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Abstract: Despite the rapid evolution of Internet protocol-based messaging services, SMS still remains
an indisputable communication service in our lives until today. For example, several businesses
consider that text messages are more effective than e-mails. This is because 82% of SMSs are read
within 5 min., but consumers only open one in four e-mails they receive. The importance of SMS
for mobile phone users has attracted the attention of spammers. In fact, the volume of SMS spam
has increased considerably in recent years with the emergence of new security threats, such as
SMiShing. In this paper, we propose a hybrid deep learning model for detecting SMS spam messages.
This detection model is based on the combination of two deep learning methods CNN and LSTM. It is
intended to deal with mixed text messages that are written in Arabic or English. For the comparative
evaluation, we also tested other well-known machine learning algorithms. The experimental results
that we present in this paper show that our CNN-LSTM model outperforms the other algorithms.
It achieved a very good accuracy of 98.37%.

Keywords: SMS spam detection; deep learning; CNN; LSTM; SMS Classification

1. Introduction

Human uses short message service (SMS) in mobile as a way of communication or business.
Recently SMS is the most used data service in the world. The world sent 8.3 trillion SMS messages
in the year 2017, the number of SMS messages sent monthly is 690 billion, so SMS is important for
business communications [1].

Recently, SMS spam target mobile phones. SMS spam refers to any illusion text message that
is delivered using the mobile network. They are disturbing to users [2]. A survey exposes that 68%
of mobile phone users are affected by SMS Spam [3]. In some cases, SMS spam contains malicious
activities, such as smishing. Smishing is a cyber-security attack for mobile user aimed at deceiving
the user via SMS spam messages that may include a link or malicious software or both. Smishing is
combined of two words: SMS and Phishing [3].

Nowadays, attackers find the sms is a simple way to communicate with victims [4]. The most
victims of smishig and phishing attacks are users that have a smartphone [5]. The attackers attempt to
steal user’s secret information, like credit card number, bank account details, etc., by sending a link or
direct contact with victims by SMS texts [6].

In addition, the filtration of SMS spam in smartphones is still not very robust as compared
to email spams that are supported by advanced methods of spam filtering [7]. Among the recent
solutions that have proven to be effective in solving these kinds of problems is the use of deep neural
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networks. Deep neural network-based architecture, such as Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), have been used for many
classification problems for images, videos and texts. Deep learning is used for automatic pattern
recognition as well as traditional clustering machine learning techniques (unsupervised techniques).
It has several layers of information processing stages [2]. The components of deep neural network
are employed in all stages of deep learning classifiers to minimize the classification errors. However,
deep neural networks are not yet well exploited in the classification of SMS messages.

In the context of Arabic NLP, Deep Learning Models have proven their capabilities in several
areas, like handwritten Arabic text recognition [8–10], recognition of Arabic text overlaid in
videos [11], Automatic Speech Recognition [12], Machine translation [13,14], Text Categorization
[15], and Sentiment Analysis [16–18].

In this paper, we want to focus on the SMS messages that are delivered in the Arabic speaking
countries. These messages are generally written in Arabic or English. Thus, the challenge that we face
is: (i) how to collect a significant dataset supporting both Arabic and English language and allowing
researchers to conduct studies on SMS spam; and, (ii) how to find a robust classification model to detect
spam messages in this mixed environment. For the first problem, we collected a set of 2730 Arabic
messages from several local smartphones in Saudi Arabia and tagged them as spam and not-spam.
For the second problem, we chose to harness the strength of deep neural networks to identify SMS
spam. The proposed model is based on a hybrid deep learning architecture combining the CNN and
LSTM algorithms. CNN performs excellently in extracting n-gram features at different positions of a
message through the use of convolutional operations [19] and, hence, can be useful to identify the most
common words in spam messages. However, LSTM is able to handle word sequences of any length
and capture long-term dependencies [19]. This can be useful for identifying dependencies between
words in a spam message and, hence, LSTM can determine whether the message is spam or not from
the initial words of the message. We designed a hybrid model combining these two algorithms in
order to benefit from the advantages of both CNN and LSTM. In addition, to compare this model with
other classification techniques, we tested several known machine learning algorithms. The results
show that our CNN-LSTM model gives the best performance based on several evaluation measures.

The main contributions of this paper are as follows:

• Collection of an Arabic SMS dataset labeled as spam or not-spam, which can be helpful in
performing studies on Arabic SMS spam.

• Proposal of a model for detecting SMS spam in a mixed mobile environment that supports
Arabic and English, based on a hybrid deep learning architecture combining the CNN and
LSTM algorithms.

• Comparison of the proposed model with other machine learning algorithms.
• The proposed model outperforms traditional machine learning algorithms by achieving a

remarkable accuracy of 98.37%.

The remaining parts of the paper are organized, as follows: Section 2 reviews the related works.
Section 3 describes the model design of our approach. Section 4 presents the experimental results.
Finally, we conclude the paper in Section 5.

2. Related Work

In recent years, several researchers have proposed solutions to identify SMS spam. A significant
number of these works are based on the use of machine learning and datamining techniques.
Some researchers have proposed the use of naive bayes algorithm to classify text messages as
spam or ham [7,20,21]. Other researchers have tried other classifiers, such as Random Forest,
Decision Tree, Support Vector Machine, and AdaBoost [22,23], or even a rule-based classification [24].
Other researchers have been interested in standardizing and expanding the content of the messages to
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improve the classifiers performance [25]. Additionally, recently, researchers began using deep learning
techniques for this task [2].

In [7], the authors proposed a model called "Smishing Detector" in order to detect smishing
messages with a reduced false positive rate. The proposed model contains four modules. The goal
of the first module is to analyze the content of text messages and identify the malicious contents by
the use of Naive Bayes classification algorithm. The second one is used to inspect the URL contained
in the messages. The third module is dedicated to analyze the source code of the website linked in
the messages. The last module is an APK download detector, its role is to identify if a malicious file is
downloaded when the URL is called. The experimental tests that were carried out by the authors on
this model gave an accuracy of 96.29%.

In recent paper [2], Roy et al. proposed the use of deep learning to classify Spam and Not-Spam
SMS messages. The objective of their approach is to employ two deep learning techniques together:
CNN and LSTM. The idea is to classify text messages and identify those that are spam and those
that are not spam. In order to evaluate the performance of the proposed approach, they compared
it with other machine learning algorithms, like Naive Bayes, Random Forest, Gradient Boosting,
Logistic Regression, and Stochastic Gradient Descent. The obtained results showed that the CNN and
LSTM model is much better when compared to other machine learning models.

In another work that was designed to detect smishing messages, Joo et al. [20] proposed a model,
called “S-Detector”. This model employs four modules: a component to monitor the SMS activities,
an analyzer to analyze the content of the SMS, a determinant to classify and blocks Smishing text
messages, and a database to store the SMS data. Naive Bayes is the classification algorithm used in
this model.

In another paper [24], Jain and Gupta proposed a rule-based classification technique to detect
phishing SMS. Their approach has identified nine rules that can identify and filter phishing SMS from
legitimate ones. Experimental tests that were conducted by the authors yielded 99% of true negative
rate and 92% of true positive rate.

In [22], Sonowal et al. proposed a model, called “SmiDCA”, for the detection of smishing messages
based on machine learning algorithms. In the model, the authors chose to use correlation algorithms
to extract the 39 most relevant features from smishing messages. Subsequently, they applied four
machine learning classifiers to evaluate the performance of their model. The four classifiers were:
Random Forest, Decision Tree, Support Vector Machine, and AdaBoost. The experimental evaluation
of this model showed an accuracy of 96.4% with Random Forest Classifier.

In [23], the authors proposed a feature-based approach to detect smishing messages.
This approach extracts ten features that the authors claim to be able to distinguish false messages
from ham. Subsequently, the features were implemented on benchmarked dataset with the use of
five classification algorithms to judge the performance of the proposed approach. The experimental
evaluation showed that the model can detect smishing messages with 94.20% of true positive rate and
98.74% overall accuracy.

In [25], Almeida et al. proposed a processing method to normalize and expand text messages in
order to improve the performance of classification algorithms when applied with these text messages.
The proposed method is based on lexicography, semantic dictionaries and techniques of semantic
analysis and disambiguation. The main idea was to standardize the words and create new attributes
in order to expand the original text and reduce the factors that can degrade performance, such as
redundancies and inconsistencies.

In [21], the authors proposed a method for filtering SMS spam based on two data mining
techniques: FP-growth and Naive Bayes. FP-growth algorithm is used to extract frequent itemset in
text messages and Naive Bayes Classifier is used to classify the messages and filter those that are spam.
The experimental evaluation that was performed by the authors on this approach showed an average
accuracy of 98.5%.



Future Internet 2020, 12, 156 4 of 16

Concerning the detection of SMS spam in foreign languages, we only found a few works
dealing with this problem. For example, in [26], the authors proposed a mobile-based system called
“SMSAssassin” dedicated to filter SMS spam messages in India. This system is based on the application
of Bayesian learning and Support Vector Machine techniques. For the experimental evaluation,
the authors presented a new SMS Spam dataset collected from Indian users in the real-world. In another
paper [27], the authors presented an analysis of different machine learning techniques for detecting
SMS spam on a corpus of Indian messages. The authors used the UCI SMS spam dataset to which
they added a set of Indian messages collected manually. For the experiments, they tested four simple
algorithms: Multinomial Naive Bayes, Support Vector Machine, Random Forest, and Adaboost.

The contribution of our paper, as compared to existing work, is the proposal of an efficient system
for detecting SMS spam that can deal with both English and Arabic messages. To the best of our
knowledge, the model that we propose in this paper is the first approach that uses a combination of
the deep learning algorithms in order to classify Arabic short messages.

In Table 1, we present a comparative summary on different works that are discussed in this section.

Table 1. Comparative Summary of related work.

Paper
Reference Approach Objective Used Methods Dataset Type

[2] Classify SMS and identify
spam messages CNN and LSTM

• UCI machine learning repository: SMS spam
collection dataset [28]

[7] Identify spam messages and
inspect included URL Naive Bayes

• UCI machine learning repository: SMS spam
collection dataset [28]

• Pinterest Smishing message images

[20] Classify SMS and identify
spam messages Naive Bayes • private dataset

[24] Classify SMS and identify
spam messages Rule-based classification

• UCI machine learning repository: SMS spam
collection dataset [28]

[22] Classify SMS and identify
spam messages

Random Forest, Decision
Tree, Support Vector
Machine and AdaBoost.

• UCI machine learning repository: SMS spam
collection dataset [28]

• no-English data from Yadav et al. [26]

[23] Identify spam messages and
inspect included URL

Feature-based technique,
Random Forest, Naïve Bayes,
Support Vector Machine and
Neural Network.

• UCI machine learning repository: SMS spam
collection data set

• NUS SMS corpus [29]
• Pinterest Smishing message images

[25]
Normalize and expand text
messages to improve the
classification performance

Lexicography, semantic
dictionaries and techniques
of semantic analysis and
disambiguation

• UCI machine learning repository: SMS spam
collection dataset [28]

[21] Classify SMS and identify
spam messages FP-growth and Naive Bayes

• UCI machine learning repository: SMS spam
collection dataset [28]

[26] Classify SMS and identify
spam messages

Bayesian learning and
Support Vector Machine

• Indian SMS dataset

[27] Classify SMS and identify
spam messages

Multinomial Naive Bayes,
Support Vector Machine,
Random Forest
and Adaboost

• UCI machine learning repository: SMS spam
collection dataset [28]

• Indian SMS dataset

3. The Proposed Model

In this section, we describe, in detail, our proposed model. The main idea of this detection system
is to process the collected SMSs and apply a machine learning method to classify them and identify
those that are considered to be spam or phishing messages. In Figure 1, we present the architecture
of the proposed model. In this model, we have chosen to apply two directives of machine learning
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classification. The first is based on traditional machine learning algorithms, like Naive Bayes, SVM,
Decision Tree, KNN, etc. The second directive is based on deep learning algorithms. The objective of
this variety of algorithms is to try several classification methods in order to ultimately choose the one
that gives the best results.

The process of the proposed system begins by cleaning up unnecessary information found in
the text messages. Subsequently, a pre-processing task will be applied to these messages to represent
the textual data in a compatible form, which will be given as input to the machine learning methods.
After completing the preparation of the data, the classification algorithms will be applied to this data
in order to distinguish spam messages and those that are not spam.

Figure 1. Architecture of the spam detection model.

3.1. Data Cleaning

Data cleaning is the first step in the proposed model. The purpose of this task is to remove
unnecessary words and symbols from the text messages in order to improve the performance of the
machine learning model. The elements to be removed at this step are:

• Punctuation: remove unnecessary punctuation marks and symbols from the text.
• Capitalization: remove the capital-letters by transforming all words to lower-case.
• Arabic and English stop-words: Stop-words refer to the most common words in a language

that are not important for understanding the text. These include words such as “the”, “is”, “a”,
“which”, and “on” for English language and úÍ@



, 	áÓ , ú




	
¯ for Arabic language. In NLP tasks, it is

often useful to remove these types of words before training the models in order to reduce the
amount of ‘noise’.

3.2. Text Pre-Processing

Text pre-processing is the second step in the model. The problem that we are trying to solve in
this step is the fact that machine learning models only accept numerical data and cannot deal with
textual data. Therefore, the objective is to transform the textual data collected from short messages
into an understandable format which can be interpreted by machine learning algorithms. For this task
we propose two separate methods due to the different nature of the machine learning algorithms that
were used in this approach.

3.2.1. TF-IDF Representation

TF-IDF (term frequency–inverse document frequency) is a numerical statistic model used in
several fields related to NLP, like information retrieval and text mining. It aims to convert the text
documents into vector models based on a weight measure which is used to evaluate how important a
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word is to a document in a collection or corpus. The TF-IDF measure increases proportionally to the
number of times a word appears in the document and it is offset by the number of documents in the
corpus that contain the word. Equation (1) is the formula of TF-IDF used for word weighting [30].

Wi,j = t fij ∗ log(
N
d fi

) (1)

where Wi,j is the weight for word i in document j, N is the number of documents in the collection,
t fij is the term frequency of term i in document j and d fi is the document frequency of term i in the
collection. The purpose of this step is to use the TF-IDF method to convert the text data into numerical
data. The result of this transformation is a matrix of TF-IDF features, which will then be used as input
to the traditional machine learning algorithms.

3.2.2. Word Embedding

Word embedding is a technique that aims to represent words or sentences in a text by real
numbers vectors, described in a vector model (or Vector Space Model). Semantically similar words
are mapped close to each other in the vector space. Word embedding is very useful for representing
words, to be given as input to a Deep learning model. In recent years, it is considered among the
best representations of words in NLP. There are several pre-trained word embedding models that are
ready to use, such as Word2Vec [31] and GloVe [32]. However, in this paper, we chose to train our
own word embedding model, because our text messages contain mixed words from the Arabic and
English language.

In the proposed approach, the purpose of word embedding is to prepare the textual data for the
deep learning model. Figure 2 describes the steps performed to accomplish the word embedding
process. When considering that we have an input data containing a collection of N text messages,
the first step in the process is to vectorize the text corpus, by transforming each text into a sequence of
integers (each integer being the index of a token in a dictionary). The result is a list of sequences with
variable sizes (since the text messages do not have the same length). Subsequently, the “Pad sequences”
task makes the sentences in uniform length, by padding sentences smaller than “MAX_SEQ_LENGTH”
with empty values and truncating the sentences longer than “MAX_SEQ_LENGTH”. At the end of
this process, the text data are ready to train with the word embedding layer and give them as input to
the deep learning model.

Figure 2. Word embedding process.

3.3. Machine Learning Modeling

Machine learning modeling is the core of our classification approach. In this step, we have
chosen to try several machine learning algorithms to classify text messages as spam or not-spam.
We then prepared two categories of algorithms: traditional machine learning algorithms and deep
learning algorithms. The idea is to test these different algorithms and choose the one that gives the best
performance. Based on the experimental results that are detailed in the next section, we concluded
that a hybrid deep learning model based on the combination of two methods (CNN and LSTM) gave
the best results as compared to the others.
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3.3.1. Traditional Machine Learning

Even though the main idea of our approach was to implement a model based on deep learning,
in this paper we have chosen to compare several algorithms that belong to the family of traditional
machine learning. The algorithms tested in this category are:

• Support Vector Machine
• K-Nearest Neighbors
• Multinomial Naive Bayes
• Decision Tree
• Logistic Regression
• Random Forest
• AdaBoost
• Bagging classifier
• Extra Trees

3.3.2. Deep Learning

In this paragraph, we describe the deep learning-based model for detecting spams from a
collection of Arabic and English text messages. To implement this model, we tried three different
deep learning architectures. Firstly, we created an architecture using the CNN (Convolutional Neural
Network) method. Secondly, we tried a model based on LSTM (Long Short-Term Memory). Finally,
we implemented a hybrid model combining the two previous methods CNN and LSTM. Based on
the experimental results that we will explain in the next section, the hybrid model gave us the best
results in terms of performance. For this reason, here we will limit ourselves to the description of the
CNN-LSTM hybrid model.

In Figure 3 and Algorithm 1, we describe the architecture and operating principle of the
CNN-LSTM model. The output of the Embedding layer, as described above, is connected with
a CNN layer with a type “Convolution 1D”. Subsequently, a MaxPooling layer is applied to reduce the
dimensionality of the CNN output. Next, we connect an LSTM layer. Finally, we apply a Dense output
layer with a single neuron and a sigmoid activation function to make decision for the two classes spam
and not-spam. In the following, we describe, in detail, the role and configuration of each layer.

Algorithm 1: Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) model
Input: M (A set of n text messages, M = M1, M2, ..., Mn )
Output: Y (Message label : 0 or 1)
foreach message Mi in M do

Vi = Word_Embedding(Mi)
end
foreach Vi do

Ci = CNN(Vi)
end
foreach Ci do

Oi = LSTM(Ci)
end
foreach Oi do

Yi = sigmoid(Oi) // Dense layer with sigmoid function
end
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Figure 3. Architecture of the CNN-LSTM model.

• Convolution 1D

The main interest of the Convolution layer is to extract relevant features from the text data. This is
done by applying the convolution operation on the word vectors generated by the Word Embedding
layer. The convolution task that we present in this paragraph is based on the work that was presented
in [19]. Let xi ∈ Rd be the d-dimensional word vector corresponding to the i-th word in the message.
Let x ∈ RL×d denote the input message, where L is the length of the message. For each position j in
the message, consider a window vector wj with k consecutive word vectors, represented as:

wj = [xj, xj+1, . . . , xj+k−1] (2)

A convolution operation involves a filter p ∈ Rk×d, which is applied to the window w to produce
a new feature map c ∈ RL−k+1. Each feature element cj for window vector wj is calculated, as follows:

cj = f (wj � p + b) (3)

where � is element-wise product, b ∈ R is a bias term, and f is a nonlinear function. In our case, we
used Rectified linear unit (ReLU) as nonlinear function. It is defined as:

f (x) = max(0, x) (4)

ReLU activation function returns x if the value is positive, elsewhere returns 0. For the
configuration of the convolution layer, we used a one-dimensional convolution associated with a filter
window k = 3. Algorithm 2 describes the detailed working of the CNN algorithm.
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Algorithm 2: CNN

Input: x ∈ RL×d (the input message where L is the length of the message and d is the word
vector dimension)

Output: ĉ
// p ∈ Rk×d is the filter applied to each window vector w in the message,

b ∈ R is a bias term
foreach position j in the message do

wj = [xj, xj+1, . . . , xj+k−1]

cj = ReLU(wj � p + b)
end
c = [c1, c2, ..., cL−k+1]

ĉ = max(c) // MaxPooling operation

• MaxPooling

The feature maps that are generated by the Convolution operation are characterized by a
high-level vector representation. To reduce this representation, we added a MaxPooling layer after the
Convolution layer to help select only important information by removing weak activation information.
This is useful to avoid overfitting due to noisy text.

• LSTM

CNN is very useful in extracting relevant features from the text data. However, it is unable to
correlate the current information with the past information. This can be done with another deep
learning method, which is “LSTM”.

LSTM (Long short-term memory) is a kind of RNN architecture that is capable of learning
long-term dependencies. The architecture of LSTM contains a range of repeated units for each time
step. Each unit, at a time step t, is composed of a cell ct (the memory part of LSTM) and three gates
to regulate the flow of information inside the LSTM unit: an input gate it, an output gate ot and a
forget gate ft. These gates collectively decide how to update the current memory cell ct and the current
hidden state ht. The transition functions betwen the LSTM units are defined, as follows [19]:

it = σ(Wi.[ht−1 + bi])

ft = σ(W f .[ht−1, xt] + b f )

qt = tanh(Wq.[ht−1, xt] + bq)

ot = σ(Wo.[ht−1, xt] + bo)

ct = ft � ct−1 + it � qt

ht = ot � tanh(ct)

(5)

Here, xt is the input vector of the LSTM unit, σ is the sigmoid function, tanh denotes the hyperbolic
tangent function, the operator � denotes the element-wise product, and W, and b are the weight
matrices and bias vector parameters that need to be learned during training. In the architecture of
our model, we used a single LSTM layer placed directly after the MaxPooling. This layer contains 64
LSTM units using a Dropout equal to 0.2 as a regularization parameter to prevent the model from
overfitting. Algorithm 3 describes the detailed working of the LSTM algorithm.
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Algorithm 3: LSTM
Input: x
Output: h
foreach time step t do

it = σ(Wi.[ht−1 + bi])

ft = σ(W f .[ht−1, xt] + b f )

qt = tanh(Wq.[ht−1, xt] + bq)

ot = σ(Wo.[ht−1, xt] + bo)

ct = ft � ct−1 + it � qt

ht = ot � tanh(ct)

end

• Dense

Dense is the last layer of our model. It is also called the fully connected layer, and it is used
to classify text messages according to the output of the LSTM layer. Since our classification model
is binary, we used a Dense layer with a single neuron and a sigmoid activation function to give
predictions of 0 or 1 for the two classes (Not-spam and spam). The sigmoid function is a logistic
function that returns a value between 0 and 1, as defined by the formula in Equation (6):

f (x) =
1

1 + e−x (6)

3.4. Classification

Classification is the final step in our model. Regardless of the used machine learning method,
the goal here is to classify the text messages given as input to this model into two classes: spam and
not-spam. The spam class refers to any undesirable message containing temptations of phishing or
theft of information. The not-spam class designates normal messages that represent no danger for the
users.

4. Experimental Evaluation

In this section, we present the results that were obtained from the experimental tests that we
conducted on the model presented in this paper. We also present a comparison between the different
machine learning techniques tried in our approach. The implementation of this model was performed
in Python 3.7 with the help of the TensorFlow environment and the Keras 2.0 API.

4.1. Dataset Description

For the evaluation of our approach, we used two types of dataset: (i) the SMS Spam dataset
from the UCI Repository [25] and (ii) a set of Arabic messages collected from local smartphones.
The SMS Spam dataset is a public set of SMSs labeled messages that have been collected for SMS
spam research. It contains 5574 English messages that were labeled according being legitimate (ham)
or spam. For the second dataset, it contains a set of 2730 Arabic messages that were collected from
several local smartphones in Saudi Arabia and which are labeled as spam and not-spam. For example,
Figure 4 contains an Arabic spam message attempting to steal the confidential information of the
user’s bank card. In Table 2, we show some statistics regarding the dataset used.
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Figure 4. An example of an Arabic spam message.

Table 2. Statistics of the dataset.

Number of the Messages Training Size Testing Size

Spam 785
80% 20%Not-Spam 7519

Total 8304

4.2. Evaluation Measures

To evaluate the performance of the proposed model, we used the standard metrics for classification
tasks, such as Accuracy, Precision, Recall, F1-Score, Confusion Matrix, ROC curve, and AUC.

• The confusion matrix is a table which indicates the following measures:

– True Positives (TP): the cases when the actual class of the message was 1 (Spam) and the
predicted is also 1 (Spam)

– True Negatives (TN): the cases when the actual class of the message was 0 (Not-Spam) and
the predicted is also 0 (Not-Spam)

– False Positives (FP): the cases when the actual class of the message was 0 (Not-Spam), but the
predicted is 1 (Spam).

– False Negatives (FN): the cases when the actual class of the message was 1 (Spam) but the
predicted is 0 (Not-Spam).

• Accuracy: is the number of messages that were correctly predicted divided by the total number of
predicted messages.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(7)

• Precision: is the proportion of positive predictions (Spam) that are truly positives.

Precision =
TP

TP + FP
(8)

• Recall: is the proportion of actual Positives that are correctly classified.

Recall =
TP

TP + FN
(9)

• F1-Score: is the harmonic mean of precision and recall.

F1− Score =
2× Precision× Recall

Precision + Recall
(10)

• Receiver Operating Characteristic (ROC) is the plot of the true positive rate (TPR) [Equation (11)]
against the false positive rate (FPR) [Equation (12)] at various threshold settings.

TPR =
TP

TP + FN
(11)
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FPR =
FP

FP + TN
(12)

• AUC (Area under the ROC Curve) is an aggregate measure of performance across all possible
classification thresholds.

4.3. Parameters of the Deep Learning Layers

In the deep learning part of our model, we tested three architectures: CNN, LSTM, and a
combination of CNN and LSTM together. In Figures 5–7, we present using the Keras API the parameters
of these three architectures.

Figure 5. Parameters of CNN architecture.

Figure 6. Parameters of LSTM architecture.

Figure 7. Parameters of CNN-LSTM architecture.
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4.4. Experimental Results

To classify the text messages into Spam and Not-Spam, we tried in this paper several machine
learning algorithms: (i) Support Vector Machine, (ii) K-Nearest Neighbors, (iii) Multinomial Naive
Bayes, (iv) Decision Tree, (v) Logistic Regression, (vi) Random Forest, (vii) AdaBoost, (viii) Bagging
classifier, (ix) Extra Trees, (x) CNN, (xi) LSTM, and (xii) a hybrid CNN-LSTM algorithm. To train these
classifiers, we used the same distribution of data for all algorithms: 80% for training and 20% for the
test. We calculated five measures to compare the performance of the classifiers: Accuracy, Precision,
Recall, F1-Score, and ROC_AUC.

In Table 3 and Figure 8, we show the results that were found for all of the previously mentioned
algorithms. Starting by the accuracy, the hybrid model CNN-LSTM gave the best score with a value
equal to 0.983745, followed by the CNN algorithm with an accuracy of 0.981939. For the precision,
Random Forest was the best with a value equal to 1, CNN-LSTM is in fourth position with a precision
of 0.953947. Concerning the Recall, CNN-LSTM and Multinomial Naive Bayes share the best score
with a value equal to 0.878788. Subsequently, for the F1-Score, CNN-LSTM is once again the best
with a score of 0.914826 against 0.905063 for the CNN algorithm. Finally, for the AUC measurement,
our CNN-LSTM model gave the best score with a value of 0.937054, Multinomial Naive Bayes is the
second with a score of 0.934046. In Figures 9 and 10, we present the confusion matrix and the ROC
curve of the CNN-LSTM model.

In conclusion, the hybrid model that is based on CNN and LSTM that we have proposed in this
paper, has shown its effectiveness by giving the best result in four among five evaluation measures.
The obtained results prove that a good combination of deep learning algorithms, as we have done in this
paper, represents a very promising solution to create efficient systems for text messages classification
and spam detection.

Table 3. Results of the classification algorithms.

Accuracy Precision Recall F1-Score ROC AUC

Support Vector Machine 0.978326 0.977778 0.800000 0.880000 0.898997
K-Nearest Neighbors 0.900662 0.000000 0.000000 0.000000 0.500000
Multinomial Naive Bayes 0.978326 0.900621 0.878788 0.889571 0.934046
Decision Tree 0.965081 0.854305 0.781818 0.816456 0.883556
Logistic Regression 0.965081 0.942149 0.690909 0.797203 0.843115
Random Forest 0.978326 1.000000 0.781818 0.877551 0.890909
AdaBoost 0.972306 0.934307 0.775758 0.847682 0.884871
Bagging classifier 0.972306 0.883871 0.830303 0.856250 0.909135
Extra Trees 0.978928 0.977941 0.806061 0.883721 0.902028
CNN 0.981939 0.947020 0.866667 0.905063 0.930660
LSTM 0.981337 0.946667 0.860606 0.901587 0.927629
CNN-LSTM 0.983745 0.953947 0.878788 0.914826 0.937054

Figure 8. Comparison of the proposed CNN-LSTM model with other classifiers.
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Figure 9. Confusion Matrix of CNN-LSTM model.

Figure 10. ROC curve of CNN-LSTM model.

5. Conclusions

In this paper, a hybrid model that is based on CNN and LSTM is presented for classifying
SMS spam, which models SMS contexts (such as mobile network messages, Facebook messenger
messages, WhatsApp messages). For the evaluation dataset, a set of messages in Arabic and English
is collected in order to obtain a real dataset. Support vector machine (SVM), K-Nearest Neighbors
(KNN), Multinomial Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), Random Forest
(RF), AdaBoost (AB), Bagging classifier, and Extra Trees are also utilized in order to classify SMS spam
based on collected data. The experimental evaluation of the proposed approach has shown that the
CNN-LSTM model performs better than other techniques for classifying SMS spam. The experimental
results showed that our CNN-LSTM model achieved an accuracy of 98.37%, a precision of 95.39%,
a recall of 87.87%, an F1-Score of 91.48%, and an AUC of 93.7%. This solution can significantly improve
the security of smartphones by filtering spam messages and minimizing the risks that are related to
smishing attacks in mobile environments.

As future work, we plan to create a rich framework capable of filtering spam messages in
smartphones with better precision. The objective is to add more functionalities, such as the analysis of
URLs or files attached to messages and the inspection of telephone numbers included in messages.
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