was conducted by varying the number w of columns of
ASKETCH and then the amount of memory occupied (budgeted memory), the skew ρ parameter of
the distribution and the support threshold φ, as reported in Table 2. So, for each different value of ρ

and φ, the tests were performed 10 times as the seed varied and the results were derived from the test
average. The length of the streams and the number of possible distinct items were fixed at 107.

Table 2. Parameter values.

Parameters Values Default Value

w 250, 500, 750, 1000, 1250 500
ρ 1.0, 1.1, 1.3, 1.7, 2.5 1.3
φ 0.0005, 0.001, 0.002, 0.004, 0.008 0.002

The total space occupied by the algorithms has been varied between 8640 (in case w = 250) and
40,640 bytes (in case w = 1250). The default value of w has been set to 500 and consequently the default
space is 16,640 bytes.

As shown in Figure 1 the ASKETCH algorithm is more efficient than the ACMSS algorithm. In fact
if an item i is processed in the sketch and if, after the update, this item must be evicted from the sketch
and moved to the filter, ACMSS performs more work than ASKETCH. If x is the item to be removed
from the filter, ACMSS must call SKETCHPOINTESTIMATE(x) to know how much to increase the
buckets counters associated with x; on the contrary ASKETCH avoids the call, since this information is
contained in old_count[x]. It should be noted that the gap between ASKETCH and ACMSS processing
speed, remains constant as the amount of memory available to the algorithms varies.

ϕ 0.002, ρ 1.3,
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Figure 1. Efficiency of the algorithms: Stream processing throughput.

On the other hand, Figure 2 and Table 3 make it clear that the Average Absolute Error committed
by ACMSS, especially on a small memory space, is lower than that committed by ASKETCH.
Even wider is the gap between the Absolute Maximum Error of these algorithms; therefore,
although the columns of the ACMSS sketch are less than half of those of ASKETCH (see Table 1),
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the strategy of allocating a Space-Saving mini-summary in each bucket of the sketch produces an
increase in the accuracy of the estimate compared to the competitor.
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Figure 2. Accuracy of the algorithms: Average Absolute Error.

Table 3. Absolute Error (average and maximum), zipfian distribution with skew ρ = 1.3 and support
threshold φ = 0.002.

Space (KB) 8.44 16.25 24.06 31.87 39.69

Absolute Error: Average (ASketch) 6059.87 2497.51 1470.74 1011.89 759.34
Absolute Error: Average (ACMSS) 5710.35 2461.90 1437.89 1010.71 754.91

Absolute Error: Maximum (ASketch) 36,061 30,228 21,596 15,824 17,234
Absolute Error: Maximum (ACMSS) 17,606 11,018 6346 6031 4913

The remarks made for the Absolute Error apply similarly to the Relative Error, as shown in
Figure 3 and Table 4. As shown in Figure 4 and Table 5, the ACMSS recall is always equal to 100%
unless the φ threshold is very small; however, even with a φ threshold = 0. 0005 ACMSS obtains a
recall of 99.34%, so there is almost no chance that this algorithm produces false negatives. The excellent
results of ACMSS stem from the possibility of continuing the search for heavy hitters in the sketch,
and not just in the filter.

Table 4. Relative Error: Average and maximum, zipfian distribution with skew ρ = 1.3 and support
threshold φ = 0.002.

Space (KB) 8.44 16.25 24.06 31.87 39.69

Relative Error: Average (ASketch) 4841.65 1993.86 1175.07 807.61 606.38
Relative Error: Average (ACMSS) 4558.88 1964.95 1147.28 806.20 601.94

Relative Error: Maximum (ASketch) 31,554.00 20,760.00 16,175.00 10,787.00 12,337.00
Relative Error: Maximum (ACMSS) 11,028.00 6974.00 4864.00 3465.00 3082.00

Table 5. Recall, zipfian distribution with skew ρ = 1.3 and budgeted memory equal to 16.25 KB.

φ 0.0005 0.001 0.002 0.004 0.008

Recall ASketch 26.40 45.26 77.86 100 100
Recall ACMSS 99.34 100 100 100 100
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Figure 3. Accuracy of the algorithms: Average Relative Error.
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Figure 4. Accuracy of the algorithms: Recall.

In Figure 5 it can be finally observed that our algorithm, when all the parameters considered vary,
obtains 100% of precision, so each item detected as frequent actually is a frequent item.
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Figure 5. Accuracy of the algorithms: Precision.
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7. Conclusions

We designed and analyzed ACMSS, an algorithm for frequency estimation and heavy hitter
detection, and compared it against the state of the art ASKETCH algorithm. Through extensive
experimental results we have shown that, given the same budgeted amount of memory, for the
task of frequency estimation our algorithm outperforms ASKETCH with regard to accuracy.
Moreover, regarding the task of heavy hitter detection, we have also shown that, under the assumptions
stated by its authors, ASKETCH may not be able to report all of the heavy hitters, whilst ACMSS will
always provide with high probability the full list of heavy hitters.
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